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Abstract

First principles prediction of the internal vibration damping of engineering compo-
nents is not routine in finite element packages. With such predictions, designers
would be able to assess the noise and vibration levels in engineering systems right
from the component design stage. To this end, we revisit the modelling of internal
material dissipation under spatially variable triaxial stresses, a research topic that
peaked five decades ago but bears reexamination in view of modern computational
power.

Internal energy dissipation in many materials, per stress cycle and per unit vol-
ume, is known to be frequency-independent and proportional to some power (m ≥ 2)
of a suitable equivalent stress amplitude (D = ξσm

eq). Definition of this equivalent
stress amplitude under arbitrary triaxial stress states remains an open question.
Such a definition is needed for computing modal damping of arbitrary solid bodies
using finite element packages.

In this thesis we develop macroscopic damping constitutive relations, for arbi-
trary triaxial time-harmonic stresses, by first considering numerous randomly dis-
persed microscopic dissipation sites. The resulting dissipation models are used in
finite element prediction of modal damping in solid objects.

Constrained by empirical evidence, we consider two mathematically simple rate-
independent dissipative phenomena in our assumed micromechanical dissipation
models: (i) Coulomb friction, and (ii) ambient-temperature plasticity. The first
case is a flat crack in an elastic material, with Coulomb friction between the crack
faces. The second case involves dissipation due to microscopic elasto-plastic flaws.

For the first model, the macroscopic dissipation is obtained by Monte Carlo aver-
aging of the dissipation from many randomly oriented non-interacting microcracks,
and finally fitted using a multivariate polynomial. In the second model, namely
distributed microscopic elasto-plastic flaws, we find two limiting special cases that
are analytically tractable: spherical flaws, and flaws that are flat and thin. In each
of these cases we assume a random distribution of flaw strengths and orientations,
and a formula for the macroscopic dissipation is obtained analytically (for spherical
flaws) or semi-analytically (for flat and thin flaws). For spherical flaws, the averaged
dissipation is governed exactly by the distortional strain energy. For flat and thin
flaws, when m is between 2 and about 6, the net dissipation is accurately, but not
in general exactly, described by a power of the distortional strain energy.

We finally suggest that for engineering modeling purposes of metallic structures,
for moderate m, a simple power law based on the distortional strain energy might



xiv Abstract

be reasonable. We demonstrate use of this dissipation model for finite element com-
putation of the modal damping ratios of arbitrary solid objects using both solid and
shell elements in ANSYS. The results are then verified with known analytical results
for the cases of several analytically tractable geometries. An interesting aspect of
these damping results is that the modal damping ratios show a variation of over one
order of magnitude over the cases we have considered. Torsion dominated modes
have high damping and the purely radial mode of a solid sphere has low damping.
We also verify that, at least in some cases, deliberately induced stress concentrations
can lead to improved damping for materials where m > 2.

Keywords: Vibration damping, internal dissipation, frictional microcrack, Monte
Carlo, elasto-plastic flaw, inclusion, plasticity, distortional strain energy, effective
damping ratio
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Chapter 1

Introduction

This thesis is motivated by an engineering design problem. Consider two possible de-

signs (shapes and dimensions) for some engineering component, to be made of some

known, lightly dissipative material. Which design has better vibration damping?

The above problem can be relevant to many engineering design situations. Design

of automotive components for reduction of the vibration levels is an easy example.

Another example would be to control the vibration levels in spacecraft components

to improve the accuracy of optical and guidance systems. Improvement of damping

behavior of aircraft and space structures equipments still remains an important

topic. Therefore, the above question has its own importance.

One can think of using modern computational facilities to address this ques-

tion. A computational approach would begin with straightforward finite element

based modal analysis. However, the commercial finite element packages give only

frequencies and mode shapes. Computation of damping values is not routine in

such packages. Computation of damping requires a constitutive relation for ma-

terial damping under time-periodic triaxial inhomogeneous stresses. As discussed

below, such a relation is not presently available.

To fix ideas, let us consider the solid object of Fig. 1.1 (a), modeled using a finite

element package, with its first mode as shown in Fig. 1.1 (b) (details of this model

will be discussed in section 2.5.4). We want to compute the damping ratios for the

first several modes of such an object. To do that, we require a multiaxial damping

formula that can be used along with the modal analysis results. Such a multiaxial
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damping relation is not presently available in the literature.
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Figure 1.1: (a) Finite element model of an arbitrarily chosen object. (b) Its first
vibration mode.

In this context, in this thesis we have developed, for the first time in the lit-

erature, multiaxial macroscopic damping models based on assumed underlying mi-

cromechanical models of internal dissipation. In addition, we have demonstrated

how these macroscopic models can be used to compute modal damping of any arbi-

trary solid object within a finite element environment. Therefore, this thesis adds
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to the existing knowledge of material damping within the framework of multiaxial

dissipation in structural components.

Having discussed briefly the goal and the contributions of this thesis, we now

give a detail discussion of the topic and the relevant literature below.

1.1 Material damping and relevant prior work

Solid bodies undergoing cyclic deformation lose energy. Some energy is lost to the

surrounding atmosphere; some goes into supports, joints, and such other dissipative

elements; and the rest is dissipated inside the material. This thesis considers the

latter means of dissipation, known as material damping or internal friction.

In our study of material damping, we have considered solids undergoing harmonic

stress cycles and the energy dissipated therein. It has been empirically observed that,

in many solids, the energy dissipated per unit volume and per cycle of deformation

is proportional to the stress amplitude raised to some power m ≥ 2, and largely

independent of frequency in the low frequency range (say, on the order of 100 Hz or

less). This can be written as

D = ξσm
eq (1.1)

where D stands for specific material damping, σeq represents a suitable stress am-

plitude, and ξ is a material constant. For comparison, we note that the commonly

assumed linear viscous damping (such as a cẋ term representing damping in a har-

monic oscillator) leads to per-cycle dissipation proportional to frequency; while a

macroscopic rate-independent dry friction element gives dissipation with m = 1.

Thus, Eq. (1.1) is not as intuitively obvious as it might initially seem.

There is a huge literature on damping. We have considered works only directly

relevant to Eq. (1.1).

Frequency independence in material damping was first observed by Lord Kelvin

(1865). Rowett (1914) reported careful static and dynamic experiments in torsion of

thin walled tubes and observed frequency independent behavior. He also reported

power law damping with m = 3 for the tubes as supplied, and found increased values
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of damping for annealed tubes. For the annealed tubes, his numerical data suggests

2 < m < 3.

Broader experiments with several different materials involving horizontally sup-

ported spinning rods with vertical end loads, were reported by Kimball and Lovell

(1927). Internal dissipation caused lateral deflection of the rod. Both frequency

independence as well as a rough power law were observed (m ≈ 2). The authors

cited some other data that suggests m > 2.

Mead and Mallik (1976) suggested quite reasonably that replacing stress with

strain in Eq. (1.1) leads to better units for ξ. Although they used an empirical

dissipation model with a sum of two power-law terms, their actual experimental

results for harmonic torsional oscillations would pass as straight lines on log-log

plots, with 2 < m < 3 (see their figures 4 through 6, reproduced below in Fig. 1.2

by manually extracting the data from their figures). Interestingly their results show

that m can have non-integer values.

In a more recent experimental work, Maslov and Kinra (2005) have reported

frequency independence (within their experimental scatter) in carbon foams over a

large frequency range. Though nonlinear damping behavior was observed for large

amplitudes, a power law was not fitted and appears inappropriate. Their data adds

one more solid material with frequency independent damping to the remarkable list

begun by Kimball and Lovell (1927).

When we come to modeling dissipation, we first mention Lazan’s well known

book in 1968 (Lazan, 1968). He took a phenomenological approach, noted power-

law behavior for intermediate stress ranges for several materials (including fractional

powers), and also discussed a variety of simple models. These models included

elements with friction and plasticity, but not the statistical distribution of strengths

that we assume here in order to theoretically obtain the power law behavior with

m ≥ 2.

From a more theoretical background, Granato and Lücke (1956) proposed an

explanation of material damping based on dislocation pinning by impurity particles.

Dawson (1978) considered an unknown function of nondimensionalized stress, for-
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Figure 1.2: Figures 4 to 6 of Mead and Mallik (1976) are reproduced here by manu-
ally extracting the harmonic excitation data (black circles) from those figures. The
numbers 1, 2, and 3 here correspond to figures 4, 5, and 6 respectively in their paper.
The fitted straight lines on these log-log plots show that m is between 2 to 3 (2.56
for figure 4, 2.27 for figure 5, and 2.90 for figure 6).

mally expanded in a Taylor series using even powers only, leading by assumption to

n = 2 for small stresses.

In addition to the above empirical and theoretical papers and approaches, there

are some procedural papers that develop ad hoc one-dimensional nonlinear differ-

ential equation formulations that model frequency independent dissipation. These

approaches could be useful in time domain simulations of damped systems. We

mention Muravskii (2004) and Spitas (2009) as examples. In the context of such

papers, we note that while m = 2 in the power law whenever the damping is linear,
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the converse is not true: nonlinear damping relations can give m = 2 as well.

We note an important point here that the literature we discussed above only

considers dissipation in uniaxial cases. However, we are interested in dissipation

in multiaxial stress states. No convincing mechanically-based engineering model for

the same is presently available. For example, the stress state in Kimball and Lovell’s

experiment (Kimball and Lovell, 1927) was predominantly uniaxial. The empirical

laws in Lazan (1968) also do not identify the equivalent stress of Eq. (1.1) under

arbitrary triaxial load. Dislocation-based models as in Granato and Lücke (1956)

involve several parameters related to the crystal structure, yet to be translated

into measurable external macroscopic model parameters. The approach of Dawson

(1978) also does not identify the role of multiaxial stresses in the dissipation model.

As a final example, Hooker (1969) proposed that the equivalent stress amplitude

should be computed as

σ2
eq = (1− λ)(I21 − 3I2) + λI21

= (1− λ)σ2
d + λσ2

v , with 0 < λ < 1, (1.2)

where I1 and I2 are the first and second stress invariants respectively, σ2
d and σ2

v

are proportional to the distortional and dilatational strain energies respectively, and

λ is a fitted parameter. The above is motivated by the fact that it is a linear

combination of distortional and dilatational strain energies1. Similar combinations

and interpolations were considered, with varying degrees of experimental support, by

several other authors, including Robertson and Yorgiadis (1946), Whittier (1962),

Torvik et al. (1963), and Mentel and Chi (1964). These attempts to incorporate

multiaxial stresses are given below.

