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Abstract

This thesis studies the dynamics and stability of some bicycles. The dynamics of idealized

bicycles is of interest due to complexities associated with the behaviour of this seemingly

simple machine. It is also useful as it can be a starting point for analysis of more com-

plicated systems, such as motorcycles with suspensions, frame flexibility and thick tyres.

Finally, accurate and reliable analyses of bicycles can provide benchmarks for checking the

correctness of general multibody dynamics codes.

The first part of the thesis deals with the derivation of fully nonlinear differential

equations of motion for a bicycle. Lagrange’s equations are derived along with the con-

straint equations in an algorithmic way using computer algebra. Then equivalent equations

are obtained numerically using a Newton-Euler formulation. The Newton-Euler formula-

tion is less straightforward than the Lagrangian one and it requires the solution of a bigger

system of linear equations in the unknowns. However, it is computationally faster be-

cause it has been implemented numerically, unlike Lagrange’s equations which involve long

analytical expressions that need to be transferred to a numerical computing environment

before being integrated. The two sets of equations are validated against each other using

consistent initial conditions. The match obtained is, expectedly, very accurate.

The second part of the thesis discusses the linearization of the full nonlinear equa-

tions of motion. Lagrange’s equations have been used. The equations are linearized and the
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corresponding eigenvalue problem studied. The eigenvalues are plotted as functions of the

forward speed v of the bicycle. Several eigenmodes, like weave, capsize, and a stable mode

called caster, have been identified along with the speed intervals where they are dominant.

The results obtained, for certain parameter values, are in complete numerical agreement

with those obtained by other independent researchers, and further validate the equations

of motion. The bicycle with these parameters is called the benchmark bicycle.

The third part of the thesis makes a detailed and comprehensive study of hands-

free circular motions of the benchmark bicycle. Various one-parameter families of circular

motions have been identified. Three distinct families exist: (1) A handlebar-forward family,

starting from capsize bifurcation off straight-line motion, and ending in an unstable static

equilibrium with the frame perfectly upright, and the front wheel almost perpendicular.

(2) A handlebar-reversed family, starting again from capsize bifurcation, but ending with

the front wheel again steered straight, the bicycle spinning infinitely fast in small circles

while lying flat in the ground plane. (3) Lastly, a family joining a similar flat spinning

motion (with handlebar forward), to a handlebar-reversed limit, circling in dynamic balance

at infinite speed, with the frame near upright and the front wheel almost perpendicular;

the transition between handlebar forward and reversed is through moderate-speed circular

pivoting with the rear wheel not rotating, and the bicycle virtually upright.

In the fourth part of this thesis, some of the parameters (both geometrical and

inertial) for the benchmark bicycle have been changed and the resulting different bicycles

and their circular motions studied showing other families of circular motions.

Finally, some of the circular motions have been examined, numerically and analyti-

cally, for stability.
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Chapter 1

Introduction and Literature Review

This thesis presents a study of the dynamics and stability of bicycles. It presents, for the

first time, multiply cross-verified (benchmark) numerical results for certain bicycle param-

eter values that can be used with confidence by future researchers in bicycle dynamics as

well as people interested in examining the accuracy of general purpose multibody dynamics

codes. It also presents, in addition to numerical results, detailed discussions of hands-free

circular motions of some bicycles. Although the full set of hands-free circular motions is

complicated and varies from bicycle to bicycle, some significant new insights are obtained

into these motions, including some insights into the role played by handlebar asymmetry

(turning the handlebar by 180 degrees changes the dynamics; but in some cases not by

much). Finally, analytical and numerical stability analyses of these circular motions have

been carried out for the first time.

Bicycle dynamics has a long and scattered history. Since their inception, bicycles

have attracted attention from many scientists and engineers. The literature on bicycle

dynamics gradually started swelling towards the latter half of the twentieth century as

computers made integration of the governing differential equations possible. Apart from

attempts to write equations of motion, other bicycle analyses were aimed at understanding

rider control, based on qualitative dynamics discussions that are too simplified to capture,

say, the ability of a moving bicycle to balance itself.

This thesis consists of four parts. In the first part, we derive Lagrange’s equations

of motion for the bicycle. Then we write an equivalent set of equations using Newton-Euler

1



Chapter 1. Introduction and Literature Review 2

equations. The derivation of Lagrange’s equations is more algorithmic and tedious. The

derivation has been done using Maple. The implementation of the Newton-Euler equations

is fully numerical and less routine than Lagrange’s equations.

In the second part of the thesis, the equations are linearized about straight motion

and the corresponding eigenvalue problem is studied.

The third and fourth parts of the thesis present a complete description of the hands-

free circular motions of different bicycles. Different families of circular motions have been

found. The effect of handlebar asymmetry has been studied in some detail. The equations

governing circular motions have been explicitly linearized and the corresponding eigenvalue

problem has been studied. Numerical evaluation of stability has also been carried out.

Stable circular motions have been found to exist.

A major portion of the work contained in this thesis has been published in [2]. The

work contained in chapter 8 has not yet been published elsewhere.

1.1 Brief Literature Review

Since their inception more than a century ago, bicycles have attracted attention from

many scientists and engineers including Rankine [20] and Whipple [23] from the nineteenth

century. The literature started growing towards the latter half of the twentieth century

with the advent of computers which made numerical integration of differential equations

relatively easy. During this time notable contributions to bicycle mechanics were made

by [18] and [11]. Research on the dynamics of bicycles modelled as linked rigid bodies

was reviewed in [9]. Models with compliance were reviewed in [22]. Many bicycle analyses

aimed at understanding rider control are based on qualitative dynamics discussions that are

too simplified to capture the ability of a moving bicycle to balance itself. Such discussions

can be found in Jones [10] and [13]. Others, appropriately for basic studies of rider control,

use models with geometry and/or mass distribution that are too simplified to allow self-

stability. Still others, even if using a bicycle model that is as general as the one studied here,

use rules for the control of the steer and thus skip the equation for self-steer dynamics. Such

simple and/or steer-controlled approaches are found in, e.g., [8] and [1]. Issues pertaining
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to self-steer dynamics of bicycles are discussed in Meijaard et al. [17]. A highly detailed

discussion of the linear literature on bicycles with many cross-references is also given in

[17]. Hence, we will not discuss the linear literature on bicycles in any more detail here.

Now we discuss the literature concerning nonlinear motions of bicycles. For circular

motions, the analytical literature is smaller and less verifiably correct. The fully nonlinear

equations for bicycles are long, and their explicit form varies with the approach used in

deriving them. For example, the two independent (and numerically cross-verified) sets of

equations presented in the thesis differ greatly in length and defy full manual comparison.

We advocate the view, therefore, that numerical agreement to many digits (say, 10 or more)

between outputs (accelerations) from two sets of equations for several sets of randomly

generated inputs may be taken as a reliable demonstration of equivalence of the same. In

this light, we note that full nonlinear equations and/or simulations are presented, among

others, by [3], [21], [19], [7] and [14]; but we are unable to comment on their correctness

here beyond a qualitative comparison between their results and ours. We also acknowledge

the significant amount of work done on motorcycles, using more complex and therefore less

easily verifiable models: see, e.g., [16] and [5], as well as references therein.

The topic of hands-free circular motions might be initially misunderstood because

human riders can easily follow a wide range of circles at quite arbitrary speeds. But in

general this is possible only by imposing handlebar torques, or upper-body displacement

from the symmetry plane. With zero handle torque (i.e., hands-free) and a centred rider,

only a few discrete lean angles are possible at each speed.

We mention for motivation that straight-line motions of most standard bicycles,

including the benchmark bicycle with its handlebars forward (HF) or reversed (HR), have

a finite range of stable speeds. A bifurcation known as capsize occurs at the upper limit,

where (by linear analysis) steady turns at all large radii can be sustained with zero steering

torque. These HF and HR bifurcations are the origins of two distinct circular-motion

families. Moreover, as we will show, there are other families as well.

Prior work on hands-free circular motions of bicycles and motorcycles is limited,

incomplete, and occasionally arguable in terms of conclusions presented.

The paper by [11] on steady turns of a motorcycle with front and rear point masses,

linearized in the steer angle but not the lean, contains plots of steer angle (to 12 degrees)
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versus steer torque (which we take as zero), parameterized by lean, steer, and turn radius.

The zero-torque axis seems difficult to relate to our results below. Later, a fully nonlinear

treatment is given in [15] where the effects of distributed masses, tyre slip relations, and

the possibility of rider lean relative to the frame were explored. The results in figures 5

and 6 of that paper (and associated text) seem to imply that any desired turn radius can

be achieved at a given speed, without altering steer angle; and indeed that turn radius

at a given speed is independent of steer angle. This result, arguably lying outside normal

bicycling experience, may be due to details of tyre slip modelling. No evidence of bifurcation

from straight motion or other hands-free turning is apparent.

Psiaki [19] found one solution family (off point B in our figure 6.1, which we will

discuss in detail later), calculated eigenvalues, and reported stability up to a lean of about

18◦. The mechanical parameters of the bicycle were different, and speeds studied ranged

from the capsize speed to about 2% below it. Our corresponding solutions below are

unstable.

Franke et al. [7] studied the nonlinear motions of a bicycle, modelled using some

point mass simplifications; without providing full details of mechanical parameters; and

allowing for lateral displacement of the rider. Their results (for zero rider displacement)

show only one solution family (corresponding to our curve BA in our figure 6.1), which like

ours is unstable.

Cossalter et al. [4] evaluated steady turns of a motorcycle with toroidal wheels,

and various tyre parameters. In the upper left plot of their figure 5 (rigid tyres), a line of

zero steer torque is plotted on axes of curvature and speed. It seems equivalent to most

of our curve BA in our figure 6.1, with a bifurcation around 5 m/s; and with turn radius

decreasing to about 5m at a speed of 4 m/s. No other circular motion families are apparent.

Lennartsson [14] presented a thoroughgoing analysis of circular motions of a bicycle,

with different parameters, where he finds all but one of the solution families we will display

later (curve CDE in our figure 6.1 even though he separately determines the HR bifurcation

that gives rise to it). For yet other parameter values, Aström [1] again overlooked the same

family.

In this light, a careful, complete, and cross-verified study of circular motions of some

bicycles seems missing in the literature, and constitutes the primary contribution of this
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thesis.

1.2 Organization of the Thesis

Chapter 2 presents the derivation of Lagrange’s equations of motion. It starts with the

assumptions made for deriving the equations of motion. Then it discusses the generalized

coordinates that describe the bicycle. It also includes a discussion on the notation that

has been used to describe Euler angle rotations. Then the procedure for obtaining the La-

grangian is discussed in detail along with the method for obtaining the constraint equations

for the wheels.

Chapter 3 deals with the derivation of the equations of motion by the Newton-Euler

method. It starts with the momentum balance equations for the rear wheel, front wheel

and the rear frame and the rear wheel combined. Then momentum balance equations for

the entire bicycle are written. The constraint equations (in vector form) are then written

for the two wheels. Then further kinematic relations connecting the linear and angular

accelerations of the four rigid bodies constituting the bicycle are written down. A system

of linear equations is obtained which can be solved numerically.

Chapter 4 deals with the numerical solution of the differential equations of motion of

the bicycle. It contains a table showing the second derivatives of the coordinates describing

a bicycle as obtained using Lagrange’s equations and Newton-Euler equations. The values

of these derivatives match to 16 decimal places showing that the two sets of equations

derived in chapter 2 and chapter 3 are exactly equivalent. It also includes a numerical

simulation of the full nonlinear equations of motion using a set of initial conditions which

are consistent with the imposed constraints. It concludes with a discussion of the method

of coordinate partitioning on velocities which has been implemented in the Matlab code to

eliminate the problem of drift in the velocity and acceleration constraints.

Chapter 5 deals with linearized equations of motion and the accompanying eigen-

value problem for studying the straight line motion of the bicycle and its stability. The

stability results are presented for both handlebar-forward (HF) and handlebar-reversed

(HR) configurations. A speed range has been identified in which the uncontrolled bicycle
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can balance itself for both HF and HR cases.

Chapter 6 studies circular motions of the bicycle in detail. The chapter starts with

a discussion of the strategy that has been employed to find the various circular motion

families. Then follows a detailed discussion of each. Various special motions and limiting

configurations which are attained by the bicycle are discussed. Some precise values (initial

conditions leading to circular motions), which serve a benchmarking purpose, are listed. In

addition, some special and precise numerical values related to limiting configurations are

listed. A full numerical simulation of one circular motion is included. Finally, a detailed

discussion of a somewhat unexpected static equilibrium solution for the bicycle is presented.

Chapter 7 studies the stability of circular motions. A procedure to obtain linearized

equations for circular motions has been developed. A table showing the four non-trivial

eigenvalues governing the stability of circular motions, for several motions, has been shown.

A discussion on which equations to include for linearization (because the equations are not

independent and they admit a one-parameter family of solutions) is provided. Relevant

numerical issues pertaining to the multiplicity of the zero eigenvalues are discussed. Finally

a numerical scheme involving finite differences to find the stability eigenvalues of circular

motions quickly, with low computational effort, has been provided.

Chapter 8 makes a study of circular motions of various bicycles obtained by changing

some of the parameter values of the benchmark bicycle. Effects of handlebar asymmetry

and removal of the same are discussed in detail. In the course of this study, qualitatively

new families of circular motions have been found. They have been studied and plotted in

the same manner as in chapter 6. Stability analysis of these families has been conducted.

Many circular motions have been found to be stable for certain choices of parameter values.

Chapter 9 makes a limited comparison of some of the results obtained in this thesis

with prior experiments.

Finally some concluding discussion is presented in chapter 10.



Chapter 2

Lagrange’s Equations of Motion

2.1 Introduction

There are several ways of writing equations of motion for a bicycle. These equations are

a set of differential equations. One can assemble them using the Newton-Euler rigid-body

equations, or using Lagrange’s equations with Lagrange multipliers for the in-ground-plane

rolling-contact forces, or one can use methods based on the principle of virtual velocities

(e.g., Kane’s method [12]), etc. In this chapter, we use a Lagrangian formulation for

deriving the same.

2.2 Preliminaries

2.2.1 Mechanical model

The mechanical model of the bicycle used here has four rigid bodies: the rear frame with

the rider rigidly attached; the front frame consisting of the front fork and the handlebar

assembly; and two wheels. These bodies are interconnected by frictionless hinges at the

steering head (between rear frame and front frame) and at the two wheel hubs. The

7
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wheels make knife-edged contact with the ground; their centers of mass coincide with their

geometrical centers; and they roll on horizontal ground without slip or dissipation. There is

no propulsive thrust. The parameter values used here are based on the further assumption

of lateral symmetry, though such symmetry is not assumed in our derivation (unlike [17]).

2.2.2 Generalized coordinates and constraints

We begin with nine generalized coordinates, not all independent. Three coordinates x, y

and z specify the position of the centre of mass of the rear wheel in the global reference

frame XYZ (see figure 2.1). Note that the same point is attached to the rear frame as well.

Three angles θ, ψ and φ (in (3,1,3) Euler angle sequence) specify the configuration of the

rear frame. The rotation of the rear wheel relative to the rear frame is βr. The rotation of

the front fork (steering angle) relative to the rear frame is ψf . Finally, the rotation of the

front wheel relative to the front fork is βf .

G

P

S

Rear frame (3-1-3) Euler Angles

(θ−ψ−φ)

Front wheel

R
F

Front fork and

handle-bar

t

nQ nP

nF
ψ

β

f

r

βf
µ

X
O

Y

Q

H Rear wheel

wb

G

P

S

Q

r
G/P,ref

_
r
Q/S,ref

_

rQ/P,ref
_

Notation

Figure 2.1: Sketch of the bicycle in its reference configuration. The bicycle is flat on the

ground.
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2.2.3 Reference configuration to instantaneous configuration

In the reference configuration chosen here (see figure 2.1), the bicycle is lying flat on the

ground. Its lateral-symmetry plane coincides with the XY plane.

To reach an arbitrary instantaneous configuration, we proceed as follows. First, the

rear frame is rotated by θ about e3 (i.e., the Z-direction). This determines the eventual

heading direction of the bicycle (it corresponds to a yawing motion). Next, the rear frame is

rotated by ψ about the body-fixed e1 axis (i.e., about what was the X-direction before the

first rotation). This determines the tilt of the bicycle (it corresponds to a rolling motion).

Finally, the rear frame is rotated by φ about the body-fixed e3 axis (i.e., about what was the

Z-direction before the two preceding rotations). This rotation is not really independently

specifiable when the bicycle moves on flat ground. It corresponds to a pitching motion,

and must take whatever value is needed for the front wheel to touch the ground.

After the three rotations given by the above Euler angles, the rear frame is translated

so that the rear wheel axle center reaches the point (x, y, z).

Holding the rear frame fixed, the rear wheel is rotated by βr, the front fork is rotated

by ψf , and then the front wheel is rotated relative to the front fork by βf .

Now the bicycle is in the instantaneous configuration. Note that z and φ cannot be

independently specified: they must ensure contact between the wheels and ground. The

bicycle thus has seven independent configuration variables, though we work with nine for

convenience.

2.2.4 Velocity degrees of freedom

As discussed earlier, the configuration space of the bicycle is seven-dimensional. However,

the bicycle has 4 nonholonomic constraints, 2 for each wheel. These constraints reduce the

bicycle to only 3 degrees of freedom in the velocities. This velocity space is parameterized

by the lean rate ψ̇ of the rear frame, the steer rate ψ̇f and the rear wheel spin rate β̇r

relative to the rear frame.
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2.2.5 Parameters describing a bicycle

The parameters of all bicycles studied in this thesis are listed in appendix A. The number

of design parameters is 25. Here, for academic interest, we discuss how to eliminate four

of them without loss of generality. However, we will continue to work with all the 25

parameters for convenience.

See figure 2.2.

P

G

2m

1m ,Icm

Figure 2.2: Adding a point mass to a rigid body.

An arbitrary rigid object has mass m1, center of mass at G, and moment of inertia

about center of mass Icm. A point mass m2 is added to this object at point P . The new

composite object will have total mass m1 +m2. The new center of mass G′ will satisfy

(m1 +m2) rG′ = m1 rG +m2 rP .

The new moment of inertia matrix about G′ can be found by applying the parallel axis

theorem (3D version) to Icm and adding on the further contribution of mass m2 at P . These

formulas continue to apply if a point mass is removed from the object: in this case, m2 is

simply negative.

The above can be used to reduce the size of the independent parameter set of the

bicycle.

First, a point mass equal to the mass of the rear wheel can be transferred from

the wheel to the rear frame, at the wheel axle. This alters the total mass, center of mass

position, and moment of inertia matrix of the rear frame; but it does not change the
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number of scalar parameters needed to specify them. However, now the mass of the rear

wheel may be set to zero, thereby reducing the size of the parameter set by one. Note

that the moment of inertia matrix of the rear wheel remains unchanged. A minor point

here is that the moment of inertia matrix is supposed to be calculated about the center of

mass, and now the center of mass of the wheel is indeterminate because its mass is zero.

However, for exactly the same reason, the moment of inertia matrix becomes independent

of center of mass location, as may be seen by applying the parallel axis theorem, and so the

indeterminacy has no dynamical consequences. Another way to see the validity of this point

mass transfer is to note that there is no change in either the kinetic or the potential energy

of the system, and so Lagrange’s equations remain the same. In writing Newton-Euler

equations, on the other hand, the zero mass of the rear wheel makes a zero contribution

to linear momentum balance equations (no ambiguity); and the zero mass also causes the

relevant r × ma term in angular momentum balance equations to drop out regardless of

the indeterminacy in r (again, no ambiguity).

In this way, one parameter has been eliminated.

We now consider the front fork. See figure 2.3 (left), which shows a side view.

Fork axis

R

H

Q

Wheel axle

Front fork assembly

Figure 2.3: Front fork.

Let us draw a line from the wheel axle Q, through the front fork center of mass H ,
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to intersect the fork axis at some point R. That this is possible for typical bicycle designs

is seen from the same figure (right), where a line parallel to the fork axis has been drawn

through Q. Since all the mass lies to the right side of this line, the center of mass lies to

its right as well.

Having identified points Q, H and R, we now seek two masses m1 and m2 that

satisfy

m1 +m2 = mff (mass of front fork), (2.1)

m1 rQ/H +m2 rR/H = 0. (2.2)

Equation 2.2 looks like a vector equation, but effectively is a scalar equation because rQ/H

and rR/H are collinear. Solving Eqs. 2.1 and 2.2, we obtain m1 and m2. We then transfer

a point mass m1 to the front wheel axle at Q. This changes the mass of the front wheel,

but does not alter the number of free parameters required to describe it. After transferring

this mass, the new mass of the front fork is m2; and the new center of mass is at R. The

front fork also has a new moment of inertia matrix about R, which can be calculated as

described above. Finally, we transfer a point mass m2 from the front fork to the rear frame

at point R. This does not change the moment of inertia matrix of the front fork, but

makes its mass zero (eliminating one parameter). The mass, center of mass position, and

moment of inertia matrix about center of mass of the rear frame are now updated, but no

new parameters are introduced there.

Finally, we note that the center of mass position of the front fork is now dynamically

irrelevant, so it can (say) be set equal to the origin with no dynamical consequences. This,

in effect, eliminates a further two scalar parameters.

We have, in this way, eliminated a total of four parameters, yielding a reduced set.

We mention that the front and rear wheels in bicycles are usually modeled as thin

(as in [17]). In such cases, in the reference configuration, the polar moment of inertia Izz

(about the axis of a wheel) is double the value of the transverse moments of inertia Ixx = Iyy

(consistent with our choice of coordinate axes in the reference position; different from that

of [17]). However, if one is interested in wheels where Ixx = Iyy = γ Izz with γ a positive

free parameter different for each wheel, then these two parameters can be eliminated as

well. This is because, e.g., the rear wheel’s instantaneous moment of inertia matrix does

not depend on its rotation with respect to the rear frame. Its rotational kinetic energy may
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be split into two parts: one due to its angular velocity component in the axial direction,

which depends on the polar moment of inertia, and the other due to the transverse or

in-wheel-plane component of angular velocity, which depends on the transverse moment of

inertia, i.e., on γ. This latter part of the kinetic energy may be transferred to the rear frame

by transferring the γ-dependent portion of the wheel’s moment of inertia to the rear frame.

Since there is no change in the Lagrangian, there is no change in the equations of motion.

The contribution of γ gets absorbed into the inertia properties of the rear frame, and the

parameter set is reduced by one. A similar process of transferring rotational inertia from

the front wheel to the front fork can eliminate yet another free parameter, bringing the

total reduction to six. In practical bicycle designs with thin wheels, as mentioned above,

elimination of the last two parameters may be superfluous (because γ is fixed at 1/2, and

not free). However, this may be of interest in the dynamics of motorcycles with fatter

wheels.

It may be noted that the above discussion of reduction of the parameter set by as

much as six independent parameters is for academic interest only, and is not used in the

rest of this thesis.

2.2.6 Notation for rotations

We work with a fixed inertial reference frame XY Z, and use a single coordinate system for

all calculations so that vectors are equivalent to their 3 × 1 matrices of components. To

emphasize this for clarity, we write

r = r ≡ r,

where r denotes the matrix of components of the vector r or r.

Our notation for rotations, though not new, is presented briefly below for complete-

ness.

Let a body be rotated about a unit vector n through an angle θ. Then a vector r

embedded in the body gets rotated into a new vector r′ given by the matrix relation

r′ =
[

cos θ I + (1 − cos θ)nnT + sin θ S(n)
]

r ,
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where

S(a) =















0 −a3 a2

a3 0 −a1

−a2 a1 0















.

We define

R(n, θ) ≡ cos θ I + (1 − cos θ)nnT + sin θ S(n) . (2.3)

All rotation matrices used below are built up using the above “axis-angle” formula.

2.3 Lagrange’s Equations

2.3.1 Kinetic and potential energies

We require the kinetic and potential energies of each of the four rigid bodies constituting

the bicycle. The appropriate constraint equations are also required.

2.3.1.1 Rear frame

Defining (see subsection 2.2.6 for a slightly offbeat but compact notation) R1 = R(e3, θ),

R2 = R(R1e1, ψ) and R3 = R(R2R1e3, φ), the final rotation matrix Rrf for the rear frame

is given by

Rrf = R3R2R1 . (2.4)

The above matrices are individually computed and reliably multiplied through in Maple.

We obtain the angular velocity ωrf of the rear frame via

S(ωrf) = ṘrfR
T
rf . (2.5)

From S(ωrf), the elements of ωrf are picked out individually. The entire calculation is

easily programmed in Maple, and actual expressions are not presented here.

The mass moment of inertia matrix of the rear frame in the rotated configuration,

Icm,rf , is given by

Icm,rf = RrfIcm,rf,refR
T
rf , (2.6)
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where Icm,rf,ref is the mass moment of inertia matrix about the center of mass of the rear

frame in its reference configuration. The rotational kinetic energy of the rear frame is

(again in Maple)

KErf,rot =
1

2
ωT

rfIcm,rfωrf . (2.7)

For the translational kinetic energy of the rear frame, we need the velocity vG of the

centre of mass G of the rear frame. The centre of mass of the rear wheel is at P , as shown

in figure 2.1. Thus,

rG = rP +Rrf .rG/P,ref , (2.8)

where rG/P,ref is the position vector of G relative to P in the reference configuration of

the bicycle. Having rG, we differentiate to obtain vG. The translational kinetic energy,

KErf,trans, of the rear frame is

KErf,trans =
1

2
mrfv

T
GvG , (2.9)

where mrf is the mass of the rear frame including the rigidly attached rider. The total

kinetic energy of the rear frame is then

KErf = KErf,trans +KErf,rot. (2.10)

The potential energy, PErf of the rear frame is

PErf = mrfg rG,z, (2.11)

where rG,z is the z-component of rG.

2.3.1.2 Front frame

The rotation matrix for the front frame is

Rff = R(Rrfnf , ψf )Rrf . (2.12)

In the above equation, nf = {− sinµ,− cosµ, 0}T , is the unit vector pointing along the

axis of the fork when the bicycle is in the reference configuration. As before,

S(ωff) = ṘffR
T
ff . (2.13)
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The mass moment of inertia matrix is

Icm,ff = RffIcm,ff,refR
T
ff . (2.14)

The rotational kinetic energy is

KEff,rot =
1

2
ωT

ffIcm,ffωff . (2.15)

The velocity of point H , the centre of mass of the front frame, is found as follows.

First,

rS = rP +Rrf .rS/P,ref . (2.16)

In the above equation S is any point on the fork axis. Then,

rH = rS +Rff .rH/S,ref . (2.17)

Having obtained rH , differentiation gives vH . The translational kinetic energy of the front

frame is then given by

KEff,trans =
1

2
mffv

T
HvH , (2.18)

where mff is the mass of the front frame.

The total kinetic energy is

KEff = KEff,trans +KEff,rot. (2.19)

The potential energy of the front frame is

PEff = mffg rH,z, (2.20)

where rH,z is the z-component of rH .

2.3.1.3 Front wheel

Finally, for the front wheel, we write

Rfw = R(Rffe3, βf)Rff , (2.21)
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Icm,fw = RfwIcm,fw,refR
T
fw , (2.22)

S(ωfw) = ṘfwR
T
fw , (2.23)

and

KEfw,rot =
1

2
ωT

fwIcm,fwωfw . (2.24)

As before, we write

rQ = rS +Rff .rQ/S,ref , (2.25)

where Q is the centre of the front wheel. Then we differentiate to obtain vQ. The transla-

tional kinetic energy is

KEfw,trans =
1

2
mfwv

T
QvQ . (2.26)

The total kinetic energy KEfw of the front wheel is then

KEfw = KEfw,trans +KEfw,rot. (2.27)

The potential energy of the front wheel is

PEfw = mfwg rQ,z. (2.28)

2.3.1.4 Rear wheel

The rotation matrix of the rear wheel is

Rrw = R(Rrfe3, βr)Rrf . (2.29)

The angular velocity vector ωrw of the rear wheel is obtained from

S(ωrw) = ṘrwR
T
rw . (2.30)

The instantaneous mass moment of inertia matrix about the center of mass of the rear

wheel, Icm,rw, is

Icm,rw = RrwIcm,rw,refR
T
rw . (2.31)

The rotational kinetic energy of the rear wheel is

KErw,rot =
1

2
ωT

rwIcm,rwωrw . (2.32)
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The translational kinetic energy of the rear wheel is (recall our choice of generalized coor-

dinates)

KErw,trans =
1

2
mrw(ẋ2 + ẏ2 + ż2). (2.33)

The total kinetic energy of the rear wheel is

KErw = KErw,trans +KErw,rot. (2.34)

The potential energy of the rear wheel is

PErw = mrwgz. (2.35)

2.3.1.5 Lagrangian

Let the total kinetic energy of the bicycle be T and the total potential energy be V . Then

T and V are given as follows:

T = KErf +KErw +KEff +KEfw, (2.36)

V = PErf + PErw + PEff + PEfw. (2.37)

The Lagrangian is

L = T − V. (2.38)

It remains to write the constraint equations for the two wheels.
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2.3.2 Constraint equations for the wheels

2.3.2.1 Rear wheel

P

R

ground

k

n
P

Figure 2.4: The rear wheel. The lowermost point on the wheel touches ground. The unit

vector along n̂P × k̂, say λ̂r, points out of the page.

We begin by setting all three components of the contact point velocity to zero. The equation

for the vertical component of the velocity is of course just the differentiated form of a

holonomic constraint: we remain alert to that.

At an arbitrary configuration of the rear wheel, its plane intersects the ground along

some line. If we view the wheel along this line, both the wheel and the ground reduce to

straight lines. This 2D view is shown in figure 2.4. The centre of the wheel is at P , and

the instantaneous point of contact is at R. A unit vector normal to the plane of the wheel

is shown, and denoted by nP . In the reference configuration, nP was aligned with k̂ (the

same as e3); it is now, in matrix notation, given by Rrwe3.

Assuming the wheel is not flat on the ground (which also happens to be the singular

configuration for (3-1-3) Euler angles), the vector

p = nP × k̂ (2.39)
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is nonzero and points out of the plane of the paper. Now, from the figure, we see that1

rP/R =
r1
∣

∣

∣p
∣

∣

∣

p× nP , (2.40)

where r1 is the radius of the rear wheel.

Using rP/R, the velocity of P can be written in two equivalent ways:

vP ≡ ẋî+ ẏĵ + żk̂ ≡ vR + ωrw × rP/R. (2.41)

The constraint that vR = 0 is thus expressible as

ẋî+ ẏĵ + żk̂ − ωrw × rP/R = 0. (2.42)

The above vector equation has three components. The vertical component is identifiable

(on calculating it in Maple) as the derivative of

z = r1 sinψ, (2.43)

which is a holonomic constraint; we use it to eliminate z and reduce the number of degrees

of freedom to eight.

The two other components turn out to be nonholonomic constraint equations:

ẋ+ r1 cos θβ̇r + r1 cos θφ̇− r1 sin θ sinψψ̇ + r1 cos θ cosψθ̇ = 0, (2.44)

ẏ + r1 sin θβ̇r + r1 sin θφ̇+ r1 sinψ cos θψ̇ + r1 sin θ cosψθ̇ = 0. (2.45)

2.3.2.2 Front wheel

The constraint equations for the front wheel are similarly obtained. The analog for nP =

Rrwe3 is nQ = Rfwe3. The analog for the ground contact point R is point F . The analog

for Eq. 2.42 is

vQ − ωfw × rQ/F = 0.

The vertical component of the above equation, though known theoretically to be a

holonomic constraint, was retained in differentiated form (like a nonholonomic constraint)

in this work due to its apparent analytical intractability.

1This offbeat approach requires no bicycle-specific 3D visualization and avoids errors.



Chapter 3

Newton-Euler Equations of Motion

3.1 Introduction

In this chapter, we use a Newton-Euler formulation for deriving the equations of motion.

Here we write the linear and angular momentum balance equations for the rigid bodies

constituting the bicycle. The constraint equations are then derived in the same way as

they were derived for Lagrange’s equations. Then we derive kinematic relations through

which the linear and angular accelerations of the centres of mass of the various rigid bodies

constituting the bicycle are related. Finally we end up with a system of linear equations

in the unknowns. The Newton-Euler approach can also be used with Maple, but it is

conveniently programmed into Matlab for a fast, fully numerical evaluation of the second

derivatives needed for numerical integration. While the basic principles are straightforward,

the actual implementation is less routine than obtaining Lagrange’s equations. While our

discussion is around using Matlab, the use of Matlab here is notional. All calculations here

are transferable to other computing environments.

21
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3.2 Momentum Balance

We begin with free body diagrams of the front wheel, the rear wheel, and the rear wheel

along with the rear frame (figures 3.1 (A), (B) and (C) below).
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Figure 3.1: Free body diagrams. (A) shows the FBD of the front wheel, (B) shows the

same for the rear wheel while (C) shows the FBD of the rear wheel and rear frame.

Consider the rear wheel (figure 3.1 (B)). There are three forces acting on it: its

weight through P ; an axle force F axle,rw also at P ; and a force F rw at the ground contact

R. There is also an unknown bearing moment M with no component along the bearing

axis or n̂P . Angular momentum balance about P gives

rR/P × F rw +M = Icm,rwαrw + ωrw × Icm,rwωrw,

which in matrix notation is

S(rR/P )Frw +M = Icm,rwαrw + S(ωrw)Icm,rwωrw. (3.1)

In the above, α denotes angular acceleration (a vector). We eliminate M by taking the dot

product of Eq. 3.1 with n̂P , obtaining

−nT
P Icm,rwαrw + nT

PS(rR/P )Frw = nT
PS(ωrw)Icm,rwωrw. (3.2)
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The above is a scalar equation, with terms rearranged so that unknowns appear on the left

side so that it facilitates the assembly of the system of equations.

In Eq. 3.2, we could have written −S(Frw)rR/P in place of S(rR/P )Frw, but the latter

is preferred because the unknown Frw now appears on the right; its coefficient matrix can

be computed numerically and used directly while assembling the system equations. We will

reuse this idea.

We now write the angular momentum balance equation for the rear wheel and the

rear frame, together, about the point S on the fork axis (figure 3.1 (C)). Directly in matrix

notation, we have (with unknowns on the left hand side)

S(rR/S)Frw −mrwgS(rP/S)e3 −mrfgS(rG/S)e3 +M1 = Icm,rfαrf + S(ωrf)Icm,rfωrf

+mrfS(rG/S)aG + Icm,rwαrw + S(ωrw)Icm,rwωrw +mrwS(rP/S)aP , (3.3)

where a denotes acceleration (a vector). We eliminate M1 by taking the dot product of Eq.

3.3 with n̂f , getting the scalar equation

nT
f (S(rR/S)Frw − Icm,rfαrf − Icm,rwαrw − S(rG/S)mrfaG − S(rP/S)mrwaP )

= nT
f (S(rP/S)mrwge3 + S(rG/S)mrfge3 + S(ωrf)Icm,rfωrf + S(ωrw)Icm,rwωrw). (3.4)

Finally, we write the angular momentum balance equation for the front wheel about

Q. The free body diagram is shown in figure 3.1 (A) above. The resulting scalar equation

in matrix notation is (with unknowns on the left)

−nT
QIcm,fwαfw + nT

QS(rF/Q)Ffw = nT
QS(ωfw)Icm,fwωfw. (3.5)

We now write the linear momentum balance and the angular momentum balance

equations for the entire bicycle about G, the centre of mass of the rear frame.
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Figure 3.2: Free body diagram of the entire bicycle.

Linear momentum balance gives

Frw + Ffw −mrwaP −mrfaG −mffaH −mfwaQ = mtotge3, (3.6)

where mtot is the total mass of the bicycle. Angular momentum balance about G gives

S(rR/G)Frw + S(rF/G)Ffw − S(rP/G)mrwaP − Icm,rwαrw − Icm,rfαrf −
S(rH/G)mffaH − Icm,ffαff − S(rQ/G)mfwaQ − Icm,fwαfw = S(rP/G)mrwge3 +

S(rH/G)mffge3 + S(rQ/G)mfwge3 + S(ωrw)Icm,rwωrw + S(ωrf)Icm,rfωrf +

S(ωff )Icm,ffωff + S(ωfw)Icm,fwωfw. (3.7)

The above two equations are vector equations, with three scalar components each. Thus,

we have so far obtained nine scalar equations.

3.3 Constraint Equations

The constraints are the same as before, but now we will not eliminate one coordinate using

the holonomic constraint of ground contact for the rear wheel. That is, we will retain six
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constraint equations. Corresponding to the differentiation of the five velocity constraint

equations in the Lagrangian formulation before, we will now directly differentiate the two

vector constraint equations.

To begin, we rewrite Eq. 2.40 as follows:

rP/R = r1(λr × n̂P ), (3.8)

where

λr =
n̂P × k̂

∣

∣

∣n̂P × k̂
∣

∣

∣

.

Now we differentiate Eq. 2.41 to get

aP = αrw × rP/R + ωrw × r1(λ̇r × n̂P + λr × ˙̂nP ). (3.9)

In matrix notation the above equation becomes

aP + S(rP/R)αrw = r1S(ωrw)(S(λ̇r)nP + S(λr)ṅP ), (3.10)

where ṅP , λr and λ̇r in matrix notation are given as follows:

ṅP = S(ωrw)nP . (3.11)

λr =
−S(e3)nP

√

nT
PS

T (e3)S(e3)nP

. (3.12)

λ̇r =
−S(e3)ṅP

√

nT
PS

T (e3)S(e3)nP

+
S(e3)nP ṅ

T
PS

T (e3)S(e3)nP

(nT
PS

T (e3)S(e3)nP )3/2
. (3.13)

The above equation could be simplified a little, but we leave it in this form for the sake of

transparency. Similarly, for the front wheel we can write the constraint equations in matrix

form as follows:

aQ + S(rQ/F )αfw = r2S(ωfw)(S(λ̇f)nQ + S(λf)ṅQ), (3.14)

with similar expressions for ṅQ, λf and λ̇f . They are given below.

ṅQ = S(ωfw)nQ. (3.15)

λf =
−S(e3)nQ

√

nT
QS

T (e3)S(e3)nQ

. (3.16)
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λ̇f =
−S(e3)ṅQ

√

nT
QS

T (e3)S(e3)nQ

+
S(e3)nQṅ

T
QS

T (e3)S(e3)nQ

(nT
QS

T (e3)S(e3)nQ)3/2
. (3.17)

We thus have six more scalar equations (Eqs. 3.10 and 3.14).

Pausing to take stock, we note that we so far have the following unknown vectors:

aP , aG, aH , aQ, αrw, αrf , αff , αfw, F rw and F fw. Thus, we have 30 scalar unknowns so

far. We also have 15 equations so far. The additional equations needed will come from

kinematic relations among the nonminimal set of unknowns.