Robertson and Yorgiadis (1946) studied several materials (metallic and non-

metallic), and found that dissipation per cycle was frequency independent and pro-

portional to the cube of a suitable stress amplitude (unlike Kimball and Lovell (1927)

but matching Rowett (1914)). More interestingly, Robertson and Yorgiadis (1946)

1It is tempting to conclude that such a split is intuitively obvious but we will show reasonable
micromechanics that predicts otherwise.
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sought an equivalence between damping in extension and torsion of tubes, and found

that in order for the dissipation under the two kinds of loads to be identical, the

shear stress in the torsion experiment needed to be k times the longitudinal stress

in the extension-compression experiment, with k ranging from 0.48 to 0.60. It is

notable that if damping was a function of distortional strain energy alone, then k

would be 0.577.

Whittier (1962) presented a study of vibration amplitude decay rates of circu-

lar steel plates and rectangular steel beams in vacuum. The experiments were well

conceived and executed with the objects supported on nodal circles and nodes re-

spectively, and displacements measured using noncontacting capacitive probes. In

our opinion, the attention to possible sources of error and demonstration of their

smallness, just in themselves, make this excellent paper well worth reading. It was

found that for somewhat larger stresses dissipation varies as the cube of stress am-

plitude, and that both distortional and dilatational strain energy contribute to the

observed macroscopic damping.

Torvik et al. (1963) discussed biaxial test results for several materials. The

tests, done at the University of Minnesota, involved axial and torsional loading

of tubes through crank arrangements. Load and deformation measurements were

through strain gages. Dissipation was measured by the area of the hysteresis loop

for a range of principal stress ratios, and was therefore limited to somewhat larger

dissipation ranges. The empirical theory proposed was based on dissipation through

small plastic deformation, and biaxial damping models proposed were motivated in

their mathematical form by various failure theories for engineering materials, with

variable degrees of success. Different qualitative behaviors were obtained for different

materials, the theories used were not developed from underlying micromechanics,

and the results cannot be easily compared with ours.

Subsequent related experiments were performed by Mentel and Chi (1964), also

in Minnesota. Damping was measured in thin-walled cylindrical specimens (made of

manganese-copper alloy) subjected to combined internal pressure and axial loading.

Crank assemblies were used for the load application. In this experiment, the biaxial
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stress ratio (−1 ≤ σ2/σ1 ≤ 1) covered a larger range than in Torvik et al. (1963).

Dissipation was measured by measuring areas of hysteresis loops. The results showed

a small contribution of dilatational strain in the dissipation.

Several ad hoc damping models proposed by these biaxial experimental measure-

ments were later combined by Hooker (1969) to prescribe a formula (given in Eq.

(1.2)) based on a weighted sum of the two strain energies (distortional and dilata-

tional). No physical basis was presented for this model. Experimental investiga-

tions in this area were again reported, more recently, by Hooker and co-authors (see

Hooker (1981), Hooker and Mead (1981) and Hooker and Foster (1995)). These stud-

ies were mostly targeted towards devising experimental setups for careful damping

measurements in biaxial settings, and not geared towards formulating constitutive

models for general triaxial stress states. Their experimental improvements mostly

lie in lowering extraneous losses, achieving more uniform stress distributions for a

full range of stress ratios, application of mean loading, simplicity in operation, etc.

In summary, we can say that there have been several prior studies of dissipation

under biaxial stress states, especially for materials whose internal dissipation is rela-

tively high or at stress levels where the dissipation is high. Theoretical development

of models such as we are going to present in this thesis has been missing, as has

any experimental verification of any model under triaxial stress states. Data for

materials with low dissipation, in addition, suffers from large scatter as expected.

1.2 Contributions of the thesis

We conclude from the above discussions that it is worthwhile, both academically as

well as towards possibly designing special damping materials, to develop physically

based multiaxial damping models that lead to Eq. (1.1) with m ≥ 2. In this the-

sis, we have developed multiaxial damping model that rationalizes, physically and

mathematically, the material damping behavior of Eq. (1.1). Then those dissipation

models are used in finite element prediction of modal damping ratios in arbitrary

solid objects.
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Our damping models may be summarized as follows. We assume that the dis-

sipation within the vibrating object is due to a multitude of random distribution

of microscopic, rate-independent, dissipation sites or flaws. We consider two math-

ematically simple micromechanical dissipative phenomena that can be modeled as

rate-independent: (i) Coulomb friction, and (ii) ambient-temperature plasticity. In

the first, we consider a flat crack in an elastic material, with Coulomb friction be-

tween the crack faces. In the second, we consider dissipation due to microscopic

elasto-plastic flaws.

For the first model with frictional microcracks, we begin with a single-crack

embedded within a linearly elastic solid under far-field time-periodic tractions. The

material is assumed to contain many such non-interacting microcracks. Single-crack

simulations, in two and three dimensions, are conducted using ABAQUS. The net

cyclic single-crack dissipation under arbitrary triaxial stresses is found to match, up

to one fitted constant, a formula based on a pseudostatic spring-block model. We

use that formula to average the energy dissipation from many randomly oriented

microcracks using Monte Carlo averaging for arbitrary triaxial stress. We develop a

multivariate fitted formula using the Monte Carlo results. The fitted formula is used

in finite element simulation of solid objects for the computation of the net cyclic

energy dissipation via elementwise integration. The net dissipation is then used to

compute equivalent modal damping ratios. We note that this model in the absence

of pre-stress always gives m = 2 in Eq. (1.1).

In the second approach, we consider dissipation due to distributed microscopic

elasto-plastic flaws. For analytical tractability, we choose ellipsoidal elastic perfectly-

plastic flaws or inclusions which is embedded inside an elastic matrix. We use finite

element simulation in ABAQUS to obtain the state of stress within the ellipsoidal in-

clusion under far-field cyclic loads. We also develop a semi-analytical method with

the help of Eshelby’s (Eshelby, 1957) formula for inclusion problems. Computed

results using this semi-analytical approach are found to match, with excellent ac-

curacy, the finite element simulation results. We identify two limiting special cases

from these simulations and consider them for our analytical development of macro-
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scopic dissipation formulas. In the first limiting case, plastic flaws or inclusions are

assumed to be of spherical shape where the single flaw dissipation is governed by

J2, the second deviatoric stress invariant, which is proportional to the distortional

strain energy. In the second limiting case, we consider flaws that are near-flat and

thin wherein the dissipation is governed by the far-field resolved shear stress applied

on the plane parallel to the near-flat surface of the flaw. In both these cases, we

assume a random distribution of flaw strengths and orientations, and obtain the

net macroscopic dissipation analytically. We show that in these dissipation models

arbitrary m > 2 can be incorporated. We also find from the first case that the net

dissipation is exactly described by a power of the distortional strain energy. How-

ever from the second limiting case, we show that, when m is between 2 and 6, the

net dissipation is accurately described by a power of the distortional strain energy

(and exactly so, for m = 2 and 4). For large m, separate asymptotic formulas are

found for this second case, showing that the dissipation deviates from a function of

distortional strain energy alone.

We finally suggest that for engineering modeling purposes of metallic structures,

for moderate m, a simple power law based on the distortional strain energy might

be reasonable. We then demonstrate use of this dissipation model to compute the

modal damping ratios of arbitrary solid objects using commercial finite element

package ANSYS.

We first use m = 2 in the distortional strain energy formula for the computation

of effective damping ratio (ζeff). The effective damping ratio is a measure of equiv-

alent viscous damping in any lightly damped structure. We first use solid element

(SOLID187) in ANSYS for our ζeff computation. Our finite element calculation of

effective damping uses modal analysis results from ANSYS complemented by our

own volume integrals for the dissipation. The results are then verified with known

analytical results for the cases of several analytically tractable geometries. An inter-

esting aspect of these damping results is that the ζeff shows a variation of over one

order of magnitude over the cases we have considered even when the power (m) is

2. The torsion dominated mode has the greatest damping and for the radial mode
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of the solid sphere the damping ratio is the least of all.

Subsequently, noting that many engineering components can have thin-walled

geometries, we extend our ζeff computation using shell elements (SHELL181) in

ANSYS. The net cyclic dissipation in this case is also calculated from modal analysis

followed by our own appropriate volume integrals. The results are verified with

known analytical results.

Finally, we consider arbitrary m ≥ 2. The ζeff results in these cases are nor-

malized with respect to the average volumetric strain energy density for clean (size-

independent) comparison. Effective damping results for various m values are re-

ported for a pair of objects of less analytically tractable shape.

In the course of this work, we have also developed an automated Matlab based

graphical user interface (GUI) for fast and reliable computations of the effective

damping ratios using Matlab’s graphical user interface development environment

(GUIDE). Development of this GUI makes use of the advantage of ANSYS’s APDL

(ANSYS Parametric Design Language) and its easy interface with Matlab. Some

details of this practical contribution are provided.

Therefore, the main contributions of this thesis may be viewed as following.

1. We develop, for the first time, multiaxial damping formulas based on microme-

chanically motivated rate-independent dissipative phenomena as opposed to

ad hoc proposals like Eq. (1.2).

2. We show that Eq. (1.1) can result from dispersed microscopic dissipation sites

in an appropriate statistical framework; and therefore, Eq. (1.1) is less arbi-

trary than it might initially seem.

3. We develop two multiaxial damping models considering two mathematically

simple rate-independent dissipation phenomena. The first model considers

dissipation due to frictional microcracks whereas the second model involves

dissipation in elasto-plastic flaws.

4. Based on a theoretical study of materials with small elasto-plastic flaws we sug-
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gest that for engineering modeling purposes of metallic components, a simple

power law formula based on the distortional strain energy might be reasonable

when the index (m) of the power law is between 2 to 6.

5. We finally demonstrate how these multiaxial damping formulas can be used for

finite element computation of modal damping ratios of arbitrary solid objects

using both solid and shell element in ANSYS.

1.3 Outline of the thesis

We give an outline of the rest of the thesis here. As discussed earlier, in this

thesis, we initially develop multiaxial damping models based on physically based

rate-independent damping mechanisms. And then, we have demonstrated how these

models can be used in a finite element environment to compute modal damping of

any arbitrarily shaped solid body.

In Chapter 2, the entire development of the dissipation model based on the

frictional microcracks is discussed. Use of such formula in finite element compu-

tation of modal damping of an arbitrarily shaped solid object using solid elements

in ANSYS is also presented for completeness. In Chapter 3, dissipation within

a single elasto-plastic flaws has been discussed using both finite element simula-

tions and a semi-analytical approach. Chapter 4 discusses the development of the

other multiaxial dissipation formula considering the dissipation due to a multitude

of elasto-plastic inclusions. In Chapter 5, we adopt a distortional energy based

damping formula and discuss in details the finite element computation of the effec-

tive damping ratios. We discuss both solid and shell element formulation for this

dissipation model and verify our computation with known analytical results. In

Chapter 6, the summary and the major conclusions of the present thesis have been

presented.



Chapter 2

Modal damping via dissipation
from frictional microcracks

The work presented in this chapter has been published in Jana and Chatterjee

(2013).

2.1 Introduction

As discussed in Chapter 1, Hooker (1969) combined several prior dissipation models

based on biaxial damping measurements and proposed that the damping in multi-

axial stresses should be computed as

D = ξσm
eq, (2.1)

where

σ2
eq = (1− λ)(I21 − 3I2) + λI21 . (2.2)

Here, D is specific material damping, σeq is a suitable stress amplitude, and ξ and m

are fitted constants, I1 and I2 are the first and second stress invariants respectively,

and λ is a fitted parameter between 0 to 1. In Eq. (2.2) the net dissipation is

assumed to be a linear combination of distorsional and dilatational strain energies.

However, no physical explanations for this split has been presented for this model.

In contrast to the above, there is in fact a micromechanical modeling approach

that seems promising for our purposes. This approach considers randomly dis-

tributed frictional microcracks within an elastic material, as opposed to the ad hoc



14 Modal damping via dissipation from frictional microcracks

prescription of Eq. (2.2).

The literature on frictional microcracks in elastic materials is rich. Kachanov

(1987) proposed an approximate analysis method based on a superposition princi-

ple for interactions of multiple cracks at moderate distances from each other. Aleshin

and Abeele (2007) presented a tensorial stress-strain hysteresis model due to friction

in unconforming grain contacts. Their model pays close attention to the variation

of actual area of contact under normal stress, but has many parameters (seven for

uniaxial compression alone). Deshpande and Evans (2008) studied frictional micro-

cracks in the context of inelastic deformation and fracture of ceramics. Al-Rub and

Palazotto (2010) computed energy dissipation in ceramic coatings and found that

frictional dissipation in microcracks contributes significantly to overall dissipation.

More recently, Barber and co-authors have presented several papers on mechanics

with frictional microcracks. Jang and Barber (2011a) discussed the dissipation in

interacting microcracks using Kachanov’s (1987) approach. Barber et al. (2011)

studied a single frictional elastic contact subjected to periodic loading. The contact

has an extended area, part of which sticks while the remainder can slip; some ba-

sic results about energy dissipation under periodic loading are obtained. Jang and

Barber (2011b) examined the substantial effect of the relative phase of harmonically

varying tangential and normal loads on the dissipation in an uncoupled frictional

system. Barber (2011) discussed discrete frictional systems under oscillating loads,

and examined conditions under which the steady state solution retains a memory

of the initial state. Individual cracks with surface roughness models for the con-

tacting faces have been studied by Putignano et al. (2011), who observed that,

with microslip in variable regions but no gross slip at the contact surfaces, energy

dissipation varies as the cube of the stress amplitude for small amplitudes.

None of the above studies have considered the net dissipation in a body, with

spatially variable stresses, from a multitude of randomly oriented frictional microc-

racks. Here, we seek a macroscopic constitutive relation for such dissipation.

To this end, for simplicity, we assume that the cracks are small and far apart

(non-interacting); that initial super-small microslips on crack surface asperities can
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be neglected, and the crack faces modeled as non-adhering yet geometrically flat;

that all crack face frictions can be modeled using a single Coulomb friction coeffi-

cient µ; and that the material remains linearly elastic. We assume the normal and

tangential loadings at each crack are in phase (as would occur for vibration of a

body in a single mode). Although our initial formulation allows both nonzero mean

stresses and nonuniform distributions of crack face orientations, our final formula

assumes zero mean stress and uniformly distributed crack face orientations.

Under these assumptions, we develop an empirical formula with two fitted pa-

rameters for the dissipation per unit volume and per cycle of time-periodic triaxial

stress, and use the solid object of Fig. 1.1 (a) shown in Chapter 1 in a computational

example.

The contribution of this chapter may thus be viewed as the first assembly of the

following tasks in one self-contained sequence: we use existing ideas about bodies

with frictional microcracks, integrate their dissipation rate over all possible crack

orientations, develop a constitutive model for the net specific dissipation per cycle,

and demonstrate the use of the formula to compute the modal damping ratios of

arbitrarily shaped objects.

2.2 Frictional dissipation in a single microcrack

The first step in our task is to compute the frictional dissipation in a single mi-

crocrack due to remote cyclic loading. For the two dimensional case, an analytical

treatment is given in Jang and Barber (2011a), including an analytical formula based

on a single degree of freedom spring-block model for when the entire crack face sticks

or slips as one. We have studied the same using finite element calculations in both

two and three dimensions. The formula based on the spring-block model, with one

fitted constant, turns out to be highly accurate. These computations are outlined

below (for details, see Appendix A).

See Fig. 2.1, where the crack is circular, planar and parallel to the horizontal

faces of a cube shaped element. We have found in separate two dimensional compu-
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tations that removing tiny regions around the crack tips does not influence the net

dissipation, and so material or geometric nonlinearities are neglected1.

x

y

z

-s

t

-s

-s
xy

tzy tzx
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z

Figure 2.1: An element with a small embedded frictional crack.

We can simplify the three-dimensional picture. To any given state of stress and

deformation, an additional σx causes an additional uniform strain in the element

but no added shearing at the crack face. Consequently, σx causes no slip and does

not contribute to the energy dissipated. Similar arguments apply for σy and τxy.

Thus σx, σy and τxy do not affect our results and are dropped. In contrast, σz will

affect the frictional forces, while τzx and τzy will cause frictional sliding. Finally, by

rotating the coordinate system about the z-axis, τzx can be made zero. This leaves

just the normal stress σz = σ and the shear component τzy = τ contributing to

frictional dissipation. A two-dimensional representation is shown in Fig. 2.2.

Figure 2.3 depicts possible periodic normal and shear tractions, acting in phase,

1Specifically, we have done two simulations, one with the crack intact and another after removing
a small circular region near the crack tip, and both resulted in same dissipation. So, it seems that
the constitutive behavior of a small region near the crack tip does not affect the dissipation. And
since that is where the material and geometric nonlinearities are large, they can be neglected.
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Figure 2.2: 2D representation of the frictional microcrack.

on the element of interest. Inertia is negligible (alternatively, frequencies are low),

so the dissipation is frequency-independent. Our pseudostatic simulation results will

actually apply to every periodic waveform where (i) the changes in far-field normal

and shear stresses maintain a fixed proportion throughout the load cycle (i.e., the

time-varying parts have similar waveforms), and (ii) there are only two points of

stress reversal per cycle. See Appendix A.1 for some possible waveforms. For conve-

nience, we used a triangular loading pattern in our computations described below.

In the presence of multi-harmonic loading where there is more than two stress rever-

sals per cycle, formulas presented in this thesis don’t hold and the hysteritic nature

of the macroscopic response would probably have to be explicitly incorporated. The

simpler case of only two stress reversals per cycle is relevant to the case of a struc-

ture vibrating in one of its normal mode and therefore relevant to computing modal

damping.
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Figure 2.3: Applied normal and shear loads. Sign convention for mean normal stress:
compression is positive.

2.2.1 Finite element simulations

Although we are interested in small flat cracks in three dimensions, we began with

detailed two-dimensional (plane stress2) simulations in ABAQUS. Subsequently, we

carried out three dimensional calculations with both a circular crack as well as a

symmetrically loaded isosceles triangular crack. Details are presented in Appendix

A. In particular, convergence was verified for both mesh size in space and load steps

in time. Several load cases were run in each case with different values of stress

amplitudes as well as the friction coefficient µ. Results for five cases in the two

dimensional simulation are given in Table 2.1 (many more such numerical results,

for both two and three dimensional cases, are listed in Appendix A.2).

We acknowledge that ABAQUS gave us one solution in each case, without prov-

ing uniqueness. Jang and Barber (2011b) have discussed uniqueness in a more

complicated, but two-dimensional, setting. Our three dimensional computations us-

ing ABAQUS had the specific goal of developing a physically defensible constitutive

2Plane stress versus plane strain are equivalent if we are willing to redefine the elastic constants
(see Timoshenko and Goodier (1951)), and numerical values we use for these constants are notional
in our case anyway.
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µ τa (MPa) σa(MPa) β =

(
σm

σa

)
α =

(
τm
τa

)
Dissipation (N-mm)

0.3 70 30 0.4 0 0.0142
0.3 70 30 0.4 1.2 0.0142
0.4 100 50 0.6 0 0.0512
0.4 120 70 −0.4 0 0.0112
0.5 80 60 2.57 0 0.0113

Table 2.1: Dissipation results for five typical cases in the two-dimensional finite
element analysis (see Appendix A.2 for more simulation results with several other
arbitrarily chosen µ and stress amplitude values).

relation for damping. We neither sought nor noticed evidence of dynamic waves

near the sliding crack face3.

2.2.2 Dissipation formula using a spring-block system

We now present an analytical formula that captures every result of the kind exem-

plified in Table 2.1. The formula is not new: it is given, in a different form, in Jang

and Barber (2011a). However, we include it below because it plays a key role in this

chapter. For details, see Appendix A.3.