3.4 Further Kinematic Relations

We begin with

vG = vP + ωrf × rG/P .

Differentiating, we get

aG = aP + αrf × rG/P + ωrf × ωrf × rG/P ,

which in matrix notation is

aG − aP + S(rG/P )αrf = S(ωrf)S(ωrf)rG/P . (3.18)

In the above, as before, we use the trick of writing S(rG/P )αrf instead of −S(αrf )rG/P ,

so that the unknown quantities stay on the right side of the matrix product, while the

premultiplying coefficient matrices may be input easily into Matlab.

Similarly, we can write relations between aH and aG and between aQ and aH .

aH − aG + S(rS/G)αrf + S(rH/S)αff = S(ωrf)S(ωrf)rS/G + S(ωff)S(ωff)rH/S. (3.19)

aQ − aH + S(rQ/H)αff = S(ωff)S(ωff)rQ/H . (3.20)

We have thus added 9 scalar equations (Eqs. 3.18, 3.19 and 3.20), and are presently

short by 6.
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Now we write relations connecting the angular accelerations of the four rigid bodies.

We have

ωrw = ωrf + β̇rn̂P .

Differentiating with respect to time, we have

αrw = αrf + β̈rn̂P + β̇r(ωrf × n̂P ),

which in matrix notation is

αrw − αrf − β̈rnP = β̇rS(ωrf)nP . (3.21)

Note that, when assembling the final set of equations, the left hand side above will be

written as

Iαrw − Iαrf − nP β̈r,

where I is the 3× 3 identity matrix; this helps identify the coefficient matrices of unknown

quantities.

Similarly we can write

αff − αrf − ψ̈fnf = ψ̇fS(ωrf)nf . (3.22)

αfw − αff − β̈fnQ = β̇fS(ωff)nQ. (3.23)

Thus we have introduced 3 more unknowns, β̈r, ψ̈f and β̈f , giving a total of 33 unknowns.

But we have added Eqs. 3.21, 3.22 and 3.23, which are all vector equations, to our previously

obtained 24 scalar equations. So we now have 33 independent equations as well. This

system of 33 linear equations in 33 variables can be solved numerically.

3.5 Second Derivatives of Euler Angles from Angular

Accelerations

A key step remains. We have now obtained β̈r, ψ̈f and β̈f (second derivatives of 3 angles),

along with ẍ, ÿ and z̈. We also have αrf , the angular acceleration of the rear frame.

However, we need the second derivatives of the (3-1-3) Euler angles, i.e., θ̈, ψ̈ and φ̈. These

are obtained as follows.
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We again use the framework of (3-1-3) Euler angle rotations of an arbitrary rigid

body. Let the reference position of the rigid body denote a reference frame F1. Let F2 be

a frame that is always rotated about the e3 axis through θ relative to F1. Let frame F3

be always rotated about the θ-rotated e1 axis through ψ relative to F2. Finally, let F4 be

always rotated about the first-θ-then-ψ-rotated e3 axis through φ relative to F3. It is clear

that F4 is attached to the moving rigid body.

It can be shown that the angular velocity of the rear frame is

ω =
[

e3 R1e1 R2R1e3

]



























θ̇

ψ̇

φ̇



























,

which we abbreviate to ω = AΘ̇ . Then we can show that

αrf = AΘ̈ + q ,

where

q = S(R1e1ψ̇ + e3θ̇)R2R1e3φ̇+ S(e3θ̇)R1e1ψ̇ .

The above can be used to solve for Θ̈, once αrf has been obtained from the Newton-Euler

equations.

We now have a numerical procedure for obtaining the second derivatives of the

system coordinates. The choice of initial conditions is subject to the same constraints

as discussed in detail already for the Lagrange’s equations case, except that z has not

been eliminated in the Newton-Euler formulation, and so the initial conditions for z and ż

must also satisfy the system constraints. This straightforward issue is not discussed in any

further detail.



Chapter 4

Numerical Solution of the Equations

of Motion and Related Issues

4.1 Introduction

We have so far obtained the equations of motion for the bicycle in two different ways. Before

proceeding to solve them numerically, we first need to verify that both the sets of derived

equations are correct and exactly equivalent. Lagrange’s equations, in our case are very

long and have been obtained analytically using computer algebra. On the other hand, the

Newton-Euler equations are shorter, and implemented numerically. The two independent

sets of equations differ greatly in length and defy full manual comparison. We advocate

the view, therefore, that numerical agreement to many digits (say, 10 or more) between

outputs (accelerations) from two sets of equations for several sets of randomly generated

inputs may be taken as a reliable demonstration of equivalence; and we will use such checks

below. Before using such checks, we start with a discussion of how we have calculated the

value of φ, which is our third Euler-angle.

29
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4.2 Calculation and Uniqueness of φ(0).

Taking the point of contact of the front wheel with the ground to be F , we have

rF = rP +RrfrS/P,ref +RffrQ/S,ref + rF/Q, (4.1)

where, as mentioned earlier, Rrf and Rff are the rotation matrices for the rear frame and

front frame respectively. Also rF/Q is given as

rF/Q = −r2 (λf × n̂Q), (4.2)

where r2 is the radius of the front wheel and

λf =
n̂Q × k̂
∣

∣

∣n̂Q × k̂
∣

∣

∣

.

P , S, Q and n̂Q are as shown in figure 2.1. The z-component of rF , if equated

to zero, yields an implicit relation in φ, ψ and ψf only. This equation is nonlinear (with

trigonometric terms) but independent of velocities. Solving this equation numerically, we

obtain φ(0) for given initial conditions on the remaining coordinates.

Figure 4.1: Eight possible ways in which the wheels of a vertical bicycle may, mathe-

matically, touch the ground. Of these, only the first two from the left in the first row are

recognized in our formulation, because we explicitly take the lowermost point on each wheel

to be touching the ground. Of those two, the first is of interest here.
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There are actually four ways in which a vertical and upright bicycle’s wheels may

touch the ground: these involve each wheel, independently, being either below the ground

(touching the ground at its topmost surface) or above the ground (touching the ground at

its lowermost surface). Holding the bicycle vertical but upside down, there are four more

possible configurations where both wheels touch the ground. Thus, there are a total of

eight possible configurations, as sketched in figure 4.1, with only two being recognized in

our formulation and one of those two being of actual interest.

For a vertical, straight-running bicycle, the appropriate initial condition is φ(0) =

π (figure 4.1, top left). This is a direct consequence of the fact that in the reference

configuration (figure 2.1), both wheels touch the x-axis, and the bicycle lies in the negative-

y half plane. Choosing φ(0) = 0 in this situation corresponds to the configuration of figure

4.1 (first row, second from left).

It appears, from our numerical simulations and animations, that in general (non-

vertical, non-straight) choices of initial values of coordinates, there are again two possible

choices of φ(0). Of these, choosing the one closer to π seems to give the solution of interest,

which we verify post facto from the animation of the moving bicycle.

There exist geometries (e.g., very large rear wheels with all other component sizes

small) and initial configurations for which there are no solutions for φ(0). These fall outside

the purview our study.

4.3 Checking the Equivalence of the Two Sets of Equa-

tions

Having discussed the procedure which gives us the initial value of φ, we are now in a position

to check the equivalence of our two independent sets of equations. For several arbitrary

(random) choices of coordinates and their first derivatives, the second derivatives obtained

from the Lagrange and Newton-Euler sets of equations matched to machine precision; see

table 4.1. We conclude that our two sets of equations are exactly equivalent.
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Input Output

q q̇ Lagrange (q̈) Newton-Euler (q̈)

x = 0 −2.8069345714545 −0.5041626315047 −0.5041626315047

y = 0 −0.1480982396001 −0.3449706619454 −0.3449706619454

z = 0.2440472102925 0.1058778746261 - −1.4604528332980

θ = 0 0.7830033527065 0.8353281706379 0.8353281706379

ψ = 0.9501292851472 0.6068425835418 −7.8555281128244 −7.8555281128244

φ = 3.1257073014894 −0.0119185528069 0.1205543897884 0.1205543897884

ψf = 0.2311385135743 0.4859824687093 −4.6198904039403 −4.6198904039403

βr = 0 8.9129896614890 1.8472554144217 1.8472554144217

βf = 0 8.0133620584155 2.4548072904550 2.4548072904550

Table 4.1: Comparison of the results obtained using Lagrange and Newton-Euler. The

initial conditions are consistent with the constraints. The first and the second columns

represent the inputs, while the third and the fourth columns represent the outputs.

4.4 Nonlinear Dynamic Simulation

Having checked the equivalence of the two sets of equations, we now integrate our Newton-

Euler equations with one set of initial conditions which are consistent with the constraints.

This simulation matches the one presented in [17], and the (visual) match with their re-

sults provides further support for the correctness of the equations that we use here. For

comparison and reference, we list the initial conditions here. The nonzero initial conditions

at t = 0 are (all given values taken to 16 digits; all others taken as zero)

ẋ(0) = −4.6 m/s, ẏ(0) = −0.15m/s, ψ(0) = π/2, ψ̇(0) = 0.5 s−1,

φ(0) = π, β̇r(0) = 15.333 s−1, β̇f(0) = 13.143 s−1.
(4.3)
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Figure 4.2: (A) Here roll rate means ψ̇, steer rate means ψ̇f . (B) Forward speed v is taken

as β̇r r1.

The velocity initial conditions chosen here are β̇r(0), ψ̇(0) and ψ̇f(0). Of these, the

first sets the forward speed (v(0) = β̇r(0)r1); the second sets the initial roll (or lean) rate;

and the third sets the initial steer rate. On specifying these three arbitrarily, the remaining

five are found from the velocity constraint equations.

In the initial conditions of Eq. 4.3, β̇r(0) sets v = 4.6 m/s, which falls within the

hands-free stable speed range of the bicycle. We will find the stable speed range in chapter

5. There is a perturbation of ψ̇ = 0.5 rad/s to the roll rate. Results are plotted in figure

4.2.

When an uncontrolled bicycle is within its stable speed range, roll and steer pertur-

bations die away in a seemingly damped fashion. However, the system has no true energy

dissipation and hence conserves energy. A non-linear dynamic analysis was performed on

the bicycle model to demonstrate the transfer of energy from lateral perturbations into

forward speed. Figure 4.2 (B) shows a small increase in the forward speed v while the

lateral motions die out, as expected. Figure 4.2 (A) also shows that the period for the roll

and steer oscillations is approximately 1.60 s. The steering motion ψ̇f has a small phase
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lag relative to the roll motion ψ̇ visible in the solution in figure 4.2 (A). The match with

[17] is, as far as we can tell, exact.

4.5 Post-facto Coordinate Partitioning on Velocities

For general initial conditions, the holonomic and nonholonomic constraints are not always

numerically satisfied to high accuracy over long times if the constraint equations have been

incorporated after differentiation. These constraint equations can be satisfied much more

accurately using coordinate partitioning on velocities. For nonholonomic constraints, we

can use the equations (and Matlab code) that we already have. The holonomic constraint, if

treated as a nonholonomic constraint after one differentiation, can be included here. Direct

enforcement of the holonomic constraint involves differential algebraic equations (DAEs)

which are not discussed here.

Let q̂ (as distinct from the previously used symbol q) denote the generalized coor-

dinates. Given an N -dof system with p nonholonomic constraints of the form

N
∑

j=1

aij(q̂) ˙̂qj + ait(q̂) = 0, i = 1, 2, · · · , p,

we may solve (after possible renumbering) for the first p rates, i.e., for

˙̂q1,
˙̂q2, · · · , ˙̂qp

in terms of the other N − p rates and the full vector of generalized coordinates q̂. We may

now treat the actual state vector as composed of q̂ along with the latter N − p rates, i.e.,

q̃ = {q̂T , ˙̂qp+1,
˙̂qp+2, · · · , ˙̂qN}T .

Given this state vector, we use the nonholonomic constraint equations to obtain a full set of
˙̂q’s. Constructing a new augmented state vector {q̂T , ˙̂q

T}T (nothing but our old q), we use

our existing equations of motion to find the full set of ¨̂q’s. We then discard the first p second

derivatives, and use ˙̃q. In this way the first p rates are chosen to constantly satisfy the

nonholonomic constraints. There is little added conceptual complication or computational

load. We have adopted this procedure for our simulations, but not a DAE solver for the

holonomic constraints in their undifferentiated form.
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Linearized Equations of Motion

5.1 Introduction

In this chapter, we study the stability of straight motion of the bicycle. We have two

sets of equations at our disposal. We choose Lagrange’s equations for linearization. After

linearizing them, we examine the corresponding eigenvalue problem. The characteristic

polynomial is a quartic, giving four nontrivial eigenvalues. Several eigenmodes like weave,

capsize and a stable mode called caster have been identified and the speed ranges in which

they are dominant are computed. This leads to the determination of a stable speed range

for the uncontrolled bicycle. Our approach, based on explicit linearization of Lagrange’s

equations in Maple, differs significantly from [17]. However, the results match exactly.

5.2 Stability of Straight Motion

The Newton-Euler procedure discussed in chapter 3 is good for simulating general (nonlin-

ear) motions, but not amenable to analytical linearization for near-straight motions. Here,

we use the Lagrangian approach. Since the equations are very long, we found it necessary

to substitute the numerical values of system parameters of the bicycle before the linearized

equations were obtained. The bicycle design parameters are listed in tables A.1 and A.2 in
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the appendix.

We make the following substitutions into the equations of motion:

{θ = ǫθ̃, ψ = π/2 + ǫψ̃, φ = π + ǫφ̃, ψf = ǫψ̃f , x = −v t+ ǫx̃,

y = ǫỹ, βr = v t/r1 + ǫβ̃r, βf = −v t/r2 + ǫβ̃f},

where ǫ is infinitesimal, v is the nominal forward velocity of the bicycle, and t is time.

Setting ǫ = 0 gives the solution corresponding to exactly straight line motion.

The constraint forces, represented here by λ’s, still need to be solved for from a

straightforward set of linear equations. We find that, barring λ5 = 309.30353 · · ·, all of

them are zero. Accordingly, for near-straight motions, we substitute into the equations of

motion:

{λ1 = ǫλ̃1, λ2 = ǫλ̃2, λ3 = ǫλ̃3, λ4 = ǫλ̃4, λ5 = 309.30353 · · ·+ ǫλ̃5}.

We now expand the equations of motion in a Taylor series (Maple) about ǫ = 0 and drop

terms of O(ǫ2). For completeness, we present these equations below. Numerical values are

shown accurate to 5 places of decimals here; numbers with fewer decimal places signify

additional zeros not presented to save space; in our actual calculations, 20 total digits of

precision were retained. Finally, we have dropped the tildes because all quantities shown

below have them.

94 ẍ− 52.75 φ̈− λ1 − λ3 = 0. (5.1)

94 ÿ − 52.75 ψ̈ − 32.16 θ̈ − 0.20062 ψ̈f − λ2 − λ4 = 0. (5.2)

−52.75 ẍ+56.7187 φ̈+0.12 β̈r +0.28 β̈f −502.01232φ−0.3λ3 −0.3 λ1 +1.02λ5 = 0. (5.3)

−52.75000 ÿ + 19.28544 θ̈ + 40.70722 ψ̈ + 0.10101 ψ̈f + 0.76085 v ψ̇f

+1.20 v θ̇ − 25.50126ψf − 794.1195ψ − 0.3 λ2 − 0.3λ4 = 0. (5.4)

−32.16 ÿ+17.01908 θ̈+19.28544 ψ̈+0.33012 ψ̈f −0.24721 v ψ̇f −1.2 v ψ̇+1.02λ4 = 0. (5.5)

−0.20062 ÿ + 0.33012 θ̈ + 0.15390 ψ̈f + 0.10101 ψ̈ + 0.24721 v θ̇

−0.76085 v ψ̇ − 7.88032ψf − 25.50126ψ − 0.07608λ4 = 0. (5.6)

0.12 φ̈+ 0.12 β̈r − 0.3λ1 = 0. (5.7)

0.28 φ̈+ 0.28 β̈f − 0.35λ3 = 0. (5.8)
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Also the constraint equations are as follows:

ẋ+ 0.3 φ̇+ 0.3 β̇r = 0. (5.9)

ẏ + 0.3 ψ̇ + v θ = 0. (5.10)

ẋ+ 0.35 β̇f + 0.3 φ̇ = 0. (5.11)

ẏ + 0.07608 ψ̇f + 0.3 ψ̇ − 1.02 θ̇ + 0.95106 v ψf + v θ = 0. (5.12)

1.02 φ̇ = 0. (5.13)

Note that we do not differentiate the five velocity constraint equations. Instead,

we solve them for ˙̃x, ˙̃y,
˙̃
φ

˙̃
θ and

˙̃
βr , and substitute into Lagrange’s equations of motion,

differentiating as needed (e.g., differentiating ˙̃x where ¨̃x is needed). We solve the resulting

8 linear equations for the 5 λ̃’s,
¨̃
βf ,

¨̃
ψ and

¨̃
ψf . The solutions for the λ̃’s are not needed

further in our analysis. Hence we discard them. Also we find that
¨̃
βf ≡ 0. There remain

2 equations giving ¨̃ψ and ¨̃ψf . Dropping tildes, they are (we retained more decimal places

than shown here):

ψ̈ = −0.10552 v ψ̇ − 0.33052 v ψ̇f + 9.48977ψ − (0.57152 + 0.89120 v2)ψf (5.14)

ψ̈f = 3.67681 v ψ̇ − 3.08487 v ψ̇f + 11.71948ψ + (30.90875− 1.97172 v2)ψf (5.15)

The last two equations can also be written in the form:

M q̈ + vC q̇ + [gK1 + v2 K2] q = 0 (5.16)

The elements of the individual matrices M, C , K1 and K2 are defined in terms

of the parameters of the bicycle as can be found in [17]. Also it is to be noted that M

is a symmetric mass matrix which gives the kinetic energy of the bicycle system at zero

forward speed. The damping-like matrix Ceq = vC is linear in the forward speed v. The

stiffness matrix Keq is the sum of two parts: a velocity- independent symmetric part gK1

proportional to the gravitational acceleration, which can be used to calculate changes in

potential energy and a part v2 K2, which is quadratic in the forward speed and is due to

centrifugal effects.
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5.2.1 Stability results
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Figure 5.1: Plot of eigenvalues versus forward speed v as obtained from the linear stability

analysis.

The discussion in this paragraph has substantial similarities to the one in [17]. Stability

eigenvalues are independent of the choice of coordinates and also independent of the form

of the equations. Any non-singular change of variables yields equations with the same lin-

earized stability eigenvalues. Thus stability eigenvalues serve well as convenient benchmark

results permitting comparison between different approaches. The stability eigenvalues are

calculated by assuming an exponential solution of the form q = q0 exp(λ t) for the ho-

mogeneous equations in Eqs. 5.14 and 5.15. This leads to the characteristic polynomial,

which is a polynomial of degree 4 in λ. The solutions λ of the characteristic polynomial

for a range of forward speeds are shown in figure 5.1. Eigenvalues with a positive real part

correspond to unstable motions whereas eigenvalues with a negative real part correspond

to asymptotically stable motions for the corresponding mode. Imaginary eigenvalues cor-
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respond to oscillatory motions. The time-reversal nature of these conservative dynamical

equations leads to symmetry in the characteristic equation and in the parameterized solu-

tions: if (v, λ) is a solution then (−v,−λ) is also a solution. This means that figure 5.1 is

symmetric about the origin.