We consider a spring and massless block system. The block slides on a frictional

surface (coefficient µ), and is attached to a rigid wall through the spring. Periodic

normal (σ) and tangential loads (τ) act on the block. When σ < 0, there is no

friction. To the extent that the entire crack face slips or sticks as one, this single

degree of freedom model should be accurate: we will find below that it is.

Define

ζ =
τa
σa

and β =
σm

σa
.

Note that τa and σa, being amplitudes, are positive by definition. The mean normal

stress σm is taken positive when compressive (see Fig. 2.3). The mean shear stress

τm affects the mean position but not the steady state cyclic dissipation (see the first

two rows of Table 2.1, as well as Appendix A.3). The dissipation per cycle in this

3An anonymous reviewer of the published paper (Jana and Chatterjee, 2013) pointed us to
Schallamach waves: see e.g., Barquins (1985). Such waves seem unlikely here.
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system can be shown to be

D=[β<
ζ

µ
]×[ζ >µ]×[β>−1]×C σ2

aµζ

{
(1+β)2

ζ−µ

ζ+µ
−[β>1](β−1)2

ζ+µ

ζ−µ

}
, (2.3)

which includes a single load- and friction-independent fitted constant C. The square

brackets denote logical variables (equal to 1 if the inequality holds and 0 otherwise).

All the results for a given crack should fit this formula (as they do, below).

We observe that D in Eq. (2.3) depends on only two dimensional quantities:

the fitted constant C and the normal stress amplitude σa. Consequently, all other

nondimensional ratios held constant, D varies as the square of the stress.

Dissipation results from the two dimensional finite element simulations are plot-

ted against the dissipation predicted by Eq. (2.3), with one fitted constant, in Fig.

2.4. The match is excellent. Similar matches, with a different C in each case, were

obtained for the circular and triangular cracks in three dimensions (see Appendix

A.4). Thus, Eq. (2.3) is acceptable for our purposes.

We now turn to the use of Eq. (2.3) and a Monte Carlo method to compute the

average dissipation from a multitude of randomly dispersed and oriented microcracks

within the material, assuming their interactions may be neglected.

2.3 Dissipation due to multiple cracks: Monte

Carlo method

We assume that the material is having a very large number of very small cracks

which are to a first approximation non-interacting. Under this assumption, adding

up the contributions from all the cracks is the same as averaging over all orientations

of the cracks and then multiplying by the number of cracks which is just a scalar

multiplier. So, effectively up to some scalar multiplier for which we have a fitted

constant C in any case, adding it up for all cracks for all possible orientations is the

same as the averaging the formula for one crack over all possible orientations.

Similarly, the cracks can have different sizes and adding them all up or averaging

is the same. Imagine a plane with certain orientation or a normal. Actually a large
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Figure 2.4: Analytical formula with a fitted constant C vs. energy dissipation in
two dimensional finite element (FE) analysis. Subplot (a) shows all our 2D finite
element results. A few points (solid dark circles) show a slight mismatch. These
are from a separate sub-calculation for studying never-opening solutions under large
compressive mean normal stresses. Subplot (b) shows those results for varying β
with µ = 0.5, σa = 60 MPa and τa = 80 MPa. The mismatch is negligible for our
purposes.

number of such planes all parallel to each other can be drawn and imagined passing

through the body giving different slices of the body. See Fig. 2.5. Wherever there
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is a crack which is in the plane that crack is shown. Actually there won’t be cracks

which exactly match the orientation. But we will eventually be doing integration

so what we mean is an orientation that almost matches. Now each of these cracks

has a contribution to the damping and we will add up their dissipation orientation

by orientation. So, for a particular orientation, we will consider all the cracks and

calculate their dissipation individually and add them up. Each crack on that plane

has a different C and an effective C can be obtained by adding all their dissipations.

Because the body is assumed to be isotropic, this effective C is independent of the

orientation and assumed to be the same for every orientation. And we appeal to

the idea that this effective C can be obtained experimentally. Now, we will hold

the C constant over an orientation and find the average dissipation over all possible

orientations.

plane 1

plane 2

plane 3

Figure 2.5: A schematic of the cracks at different planes are shown (each plane has
four different cracks). Not all possible planes and cracks are shown here.

2.3.1 Random orientations

We now consider randomly oriented cracks, and for simplicity assume that all orien-

tations are equally likely, i.e., the material is macroscopically isotropic. Geometri-

cally, the normals (n̂) to the crack faces are uniformly distributed on the surface of

the unit hemisphere: see Fig. 2.6. These points were generated by first generating

points uniformly distributed within the upper half of a cube, then discarding points

that lay outside an appropriate sphere, and finally by projecting the remaining
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points radially outward onto the surface of the sphere.

Figure 2.6: 50,000 uniformly distributed points on the unit hemisphere. The actual
averaging was done with 4.5 million points and will be treated as accurate.

2.3.2 Nondimensionalization

Let the stress state of interest be S sinωt. All orientations of the crack faces being

equally likely, the coordinate system is irrelevant. Crack size and shape affect con-

stant C, but we assume C is independent of n̂ and can be averaged separately. Here

we take C = 1; we can multiply by a fitted constant later.

Since the coordinate system used to describe S is irrelevant, it is simplest to

think in terms of principal stresses (σ1 ≥ σ2 ≥ σ3). For σ1 = σ2 = σ3 there is no

shear stress, ζ = 0 < µ, and the dissipation is zero (see Eq. (2.3)). Accordingly, we

assume σ1 > σ3 and first scale the stress so that σ1−σ3 = 1. Later, we will multiply

back by the square of the scaling factor (recall the discussion following Eq. (2.3)).

We can visualize the time-harmonic part of the stress state (i.e., matrix S) and

associated dissipation possibilities using Mohr’s circles for three dimensional stresses.

See Fig. 2.7 (a). For any given normal n̂, the resultant shear (τ , assumed positive)

and normal stress (σ), represented as a point (σ, τ) on the Mohr diagram, will lie in

a region bounded by three circles (see Malvern (1969)). The dissipation correspond-
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ing to any such point will be zero unless the point lies outside the friction wedge,

corresponding to ζ > µ in Eq. (2.3), as indicated in Fig. 2.7 (a).
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s cr1
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tan m-1

Figure 2.7: (a) Mohr’s circles and dissipation possibilities (shown hatched). (b)
Range of scaled σ1 for nonzero dissipation.

As indicated in Fig. 2.7 (a), stress state B can be reflected to stress state A,

because S is multiplied by sinωt in any case. Accordingly, we can assume that the

center of the largest Mohr circle is on the nonnegative real axis (σ1 + σ3 ≥ 0).

Figure 2.7 also shows that, for any µ > 0 and σ1 − σ3 = 1, for σ1 sufficiently

large, there is no dissipation. Conversely, for a state of pure shear, with σ1 = 0.5,

σ2 = 0 and σ3 = −0.5, there is nonzero dissipation for any µ > 0. In other words

(see Fig. 2.7 (b)), the hydrostatic part of S affects the dissipation per cycle.

For clarity, we write down the sign change and scaling described above using a
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single formula. If the actual time-harmonic state of stress is S̃ sinωt with eigenvalues

σ̃1 ≥ σ̃2 ≥ σ̃3, then we use the scaled stress

S = {2[σ̃1 + σ̃3 ≥ 0]− 1} S̃

σ̃1 − σ̃3
, (2.4)

where the square brackets denote a logical variable as before. The principal stresses

corresponding to S are denoted by σ1 ≥ σ2 ≥ σ3. It is now assured that σ1 + σ3 ≥ 0

and that σ1 − σ3 = 1. The scaling factor is

kf = (σ̃1 − σ̃3)
−1 , (2.5)

and the dissipation obtained using S will be divided by k2
f to obtain the dissipation

due to S̃. Later, for spatially varying stresses in a body vibrating in a given mode,

we will use Eq. (2.4) repeatedly using a computer program.

At this point, we have nondimensionalized the stress amplitude S by taking

C = 1 and using kf as above. The nondimensional S can now be specified by

σ1 ≥ 0.5 along with σ2 ≥ σ1−1. These two nondimensional principal stresses, along

with µ > 0, are inputs to the dissipation calculation.

2.3.3 Building block: a single average dissipation calcula-
tion

We have so far taken three steps towards our goal: (i) we have verified for three

dimensions a formula for the dissipation at a single frictional microcrack due to

arbitrary oscillating imposed far-field stresses, (ii) we have generated a large number

of random normal directions n̂, and (iii) we have nondimensionalized and scaled the

stress “amplitude” matrix S̃.

Now, for our fourth step, we find the average dissipation for a given scaled stress

matrix S, mean stress S0 (non-time-varying, and identically scaled), and friction µ,

by sequentially considering the full random set of normal directions. For the results

below, we have used 4.5 million such directions.

For each normal direction n̂, we find the time-varying part of the traction vector
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t = S · n̂. The normal stress amplitude σa then is

σa = |t · n̂| .

If a mean stress matrix S0 is given, the corresponding mean normal stress σm is

similarly calculated using the same n̂. Subtracting (t · n̂) n̂ from t gives the shear

component of the traction; and its magnitude is τa. The shear component is not

computed from the mean stress S0 because it plays no role in cyclic dissipation, as

mentioned above (section 2.2.2). Now, for the given n̂, the dissipation is computed

using the formula of Eq. (2.3) with the fitted constant C set equal to unity as

explained earlier. The above dissipation is finally averaged over all the n̂ to account

for the random orientation of the crack.

For simplicity, the nonzero mean stress S0 is not retained in what follows. S0 is

assumed zero.

For initial demonstration, we consider uniaxial tension and pure shear. The

principal stresses for tension are σ1 = 1, σ2 = 0 and σ3 = 0. For shear, they are

σ1 = 0.5, σ2 = 0 and σ3 = −0.5. These stresses are already normalized: σ1 − σ3 = 1

in both the cases. Dissipations for these cases are calculated for various µ values

(0.01 to 1.2) and shown in Fig. 2.8. The ratio of the two varies significantly with µ.

Note that we view µ as a fitted parameter in our two-parameter constitutive model

(the other parameter is the overall multiplicative factor of C).