This fourth order system has four distinct eigenmodes except at special parameter

values associated with multiple roots. A complex (oscillatory) eigenvalue pair is associated

with a pair of complex eigenmodes. For large speeds, the two modes which play a vital

role in determining the stability of the bicycle are traditionally called the capsize mode

and weave mode. The capsize mode corresponds to a real eigenvalue: when unstable, a

capsizing bicycle leans progressively from the vertical with steer and lean both increasing

until it falls over like a capsizing ship. The weave mode is an oscillatory motion in which

the bicycle steers tortuously about the headed direction with a slight phase lag relative to

leaning. The third eigenvalue is large, real and negative. It corresponds to a stable mode

called castering.

At small speeds, say between 0 < v < 0.5 m/s, there are two pairs of real eigenvalues.

Each pair consists of a positive and a negative eigenvalue and corresponds to an inverted-

pendulum-like falling of the bicycle. The positive root in each pair corresponds to falling,

whereas the negative root corresponds to the time reversal of this falling. When speed is

increased to vd = 0.684 m/s, two real eigenvalues coalesce and form a complex conjugate

pair; this is where the oscillatory weave motion emerges. At first this motion is unstable

but at vw = 4.292 m/s, the weave eigenvalues cross the imaginary axis in a Hopf bifurcation

and this mode becomes stable. At a higher speed the capsize eigenvalue crosses the origin

in a pitchfork bifurcation at vc = 6.024 m/s, the capsize speed, and the bicycle becomes

mildly unstable. The speed range for which the uncontrolled bicycle shows asymptotically

stable behaviour, with all eigenvalues having negative real part, is vw < v < vc.

5.2.2 The other straight motion

The bicycle also has straight motions where the handle rotation is ±π (we use −π here and

below). The linearized equations governing stability of such straight motions are:
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ψ̈ = −0.16392 v ψ̇ − 0.33879 v ψ̇f + 9.19308ψ − (1.59980 + 0.90354 v2)ψf (5.17)

ψ̈f = 3.19888 v ψ̇ − 3.11851 v ψ̇f + 11.17234ψ + (41.76704− 1.79831 v2)ψf (5.18)
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Figure 5.2: Eigenvalues governing stability of straight motion with ψf = −π, versus forward

speed v.

Qualitatively, the figure is similar to that obtained for stability of straight motion

with ψf = 0. Two key numerical values are the speeds limiting the stable range: these are

4.9252 and 7.9008 m/s.
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Circular Motions of the Bicycle

6.1 Introduction

In this chapter, we study hands-free circular motions of the bicycle. The topic of hands-

free circular motions might be initially misunderstood because human riders can follow a

wide range of circles at arbitrary speeds. However, this is only possible by the imposition

of handlebar torques and the displacement of the torso of the rider about the vertical

symmetry plane of the bicycle. With zero handle torque and a rigid rider, only a few

discrete lean angles are possible at each speed. Circular motions can be parameterized by

a radius, say the radius R traversed by the rear wheel centre. A particular value of the

radius is chosen and based on that the lean angle ψ, the steer angle ψf and the rear wheel

spin rate β̇r which lead to the circular motion can be computed based on the satisfaction

of certain conditions. Then the radius is changed by a small amount from its existing value

and the same process is repeated. In this way, we get (ψ, ψf , β̇r) for each value of the

parameter R.

41
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6.2 Circular Motions

6.2.1 Finding hands-free circular motions

In circular motions, x and y vary sinusoidally and z is constant. The rear wheel center

traverses a circle of radius (say) R. The first Euler angle θ (heading) grows linearly with

time. The second Euler angle ψ (roll), the third Euler angle φ (pitch), the steering rotation

angle ψf , and the wheel spin rates β̇f and β̇r are all constants.

We seek a triple (ψ, ψf , β̇r) subject to some conditions, dependent on a free param-

eter R, as follows.

(1) Given ψ and ψf , φ is found as discussed earlier. (2) ψ determines z (used in

our Newton-Euler equations); and ż = 0. (3) The initial values of θ, x, y, βr and βf are

arbitrarily taken as zero. (4) Setting ψ̇ = ψ̇f = 0, and with β̇r given (or chosen), the

velocity constraint equations give ẋ, ẏ, θ̇, φ̇ and β̇f . (We find that φ̇ = 0.) (5) Having all

initial conditions required for the Newton-Euler equations, we find the second derivatives

of the coordinates. (6) Finally, we define a vector function with R as a parameter:

{

ψ, ψf , β̇r

}T 7→
{

√

ẋ2 + ẏ2 − Rθ̇, ψ̈, ψ̈f

}T

.

(7) We numerically find an R-parameterized family of zeroes of the above map, where steer

and lean acceleration vanish.

6.2.2 Symmetries in the circular motion families

We note here that the existence of one circular hands-free motion implies the existence of

three others, by symmetry. Firstly, one may create a mirror image of the configuration,

for example leaning and steering rightwards instead of leftward. Secondly, the rotational

velocities of both wheels may be reversed, without affecting inertial forces and moments.

Thus we have four-way symmetry in the solutions of all circular motions.
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6.2.3 Plotting hands-free circular motions

The number of families of circular motion solutions, not counting symmetries, is three or

four depending on how we count. Consider, initially, the schematic in figure 6.1, depicting

lean (left) and steer (right), as a function of front-wheel speed.
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Figure 6.1: Circular motion families (schematic). Left: lean. Right: steer.

In the left figure, lean is defined as ψ−π/2, positive when the bicycle leans left, and

shown here from 0 (upright) to π/2 (flat on the ground). In the right figure, steer angle is

plotted from 0 (straight) to π/2 (perpendicular leftwards). Front wheel speed (really, speed

of the front contact point) is β̇fr2, and is plotted from 0 to ∞ in a nonuniform scaling (β̇f

is obtained from β̇r using the velocity constraint equations).

For the two heavy curves (one solid, one dashed) β̇fr2 < 0, and −β̇fr2 is plotted

instead. For these heavy curves, β̇fr2 < 0 corresponds to the bicycle moving forward with

a reversed handlebar (i.e. turned beyond π/2). In figure 6.1 (right), for the heavy curves

corresponding to reversed handlebars, π has been added to the steer ψf .

For visualization, separation between nearly-coincident portions of light and heavy

curves is exaggerated. Points E and F coincide in reality, as do G and H.
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Handlebar asymmetry plays a role in the solutions obtained. Turning the handle

by π (i.e., reversing the handlebar) effectively gives a slightly different bicycle. If the front

wheel center was exactly on the fork axis; the front fork plus handlebar center of mass was

exactly on the fork axis; and an eigenvector of the front fork assembly’s central moment of

inertia matrix coincided with the front fork axis; then handlebar reversal would give exactly

the same bicycle. The reader might wish to consider the heavy lines in figure 6.1 not as

alternatively-plotted curves at all, but regularly-plotted curves for a different bicycle whose

front assembly is a reversed version of the benchmark’s. Here, we avoid this expedient in

favour of consistency.

6.2.4 Limiting motions

We now discuss various special motions and limiting configurations that help to understand

the hands-free circular motions of the bicycle.

HF and HR bifurcations to large-radius turns: By Eqs. 5.14 and 5.15, 4 eigenvalues

govern stability of straight motion. For hands-free circular motions with very large radii,

all sufficiently small leans must give steady solutions, implying a zero eigenvalue. There is

only one such point with handlebar forward (HF): the ‘capsize’ bifurcation at the upper

limit of the stable speed range for straight motion (noted by [23]). With the handlebar

reversed (HR), there is a similar stable speed range with its own capsize point. These

points are labeled B and C in figure 6.1. Near these points, lean and steer (off 0 or −π as

appropriate) are both small, and the radius is large.

HF and HR flat spinning: There are limiting circular motions where the lean ap-

proaches π/2 (i.e., lying flat on the ground), steer approaches zero, turn radius approaches

a small finite limit, and velocity approaches infinity. (The contact points are substantially

displaced around each wheel.) Such solutions exist for both HF and HR configurations,

i.e., with steer approaching 0 and −π. These points are labeled F and E, respectively, in

figure 6.1. These limits require infinite friction.

HF upright static equilibrium: With the handlebar turned almost π/2, there is

a static equilibrium with a lean angle of exactly zero, labeled A in figure 6.1. With a

symmetric handlebar, it is obvious that an upright equilibrium exists with exactly π/2 steer.
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But with the left-right asymmetry due to finite steer of an asymmetric handlebar, it seems

surprising that the lean remains exactly zero, because equilibrium implies two conditions

(handlebar torque and net bicycle-tipping torque both zero) on the one remaining variable

(steer). To understand this, imagine locking the handlebar at a variety of near-π/2 steer

angles, at each of which the equilibrium lean angle is determined. Select the locked steer

angle that gives tipping-equilibrium with zero lean. Equilibrium ensures zero net moment

on the bicycle about the line (say L) of intersection between the rear frame symmetry

plane and ground. Of all forces on the bicycle, the two not in the symmetry plane are the

front fork assembly weight and the front wheel ground contact force: they are therefore in

moment equilibrium about L. But these two forces are then in moment equilibrium about

the handle axis as well, and locking is not needed, explaining the zero lean at A. A detailed

and alternative discussion follows later on.

Pivoting about a fixed rear contact point: It seems possible, for each steer angle,

to find an angle of lean such that the normal to the front wheel rolling direction passes

through the rear contact; in such a configuration, the bicycle rotates about the rear contact,

which remains stationary. One imagines that by properly choosing both steer angle and

front-wheel speed, we might simultaneously achieve roll and steer balance. Such a motion

does exist: the steer is close to π/2 (handle turned left), the rear frame is nearly upright,

and the front wheel follows a circle at a definite speed, and the bicycle pivots about a

vertical axis through the rear wheel contact. Such motions were found for both HF and

HR configurations (steer: −π/2). Nearby points, defined for plotting convenience at exactly

zero lean, are labeled G and H, respectively, in figure 6.1. Noting that all motions of the

bicycle are time-reversible, a pivoting motion can be reversed to give another where the

front wheel speed and the handlebar are both reversed. Thus the HF and HR pivoting

solutions coincide, as do G and H, although they are sketched distinct for visualization.

High speed dynamic equilibrium: Envisioning that terminal points occur in pairs,

an expected eighth is found as K in figure 6.1. This configuration involves small lean,

near-π/2 steer, and speed approaching infinity. It may be viewed as a perfectly dynamic

counterpart to the static solution at A. It seems that the normal ground force at one wheel

must become negative beyond some high speed for such a motion, but our analysis assumes

sustained contact and ignores this question.
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Figure 6.2: Variation of β̇f r2 with β̇r r1 for all the four circular motion families.

For easy visualization, we also plot the front wheel speed β̇f r2 as a function of the

rear wheel speed β̇r r1. It can be seen that the plots suggest small rear-wheel-speeds for

some circular motions where the front wheel is, in fact, moving rapidly. This turns out

to be the case for the two families represented by the curves GE and HJK in figure 6.1.

For the family represented by curve GE, we find β̇f r2 is about 2.17 m/sec as the radius

traversed by the rear wheel centre approaches 0, even though β̇r r1 is quite small there. For

the other family represented by curve HJK, β̇f r2 is correspondingly about −2.17 m/sec,

whereas β̇r r1 is negligible there.

6.2.5 Description of the circular motion families

We can now connect appropriate pairs of endpoints to describe four circular motion families

found for the bicycle.
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One handlebar-forward family connects points B and A. The bicycle first bifurcates

from HF straight motion, with steer and lean increasing while speed decreases, until a

maximum lean angle is reached. Thereafter, steer continues to increase, and velocity con-

tinues to decrease, while lean decreases towards upright. The final perfectly upright state

is approached via extremely slow motion, superficially like the pivoting points G = H but

with the rear contact not quite fixed.

A handlebar-reversed family starts at C, bifurcating from HR straight motion. First

the previous pattern is followed (attaining a maximum lean with continuously decreasing

speed); but then at a near-cusp point labeled D, a qualitatively different curve is followed.

The steer then decreases towards HR straightness, while lean and speed increase, as the

bicycle approaches the flat and fast limit point E.

A third circular motion family, for continuity in the discussion, may be thought of

as starting from the HF flat and fast limit F (the path radii of the rear wheel center differ

at F and E). Velocity and lean angle decrease, while steer increasingly deviates until the

rear frame is upright at pivoting motion G.

A fourth circular motion family starts with the identical pivoting motion at H (now

considered HR), with lean increasing / steer decreasing up to a near-cusp at point J, and

then reversing that trend to achieve a near upright lean and a nearly perpendicular steer,

as the speed goes to infinity at K. But since G is essentially the same as H (except for

an inconsequential speed reversal), the third and fourth families are actually one (G = H

could be removed from the list of terminal points). This combined family – FGHJK – joins

HF and HR configurations.

By this count, we have three circular motion families in all.

With this background, we consider qualitatively why heavy curves ED and JH lie

so close to FG (figure 6.1). In both right and left plots, we actually see the broken curve

FGHJ + DE folded at GH. In essence, this says that starting in an upright condition

with the steer essentially π/2, an added leftward or rightward amount of steering leads

to a bicycle with HR and HF configuration respectively; these two configurations may

be viewed as almost-identical bicycles (due to ‘small’ handlebar asymmetry); and hence

dynamic equilibria obtained are almost identical as well. Without handlebar asymmetry,

the coincidence would be perfect.
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In figure 6.1 (right), we have exaggerated the closeness of points G and H. In reality,

due to the handlebar asymmetry, they have a small vertical separation, with G lying slightly

above π/2 and H slightly below it. Actual numerical and graphical results presented below

have no such misrepresentations.

Note that the hands-free-motion plots can also provide qualitative information about

the sign of steer torque away from the plotted curves. For example, consider the light (HF)

curves in the steer plot of figure 6.1. Recalling that the horizontal axis is also a line of

zero steer torque, one can imagine increasing the steer angle at a speed just below B (such

as 5 m/s in figure 6.3). The torque will become nonzero (negative, as it happens), attain

a peak negative value, reduce to zero as the BA curve is crossed, then increase to a peak

positive value, then drop again as the FG curve is approached. Thus, steer torque may

vary significantly in both sign and slope (i.e., ‘stiffness’) as one alters turn radius, posing

something of a control problem for the rider attempting to corner quickly at lean angles

up to π/4 and steer angles up to π/12.

6.2.6 Accurate plots, with four-way symmetry

As mentioned above, for each circular motion, another is obtained if all speeds are reversed;

and every left-leaning solution also implies a right-leaning one, where (ψ, ψf) are replaced

by (π − ψ,−ψf ). The resulting four-way symmetry in the solutions is represented (actual

numerics) in figure 6.3, where the infinite horizontal scale of β̇fr2 is mapped to a finite

range using the arctangent of β̇fr2/4 (the 4 is an arbitrary scaling parameter chosen for

better visualization).
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Figure 6.3: Circular motion families (numerics). Left: lean. Right: steer. The infinite

speed range is mapped to a finite range using an arctangent mapping. Actual speeds at

some locations are indicated using vertical dashed lines and labels (left). Curves plotted

do not reach points B, C, E, F and K, and reflections thereof, because the numerical

continuation calculation was stopped when the approach to these points was clear; in

reality, they continue all the way to the indicated points.

All the curves represent numerically obtained solutions, while the labeled heavy dots

indicate the correspondence with figure 6.1. Here, roll (ψ) has been plotted from 0 to π,

instead of lean from −π/2 to π/2. Steer (ψf ) has been plotted from −π to π. As mentioned

above, in figure 6.1 the heavy lines actually show π + ψf against −β̇fr2; in figure 6.3, we

plot ψf against β̇fr2, obtaining a curve in the third quadrant.

The steer curves provide another advantage on the earlier-described near-symmetry

about π/2. The lean curves are harder to untangle, unless one reflects points HJK through

the origin, and CDE through the vertical axis. Then a reflected curve (say C’D’E’) is visible
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No. Roll angle (ψ) Steer angle (ψf ) Rear wheel Radius traversed by

(family) spin rate (β̇r) rear wheel centre (R)

1 (CDE) 1.9893886377 −3.0755121969 26.3580011755 13.8724247186

2 (AB) 1.9178291654 0.4049333918 10.3899258905 2.2588798195

3 (AB) 1.7670024274 0.7254537952 5.5494771350 1.1408878065

4 (AB) 1.7183161276 0.8549190153 4.2289953550 0.8939154494

5 (GE) 2.1950752979 0.4266815552 14.4337001146 1.7525375246

6 (HJK) 2.0419972895 −2.6133787369 10.9563251310 1.4016100055

7 (CDE) 2.3535106155 −2.8688460258 19.4180569764 2.3503396652

Table 6.1: Some initial conditions for circular motion. β̇r is in s−1 and R is in m. These

were verified independently by Arend Schwab using SPACAR. These points are also plotted

in figure 6.4. Stability-governing eigenvalues of these solutions are given in table 7.1.

in the first quadrant, and (similarly primed) K’J’H’GF appears in the first and fourth.

6.2.7 Some precise (benchmark) numerical values

The graphical results discussed above were presented, after some trial and error, in terms of

variables allowing simple post facto interpretation. Here, in terms of our original variables,

we report some precise numerical results for benchmarking.

Table 6.1 lists some initial conditions for steady circular hands-free motions. The

radius R traversed by the rear wheel centre is also provided. These were independently

verified through simulations by Arend Schwab (using SPACAR).

6.2.8 Benchmark circular motions

Along the lines of figure 6.3, figure 6.4 shows only steer versus front wheel speed; and also

shows the 7 circular motions listed precisely in tables 6.1 and 7.1.
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Figure 6.4: Benchmark circular motions from tables 6.1 and 7.1. Point 6 is slightly above

the turning point, and not exactly on it.

In addition, we now list some special numerical values.

We have separately sought and found a static equilibrium of the bicycle at ψf =

1.3397399115 and ψ = π/2 (corresponding to point A in figures 6.1 and 6.3). The corre-

sponding rear wheel center radius R is 0.2771720012 m.

Point B in figures 6.1 and 6.3 corresponds to a straight-ahead capsize speed of

6.0243 m/s. Point C corresponds to a straight-ahead (handlebar reversed) capsize speed

of 7.9008 m/s. In linearized analysis of straight riding, capsize occurs at that speed where

the handlebar ‘torsional stiffness’ vanishes, permitting any arbitrary turn to be maintained

with zero handlebar torque. This forward speed is the unique solution of a linear equation

in V 2.
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Point E corresponds to a handlebar-reversed flat motion with R ≈ 3.3049 m (from

numerical extrapolation). Point F corresponds to another flat motion (handlebar forward)

with R ≈ 3.0087 m (numerical extrapolation). These configurations are hard to evaluate

precisely due to geometrical (contact) and mathematical (Euler angles) singularities.

Point G (=H) represents the solution ψ = π/2, ψf = 1.6416430491, β̇r = 0.2735815731

and R = −0.0415586589 (here R < 0 because ψf > π/2 and the bicycle moves in a circle

that curves right instead of left). Since this point is not a limiting motion, its definition

is somewhat arbitrary: rather than an upright frame, we might instead specify minimum

front-wheel velocity, or some other condition.

Point K can be found precisely by setting gravity to zero, choosing any nonzero

speed, and seeking a unique circular motion. (This is asymptotically equivalent to finite

gravity and infinite speed.) We have found ψ = 1.6679684551, ψf = −1.6922153670, and

R = 0.0666827859 m.