As an example of how µ might be fitted, consider Robertson and Yorgiadis

(1946), who sought the same specific dissipation per cycle in two different loading

conditions. For such equal dissipation to occur under both pure (simple) shear and

pure extension, the ratio of the shear stress amplitude during torsional vibration to

the normal stress amplitude during longitudinal vibration was found to be between

0.48 and 0.60 (for several materials). This statement of equivalence translates,

for our model, into roughly 0.6 < µ < 1.1 by the following reasoning. Fix the

longitudinal stress state at σ1 = 1, σ2 = 0 and σ3 = 0, as above. Let the shearing

stress state be σ1 = 0.5, σ2 = 0 and σ3 = −0.5 but only after normalization by some

factor k; in other words, the applied shear stress would be of amplitude k/2. Since
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Figure 2.8: (a) Computed average (Monte Carlo) dissipation with C = 1 for tension
and pure shear. Here µ is viewed as a fitted parameter. The stress states remain
unchanged for each of the two curves. (b) The ratio of the dissipation for the two
stress states against µ, which might in principle be used to estimate µ (see main
text).

the shear stress amplitudes found by Robertson and Yorgiadis (1946) are between

0.48 to 0.6, k lies between 0.96 and 1.2. If k = 0.96, the dissipation in shear will be

0.962 ≈ 0.92 times the value in Fig. 2.8 (a). Alternatively, the ratio plotted in Fig.
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2.8 (b), upon division by 0.92, should give 1, implying µ ≈ 1.1. Similarly, if k = 1.2,

we find µ ≈ 0.6.

2.4 Fitted formula

So far, the dissipation has been computed as a function of S, possibly a nonzero S0,

and µ, using a time consuming Monte Carlo simulation.

However, we eventually want to compute the modal damping of a given object

of arbitrary shape. For each mode, the stress state varies spatially. We cannot

do Monte Carlo simulations for every point on the body. So our fifth step is to

summarize the dissipation values obtained from Monte Carlo simulations, for the

special case of S0 = 0, using a quick multivariate polynomial fit.

2.4.1 A comment on prior efforts

To motivate our multivariate fitted formula, we first note some prior attempts at

ad hoc modeling of material dissipation under multiaxial stress states. Recall Eq.

(2.1), wherein a suitable equivalent stress amplitude needs to be defined. Damping

under biaxial stresses has been studied by several authors, including Robertson and

Yorgiadis (1946), Whittier (1962), Torvik et al. (1963) and Mentel and Chi (1964).

All these authors considered at least one ad hoc definition equivalent to Eq. (2.2),

possibly rearranged or differently normalized. But if Eq. (2.2) had general validity it

would apply to our dissipation results as well, since these are derived from legitimate

(though approximated) physics. To check the same, we can rewrite Eq. (2.2) as

D ≈ λ1

{
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
}
+ λ2(σ1 + σ2 + σ3)

2, (2.6)

where the λ’s are fitted coefficients, and the assumed roles of the distortional and

dilatational strain energies are clearly visible. In checking Eq. (2.6) against our dis-

sipation results, we note that different µ represent different material behaviors, and

so we should work with one µ at a time. Figures 2.9 (a) and (b) show least squares

fitted comparisons for two µ values. Each data point in these figures corresponds
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to a normalized (σ1 − σ3 = 1) state of stress. For both σ1 ≥ 0.5 and σ2 ≥ σ1 − 1,

several equally spaced grid points are taken. The poor match in Figures 2.9 (a) and

(b) indicates the inapplicability of Eq. (2.6) in general cases; it also motivates our

multivariate polynomial fit below.

2.4.2 Inputs to the fitted multivariate polynomial formula

The scaled stress S and µ are inputs for our dissipation calculation. We will later

divide the computed dissipation by k2
f (see Eqs. (2.4) and (2.5)) to obtain the dis-

sipation for the actual stress S̃. We now introduce two new scaled variables.

First, define χ = σ1 − σ2. The inequality σ1 − 1 ≤ σ2 ≤ σ1 becomes 0 ≤ χ ≤ 1.

Figure 2.7 (b) shows the nonzero-dissipation range of σ1 as 0.5 ≤ σ1 ≤ σ1cr, where

σ1cr =
1

2
+

√
1 + µ2

2µ
. (2.7)

For σ1 ≥ 0.5 and 0 ≤ χ ≤ 1, with µ as a parameter, we now generate surface

plots of the dissipation as computed from Monte Carlo simulations. We compute 11

such surface plots, for equally spaced µ values from 0.2 to 1.2. Two representative

plots are shown in Fig. 2.10; another nine are shown in Fig. 2.11.

The figures confirm that the dissipation does become zero for each µ when σ1

crosses σ1cr (Eq. (2.7)).

We now introduce a final scaled variable

s = 1− (σ1 − 0.5)

(σ1cr − 0.5)
, (2.8)

such that there is nonzero dissipation only for s > 0. We will now seek a single

fitted formula for all these dissipation surfaces, given s, χ, and µ.

2.4.3 Multivariate polynomial fit

Recall Eq. (2.3). Now setting C = 1 (different C will be incorporated later), and

for β = 0 (zero mean stress), we write

Df = average of

{
[ζ > µ]× σ2

aµζ
ζ − µ

ζ + µ

}
, (2.9)
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Figure 2.9: Comparison of Eq. (2.6) against our dissipation model for two µ values
(different least squares fits used in each subplot, for λ1 and λ2). The plotted straight
lines are at 45 degrees, for reference. These plots may be compared against Fig. 2.12
(b) below.

where the average is over all possible orientations of the crack face. We propose, for

simplicity, a polynomial form for the fit:

Df =
∑

m0,m1,m2

Bm0m1m2
sm0χm1µm2 , 1≤m0≤5, 0≤m1≤4, 0≤m2≤3, (2.10)
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Figure 2.10: Dissipation surface plots for two µ values.

where the Bm0m1m2
’s collectively denote 100 fitted coefficients. Our numerical fit will

be much faster than Monte Carlo simulation, and given below in an easily portable

form. In particular, Df will be written as a product of three matrices, ABM, and

the constitutive relation for damping will be

D = C × [s > 0]×ABM. (2.11)
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Figure 2.11: Dissipation plot for other µ values.

Here D (as before) is the dissipation per unit volume and per stress cycle due to

scaled stress S, C is a fitted scalar coefficient, [s > 0] is a logical variable that

ensures zero dissipation for s ≤ 0 (see Eq. (2.8)), M is a column vector containing

powers of χ as described below, A is a row vector containing products of powers of

s and µ as described below, and the matrix B contains fitted numerical coefficients.
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We write M and A as follows:

M =
[
1 χ χ2 χ3 χ4

]T
and A =

[
A0 A1 A2 A3

]
, (2.12)

with A0 =
[
s s2 s3 s4 s5

]
and Am = µmA0.

The fitted 20 × 5 matrix B, determined from a least squares calculation, is

given in Appendix A.5. In the fit, the maximum absolute error as a percentage of

the maximum for each corresponding µ is within 5.2%, with typical errors being

substantially smaller.

Figure 2.12 shows the quality of the fit for µ = 0.4. Figure 2.12 (a) shows two

surface plots. One surface is from Monte Carlo simulation (accurate) and the other

is from the fitted polynomial. The match is good. Another comparison is shown in

Fig. 2.13, where all the data points used in the fit are plotted, fitted value against

original Monte Carlo value, along with a 45◦ line. Within this plot are represented

11 equally spaced µ values from 0.2 to 1.2. The match is reasonably good, and can

be improved if desired by using higher order polynomials or other fitting methods.

But dissipation, like other nonideal material behaviors involving friction, fracture

and plasticity, is difficult to model accurately in any case; so we arbitrarily chose to

limit the number of fitting coefficients to 100, arranged in a matrix that is easy to

cut and paste.

An illustration of our dissipation calculation is now given for completeness. Let

the state of stress be

S̃ =




1 2 3
2 5 4
3 4 6


 ,

an arbitrary choice. The principal stresses are σ̃1 = 10.833, σ̃2 = 1.577, σ̃3 = −0.410.

The scaling factor kf = 0.089, and the normalized eigenvalues work out to σ1 =

0.964, σ2 = 0.140, σ3 = −0.036, giving χ = 0.824. We take µ = 0.5. Then σ1cr =

1.618, giving s = 0.585. Now using Eq. (2.11) with C = 1 we find D = 0.014.

Finally, the dissipation is D/(kf)
2 = 1.818 in appropriate units.

Two further aspects of the fit are mentioned here.

First, the polynomial fit occasionally predicts some small negative values, as
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Figure 2.12: Dissipation comparison for µ = 0.4 with C = 1: (a) superimposed
dissipation plots, (b) error plot (Monte carlo − fitted formula).

suggested by the bottom left portion of Fig. 2.13. We simply replace those negative

predictions with zero, with negligible consequence because such values are both

infrequently encountered and small.

Secondly, the dissipation computation using our fitted formula is very fast com-

pared to the Monte Carlo Method. 10,000 evaluations of the formula, with randomly

chosen stress states and µ, took about 0.2 seconds on an unremarkable desktop
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shown in this plot).

computer, where a single Monte Carlo evaluation with 4.5 million points (found

separately to be large enough for the accuracy needed) took about 3 minutes.

2.5 Finite element computation of modal damp-

ing

We have now completed all the steps needed to consider the effective modal damping

of any given mode of an arbitrarily shaped object. We will illustrate our calculations

using the solid body shown in Fig. 1.1 (a).

For completeness, we have included a brief introduction to relevant aspects of

vibration theory in Appendix A.6. The key ideas are summarized as follows. The

damping mechanism we have considered is nonlinear, but the damping is assumed

to be small. For small damping, the damping plays no significant role except near

resonance. Near each distinct resonant frequency (or natural frequency) of an arbi-

trary body, an effective damping ratio for the corresponding mode can be defined.

This section is concerned with the computation of such effective modal damping

values.
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2.5.1 Effective damping ratio (ζeff)

We begin with an elementary formula. A lightly damped harmonic oscillator of the

form

ẍ+ 2ζωnẋ+ ω2
nx = 0 (2.13)

has damping ratio ζ which, to first order, is equivalent to

ζeff =
1

4π
×
(−∆E

E

)
(2.14)

where −∆E is the energy dissipated per oscillation, E is the total energy of the

system averaged over one cycle, and the bar is to distinguish the energy from the

Young’s modulus which will be discussed later. Equation (2.14) works only for lightly

damped systems because −∆E is computed over a cycle by assuming a harmonic

solution. However, it is general: it does not need a linear viscous model. The general

unforced solution is then approximated as

x ≈ e−ζωntA cos
(√

1− ζ2 ωnt+ φ
)
.

For small ζ , we may often just write

x ≈ e−ζωntA cos (ωnt+ φ) .

For a simple analytical example, consider

ẍ+ c|x|sign(ẋ) + x = 0. (2.15)

Assume first an approximate solution (neglecting the damping over one cycle) of

x ≈ A sin t and E =
A2

2

from the maximum potential or kinetic energy. The energy dissipation per cycle is,

by this approximation,

−∆E =

∫ 2π

0

c|x|sign(ẋ)ẋ dt = cA2

∫ 2π

0

| sin(t) cos(t)| dt = 2 cA2, (2.16)
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whence by Eq. (2.14) we have

ζeff =
c

π
.

A numerical solution of the nonlinear Eq. (2.15) with c = 0.1 and initial conditions

x(0) = 1 and ẋ(0) = 0 is shown in Fig. 2.14. A plot of e−ct/π is also given for

comparison, and is seen to match the oscillation envelope very well.
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Figure 2.14: Numerical solution of Eq. (2.15) using Matlab’s “ode15s.” The initial
condition was changed from ẋ(0) = 0 to ẋ(0) = 10−10 to avoid the immediate
discontinuity at zero. The amplitude envelope approximation of e−ct/π matches
near-perfectly.

The above example shows the utility of Eq. (2.14), which we will use below. The

energy dissipation calculation below will use our fit of Eq. (2.11), suitably integrated

over the entire vibrating object.

2.5.2 Finite element prediction of effective damping ratio

Our finite element computation of mode shapes and modal damping proceeds as

follows. We have used the finite element package ANSYS for modal analysis and

related computations in this thesis. Elementwise integrals below will use Gaussian

quadrature (see Bathe (1996)).

The vibrating object of interest is first meshed using 10 noded tetrahedral el-

ements (SOLID187) using automatic meshing within ANSYS. Modal analysis in
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ANSYS yields natural frequencies and mass-normalized mode shapes. Nodal dis-

placements for each mode of interest are extracted using a small external program.

Using the element shape functions and the nodal displacements, the displacement

field is computed and then differentiated to obtain strains, and thence stresses, at

4 Gauss points per element. At each Gauss point, the stress is used in conjunction

with Eq. (2.11) to compute the dissipation per unit volume and per cycle. The

dissipation in the element is then obtained by the usual weighted sum of its values

at the Gauss points; and the same is added up for all the elements to obtain the

total energy dissipated per cycle in the vibrating object. This dissipation is −∆E.

E is simply ω2/2 because the mode shape is mass normalized.

Now, the effective damping ratio is obtained using Eq. (2.14). Details of these

calculation are provided below.

2.5.3 Details of ζeff computation using ANSYS

Here, we give the details of our finite element based calculation of ζeff using ANSYS.

A 10 noded tetrahedral element (SOLID187), shown in Fig. 2.15, is used to model

the geometry of the structure.
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Figure 2.15: 10 noded tetrahedral element
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1 2 3 4 5 6 7 8 9 10

ζ1 1 0 0 0 0.5 0 0.5 0.5 0 0

ζ2 0 1 0 0 0.5 0.5 0 0 0.5 0

ζ3 0 0 1 0 0 0.5 0.5 0 0 0.5

ζ4 0 0 0 1 0 0 0 0.5 0.5 0.5

Table 2.2: Volumetric coordinates and their nodal values for the SOLID187 element
(see ANSYS manual, 2009).

The shape functions for the element are given by,

Ni = ζi(2ζi − 1) for i = 1, 2, 3, 4

N5 = 4ζ1ζ2; N6 = 4ζ2ζ3; N7 = 4ζ1ζ3

N8 = 4ζ1ζ4; N9 = 4ζ2ζ4; N10 = 4ζ3ζ4. (2.17)

Here ζ1, ζ2, ζ3 and ζ4 are local volumetric coordinates and their nodal values are

given in Table 2.2.

Modal analysis of the finite element model is carried out in ANSYS and nodal

displacements for each mass-normalized mode (φ) are extracted. For each mode,

∫

V

ρφ⊺φ dV = 1, (2.18)

where ρ is the mass density.

The strain components for this element can be written as

ǫ = Fu (2.19)

where ǫ and u are the strain and displacement column matrices (“vectors”) respec-

tively and the matrix F = ∇N where N denotes the column matrix (“vector”) of

shape functions. Note that ǫ is 6 × 1 (for the six independent elements of the in-

finitesimal strain tensor), and u is 30× 1 (three displacement components each, for

ten nodes). Now the stress components are computed using

σ = Esǫ (2.20)

where σ is the 6×1 vector of the independent stress components and Es is the 6×6
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GP ζ1 ζ2 ζ3 ζ4 w

1 .585410196625 .138196601125 .138196601125 .138196601125 .25

2 .138196601125 .585410196625 .138196601125 .138196601125 .25

3 .138196601125 .138196601125 .585410196625 .138196601125 .25

4 .138196601125 .138196601125 .138196601125 .585410196625 .25

Table 2.3: Gauss points and weights for four point Gauss quadrature scheme (see
ANSYS manual, 2005).

matrix

Es =
E

(1 + ν)(1− 2ν)




1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1

2
− ν 0 0

0 0 0 0 1
2
− ν 0

0 0 0 0 0 1
2
− ν



, (2.21)

where in turn E is Young’s modulus and ν is Poisson’s ratio. The procedures

involved are routine in finite element based stress analysis.

We have used a four point Gauss quadrature scheme to compute the dissipa-

tion over each element volume. At each Gauss point (see Table 2.3), the strain

components are computed from the nodal displacements extracted from the modal

analysis (using Eq. (2.19)). Then the stress components are computed using Eq.

(2.20). The stress components are then expressed in a symmetric 3× 3 matrix and

scaled according to Eq. (2.4). Then the dissipation is calculated for the scaled stress

for a given µ value using Eq. (2.11). For each Gauss point the dissipation is then

divided by the appropriate k2
f (see Eq. (2.5)).

Now, the dissipation over each element is integrated using

(D)e =
4∑

k=1

wkDg(ζ,k)

∣∣∣J(ζ,k)

∣∣∣ . (2.22)

Here, (ζ,k ) denotes the coordinate quartet (ζ1, ζ2, ζ3, ζ4) at the kth Gauss point, wk

are the weights of the Gauss quadrature scheme,
∣∣∣J(ζ,k)

∣∣∣ is the determinant of the

corresponding Jacobian matrix, and Dg(ζ,k) is the dissipation calculated at the kth

Gauss point.

The total dissipation per cycle in the entire object is the sum of all the elemental
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integrals. That is,

−∆E =
∑

all elements

(D)e. (2.23)

The total kinetic energy of the model in this vibration mode is

E =
1

2
ω2

∫

V

ρφ⊺φ dV =
ω2

2
(2.24)

where ω is the natural frequency (known, along with φ, from modal analysis). Using

Eq. (2.23) and Eq. (2.24) we now obtain the effective damping ratio (ζeff) as

ζeff =
1

4π
×
(−∆E

E

)
=

1

4π
×
∑

(D)e

1
2
ω2

. (2.25)

2.5.4 Results for an arbitrary solid object

We finally consider the solid object shown in Fig. 1.1 (a) in Chapter 1. It is not

special, and merely represents an object that is difficult or impractical to treat

analytically. The object is an unconstrained thick circular plate of radius 1m and

thickness 0.1m, with a square hole. The edges of the hole are 0.4m, and its center

is 0.5m from the center of the circle. The Young’s modulus (E), Poisson’s ratio

(ν), and density (ρ) of the material are arbitrarily taken as 100 GPa, 0.28, and 4000

Kg/m3 respectively.

32,418 elements were used for meshing the object. The effective damping was

computed for the first three vibration modes. The first mode was shown in Fig. 1.1

(b). The second and third modes are shown in Fig. 2.16.

Noting that C has units of Pa−1, we have arbitrarily chosen C = 2π/E, where

the dependence on E is motivated by the units and the 2π ensures that, for axial

vibrations of a uniform rod, the effective damping is exactly equal to Df in Eq.

(2.10). In real applications, where C would be fitted from test data, the 2π would

be replaced with a fitted constant.

We pause for a moment to take stock. Recall that our dissipation model has

two fitted parameters, namely C and µ. C is an overall measure of dissipation, and

has been arbitrarily assumed to be C = 2π/E above. The parameter µ governs the
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Figure 2.16: Vibration modes of the solid body: (a) second mode, (b) third mode.
The first mode was shown in Fig. 1.1 (b).

relative importance of different components of the stress in the material, as discussed

earlier (recall Fig. 2.8). Here, we present simulation results for a range of µ values.

Note that the absolute magnitude of the damping ratio for any mode depends on

both C and µ, but the relative magnitudes (or ratios) of two modal damping ratios

is a function of µ alone.

We now present our illustrative finite element results. Values of ζeff against µ are
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shown for the first three vibration modes in Fig. 2.17. For the first two modes, the
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Figure 2.17: (a) Damping ratios for the first three modes. (b) The ratio of the
effective damping ratio of the third mode to that of the first mode.

dependence on µ is near identical. However, for the third mode, it differs significantly

(see the differences in deformation patterns4 in Figs. 1.1 and 2.16). Such differences

4The first two modes are the bending modes whereas the third mode is a kind of breathing
mode. It is observed that the stress pattern (for example, the von-Mises stresses) in the first two
modes are similar whereas it is different in the third mode. That is why we see similar damping
values for the first two modes and a significantly different value in the third mode.
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might be used to estimate µ (recall the discussion following Fig. 2.8).

2.6 Summary

In this chapter, we have traced out a possible route for computing the modal damp-

ing ratios of arbitrarily shaped objects. We have first adopted a dispersed frictional

microcrack based model of dissipation in an otherwise elastic body. We have veri-

fied a single simple formula based on a sliding spring-block analogy that accurately

describes the energy dissipation per cycle as obtained from both two and three

dimensional computations. To account for the random orientations of the cracks,

we have used Monte Carlo averaging for any given state of (time-periodic) stress.