6.2.9 Alternative plots of the same results

Here we plot the same results but now without using any arctangent transformation on

the velocities. Also we keep the rear wheel speed as the abscissa in all the plots. We plot

three quantities, namely lean, steer and the radius traversed by the rear wheel centre, as

functions of the rear wheel speed for all the four circular motion families. Various special

values are indicated in the plots.
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Figure 6.5: Four different one-parameter families of circular motions of the bicycle. Ar-

rowheads indicate that solutions continue though not shown. The first column corresponds

to curve AB in figure 6.1. The second, third and fourth columns correspond to curves

GE, CDE and HJK respectively. Here “velocity” is β̇r r1, which is not exactly the speed

of the rear wheel center. Alternative measures of speed might be used; we choose this for

simplicity. Inset in the top left plot shows a zoomed portion of the same.
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6.2.10 Numerical simulation of one circular motion

For completeness, we pick one circular motion for full simulation, with initial conditions

{ψ, ψf , β̇r} = {1.92746117082534, 0.38656355353653, 10.78186486867202}. In the simula-

tion we found that ψ̇, which is supposed to remain zero, actually increased exponentially

until it became comparable to the rates of change of other coordinates (the circular motion

is unstable). However, the relative change in total energy (kinetic plus potential), i.e.,

instantaneous energy

initial energy
− 1,

remained on the order of 10−14 even as ψ̇ increased through 10 orders of magnitude (a

consistency check). The initial very-near-circular motion is shown in figure 6.6, and the

change in total energy is shown in figure 6.7.
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Figure 6.6: Numerical solution shows, at least for some time, the characteristics of circular

motion. (A) z, ψ, φ and ψf are constant. (B) θ, βr and βf grow linearly. (C) x and y vary

sinusoidally. (D) The rear wheel’s center traverses a circle.
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Figure 6.7: (A) ψ̇ has exponential growth. (B) Total energy does not show changes until

the bicycle falls over and passes through/near singular configurations (in the (3-1-3) Euler

angles).

6.2.11 Unexpected equilibrium solution for the bicycle

In our study of circular motions, we found that one solution family ends at an unstable

equilibrium position where ψf ≈ 1.3397 and ψ = π/2. Here, we present a more detailed

discussion of the same.

This exact π/2 value implies that the rear frame is exactly vertical in the equilibrium

position, with the handle turned to some nonzero angle. Such an equilibrium initially

seems surprising, because it seems that two equations are simultaneously satisfied by a

single variable, as follows. Imagine that we lock the handle at some angle, and adjust the

lean of the bicycle to achieve an unstable equilibrium. The lean of the rear frame is then
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generically unequal to π/2. Now we unlock the handle, and relock it at some other angle,

and repeat the procedure, to obtain a different value of the rear frame’s lean. Adjusting the

steer angle in this way, we might typically find an equilibrium at ψ = π/2, but the handle

is locked. There seems to be no a priori guarantee that the handle torque is now zero, i.e.,

if we now unlock the handle, it seems that the equilibrium may in general be lost. But we

can show that, in such a situation, the handle torque is zero as well.

We begin by assuming that an equilibrium exists with a vertical rear frame, and

with the handlebar locked at some suitable angle. The rear wheel plane is then vertical as

well. The ground contact force on the rear wheel will be vertical also, for two reasons. First,

the component tangential to the wheel’s circle must be zero to avoid a nonzero moment

about the wheel center. Second, the component perpendicular to the wheel plane could

potentially be nonzero; but for equilibrium of the entire bicycle we note that there must

then be another equal and opposite force with the same line of action acting somewhere

on the bicycle. However, for the particular bicycle chosen here or any similarly reasonable

design, it is not geometrically possible for the front wheel to contact the ground anywhere

along that line of action (see schematic of the top view in figure 6.8).

front wheel

rear wheel

handlebar

rear wheel ground contact

front wheel ground contact
does not lie on this line

Figure 6.8: A schematic of the top view of the bicycle in an equilibrium position.
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Given that the ground contact force at the rear wheel is vertical, and that gravity

loading is vertical as well, it follows that the front wheel ground contact force is purely

vertical.

Note that if any circular wheel (possibly tilted) touches the ground, then a vertical

force at the contact point must pass through the wheel’s axis (though not necessarily its

center). Thus, both wheels are in equilibrium, and may be considered as connected rigidly

to the bicycle in the remainder of this discussion.

In this equilibrium position, we ask if the torque at the locked handlebar is zero.

To see that the answer is yes, we consider equilibrium of only the rear assembly.

The forces and moments on this assembly are the following.

1. There is a vertical ground reaction force at the rear wheel contact.

2. There is a vertical net weight of the rear assembly acting through its center of mass.

3. There is a force of interaction between the front and rear assemblies, which passes

through the fork axis.

4. There is a vector moment exerted by the front assembly on the rear assembly, whose

component along the fork axis is the handlebar torque required for equilibrium.

Since the rear frame is perfectly vertical, the first two forces are coplanar with the fork axis

and contribute no moment about that axis. The third force also passes through the same

axis. Thus, requiring the net moment about the fork axis to be zero for equilibrium even

with a locked handlebar, we find that the handlebar torque is necessarily zero.

By the foregoing, we conclude that if it is possible to balance the bicycle with

rear frame exactly vertical and with handle locked at some suitable angle, then that same

equilibrium position survives even if the handle is unlocked. However, this is not entirely

what we wish to show. Our numerics show an equilibrium position with rear frame lean

ψ being very close to π/2. We have set out to demonstrate that the lean is in fact exactly

π/2.

At this point we assume that, with the handle locked at various necessary angles, it
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is in fact possible to balance the bicycle with rear frame lean values within some interval

containing π/2 (the converse would be nongeneric). We note further that our numerical

search for an equilibrium position was based on a Newton-Raphson iteration with numer-

ically estimated Jacobian matrices. At the equilibrium position obtained numerically, we

found that the Jacobian matrix was clearly invertible (its determinant was about −1013;

its eigenvalues were about 15.9 and −63.6; and its singular values were about 188.1 and

5.4; though numerically estimated, these values are sufficiently far from zero to safely con-

clude invertibility). What Jacobian we obtain does depend on what equations we solve,

but for any reasonable choice including ours which were based on zero values of angular

accelerations, all we are interested in is that the Jacobian is invertible. Invertibility means

that the equilibrium we have obtained numerically is locally unique, whether or not ψ is

exactly π/2.

We finally have the following. By numerical demonstration, it is possible to balance

the bicycle at a ψ value extremely close to π/2. By assumption, it is therefore possible

to lock the handlebar at some suitable angle and then balance the bicycle with ψ exactly

equal to π/2. By the foregoing discussion, at this balanced position, the handlebar torque

is exactly zero, giving an equilibrium by demonstration. By invertibility of the Jacobian

matrix, this demonstrated equilibrium is locally unique.

We conclude that at the equilibrium of interest, ψ is exactly π/2.



Chapter 7

Stability of Circular Motions

7.1 Introduction

The stability of circular motions can be studied along lines which are similar to those we

adopted for studying the stability of straight motion. Here the generalized coordinates x

and y are replaced by new ones defined by x = −R sinχ and y = R cosχ. It is obvious

that R and χ̇ remain constant during origin-centred circular motions. Thus we switch from

a Cartesian coordinate system to a polar coordinate system. The in-ground-plane vector

constraint equations are now not retained in terms of x and y components but instead

retained in terms of components along êR and êχ, which are the unit vectors along the

radial and circumferential directions. This has the advantage of making the constraint

forces constant during the circular motions of interest. Now Lagrange’s equations are

obtained in the usual way for this new set of generalized coordinates.

7.2 Stability

For stability analysis of circular motions, we make a few changes for convenience. The

generalized coordinates x and y are replaced by new ones defined by x = −R sinχ and

y = R cosχ. R and χ̇ remain constant during origin-centred circular motions. Also, two

59
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new configuration dependent unit vectors are introduced while obtaining the equations of

motion: these are

êR = − sinχ î+ cosχ ĵ, and êχ = − cosχ î− sinχ ĵ,

which are in radial and circumferential directions in the plane of the ground. Finally, the

in-ground-plane vector constraint equations of no-slip are not retained in terms of x and y

components, but instead retained in terms of components along êR and êχ. Here we give

their expressions for completeness.

Ṙ + r1(sinχ sin θ sinψ + cosχ sinψ cos θ)ψ̇ − r1(sinχ cos θ cosψ

− cosχ sin θ cosψ)θ̇ + r1(cosχ sin θ − sinχ cos θ)β̇r

−r1(sinχ cos θ − cosχ sin θ)φ̇ = 0 (7.1)

Rχ̇+ r1(cosχ sinψ sin θ − sinχ sinψ cos θ)ψ̇ − r1(cosχ cos θ cosψ

+ sinχ sin θ cosψ)θ̇ − r1(cosχ cos θ + sinχ sin θ)β̇r

−r1(cosχ cos θ + sinχ sin θ)φ̇ = 0 (7.2)

Lagrange’s equations are then obtained in the usual way, for the new set of gener-

alized coordinates.

In these new equations, we seek circular motions by noting that R, ψ, ψf and φ

are constants; θ̇ = ω is a constant; χ̇ = ω as well (i.e., not an extra unknown); β̇r and

β̇f are constants; and all the 5 Lagrange multipliers are constants as well. Thus, there

are 12 constants to be determined. Meanwhile, we have 8 equations of motion; 5 velocity

constraint equations (including one that is actually a differentiated holonomic constraint);

and a holonomic constraint equation to enforce front wheel contact with ground. That is,

we have 14 equations and 12 unknowns. The following lines of thought help to clarify the

situation.

The Lagrange multiplier (say λ2) corresponding to the no-slip constraint at the

rear wheel, in the êχ direction, turns out to be zero; this is expected because there is
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no propulsive thrust; and one of the equations of motion reduces to exactly λ2 = 0. We

drop this equation, but retain λ2 as an unknown and expect our subsequent calculation to

rediscover that λ2 = 0 (an automatic consistency check). So we now have 13 equations and

12 unknowns.

We retain the holonomic (front wheel contact) constraint equation in our calculations

to ensure that a correct value for φ is obtained. But this automatically ensures that the

velocity constraint equation in the normal direction at the front wheel contact is identically

satisfied, and so we drop that equation. We then have 12 equations and 12 unknowns.

As may be anticipated, it turns out that the êR-direction no-slip equation is iden-

tically satisfied at the rear wheel, leaving 11 equations and 12 unknowns. This suggests,

in line with prior calculations, that there are one or more one-parameter solution families.

As before, we choose R, and solve 11 equations in 11 unknowns.

7.2.1 Stability results

All quantities of interest (including the Lagrange multipliers) are now treated as ǫ-order

time varying perturbations of the nominal solutions corresponding to circular motion; the

equations of motion (including velocity constraint equations) are linearized in terms of

ǫ. The O(ǫ) equations obtained from the velocity constraint equations are differentiated

to get a full second order system. These are solved for the (perturbations in) Lagrange

multipliers and second derivatives of generalized coordinates; and a constant coefficient

system is obtained in terms of the 8 degrees of freedom used in our formulation. We then

obtain a non-minimal set of 16 eigenvalues. Of these, 10 are zero. Of the remaining 6

nonzero eigenvalues, 2 are found to be exactly ±iω (where ω is already known for the

circular motion). These 2 eigenvalues merely represent the same circular motion shifted

to a nearby circle. There remain 4 nontrivial eigenvalues, which are tabulated below for

the motions reported in table 6.1. These accurate eigenvalues can serve a benchmarking

purpose. They are consistent to 3 or 4 decimal places with correspondingly (in)accurate

eigenvalues found numerically using finite differences from the Newton-Euler equations.

The latter, being quicker, were used to check the stability of the circular motions obtained

above.
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All of the circular motions of the bicycle with straight (forward) handlebar turn out

to be unstable. Of the reversed-handlebar motions, relatively few are stable. These are

shown in figure 7.1 (recognizable as the second-quadrant representation points D and J

from figure 6.3), by means of individual heavy dots corresponding to our discrete sampling

of the underlying continuous curves.
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Figure 7.1: Stable hands-free circular motions of the bicycle.

We avoid here the sign change on speed used in figure 6.1; so the two curves are

reflected versions of CDE and HJK of figure 6.1 (left).

We have also numerically simulated the bicycle starting from initial conditions cor-

responding to some of the circular motions obtained. For circular motions found to be

unstable from the stability analysis, the numerical simulation results all showed divergence

from the circular motion, at an exponential rate that matched the largest eigenvalue (real

part). See figure 7.2.
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No. R (m) Eigenvalues of the linearized equations of motion

1 13.872424719 0.038127379 −21.152660576 −2.265960434± 7.986013290i

2 2.258879819 1.989869132 −4.886076369 −2.744979704± 5.459259375i

3 1.140887806 3.091516610 −2.853827876 −2.485975489± 5.783418042i

4 0.893915449 3.393903081 −2.608053659 −2.342566567± 5.945917170i

5 1.752537525 −2.000953101 −7.982680274 5.575539147± 5.799303852i

6 1.401610005 −8.659556236 −0.795208976 −0.118995944± 3.110982262i

7 2.350339665 −13.209338580 −0.467653580 −0.075503592± 7.402547429i

Table 7.1: Nontrivial eigenvalues governing linearized stability of some circular motions

reported earlier in table 6.1. In no. 5 the instability is oscillatory. 6 and 7 are stable.
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Figure 7.2: Plots of time vs. natural logarithm of ψ̇ from numerical simulation of near-

circular motions starting with six initial conditions, four of which are in table 6.1. ψ̇ has

exponential growth. The growth rate matches the largest positive eigenvalue from the

stability analysis represented by dashed lines in each plot. These results provide support

for the stability analysis.
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7.2.2 Equation counting for stability analysis

Our discussion of equation counting for stability analysis of circular motions points to

a potential procedural trap. One might be tempted to use the λ2 = 0 equation and

eliminate λ2 from the list of unknowns, concluding that there were in fact 11 equations in

11 unknowns; and then seeking a unique solution. But a unique solution does not exist;

the 11 (long and nonlinear) equations are not independent; and on discovering this a choice

would have to be made about which equation to drop in one’s search for a one-parameter

family of solutions. The whole issue is further clouded by small roundoff errors in numerical

evaluation of various quantities, leaving spurious and numerically small terms that would

make the equations seem independent. In this light, our procedure seems numerically

robust, practically useful, and conceptually manageable if not simple.

7.2.3 Ten zero eigenvalues for circular motions

There are 10 zero eigenvalues obtained in the stability analysis of circular motions.

7.2.3.1 Numerics

Some of these 10 eigenvalues are zero only to about a third of the decimal places we work

with, say 5 out of 15. The multiplicity of zero eigenvalues seems structurally unstable. The

nonzero eigenvalues remain less sensitive, accurate to 12 or more places of decimals.

The sensitivity of eigenvalues of matrices to small perturbations is well known, but

an example is provided here. Consider the matrix















1 0 1

0 0 1

0 0 0















.

By inspection, its eigenvalues are (1, 0, 0). Now let ǫ = 10−10, say. Perturb the above

matrix by changing each zero element to ǫ. The eigenvalues become, essentially, 1 + ǫ and
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±√
ǫ. It is easy to find matrices where some eigenvalues shift by O

(

ǫ1/3
)

, or even more,

while others shift by much smaller amounts.

One way to view such sensitivity is to directly look at the roots of polynomials.

Consider λ4 = 0, with λ = (0, 0, 0, 0). Now consider the perturbed equation

λ4 = ǫ,

for which

λ = ± ǫ1/4,± iǫ1/4.

Thus, the 4 roots at zero split and move sensitively for small ǫ. Finally, note that λ4 = 0

is the characteristic equation for the linear differential equation

d4y

dx4
= 0,

which when written in first order form gives rise to a coefficient matrix with 4 zero eigen-

values but only one eigenvector, i.e., with a single 4 × 4 Jordan block.

7.2.3.2 Counting

The 10 zero eigenvalues may be accounted for as follows. 5 come from differentiation of the

5 velocity constraint equations used. 3 come from individual infinitesimal changes in βr, βf

and φ (the last is physically unrealizable, where the front wheel remains slightly above or

below ground). One more comes from starting the bicycle slightly ahead but on the same

circle. And a final one comes from motion on a slightly bigger or smaller circle.

7.2.4 Stability analysis of circular motions from finite differences

For quick numerical estimation of eigenvalues governing stability of circular motions, we

use a 5-dimensional state vector

η = {ψ, ψf , ψ̇, ψ̇f , β̇r}T .

This shorter list is along the lines adopted by Lennartsson [14].
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Given a state vector, φ is determined from front wheel contact as always; since

three angular rates are known, the remaining rates are found from the velocity constraint

equations; and all ignorable coordinate values are set to zero. This gives a complete state

vector, suitable for our Newton-Euler equations. On evaluating the second derivatives

thereby, η̇ is picked out.

For points corresponding to a circular motion, η̇ = 0. By individually incrementing

the 5 states one by one, we can estimate corresponding columns of a coefficient matrix J ,

such that the linearized dynamics is given by

η̇ = Jη.

The eigenvalues of J govern stability of the circular motion of interest. One eigenvalue is

known to be zero because of energy conservation, and serves as a partial check on accuracy

for the numerical estimates. More accurate eigenvalues can be obtained using central

differences instead of forward differences, but the latter suffice here.



Chapter 8

A Study of Other Bicycles With and

Without Symmetrical Forks

8.1 Introduction

In this chapter, we study hands-free circular motions of some other bicycles. The parame-

ters for these bicycles have been obtained by changing some of the same for the benchmark

bicycle, which has been our subject of study so far. In the process we study in some detail

the effect of handlebar asymmetry and the removal of the same on the circular motions

of these bicycles. (1) We first start with a bicycle where we reduce the handlebar asym-

metry existing in the benchmark bicycle by (i) improving the alignment between the fork

axis and an eigenvector of the moment of inertia matrix of the front fork assembly and

(ii) making the points H and Q (see figures 2.1 and 8.1) lie closer to the fork axis. In

what follows, we refer to this bicycle as Case (1), and also NSB (for “nearly symmetric

bicycle”). (2) Then we study a perfectly symmetric bicycle where H and Q lie exactly on

the fork axis and an eigenvector points along the fork axis. In what follows we refer to

this bicycle as Case (2) and also PSB (for “perfectly symmetric bicycle”). (3) After this

we study another bicycle where we reduce the mass of the rear frame and increase the fork

angle significantly. In what follows we refer to this bicycle as Case (3) and also DB (for

“different bicycle”). (4) Next we symmetrize this bicycle (DB), and call it Case (4) and

67
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SDB (for “symmetrized different bicycle”). (5) Finally, we study yet another bicycle with

parameters which represent a motorcycle more closely, and refer to it as Case (5) or the

“motorcycle”.

We study the circular motions for all these cases, and their stabilities as well.

8.2 Symmetrization of the Benchmark Bicycle: Cases

(1) and (2)

Fork axis

H

Q

Wheel axle

Front fork assembly

Eigenvector

θ1

More symmetrical

        assembly   

Wheel axle

Eigenvector
Fork axis

Front fork assembly

H

θ
2

Q

Figure 8.1: Schematic showing reduction of asymmetry in the front fork. Left: Less sym-

metric assembly. Right: More symmetric assembly. θ2 < θ1. Also H and Q are closer to

the fork axis (the fork angle is increased slightly and trail is held constant). See text for

details.

In this section, we study what happens if the front fork assembly of the benchmark bicycle

is made progressively more symmetrical about the fork axis, with the limiting case being

one where a π rotation of the handlebar gives exactly the same bicycle as before. We

proceed as follows.



Chapter 8. A Study of Other Bicycles With and Without Symmetrical Forks 69

(a) First of all, we change the moment of inertia matrix of the front fork Icm,ff in

its reference configuration in such a way that its eigenvalues remain the same, but now the

smallest of the angles between the eigenvectors and the fork axis is made 1/4 of its original

value. See figure 8.1.

(b) Also the perpendicular distance of the front wheel center Q from the fork axis

is made 1/4 of the original value.

(c) Finally, the perpendicular distance of the center of mass H of the front assembly,

from the fork axis, is made 1/4 of the original value.

Note that apart from changing some of the entries of Icm,ff,ref , these changes will

alter the location of H. We choose not to change the location of Q. To accomplish this, we

change the fork angle, keeping the trail constant. All subsequent analyses are done keeping

the trail constant and changing the fork angle.1 See tables A.3 and A.4 in appendix A for

actual parameter values used.

8.2.1 Circular motions

On examining the circular motions of the benchmark bicycle, the bicycle of Case (1) (NSB),

and the bicycle of Case (2) (PSB) (see figure 8.2, top, middle, and bottom, respectively), we

note some interesting qualitative facts. As the bicycle fork is made less and less asymmet-

rical, points B and C approach each other and merge in the limit when handlebar reversal

has exactly zero dynamic consequence. Cusp-like points J and D both approach each other

as well as, in a pair, approach a configuration of zero lean and π/2 steer, eventually merg-

ing with these limiting axes at a point that is fortuitously close, but not identical to, the

coincident points G and H. The infinite-speed limit of K approaches zero lean and steer

π/2; and so does a significant portion of the curve that terminated at K. Similarly, the

zero-speed limit of A also approaches zero lean and steer π/2; and so does a significant

portion of the curve that terminated at A.

The two finally remaining circular motion families, as well as a new one that has

appeared, may therefore be described as follows:

1Alternatively, we could have kept the fork angle constant and altered the trail of the bicycle.
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Figure 8.2: Circular motion families. Top: benchmark bicycle (schematic; left shows lean;

right shows steer). The top two figures are reproduced from chapter 6; see discussion there

for further details. Middle: partially symmetrized fork, as in Case (1); all other details are

identical with top two figures. The continuation of the curve on to point F is indicated

schematically with an arrowhead in the lean plot, although our continuation was terminated

somewhat earlier. Bottom: fully symmetrical bicycle. The four solution family curves have

now merged into two, with one new family of pivoting motions at all speeds. The points A

and C, though coincidentally close, are distinct. See text for further details.
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(i) There is a family that involves bifurcation from straight motion. Taking the bifur-

cating branch that involves leaning left, say, we find decreasing radius and increasing

lean upto some point; thereafter the lean decreases again and the bicycle becomes

upright with steer equal to π/2 to the left. When leftwards steer increases beyond

π/2, the motion turns into a backward-moving version of another circular motion

with rightwards-steer less than π/2; and following that branch with the rightwards-

steer interpretation, we again reach the bifurcation point off straight motion, thus

completing a loop.

(ii) There is another family where the bicycle may be viewed as starting with leftwards

lean almost π/2 (i.e., almost flat), going around infinitely fast. From that limit, the

bike may be viewed as rising up, with decreasing lean, eventually reaching a state of

zero lean with steer exactly equal to π/2. Thereafter, following a symmetrical branch

as in case (i) above, the circular motion family ends with the bicycle again nearly

flat, going around infinitely fast, but now leaning to the right.

(iii) Now, at all speeds, there are circular motions where the rear contact point is station-

ary, lean is zero, steer is π/2, and the bicycle exhibits a pivoting motion about the

rear contact point. Recall that an approximation to such motions played a key role

in our discussion of the benchmark bicycle; here, such motions occur exactly, and at

all speeds.

8.2.2 Stability of circular motions

All of the circular motions of the NSB with forward handlebar turn out to be unstable.

Among the reversed-handlebar motions, all are found to be unstable. Recall that for the

benchmark bicycle, small sections of stability were found near D and J as shown in figure

7.1. Also, all circular motions for the PSB turn out to be unstable.
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8.3 Qualitatively Different Families for Cases (3) and

(4)

The possible solution families for different bicycle parameter set choices can be quite differ-

ent from those observed above for the benchmark, and its related bicycles (NSB and PSB,

Cases (1) and (2) respectively).

To briefly explore the possibilities, and also to demonstrate that stability of circular

motions is actually possible over a large range of motions, we now consider a different

bicycle which has handlebar asymmetry. For this bicycle, which we call DB, we increased

the fork angle to π/7 as opposed to π/10 for the benchmark bicycle and decreased the mass

of the rear frame to 70 kg as opposed to 85 kg for the benchmark bicycle. For a full list

of the parameters, see tables A.7 and A.8 in appendix A. This bicycle yields qualitatively

new families of circular motions.

The lean and steer plots are shown side by side, separately for all four families for

better visibility, in figure 8.3. In all the plots in figure 8.3, as before, lean is defined as

ψ − π/2, positive when the bicycle leans left and shown here from 0 (upright) to π/2 (flat

on the ground). Also, steer is plotted from 0 (straight handlebar) to π/2 (perpendicular

leftwards) in figure 8.3. Note that for some of the families β̇fr2 < 0, and −β̇fr2 is plotted

instead, because motions are reversible. For the families represented by curves DE and HIJ

in figure 8.3, β̇fr2 < 0 corresponds to the bicycle moving forward with a reversed handlebar

(i.e. turned beyond π/2). For these two curves, π has been added to the steer, as also done

earlier for the benchmark bicycle.

8.3.1 Circular motions

We now describe the four circular motion families.

One handlebar-forward family connects the points A, B and C shown in figure 8.3

(top row). The bicycle first starts from a flat-and-fast motion at A with lean from vertical

nearly equal to π/2 and steer close to 0; lean and speed decrease, while steer increases up to
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point B where a maximum steer angle of about π/5 is reached. Thereafter, steer decreases

towards 0 while lean and speed increase until the bicycle again approaches a flat-and-fast

limit depicted by point C. In our numerics, A and C show termination of our continuation

scheme; in reality, the solution family reaches the limiting motion although it is numerically

difficult to find it. There is no similar solution family for the benchmark bicycle.

A second circular motion family starts from the HF flat-and-fast limit D (see figure,

second row). Note that the path radii of the rear wheel center at A and C differ from

each other as well as from that at D. Velocity and lean initially decrease while the steer

increases; beyond a turning point, the bicycle is nearly (but not quite) upright, and steer is

nearly (but not quite) π/2, as speed increases towards infinity, producing a pivoting motion

in the limit E. This point E corresponds to the infinite-speed pivoting motion K of the

benchmark bicycle (see figure 8.2); however, for the benchmark bicycle the corresponding

solution family curve had turned around and terminated at a finite-speed pivoting motion,

while here the solution terminates at a third flat-and-fast limit D.

A third family starts at the handlebar-forward (HF) bifurcation from straight mo-

tion, shown as point F (see figure, third row). The circular motion family starting there

has steadily increasing speed, and ends in a fourth flat-and-fast limit depicted in the figure

as G. An interesting feature of this family is that the steer remains small throughout; this

is a high-speed, leaning turn, similar to a corresponding family in the “motorcycle” of Case

(5) below, and unlike any family of the benchmark bicycle.

The fourth and final family (see figure, bottom row) starts from handlebar-reversed

(HR) bifurcation from straight motion (point J), shows increasing lean and speed up to

a turning point (point I), and eventually ends in static equilibrium (point H) with lean

exactly zero and steer very close to π/2. Though not identical in shape, this family is

qualitatively similar to solution family AB of the benchmark bicycle, shown in figure 8.2.

All four lean and steer plots are shown together in figures 8.4 and 8.5 respectively.
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Figure 8.3: Circular motion families for the DB.
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8.3.2 Stability of circular motions of DB

We now study the stability of the four circular motion families. For the family represented

by curve ABC in figure 8.3, there is a very small section near point B with stable circular

motions. For the family represented by HIJ, the entire portion IJ is stable. All points

computed on the curve FG are stable, although we have no analytical extrapolation to the

infinite speed limit and expect that stability may be lost at some finite speed. There are

no stable points on the curve DE.

It is interesting to note that the circular motions of this bicycle (DB) differ from

those of the benchmark in a few key ways. First of all, there are four as opposed to two

flat-and-fast limiting motions. Secondly, the finite-speed pivoting motion with zero lean is

now missing. Finally, large sections of two solution families are stable.

1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6
0

0.2

0.4

0.6

0.8

1

1.2

π/2

family represented by HIJ

family represented

by ABC

family represented by DE

arctangent (rear wheel speed)

ar
ct

an
ge

nt
 (

cu
rv

at
ur

e 
in

 1
/m

)

family represented by

FG in figure 8.3

Figure 8.6: Two right curving circular motion families for the DB.
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The distinction between the four flat-and-fast limits may be seen in figure 8.6 where

curvature 1/R (R is the radius of the path traversed by the rear wheel centre) is plotted,

using an arctangent transformation, against speed v = r1β̇r which is also plotted using the

arctangent as before. As speed goes to infinity, it is clear that there are four different radii.

We now move on to Case (4), where we replace the front fork assembly of bicycle

DB with a perfectly symmetric one, so that there remains no handlebar asymmetry. We

call this the “symmetrized different bicycle” (SDB). We now study its circular motions.

The schematic is shown in figure 8.7.
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Figure 8.7: Circular motion families for the SDB. Left: lean. Right: steer. The continuation

of the respective curves on to points D and G is indicated schematically with two arrowheads

in the lean plot, although our numerics were terminated somewhat earlier.

We get three circular motion families for this bicycle. The circular motion family

represented by curve ABC in figure 8.3 apparently disappears, presumably due to merging

of the two endpoints, which are flat-and-fast limits (we found no such family, in any case).

The portion IJ of the circular motion family HIJ in figure 8.3 has merged with FG in figure

8.7. Also the diagonal part of the curve HI is now coincident with a corresponding portion

of curve DE in the figure, and the horizontal part has merged with the horizontal axis,

because there are now pivoting solutions at all speeds (the third family), with zero lean
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and steer π/2.

As might be anticipated, the entire family represented by FG is stable. There are

no stable points on the curve DE.

8.4 Case (5): Parameters Closer to a Motorcycle

Finally, we consider parameters which represent a light motorcycle2. The wheel base is

larger; the masses of the wheels are larger; the mass of the rear frame is larger; and

the moment of inertia matrices for the wheels and the rear frame are closer to those of

a motorcycle. For actual parameter values, see tables A.10 and A.11 in appendix A.

The dynamics of the engine was not included in our analysis, though its mass may be

considered to be included with the rear frame. Neither rotation of the swing arm nor width

or deformation effects of tyres, though they are significant for actual motorcycles, were

included in our idealized bicycle-motivated model. For ease of identification, however, we

refer to this model as a motorcycle.

We now describe the circular motion families for the motorcycle. See figure 8.8.

The handlebar-forward (HF) family AB is qualitatively similar to a corresponding

family for the benchmark bicycle, starting from bifurcation from straight motion at one

end, and ending at static equilibrium with exactly zero lean and steer almost π/2.

The family CD also has a clear correspondence with the benchmark bicycle results,

starting from the HF flat and fast limit D, and ending with the rear frame upright at

pivoting motion C.

The handlebar-reversed (HR) bifurcation from straight motion is shown at point E.

The circular motion family starting there has steadily increasing speed, and ends in a flat-

and-fast limit depicted in the figure as D (note that in this figure, for clarity of depiction,

two different flat-and-fast limits are depicted using a single label, D). The continuation

of the curve on to point D is indicated schematically with an arrowhead in the lean plot,

2This parameter set was provided by K.V.M. Raju of TVS Motor Company.
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although our numerics were terminated somewhat earlier. An interesting feature of this

family is that the steer remains small throughout; this is a high-speed, leaning turn, similar

to a corresponding family in the “different bicycle” of Case (3) above, and unlike any family

of the benchmark bicycle.

The fourth and final circular motion family CGF is qualitatively similar to a corre-

sponding family of the benchmark bicycle, starting at finite speed pivoting (zero lean) at

C, and ending at infinite-speed pivoting (small lean) at F.

All points on the curve DE in figure 8.8 are stable.
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Figure 8.8: Circular motion families for the motorcycle. Left: lean. Right: steer. As

was the case for the benchmark bicycle, here there are actually two points at C, but for

simplicity we have used only one label. The point D represents flat-and-fast solutions, of

which there are two different ones (as also for the benchmark bicycle); however, for clarity

in the diagram, only one label is used. Finally, as for the benchmark, two families are

shown with π added to the steer angle: these are DE and CGF.



Chapter 9

Qualitative Comparison With Prior

Experiments

Several observations from experiments with bicycles are reported in an unpublished docu-

ment (dated 1987) available at [24]. It is interesting to see how some of the results obtained

in this thesis are in fact consistent with the experimental observations therein. For exam-

ple, at the bottom of the first page in that document, James Papadopoulos describes how

the handlebar torque changes magnitude and sign with varying speed along a curve of given

radius. These observations seem directly related to the discussion in the last paragraph of

subsection 6.2.5 of this thesis.

Consider again figure 8.7 of this thesis and the circular motion family represented

by curve FG, which is stable. A bicycle travelling in a circle corresponding to some point

on the curve FG will be stable. If there is some small dissipation, the bicycle will slow

down and follow a nearly circular path as its motion slowly traverses curve FG towards F.

When the point F is reached, the bicycle will become vertical and continue to move in a

straight path. In this light, it is interesting to see the last page of [24], which describes

experiments by Scott Hand. In particular, item 5 there seems to describe just such a

sequence of motions.
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Chapter 10

Conclusions and Future Work

In this thesis we have made a study of the dynamics and stability of an idealized bicy-

cle. This thesis presents, for the first time, multiply cross-verified (benchmark) numerical

results for certain bicycle parameter values that can be used with confidence by future

researchers in bicycle dynamics as well as people interested in examining the accuracy of

general purpose multibody dynamics codes.

The equations of motion for the bicycle have been derived in two different ways, first

by using a Lagrangian formulation and then followed by a Newton-Euler formulation. We

have demonstrated the equivalence of the two sets of equations. Lagrange’s equations were

subsequently linearized and the corresponding eigenvalue problem studied. The stability

eigenvalues have been plotted as functions of the forward speed of the bicycle. In the

process several eigenmodes of instability like weave and capsize have been identified and

the speed ranges in which they are dominant have been found.

The main new findings in this thesis are in the area of hands-free circular motions of a

benchmark bicycle and some other bicycles. Three different families of circular motions have

been shown to exist for the benchmark bicycle. (i) A handlebar-forward family starts from

the capsize bifurcation off straight-line motion and ends in an unstable static equilibrium,

with the rear frame perfectly upright and the front wheel steered almost perpendicular to

the symmetry axis of the frame. (ii) A handlebar-reversed family starts again from the

capsize bifurcation and ends with the front wheel steered straight and the bicycle spins

infinitely fast in small circles lying flat in the ground plane. This flat spinning motion
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is possible only because of the absence of slip. (iii) Lastly, there is a family which joins

a similar flat spinning motion with handlebar forward to a handlebar reversed limit. In

doing so, the bicycle circles in dynamic balance at infinite speed, again with the frame being

nearly (but not exactly) upright in this case and the front wheel almost perpendicular to

it. This transition from handlebar forward to handlebar reversed motion takes place due

to a pivoting motion occurring at a moderate speed with the rear wheel not quite rotating

and the front wheel rotating appreciably and the frame virtually upright.

The effect of handlebar asymmetry has been examined in subsequent studies on

other bicycles. Here we have reduced the handlebar asymmetry in the benchmark bicycle

and then studied the circular motions of this new bicycle (NSB). (i) As the bicycle fork is

made less and less asymmetrical, the capsize bifurcation points off straight motion for the

HR and HF cases approach each other and merge in the limit when handlebar reversal has

exactly zero dynamic consequence. (ii) The cusp-like points both approach each other as

well as, in a pair, approach a configuration of zero lean and π/2 steer, eventually merging

with these limiting axes at a point that is fortuitously close, but not identical to, the

coincident points G and H in figure 6.1. (iii) The infinite-speed limit of K in figure 6.1

approaches zero lean and steer π/2; and so does a significant portion of the curve that

terminated at K. (iv) Similarly, the zero-speed limit of A also approaches zero lean and

steer π/2; and so does a significant portion of the curve that terminated at A.

Further, we have taken a bicycle (PSB) with a fully symmetric front assembly and

expectedly found the absence of those families which existed due to the handlebar asym-

metry. However, it leads to the appearance of a new family. (i) The family that involved

bifurcation from straight motion for the benchmark bicycle is preserved here along with

a family that starts from a flat-and-fast limit with the bicycle leaning leftwards and then

rising up with decreasing lean and then achieving a state of zero lean with steer exactly

equal to π/2. Thereafter, following a symmetrical branch, the family ends with the bicycle

again nearly flat, going around infinitely fast, but now leaning to the right. (ii) Now, at all

speeds, there are circular motions where the rear contact point is stationary, lean is zero,

steer is π/2, and the bicycle exhibits a pivoting motion about the rear contact point. This

was not present in the benchmark bicycle and its nearly symmetrical variant.

As a further exploration, we have considered another bicycle (DB), where we have

reduced the mass of the rear frame and increased the fork angle significantly. This bicycle
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yields new families of circular motions which are absent in the benchmark bicycle and

its more symmetrical variants. (i) In one new family the bicycle first starts from a flat-

and-fast motion with lean from vertical nearly equal to π/2 and steer close to 0; lean

and speed decrease, while steer increases up to some maximum value. Thereafter, steer

decreases towards 0 while lean and speed increase until the bicycle again approaches a flat-

and-fast limit. (ii) In yet another family, the bicycle starts from a HF flat-and-fast limit.

Velocity and lean initially decrease while the steer increases; beyond a turning point, the

bicycle is nearly (but not quite) upright, and steer is nearly (but not quite) π/2, as speed

increases towards infinity, producing a pivoting motion. This corresponds to the infinite-

speed pivoting motion of the benchmark bicycle. However the difference to be noted here is

that, for the benchmark bicycle, the corresponding solution family curve had turned around

and terminated at a finite-speed pivoting motion, while here the solution terminates at a

flat-and-fast limit. (iii) Another family starts at the handlebar-forward (HF) bifurcation

from straight motion. The circular motion family starting there has steadily increasing

speed, and ends in a fourth flat-and-fast limit. An interesting feature of this family is that

the steer remains small throughout; this is a high-speed, leaning turn, and unlike any family

of the benchmark bicycle. (iv) The fourth and final family starts from handlebar-reversed

(HR) bifurcation from straight motion, shows increasing lean and speed up to a turning

point and eventually ends in static equilibrium with lean exactly zero and steer very close

to π/2. Though not identical in shape, this family is qualitatively similar to a solution

family of the benchmark bicycle.

It is interesting to note that the circular motions of this bicycle (DB) differ from

those of the benchmark in a few key ways. First of all, there are four as opposed to two

flat-and-fast limiting motions. Secondly, the finite-speed pivoting motion with zero lean is

now missing.