We have summarized the Monte Carlo simulation results for a range of the friction

parameter µ and for arbitrary triaxial stresses using a multivariate polynomial fit.

The polynomial, with three independent variables and 100 fitted coefficients, is fairly

accurate and arranged for easy portability.

Finally, we have chosen for demonstration a body of somewhat complex shape.

Using commercial finite element code, we have found its first few natural frequencies

and mode shapes. For each mode, we have extracted the nodal displacements,

computed stresses at Gauss points, used the fitted formula to estimate dissipation

rates, integrated over the body to find the net dissipation, and thereby computed

the modal damping up to a fitted constant C and for a range of µ.

We anticipate that this line of work may have useful applications and extensions

in future work. Clearly, such modeling provides a route to optimizing engineer-

ing component designs for damping. Additionally, such work may lead to new

academic research towards incorporating residual stresses, other dissipation mecha-

nisms, anisotropy in material properties or flaw distributions, interactions between

flaws, etc.

In the next two chapters, we will study the other rate-independent dissipation

phenomena: ambient-temperature plasticity. Specifically, we will consider dissipa-

tion due to dispersed microscopic elastic perfectly-plastic flaws. Assuming that these
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flaws are randomly dispersed, and have a random distribution of strengths, we will

find the average dissipation from these flaws under arbitrary triaxial periodic stress.





Chapter 3

Dissipation due to individual
microscopic elasto-plastic flaws

3.1 Introduction

In this thesis, we are considering internal dissipation formulas of the form

D = ξσm
eq. (3.1)

As stated earlier the definition of σeq in the multiaxial case is of primary interest.

To define such a σeq, we are considering underlying micromechanical models of

dissipation. Guided by empirical evidence of rate-independence, we are considering

Coulomb friction and ambient-temperature rate-independent plasticity. Of these

two, Coulomb friction was discussed in the previous chapter and this chapter is

devoted to the study of plastic dissipation due to microscopic flaws.

We first discuss dissipation in a simple unidimensional model to demonstrate the

kind of formula we seek. Subsequently, we discuss dissipation in a three dimensional

plastic flaw. Results of this chapter will be implemented in the next chapter where

we will discuss macroscopic dissipation due to a randomly distributed multitude of

such microscopic plastic flaws.

3.2 Unidimensional dissipation model

The aim of this section is to motivate the specific approach we adopt for three

dimensional flaws in subsequent sections.
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See the schematic in Fig. 3.1. The friction element sustains a maximum force

f , and then slides. When there is no sliding, the net stiffness is k0. When there is

sliding, the stiffness for incremental motions is k0−k1. The model represents a small

volume of otherwise-elastic material with a single dissipative yielding location.

k1

k1k0

F F

f

Figure 3.1: One-dimensional dissipation model.

The force-displacement (representing stress-strain) diagram of the model of Fig.

3.1 is shown in Fig. 3.2 (a). Beginning from zero compression in both the springs,

if we increase F , both springs stretch up to a point. Subsequently, the frictional

contact slides while maintaining a constant frictional force. When we decrease F ,

both springs begin to unload elastically. Eventually the frictional contact slides

again, this time in the opposite direction. Since we are interested in periodic motions,

we assume that the mean position of the frictional slider is at zero. Oscillation

amplitudes greater than
f

k1
are accompanied by dissipation, while those with smaller

amplitudes involve no dissipation. In the figure, an oscillation of amplitude A >
f

k1
is indicated. The dissipated energy is equal to the shaded area, which is

Ed = 4f(A− f

k1
). (3.2)

In this case the dissipation is a bi-linear function of A. See Fig. 3.2 (b). For A <
f

k1

the dissipation is zero and for A >
f

k1
, it varies linearly with A.

By analogy, the per-cycle dissipation in any equivalent dissipative element can

be written as

Ed = ks (A− s) if A > s, and 0 otherwise. (3.3)
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Figure 3.2: Dissipation in the one-dimensional model. (a) Shaded area shows the en-

ergy dissipated in one cycle of amplitude A >
f

k1
. (b) Dissipation against amplitude

A.

Here, A is the amplitude of a suitable quantity related to stress, s is some threshold

strength, and k corresponds to the stiffness and size of the flaw. Therefore, Eq.

(3.3) gives the per cycle dissipation within a single dissipation site inside a bulk

solid in terms of a suitable quantity A. In the following sections, we will develop

a definition of A from the analysis of elasto-plastic inclusions under far-field time-

periodic triaxial loads. We close this section with a brief preview of the statistical

averaging over s that we will use in Chapter 4.

In Eq. (3.3), if the strength s is a random variable with probability density

function p(s), then the average dissipation can be computed as

∫ ∞

0

Ed p(s) ds =

∫ A

0

Ed p(s) ds,

because for values of s greater than A, yielding has not occurred and Ed = 0.
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3.3 Elasto-plastic inclusion under far-field stresses

We consider elastic perfectly-plastic flaws embedded inside an elastic body under

remotely applied stresses. We first study them using the finite element package

ABAQUS, and then develop a semi-analytical method for the computation.

3.3.1 Finite element calculation

We consider ellipsoidal flaws embedded in an elastic material. Figure 3.3 shows a

schematic of a flaw, the coordinate system used, and the remotely applied stresses.

The elastic block is large, and the flaw behaves as if it is in an infinite solid.

x
y

z

s

t

s

s

xz
tyz

txy

zz

xx

yy

x
y

z

0

0

0

0
0

0

Ellipsoidal flaw

Figure 3.3: Ellipsoidal elasto-plastic flaw embedded in an elastic material with far-

field stresses σ0
ij . The ellipsoid is given by

x2

a21
+

y2

a22
+

z2

a23
≤ 1.

In our finite element simulations, we consider several flaw geometries and load-

ing conditions. In each case, we carry out pseudostatic analysis in ABAQUS with

incremental changes in the far-field loads as follows. We fix in advance a far-field

triaxial stress state (say σ0) and the load is increased slowly up to that stress, in

small increments from zero, using proportional loading. For example, suppose that

200 increments are used in the simulation. Then the load steps going from 1 to 200
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are denoted using an artificial time that goes from 0 to 1, called the normalized load

step. A normalized load step of 0.3 then corresponds to the 60th step, at which

point the far-field load is 0.3× σ0. This terminology will be used in presenting our

results below.

3.3.1.1 Modeling details for a typical ellipsoidal flaw

Details of one of our ABAQUS models are presented here. We have used 8-node

linear brick elements (C3D8RH) to discretize the volume. This element uses re-

duced integration with hybrid, constant pressure, and hourglass control options (see

ABAQUS analysis user manual (ABAQUS manual, 2009) for details). A cube of

20mm edge length is considered with a central ellipsoidal flaw. A quarter of the

mesh for an ellipsoidal flaw (a1 = 1mm, a2 = 0.75mm, and a3 = 0.5mm) is shown

in Fig. 3.4. A total of 82440 elements were used, with high refinement near the

inclusion for better accuracy. Table 3.1 shows the material properties used for the

parent and flaw materials in both this simulation and subsequent ones reported be-

low. The flaw material is considered as elastic perfectly-plastic, and it fails when

the von Mises stress within the material reaches a specified limit, σyp.

Elastic parent material
Young’s modulus 100 GPa
Poisson’s ratio 0.3
Elastic perfectly-plastic flaw material
Young’s modulus 50 GPa
Poisson’s ratio 0.28
Yield strength (σyp) 25 MPa

Table 3.1: Material properties (chosen arbitrarily) used in all the analyses in this
chapter.

3.3.1.2 Finite element results

We have studied several cases, with different ellipsoid geometries as well as far-field

loads. A typical example is for a1 = 1mm, a2 = 0.75mm, and a3 = 0.5mm under

load case 1 of Table 3.2.
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Z

YX

X Y

Z

Z

YX

Figure 3.4: Finite element mesh of the 3D model (quarter portion). A small region
around the ellipsoidal flaw (a1 = 1mm, a2 = 0.75mm, and a3 = 0.5mm) is shown
enlarged.

σ0
xx σ0

yy σ0
zz τ 0yz τ 0zx τ 0xy

load case 1 75 −50 40 30 −25 65
load case 2 −50 −35 60 −40 25 35
load case 3 −70 30 −35 −25 30 40

Table 3.2: Different far-field stresses (MPa) considered in various examples within
this chapter.

The results show that the stress state within the ellipsoidal inclusion, both before

and after yielding, remains essentially uniform. For example, the contour for von

Mises stress and σx at a normalized load step of 0.3 are shown in Figs. 3.5 and 3.6

respectively. The slight non-uniformity (less than 1.5%) seen in the σx plot, pre-

dominantly near the edges of the inclusion, is an artifact of discretization: we will

develop a semi-analytical formulation below based on exact uniformity within ellip-

soidal flaws. Such uniformity was observed in several other simulations, including

ellipsoids of varying aspect ratios.
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(Avg: 75%)
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+6.584e+01

Step: Step1
Increment     60: Step Time =   0.3000
Primary Var: S, Mises

ODB: ellip_a1_b0p75_c0p5_load1.odb 

X Y

Z

(Avg: 75%)
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+2.500e+01
+2.500e+01
+2.500e+01
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Quarter of the ellipsoidal inclusion 

Figure 3.5: Plot of von Mises stress in one quarter of the model at a normalized
load step of 0.3. The stress plot within the inclusion is uniform. The geometry of
the ellipsoid is a1 = 1mm, a2 = 0.75mm, and a3 = 0.5mm; and the far-field loads
are of load case 1 of Table 3.2.

However, we also note that such uniformity of stresses within the flaw is not

observed, when we consider non-ellipsoidal flaws. As an example, we have carried

out similar analysis for a cylindrical flaw. The cylindrical flaw, modeled at the center

of the 20mm cube, is of radius 0.5mm and length 1mm. The far-field loads are of

load case 1 of Table 3.2. A total of 68100 brick elements are used in the mesh. The

inclusion is modeled with finer mesh density and tied (using tie constraints within
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(Avg: 75%)
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Step: Step1

Increment     60: Step Time =   0.3000

Primary Var: S, S11

ODB: ellip_a1_b0p75_c0p5_load1.odb 

X Y

Z
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Quarter of the ellipsoidal inclusion 

Figure 3.6: Plot of σx in one quarter of the model at a normalized load step of 0.3.
The variation of σx within the inclusion is small. The geometry of the ellipsoid is
a1 = 1mm, a2 = 0.75mm, and a3 = 0.5mm; and the far-field loads are of load case
1 of Table 3.2.