Then we have studied the symmetrized version of the DB. (i) Symmetrization of this

bicycle (SDB) leads to the apparent disappearance of the solution family which started and

terminated at flat-and-fast limits, presumably due to merging of the two endpoints. (ii) We

also find that the portion IJ of the circular motion family HIJ in figure 8.3 has merged with

FG in figure 8.7. (iii) Also the diagonal part of the curve HI is now coincident with a

corresponding portion of curve DE in the figure. The horizontal part now merges with the

horizontal axis giving rise to pivoting solutions at all speeds with zero lean and steer π/2

similar to the symmetrized version of the benchmark bicycle (PSB).
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Finally we have considered parameters which represent a light motorcycle and stud-

ied its circular motions. (i) There are four circular motion families, three of which are

qualitatively similar to the benchmark bicycle and one more family where the steer re-

mains small throughout which is a high-speed leaning turn, that was also observed for the

DB.

Finally, we have made a stability analysis of all these circular motion families.

The present work has explored in detail the dynamics and stability of different

idealized bicycles. Possible extensions of the present work include the following:

(1) Further academic studies: Starting with the benchmark bicycle and all its vari-

ants that have been studied in chapter 8, there is still room for further work on the circular

motions of bicycles. Given a bicycle with some meaningful design parameters, how many

circular motions will exist for it and what are the starting and terminating points for those

circular motions? More work can be carried out along these lines where these questions

can be effectively addressed.

(2) More realistic models: Similar work can be performed on, eg, motorcycles with

thick toroidal tyres, flexible frames and suspensions.

(3) Insights into handling of motorcycles: This work can also be a starting point for

further work on motorcycle ride and handling. Starting with our work on the “light motor-

cycle”, where we have found a circular motion family where the steer remains sufficiently

low throughout, insights may be sought into the handling properties of a real motorcycle,

where the rider leans into and out of high-speed turns at low steer angles.



Appendix A

Geometrical and Other Parameters

for All Bicycles Studied in the Thesis

The following tables list the parameter values for all the bicycles that we have studied in

this thesis. We start with the benchmark bicycle and then provide parameters of other

bicycles that we studied in chapter 8.

Vectors joining the CG’s of the rigid bodies in the reference configuration

rG/P,ref = (0.3,−0.6, 0)T

rS/G,ref = (0.57812215828725118741, 0.21713021929669624976, 0)T

rH/S,ref = (0.02187784171274881259,−0.01713021929669624976, 0)T

rQ/S,ref = (0.14187784171274881259, 0.33286978070330375024, 0)T

rP/S,ref = (−0.87812215828725118741, 0.38286978070330375024, 0)T

Table A.1: Vectors connecting the CG’s of the rigid bodies in the reference configuration

for the benchmark bicycle.
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Parameter Symbol Value

Wheel Base wb 1.02 m

Trail t 0.08 m

Fork angle (with vertical) µ π/10 rad

Gravity g 9.81 m/s2

Forward speed v variable m/s

Rear Wheel

Radius r1 0.3 m

Mass mrw 2 kg

Mass moments of inertia (Ixx, Iyy, Izz) (0.0603, 0.0603, 0.12)kgm2

Rear Frame

Mass mrf 85 kg

Mass moments of inertia















Ixx Ixy 0

Ixy Iyy 0

0 0 Izz





























9.2 2.4 0

2.4 2.8 0

0 0 11















kgm2

Front Frame

Mass mff 4 kg

Mass moments of inertia















Ixx Ixy 0

Ixy Iyy 0

0 0 Izz





























0.05892 −0.00756 0

−0.00756 0.00708 0

0 0 0.06















kgm2

Front Wheel

Radius r2 0.35 m

Mass mfw 3 kg

Mass moments of inertia (Ixx, Iyy, Izz) (0.1405, 0.1405, 0.28)kgm2

Table A.2: Parameters for the benchmark bicycle.
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Parameter Symbol Value

Wheel Base wb 1.02 m

Trail t 0.08 m

Fork angle (with vertical) µ 0.34704 rad

Gravity g 9.81 m/s2

Forward speed v variable m/s

Rear Wheel

Radius r1 0.3 m

Mass mrw 2 kg

Mass moments of inertia (Ixx, Iyy, Izz) (0.0603, 0.0603, 0.12)kgm2

Rear Frame

Mass mrf 85 kg

Mass moments of inertia















Ixx Ixy 0

Ixy Iyy 0

0 0 Izz





























9.2 2.4 0

2.4 2.8 0

0 0 11















kgm2

Front Frame

Mass mff 4 kg

Mass moments of inertia















Ixx Ixy 0

Ixy Iyy 0

0 0 Izz





























0.05741 −0.01154 0

−0.01154 0.00856 0

0 0 0.06















kgm2

Front Wheel

Radius r2 0.35 m

Mass mfw 3 kg

Mass moments of inertia (Ixx, Iyy, Izz) (0.1405, 0.1405, 0.28)kgm2

Table A.3: Parameters for the NSB.
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Vectors joining the CG’s of the rigid bodies in the reference configuration

rG/P,ref = (0.3,−0.6, 0)T

rS/G,ref = (0.62614209928213866262, 0.21062627651044751731, 0)T

rH/S,ref = (0.00129500119047299141,−0.01713021929669624976, 0)T

rQ/S,ref = (0.11658642145161090198, 0.33286978070330375024, 0)T

rP/S,ref = (−0.90341357854838909802, 0.38286978070330375024, 0)T

Table A.4: Vectors connecting the CG’s of the rigid bodies in the reference configuration

for the NSB.

Vectors joining the CG’s of the rigid bodies in the reference configuration

rG/P,ref = (0.3,−0.6, 0)T

rS/G,ref = (0.61184405196876840155, 0.21713021929669624976, 0)T

rH/S,ref = (−0.00404954616169160944,−0.01062627651044751731, 0)T

rQ/S,ref = (0.09385790071786133738, 0.33937372348955248269, 0)T

rP/S,ref = (−0.92614209928213866262, 0.38937372348955248269, 0)T

Table A.5: Vectors connecting the CG’s of the rigid bodies in the reference configuration

for the PSB.

Front Frame

Mass moments of inertia















Ixx Ixy 0

Ixy Iyy 0

0 0 Izz





























0.05484 −0.01587 0

−0.01587 0.01116 0

0 0 0.06















kgm2

Table A.6: Parameters for the PSB which are different from those shown in table A.3. The

other values not shown are to be taken same with the ones in table A.3.
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Parameter Symbol Value

Wheel Base wb 1.02 m

Trail t 0.08 m

Fork angle (with vertical) µ π/7 rad

Gravity g 9.81 m/s2

Forward speed v variable m/s

Rear Wheel

Radius r1 0.3 m

Mass mrw 2 kg

Mass moments of inertia (Ixx, Iyy, Izz) (0.0603, 0.0603, 0.12)kgm2

Rear Frame

Mass mrf 70 kg

Mass moments of inertia















Ixx Ixy 0

Ixy Iyy 0

0 0 Izz





























9.2 2.4 0

2.4 2.8 0

0 0 11















kgm2

Front Frame

Mass mff 4 kg

Mass moments of inertia















Ixx Ixy 0

Ixy Iyy 0

0 0 Izz





























0.05892 −0.00756 0

−0.00756 0.00708 0

0 0 0.06















kgm2

Front Wheel

Radius r2 0.35 m

Mass mfw 2 kg

Mass moments of inertia (Ixx, Iyy, Izz) (0.1405, 0.1405, 0.28)kgm2

Table A.7: Parameters for the DB.
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Vectors joining the CG’s of the rigid bodies in the reference configuration

rG/P,ref = (0.3,−0.6, 0)T

rS/G,ref = (0.55512417913532791422, 0.20763183019708073203, 0)T

rH/S,ref = (0.00650825608676337181, 0.01351453301853628689, 0)T

rQ/S,ref = (0.16487582086467208578, 0.34236816980291926797, 0)T

rP/S,ref = (−0.85512417913532791422, 0.39236816980291926797, 0)T

Table A.8: Vectors connecting the CG’s of the rigid bodies in the reference configuration

for the DB whose parameters are listed in table A.7

.

Front Frame

Mass moments of inertia















Ixx Ixy 0

Ixy Iyy 0

0 0 Izz





























0.04983 −0.02111 0

−0.02111 0.01617 0

0 0 0.06















kgm2

Table A.9: Parameters for the SDB which are different from those shown in table A.7. The

other values not shown are to be taken same with the ones in table A.7.

Vectors joining the CG’s of the rigid bodies in the reference configuration

rG/P,ref = (0.22,−0.15, 0)T

rS/G,ref = ((0.8964101542246793460,−0.17815515637003622024, 0)T

rH/S,ref = (−0.0164101542246793460,−0.07184484362996377976, 0)T

rQ/S,ref = (0.1335898457753206540, 0.27815515637003622024, 0)T

rP/S,ref = (−1.1164101542246793460, 0.32815515637003622024, 0)T

Table A.10: Table of vectors connecting the CG’s of the rigid bodies in the reference

configuration for the motorcycle.
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Parameter Symbol Value

Wheel Base wb 1.25 m

Trail t 0.10 m

Fork angle (with vertical) µ 0.38397 rad

Gravity g 9.81m/s2

Forward speed v variable m/s

Rear Wheel

Radius r1 0.25 m

Mass mrw 10 kg

Mass moments of inertia (Ixx, Iyy, Izz) (0.19, 0.19, 0.378)kgm2

Rear Frame

Mass mrf 130 kg

Mass moments of inertia















Ixx Ixy 0

Ixy Iyy 0

0 0 Izz





























11.5 7 0

7 8 0

0 0 15.2















kgm2

Front Frame

Mass mff 14 kg

Mass moments of inertia















Ixx Ixy 0

Ixy Iyy 0

0 0 Izz





























1 −0.35 0

−0.35 0.30 0

0 0 1.20















kgm2

Front Wheel

Radius r2 0.30 m

Mass mfw 8 kg

Mass moments of inertia (Ixx, Iyy, Izz) (0.170, 0.170, 0.339)kgm2

Table A.11: Parameters for the motorcycle.



Appendix B

Maple Code for Lagrange’s Equations

of Motion

Here we provide the Maple worksheet by which we generate the fully nonlinear equations of

motion for the benchmark bicycle. For any other bicycle, the procedure will be the same.

One needs to change the parameter values only.

> restart: with(linalg):with(LinearAlgebra):

> skew:= proc(a,b,c) return( matrix([ [0,-c,b],[c,0,-a],[-b,a,0] ]) ) end:

> Id:=array(identity,1..3,1..3): eval(Id):

> e1:=transpose(matrix([[1,0,0]])):e2:=transpose(matrix([[0,1,0]])):

> e3:=transpose(matrix([[0,0,1]])):

> scalarmult:= proc(sc, M)

RETURN( multiply( matrix([[sc,0,0],[0,sc,0],[0,0,sc]]),M)) end:

Comment: The procedure below calculates the rotation matrix.

> rot_mat:= proc(unit_vector,angle) local S_temp;S_temp:=skew(unit_vector[1,1]

,unit_vector[2,1],unit_vector[3,1]);

93
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> return evalm( scalarmult(cos(angle),Id)+

scalarmult( 1-cos(angle), multiply(unit_vector,transpose(unit_vector

)))+ scalarmult(sin(angle),S_temp)) end:

> R1:=rot_mat(e3,theta(t)): R2:=rot_mat( multiply(R1,e1), psi(t)):

> R3:= rot_mat( multiply(multiply(R2,R1),e3), phi(t)):

> R_final:=multiply(R3, multiply(R2, R1)): eval(R_final):

> matrix_simplify:= proc(any_matrix_input) local any_matrix, t1, t2;

any_matrix:=matrix(3,3);

> for t1 from 1 to 3 do for t2 from 1 to 3 do

any_matrix[t1,t2]:=simplify(any_matrix_input[t1,t2]);

> od; od; return(eval(any_matrix)) end:

Comment: This part computes the rotational kinetic energy of the entire bicycle.

> A_temp:=matrix_simplify(R_final): eval(R_final):

> R_rf:=eval(A_temp):

> Icmrf:=matrix([[Ixxrf,Ixyrf,0],[Ixyrf,Iyyrf,0],[0,0,Izzrf]]):

> Icmff:=matrix([[Ixxff,Ixyff,0],[Ixyff,Iyyff,0],[0,0,Izzff]]):

> Icmrw:=matrix([[Ixxrw,0,0],[0,Iyyrw,0],[0,0,Izzrw]]):

> Icmfw:=matrix([[Ixxfw,0,0],[0,Iyyfw,0],[0,0,Izzfw]]):

> R_rw:=simplify(evalm(rot_mat((multiply(R_rf,e3),betar(t))) &* R_rf)):

> n_f:=transpose(matrix([[-sin(mu),-cos(mu),0]])):

> R_ff:=simplify(evalm(rot_mat((multiply(R_rf,n_f),psif(t))) &* R_rf)):

> R_fw:=simplify(evalm(rot_mat((multiply(R_ff,e3),betaf(t))) &* R_ff)):

> KER:=proc(R,MI) local temp1,temp2,temp3,temp4,temp5;temp2:=map(diff,R,t):

> temp1:=multiply(temp2,transpose(R)):

> temp3:=transpose(matrix([[temp1[3,2],temp1[1,3],temp1[2,1]]])) :

> temp4:=multiply(R,multiply(MI,transpose(R))):

> temp5:=1/2*(evalm(transpose(temp3)&*evalm(temp4&*temp3) )[1,1]): end:

> T1:=KER(R_rf,Icmrf)+KE(R_ff,Icmff)+KE(R_rw,Icmrw)+KE(R_fw,Icmfw):

Comment: This part computes the translational kinetic energy of the entire

bicycle.

> r_P:=array(1..3):r_P[1]:=x(t):r_P[2]:=y(t):r_P[3]:=z(t):r_GP_ref:=array(1..3):

> r_GP_ref[1]:=gx:r_GP_ref[2]:=gy:r_GP_ref[3]:=0:r_SP_ref:=array(1..3):
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> r_SP_ref[1]:=sx:r_SP_ref[2]:=sy:r_SP_ref[3]:=0:

> r_SH_ref:=array(1..3):r_SH_ref[1]:=gfx:r_SH_ref[2]:=gfy:r_SH_ref[3]:=0:

> r_QS_ref:=array(1..3): r_QS_ref[1]:=qx:r_QS_ref[2]:=qy:

> r_QS_ref[3]:=0:empty:=array(1..3):

> empty[1]:=0:empty[2]:=0:empty[3]:=0:R11:=Matrix(3):

> KET:=proc(R,R11,arr1,arr2,arr3,m) local temp1,temp2,temp3,temp4;

> temp1:=evalm(arr1+evalm(R &*arr2)):

> temp2:=evalm(temp1-evalm(R11 &*arr3)): temp3:=map(diff,temp2,t);

> temp4:=(1/2)*m*(temp3[1]^2+temp3[2]^2+temp3[3]^2); end:

> T2:=KET(R_rf,R11,r_P,r_GP_ref,empty,mr)+KET(R_rf,R_ff,r_P,r_SP_ref,r_SH_ref,mf)

+KET(R_ff,R11,evalm(r_P+evalm(R_rf &*r_SP_ref)),r_QS_ref,empty,mfw)

+(1/2)*mrw*(diff(x(t),t)^2+diff(y(t),t)^2+diff(z(t),t)^2):

Comment: This part computes the potential energy of the entire bicycle.

> V:=mrw*g*r_P[3]+mr*g*evalm(r_P+evalm(R_rf &*r_GP_ref))[3]

+mfw*g*evalm(evalm(r_P+evalm(R_rf &*r_SP_ref))+evalm(R_ff &*r_QS_ref))[3]

+mf*g*evalm(evalm(r_P+evalm(R_rf &*r_SP_ref))-evalm(R_ff &*r_SH_ref))[3]:

Comment: Rear Wheel Constraints

> n_P_ref:=e3:n_P:=evalm(R_rw &*n_P_ref):

> n_P:=<n_P[1,1],n_P[2,1],n_P[3,1]>:

> e3:=<0,0,1>:

> lambdabar:=CrossProduct(n_P, e3):

> mag_lambdabar:=sqrt(lambdabar[1]^2+lambdabar[2]^2+lambdabar[3]^2):

> lambdabar:=<lambdabar[1]/mag_lambdabar,lambdabar[2]/mag_lambdabar,

lambdabar[3]/mag_lambdabar>:

> r_PR:=(CrossProduct( lambdabar,n_P)):

> r_PR:=<r[1]*r_PR[1],r[1]*r_PR[2],r[1]*r_PR[3]>:Rdot_rw:=map(diff,R_rw,t):

> omegarw:=simplify(evalm(Rdot_rw &*transpose(R_rw))):

> omegarw:=<omegarw[3,2],omegarw[1,3],omegarw[2,1]>:

> tempr:=CrossProduct(omegarw, r_PR):

> constraint[1]:=diff(x(t),t)-simplify(tempr[1]):

> constraint[2]:=diff(y(t),t)-simplify(tempr[2]):
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> constraint3:=diff(z(t),t)-simplify(tempr[3]):

> for k from 1 to 2 do constraint[k]:=simplify(subs(sqrt(1-cos(psi(t))^2)

=sin(psi(t)),1/sqrt(1-cos(psi(t))^2)=1/sin(psi(t)),constraint[k]));end:

Comment: Front Wheel Constraints

> n_Q_ref:=e3:n_Q:=evalm(R_fw &*n_Q_ref):n_Q:=<n_Q[1],n_Q[2],n_Q[3]>:e3:=<0,0,1>:

> lambdabar1:=CrossProduct(n_Q, e3):

> mag_lambdabar1:=sqrt(lambdabar1[1]^2+lambdabar1[2]^2+lambdabar1[3]^2):

> lambdabar1:=<lambdabar1[1]/mag_lambdabar1,lambdabar1[2]/mag_lambdabar1

,lambdabar1[3]/mag_lambdabar1>:

> r_QF:=(CrossProduct( lambdabar1,n_Q)):

> r_QF:=<r[2]*r_QF[1],r[2]*r_QF[2],r[2]*r_QF[3]>:

> Rdot_fw:=map(diff,R_fw,t):omegafw:=simplify(evalm(Rdot_fw &*transpose(R_fw))):

> omegafw:=<omegafw[3,2],omegafw[1,3],omegafw[2,1]>:

> tempf:=CrossProduct(omegafw, r_QF):

> r_S:=evalm(r_P+evalm(R_rf &*r_SP_ref)):r_Q:=evalm(r_S+evalm(R_ff &*r_QS_ref)):

> v_Q:=simplify(map(diff,r_Q,t)):

> constraint[3]:=v_Q[1]-tempf[1]:constraint[4]:=v_Q[2]-tempf[2]:

> constraint[5]:=v_Q[3]-tempf[3]:

> constraint[5]:=subs(z(t)=r[1]*sin(psi(t)),constraint[5]):

Comment: Equations of Motion

> T:=T1+T2:L:=T-V:L:=subs(z(t)=r[1]*sin(psi(t)),L):

> const_part:=add(lambda[k]*constraint[k],k=1..5):

> ndof:=8: q[1]:=x(t): q[2]:=y(t): q[3]:=theta(t): q[4]:=psi(t): q[5]:=phi(t):

q[6]:=psif(t): q[7]:=betar(t):q[8]:=betaf(t):

> for k from 1 to ndof do temp1:=subs(diff(q[k],t)=tempvar1,L):

temp2:=subs(q[k]=tempvar2,temp1):

temp3:=subs(tempvar1=diff(q[k],t),diff(temp1,tempvar1)):

temp4:=subs(tempvar1=diff(q[k],t),tempvar2=q[k],diff(temp2,tempvar2)):

eq[k]:=diff(temp3,t)-temp4: end do:

> for k from 1 to ndof do eq[k]:=eq[k]-coeff(const_part,diff(q[k],t)): end do:

> for k from 1 to 5 do eq[ndof+k]:=diff(constraint[k],t): end:
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> for k from 1 to 13 do eq[k]:=evalf(subs(gx=0.3,gy=-0.6,sy=-0.38286978070330375024,

sx=0.87812215828725118741,qx=0.14187784171274881259,qy=0.33286978070330375024,

gfx=-0.02187784171274881259,gfy=0.01713021929669624976,r[2]=0.35,

r[1]=0.3,g=9.81,mu=0.31415926535897932385,mrw=2,mrf=85,mfw=3,mff=4,Ixxrw=0.0603,

Iyyrw=0.0603,Izzrw=0.12,Ixxrf=9.2,Iyyrf=2.8,Izzrf=11,Ixyrf=2.4,Ixxfw=0.1405,

Iyyfw=0.1405,Izzfw=0.28,Ixxff=0.05892,Iyyff=0.00708,Izzff=0.06,

Ixyff=-0.00756,eq[k])):end do:



Appendix C

Matlab Code for Newton-Euler

Equations

Here we reproduce the Matlab code for simulating the Newton-Euler equations of motion.

C.1 Derivatives

The following Matlab m-file “N E” gives the Newton-Euler implementation of the equations

of motion. Given a state vector consisting of nine generalized coordinates and their nine

time derivatives, the derivative of the state vector is returned. This m-file in turn calls two

m-files called “rotmat” and “ssm” which are also given below.

function dq = N E(t,q)

x=q(1);y=q(2);z=q(3);th=q(4);si=q(5);ph=q(6);sf=q(7);br=q(8);bf=q(9);

dx=q(10);dy=q(11);dz=q(12);dth=q(13);dsi=q(14);dph=q(15);dsf=q(16);

dbr=q(17);dbf=q(18);e3=[0;0;1];e2=[0;1;0];e1=[1;0;0];

% Rotation Matrices for the four rigid bodies.

98
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ro1=rotmat(e3,th);ro2=rotmat(ro1*e1,si);r3=rotmat(ro2*ro1*e3,ph);rrf=ro3*ro2*ro1;

rrw=rotmat(rrf*e3,br)*rrf; nf_ref=[-sin(mu); -cos(mu); 0];

rff=rotmat(rrf*nf_ref,sf)*rrf;rfw=rotmat(rff*e3,bf)*rff;

Icmrf=rrf*Icmrfref*rrf’;Icmrw=rrw*Icmrwref*rrw’;Icmff=rff*Icmffref*rff’;

Icmfw=rfw*Icmfwref*rfw’;np=rrw*e3;nq=rfw*e3;

nf=rff*nf_ref;wrf=[e3 ro1*e1 ro2*ro1*e3]*[dth;dsi;dph];

wrw=wrf+dbr*np; wff=wrf+dsf*nf; wfw=wff+dbf*nq;

npdot=ssm(wrw)*np;

lambdar=-ssm(e3)*np/sqrt(np’*ssm(e3)’*ssm(e3)*np);

lambdardot=-ssm(e3)*npdot/sqrt(np’*ssm(e3)’*ssm(e3)*np)+...

ssm(e3)*np*(npdot’*ssm(e3)’*ssm(e3)*np)/(np’*ssm(e3)’*ssm(e3)*np)^(3/2);

nqdot=ssm(wfw)*nq;

lambdaf=-ssm(e3)*nq/sqrt(nq’*ssm(e3)’*ssm(e3)*nq);

lambdafdot=-ssm(e3)*nqdot/sqrt(nq’*ssm(e3)’*ssm(e3)*nq)+...

ssm(e3)*nq*(nqdot’*ssm(e3)’*ssm(e3)*nq)/(nq’*ssm(e3)’*ssm(e3)*nq)^(3/2);

Rgp=rrf*gp_ref;Rpg=-Rgp;Rsg=rrf*sg_ref;Rhs=rff*hs_ref;Rqs=rff*qs_ref;Rsq=-Rqs;

Rpr=cross(lambdar,np)*r1;Rrp=-Rpr;Rqf=cross(lambdaf,nq)*r2;Rfq=-Rqf;

Rps=rrf*ps_ref;Rsp=-Rps;Rgs=-Rsg;Rrq=Rrp+Rps+Rsq;Rpq=Rps+Rsq;Rgq=Rgs+Rsq;

Rhq=Rhs+Rsq;Rrg=Rrp+Rpg;Rfg=Rfq+Rqs+Rsg;Rhg=Rhs+Rsg;Rqg=Rqs+Rsg;Rqh=-Rhq;

Rrs=Rrp+rrf*ps_ref;

% Assembly of individual equations.

A=zeros(33,33);

A(1:3,1:3)=eye(3);A(1:3,13:15)=ssm(Rpr);A(4:6,10:12)=eye(3);A(4:6,22:24)=ssm(Rqf);

A(7:7,13:15)=-np’*Icmrw;A(7:7,25:27)=np’*ssm(Rrp);

A(8:8,1:3)=-nf’*ssm(Rps)*mrw;

A(8:8,4:6)=-nf’*ssm(Rgs)*mrf;A(8:8,13:15)=-nf’*Icmrw;

A(8:8,16:18)=-nf’*Icmrf;A(8:8,25:27)=nf’*ssm(Rrs);

A(9:9,28:30)=nq’*ssm(Rfq);A(9:9,22:24)=-nq’*Icmfw;A(10:12,1:3)=-mrw*eye(3);

A(10:12,4:6)=-mrf*eye(3); A(10:12,7:9)=-mff*eye(3);A(10:12,10:12)=-mfw*eye(3);

A(10:12,25:27)=eye(3); A(10:12,28:30)=eye(3);A(13:15,25:27)=ssm(Rrg);
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A(13:15,28:30)=ssm(Rfg); A(13:15,1:3)=-ssm(Rpg)*mrw; A(13:15,13:15)=-Icmrw;

A(13:15,16:18)=-Icmrf;A(13:15,7:9)=-ssm(Rhg)*mff; A(13:15,19:21)=-Icmff;

A(13:15,10:12)=-ssm(Rqg)*mfw; A(13:15,22:24)=-Icmfw;A(16:18,1:3)=-eye(3);

A(16:18,4:6)=eye(3);A(16:18,16:18)=ssm(Rgp);

A(19:21,4:6)=-eye(3);A(19:21,7:9)=eye(3);

A(19:21,16:18)=ssm(Rsg);A(19:21,19:21)=ssm(Rhs);A(22:24,10:12)=eye(3);

A(22:24,7:9)=-eye(3);A(22:24,19:21)=ssm(Rqh);A(25:27,13:15)=eye(3);

A(25:27,16:18)=-eye(3);A(25:27,32:32)=-np;A(28:30,19:21)=eye(3);

A(28:30,16:18)=-eye(3);A(28:30,31:31)=-nf;A(31:33,22:24)=eye(3);

A(31:33,19:21)=-eye(3);A(31:33,33:33)=-nq;

B=zeros(33,1);

B(1:3)=r1*ssm(wrw)*(ssm(lambdardot)*np+ssm(lambdar)*npdot);

B(4:6)=r2*ssm(wfw)*(ssm(lambdafdot)*nq+ssm(lambdaf)*nqdot);

B(7)=np’*ssm(wrw)*Icmrw*wrw;

B(8)=nf’*ssm(Rps)*rw+ nf’*ssm(Rgs)*rf+nf’*ssm(wrf)*...

Icmrf*wrf+nf’*ssm(wrw)*Icmrw*wrw;

B(9)=nq’*ssm(wfw)*Icmfw*wfw;

B(10:12)=[0;0;(mrw+mrf+mff+mfw)*g];

B(13:15)=ssm(Rpg)*rw+ssm(Rhg)*ff+ssm(Rqg)*fw+ssm(wrw)*Icmrw*wrw+...

ssm(wrf)*Icmrf*wrf+ssm(wff)*Icmff*wff+ssm(wfw)*Icmfw*wfw;

B(16:18)=ssm(wrf)*ssm(wrf)*Rgp;

B(19:21)=ssm(wrf)*ssm(wrf)*Rsg+ssm(wff)*ssm(wff)*Rhs;

B(22:24)=ssm(wff)*ssm(wff)*Rqh;B(25:27)=dbr*ssm(wrw)*np;

B(28:30)=dsf*ssm(wff)*nf;B(31:33)=dbf*ssm(wfw)*nq;

d2z=A\B;

qq=ssm(ro1*e1*dsi+e3*dth)*ro2*ro1*e3*dph + ssm(e3*dth)*ro1*e1*dsi;

temp=[e3 ro1*e1 ro2*ro1*e3]\(d2z(16:18)-qq);

d2z=[d2z(1:3);temp;d2z(31:33)];

dq=[dx;dy;dz;dth;dsi;dph;dsf;dbr;dbf;d2z];
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function rm = rotmat(uv, angle);

s=[0 -uv(3) uv(2);uv(3) 0 -uv(1);-uv(2) uv(1) 0];

rm=cos(angle)*eye(3)+(1-cos(angle))*uv*uv’+sin(angle)*s;

function s = ssm(uv);

s=[0 -uv(3) uv(2);uv(3) 0 -uv(1);-uv(2) uv(1) 0];

C.2 Initial Conditions

function r F z = phi initial(ph);

% Do not touch this file.

global th si sif br bf

global e3 e2 e1 mu radr radf ps_ref qs_ref;

ro1=rotmat(e3,th);ro2=rotmat(ro1*e1,si);ro3=rotmat(ro2*ro1*e3,ph);

rrf=ro3*ro2*ro1;rrw=rotmat(rrf*e3,br)*rrf;

u_v_ff_ref=[-sin(mu);-cos(mu);0];

rff=rotmat(rrf*u_v_ff_ref,sif)*rrf;rfw=rotmat(rff*e3,bf)*rff;

nq=rfw*e3;lambdaf=cross(nq,e3)/norm(cross(nq,e3));

r_QF=radf*cross(lambdaf,nq);

temp1=rrf*ps_ref;temp2=-rff*qs_ref;

r_F_z=-(r_QF(3)-radr*sin(si)+temp1(3)+temp2(3));

function xicfull = find ics(xicpartial);
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global th si sif br bf radr;

th=0;

si=xicpartial(1);

sif=xicpartial(2);

br=0;

bf=0;

xicfull(1)=0;

xicfull(2)=0;

xicfull(3)=radr*sin(xicpartial(1));

xicfull(4)=0;

xicfull(5)=xicpartial(1);

phi_range_start=0;

Num=400;

zz=linspace(phi_range_start,2*pi+phi_range_start,Num);

zz1=zz;

for k=1:Num

zz1(k)=phi_initial(zz(k));

end

zz1=sign(zz1(1:Num-1).*zz1(2:Num));

if sum(zz1<0)~=2

disp(’There is a problem in finding phi(0).’)

disp(’It seems there is no phi(0) for which the front wheel will just

touch the ground.’)

disp(’This is most likely because your choice of psi(0) is too

close to 0 or pi,’)

disp(’and the choice of sif(0) (initial handle rotation) is

too large; as a result,’)

disp(’the bicycle front wheel is dipping below the ground for all phi(0).’)
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disp(’Please try other initial conditions.’)

disp(’If you find other conditions under which no phi(0) solution exists,

please email us!’)

xicfull=NaN;

else

[s1,s2]=sort(zz1);

temp2=newton(’phi_initial’,zz(s2(2)));

xicfull(6)=temp2;

xicfull(7)=xicpartial(2);

xicfull(8)=0;

xicfull(9)=0;

xicfull(10)=radr*cos(xicpartial(1))*xicpartial(3);

xicfull(11)=xicpartial(3);

xicfull(12)=xicpartial(4);

xicfull(13)=xicpartial(5);

xicfull=xicfull’;

end

function partial qdot = newprogram1(q);

global radr radf e3 e2 e1 mu ps_ref qs_ref

global gp_ref sg_ref hs_ref qs_ref ps_ref

x=q(1);y=q(2);th=q(3);si=q(4);ph=q(5);sif=q(6);br=q(7);bf=q(8);

dsi=q(9);dsif=q(10);dbr=q(11);

r1=rotmat(e3,th);r2=rotmat(r1*e1,si);r3=rotmat(r2*r1*e3,ph);rrf=r3*r2*r1;

rrw=rotmat(rrf*e3,br)*rrf; u_v_ff_ref=[-sin(mu); -cos(mu); 0];

rff=rotmat(rrf*u_v_ff_ref,sif)*rrf;rfw=rotmat(rff*e3,bf)*rff;

np=rrw*e3;nq=rfw*e3;
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u_v_ff=rff*u_v_ff_ref;

lambdar=cross(np,e3)/norm(cross(np,e3));

lambdaf=cross(nq,e3)/norm(cross(nq,e3));

Rqs=rff*qs_ref;Rsq=-Rqs;

Rpr=cross(lambdar,np)*radr;Rrp=-Rpr;

Rqf=cross(lambdaf,nq)*radf;Rfq=-Rqf;

Rps=rrf*ps_ref;Rsp=-Rps;

A=[e3 r1*e1 r2*r1*e3];

Q=ssm(Rpr);Q1=ssm(Rqf);B=ssm(Rqs);C=ssm(Rps);D=(B-C)*A;

M=zeros(6,6);

M(1:3,1:3)=eye(3);

M(1:3,5:5)=Q*A(:,3);

M(1:3,4:4)=Q*A(:,1);

M(4:6,4:4)=-(-C*A(:,1)+B*A(:,1)-Q1*A(:,1));

M(4:6,5:5)=-(-C*A(:,3)+B*A(:,3)-Q1*A(:,3));

M(4:6,6:6)=Q1*nq;

M(4:6,1:3)=eye(3);

f=zeros(6,1);

f(1:3)=-Q*(A(:,2)*dsi+np*dbr);

f(4:6)=(-C*A(:,2)+B*A(:,2)-Q1*A(:,2))*dsi+B*u_v_ff*dsif-Q1*u_v_ff*dsif;

partial_qdot=M\f;

function dq = psv(t,q);

partial_qdot=newprogram1([q(1:2);q(4:9);q(11:13)]);

temp=N_E(1,[q(1:9);partial_qdot(1:4);q(11);partial_qdot(5);
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q(12:13);partial_qdot(6)]);

temp([10,11,13,15,18])=[];

dq=temp;

function Yfull = final run(t,Y);

% Do not touch this file.

augment=[];

for i=1:size(t)

temp=Y(i,:);

temp1=newprogram1([temp(1:2) temp(4:9) temp(11:13)]);

temp1(3)=[];

augment=[augment temp1];

end

augment=augment’;

Yfull=[Y augment];

function [x, c] = newton(fun,x, showx);

n=length(x);

epsil=(1e-7*max(1,norm(x)));

pert=eye(n)*epsil;

iter=0;

nmax=60;

c=1;

ee=feval(fun,x);

while (norm(ee)*max(1,norm(x))>7e-11)*(iter<nmax)

iter=iter+1;

for k=1:n

D(:,k)=(feval(fun,x+pert(:,k))-ee)/epsil;
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end

x=x-(D\ee);

if nargin == 3

disp(x)

end

ee=feval(fun,x);

end

%disp(iter), disp(’iterations, that took’)

if (iter == nmax)+(abs(x)==inf)

c=0;

disp(’did not converge’)

end

C.3 Instructions for Simulation

1. First create a file called “parameter set.m” (not provided here) in Matlab, where all

the parameter values of the bicycle are included. Then type parameter set (that is

one word, with an underscore symbol) at the Matlab command prompt. This will

bring all the parameter values of the bicycle to the Matlab workspace. You can edit

this file to change parameter values if you like. Note that parameter values for the

benchmark bicycle and its variants are tabulated in appendix A.

2. Initial conditions. There is no harm in choosing zero initial conditions for x and y

(initial horizontal coordinates of the center of the rear wheel), θ (heading), βr (rear

wheel rotation angle) and βf (front wheel rotation angle). To incorporate these zero

initial conditions and to further ensure consistency in the specified initial rates, you

need to specify only 5 independent initial conditions in one vector as follows:

(ψ, ψf , ψ̇, ψ̇f , β̇r)
T ,

where ψ is the lean (where π/2 represents a vertical bicycle; values more than π/2 sig-

nify leaning to the left), ψf is the handle rotation (where 0 represents straight ahead,

and positive values indicate a turn to the left), and β̇r is the rear wheel rotation rate

(representing forward speed). Let this restricted or partially specified vector of initial
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conditions be Xic. For example, in Matlab, you can type

Xic=[1.5;0.1;0.1;-0.1;1];

3. Then type Xicfull = find ics(Xic) to obtain the full set of initial conditions used

by Matlab.

4. Choose the time instants at which you want the solution. For example, type

tspan=linspace(0,5,200); .

5. Set the numerical integration accuracy. For example, type

options=odeset(’RelTol’,1e-8,’AbsTol’,1e-8);

6. Now simulate. Type

[t,Y]=ode45(’psv’,tspan,Xicfull,options);

This will return a column matrix t (with, e.g., 200 points equally spaced between 0

and 5), and a matrix Y (with, corresponingly, 200 rows) with 13 columns.

7. Type

Yfull=final run(t,Y);

to get all 18 quantities of interest, in the 18 columns of Y full, in the sequence

(x, y, z, θ, ψ, φ, ψf , βr, βf , ż, ψ̇, ψ̇f , β̇r, ẋ, ẏ, θ̇, φ̇, β̇f)
T .

8. Then, e.g., type plot(t,Yfull(:,18)) to get a plot of β̇f vs. time.

9. This completes one simulation. You can type clear all and begin again.



Appendix D

Linearized Stability Eigenvalues for

the Benchmark Bicycle

In the following two pages, we list some eigenvalues governing the stability of straight

motion for the benchmark bicycle. The eigenvalues have been tabulated for the forward

speeds v ranging from 0 to 10 m/sec in steps of 1 m/sec. They have been obtained from

linearized stability analysis. These values match exactly with those given in [17]. Fourteen

digits are presented for benchmarking purposes.
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v Real part of weave eigenvalue Imaginary part of weave eigenvalue

(m/s) (1/s) (1/s)

0 − −
1 3.52696170990070 0.80774027519930

2 2.68234517512745 1.68066296590675

3 1.70675605663975 2.31582447384325

4 0.41325331521125 3.07910818603206

5 −0.77534188219585 4.46486771378823

6 −1.52644486584142 5.87673060598709

7 −2.13875644258362 7.19525913329805

8 −2.69348683581097 8.46037971396931

9 −3.21675402252485 9.69377351531791

10 −3.72016840437287 10.90681139476287

Table D.1: Real and imaginary parts of the weave eigenvalues for different values of the

forward speed as obtained from linearized stability analysis.
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v Capsize eigenvalue Castering eigenvalue

(m/s) (1/s) (1/s)

0 −3.13164324790656 −5.53094371765393

1 −3.13423125066578 −7.11008014637442

2 −3.07158645641514 −8.67387984831735

3 −2.63366137253667 −10.35101467245920

4 −1.42944427361326 −12.15861426576447

5 −0.32286642900409 −14.07838969279822

6 −0.00406690076970 −16.08537123098026

7 0.10268170574766 −18.15788466125262

8 0.14327879765713 −20.27940894394569

9 0.15790184030917 −22.43788559040858

10 0.16105338653172 −24.62459635017404

Table D.2: Capsize and caster eigenvalues for different values of the forward speed as

obtained from linearized stability analysis.
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