ABAQUS) with the host part. The tie constraint option available in ABAQUS allows

us to fuse together two regions even though the meshes created on the surfaces of the

regions may be dissimilar (for details, see ABAQUS analysis user manual (ABAQUS

manual, 2009)). The pseudostatic analysis for this model has been carried in 200

equal incremental steps. Figure 3.7 shows the σx stresses at a normalized load

step of 0.3. We see that the variation of σx within the inclusion is non-uniform
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(variation over an order of magnitude). And this non-uniformity is seen for other

stress components also.

(Avg: 75%)
S, S11

- 8.113e-01
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+9.751e+00
+1.327e+01
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+2.383e+01
+2.735e+01
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+3.440e+01
+3.792e+01
+4.144e+01

Step: Step1
Increment     60: Step Time =   0.3000
Primary Var: S, S11

ODB: cylindrical_R0p5_L1_tied_load1.odb  

X Y

Z

(Avg: 75%)
S, S11

- 8.113e-01
+6.330e-01
+2.077e+00
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+7.854e+00
+9.298e+00
+1.074e+01
+1.219e+01
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+1.652e+01

Quarter of the cylindrical inclusion 

Figure 3.7: Plot of σx at the normalized load step of 0.3 in the quarter portion of
the model with a cylindrical flaw. The variation of σx within the inclusion is seen
non-uniform. The cylindrical flaw is of 0.5mm radius and 1mm length. The far-field
load considered is load case 1 of Table 3.2.

We now go back to our original simulation of the ellipsoidal flaw. We choose an

arbitrary element near the centroid of the flaw, and plot all six stress components

against normalized load step in Fig. 3.8. It is seen that the stress state varies

linearly until yield. Subsequently, there is a transition region beyond which the

stresses approach a limiting state wherein the shear stresses remain constant while
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normal stresses vary linearly with far-field stress (i.e., the hydrostatic stress increases

linearly). Such limiting behavior is seen in ellipsoids of other shapes as well (see

Fig. 3.9).
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Figure 3.8: Stress components inside ellipsoidal elasto-plastic flaw. Here, a1 = 1mm,
a2 = 0.75mm, and a3 = 0.5mm and the far-field stresses are of load case 1 in Table
3.2.
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Figure 3.9: Stress components inside an ellipsoidal elasto-plastic flaw where a1 =
1mm, a2 = 0.75mm, and a3 = 0.25mm and the far-field stresses are of load case 2
in Table 3.2.
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3.3.2 Semi-analytical approach

We now seek a semi-analytical formulation of the same problems based on classic for-

mulas due to Eshelby (see Eshelby (1957) and Mura (1987)). A concise introduction

to topics essential for us is now presented, based on the same sources.

3.3.2.1 Eshelby’s formulas for an ellipsoidal inhomogeneous inclusion

We consider a homogeneous isotropic linearly elastic solid subjected to far-field

stresses, and containing a small subdomain with ‘eigenstrain.’ The subdomain is

called an inclusion, and eigenstrain here means ‘stress-free strain’ which the inclusion

would exhibit if not constrained by the surrounding material. Non-elastic strains

such as due to thermal expansion, phase transformation, plastic deformation, and

misfits, can serve as eigenstrains. If the subdomain has different elastic moduli than

the sourrounding material, then it is called an inhomogeneous inclusion (see Fig.

3.10).

Cijkl ij
*ε Cijkl

CijklCijkl
* *

Figure 3.10: Inhomogeneous inclusion. The subdomain has different elastic moduli
than the outer material and contains eigenstrain (ε∗ij). The inclined shaded ellipse
in the middle is intended to indicate that the inclusion cannot be fitted inside the
cavity without causing additional strain in both the inclusion as well as the outer
material. When the eigenstrain is zero the subdomain is called an inhomogeneity.
When the subdomain has the same elastic moduli as the outer material it is called
a homogeneous inclusion (or simply an inclusion).

Let the far-field stress be σ0
ij , and let the eigenstrain be ε∗ij. The far-field strain is

ε0kl, satisfying σ0
ij = Cijklε

0
kl, where Cijkl is the elasticity tensor of the outer material;

note that we are using the usual summation convention for repeated indices in this
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and the following several formulas.

The uniform stress state within the ellipsoidal inhomogeneous inclusion is then

given by

σij = C∗
ijkl(ε

0
kl + εkl − ε∗kl), (3.4)

where C∗
ijkl is the elasticity tensor of the inclusion material, and the newly introduced

strain εij is related to another (as yet undetermined) eigenstrain by

εij = Sijklε
∗∗
kl . (3.5)

Here, Sijkl is called the Eshelby tensor (see Appendix B.1 for relevant formulas),

which depends only on the Poisson’s ratio (ν) of the outer material and on the

shape of the ellipsoid (a1, a2, and a3). The undetermined ε∗∗kl is obtained from the

equivalence equation

C∗
ijkl(ε

0
kl + Sklmnε

∗∗
mn − ε∗kl) = Cijkl(ε

0
kl + Sklmnε

∗∗
mn − ε∗∗kl ). (3.6)

The above three formulas can be directly obtained from Mura (1987) (with slight

notational changes adopted for continuity and clarity). Note that Eq. (3.6) is linear

in the unknown eigenstrain ε∗∗kl , with everything else known. Substituting the result

back into Eq. (3.5) and thence into Eq. (3.4), the stress state in the inclusion can

be found.

3.3.2.2 Approach for ellipsoidal elasto-plastic flaw

In our problem, the plastic strain in the ellipsoidal flaw is the eigenstrain; and it is

not known in advance but must be found as a part of the solution. Since we will

work with rate-independent incremental plasticity, we will use the rate form of Eqs.

(3.4) and (3.6).

Adopting the well known Voigt notation, the stress rate is written as

σ̇ = C∗(ε̇0 + Sε̇∗∗ − ε̇p). (3.7)

The Voigt notation is routinely used in solid mechanics computations (see Khan and
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Huang (1995)). In the above equation σ̇, ε̇0, ε̇p, and ε̇∗∗ are 6×1 column matrices1,

while C∗ and S are 6× 6 matrices. The corresponding rate form of the equivalence

equation is

C∗(ε̇0 + Sε̇∗∗ − ε̇p) = C(ε̇0 + Sε̇∗∗ − ε̇∗∗). (3.8)

Note in Eqs. (3.7) and (3.8) that we have used a different symbol (ε̇p) for the

eigenstrain rate as it corresponds to the plastic strain in our case.

Solving Eq. (3.8) for ε̇∗∗ and substituting in Eq. (3.7), we obtain

σ̇ = Gε̇0 +Hε̇p, (3.9)

where G and H are 6× 6 matrices given in Appendix B.2.

Equation (3.9) can be used during both purely elastic and elasto-plastic defor-

mations. When the material behaves elastically (initial loading, during unloading,

etc.) the plastic strain rate ε̇p is zero. In this elastic state, the stress state inside

the ellipsoidal region varies linearly with the far-field stress until the inclusion stress

reaches its yield envelope. The yield envelope in the present case is based on the

von Mises yield criterion,

f =
1

2
σ

⊺

dQσd −
1

3
σ2
yp = 0, (3.10)

where σd is the deviatoric stress tensor written in a 6× 1 column matrix, Q is the

6×6 diagonal matrix with diagonal elements {1, 1, 1, 2, 2, 2}, and σyp is the specified

yield strength. Further loading after reaching the yield envelope will generate plastic

strains. The rate of these plastic strain components is normal to the yield envelope.

Therefore, we write

ε̇p = λ
∂f

∂σd

(3.11)

for some λ, and note that
∂f

∂σd
= Qσd.

Since the stress state remains on the yield surface, the normality condition also

1The components are arranged in the sequence {( )11, ( )22, ( )33, ( )23, ( )13, ( )12}.
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implies

σ̇⊺ε̇p = 0. (3.12)

With the above equations, we start an analysis of monotonic loading. In the

beginning the material is elastic. The stresses within the inclusion increase linearly

as per Eq. (3.9) with ε̇p = 0, and we keep checking for yielding using Eq. (3.10).

Once yielding occurs, i.e., in the plastic domain, we use Eqs. (3.9), (3.11) and (3.12)

simultaneously to solve for σ̇, ε̇p and λ (note that the equations are linear in these

unknowns). We then have 13 equations (six from Eq. (3.9), six from Eq. (3.11) and

one from Eq. (3.12)) and 13 unknowns (six in σ̇, six in ε̇p and one in λ). Dropping

the λ and using the rate variables, we integrate a system of ordinary differential

equations using Matlab’s “ode45”.

3.3.2.3 Comparison with finite element results

Stresses computed using the above semi-analytical method match finite element

results very well. The stress plots shown earlier in both Figs. 3.8 and 3.9, actually

contain two sets of visually indistinguishable superposed graphs, one from ABAQUS

and another from the semi-analytical calculation. Referring to the earlier numerical

observation of constancy of stress within the ellipsoidal inclusion (section 3.3.1.2),

it is satisfactory that the semi-analytical treatment explicitly obtains a solution

based on the same constancy of stress. The match between the two sets of solutions

(ABAQUS and semi-analytical) validates both of them. Subsequently, when we

consider some extremely thin ellipsoids, the semi-analytical approach will remain

viable while ABAQUS would require unfeasibly high mesh refinement.

3.3.2.4 Extension to cyclic loading

The triangular wave form shown in Fig. 3.11 corresponds to a cyclic loading case

(three load cycles are shown). The vertical axis shown in the figure represents a mul-

tiplying factor k. If σ0 is the maximum stress then kσ0 will be the pseudostatically

applied stress, as shown in the figure. For illustration, see Fig. 3.12, which depicts

kσ0
xx with σ0

xx = 75 MPa in σ0. In these figures the horizontal axis, called ‘normal-
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ized time steps of loading’, go from 0 to 1 and actually represent 1200 incremental

steps in ABAQUS.
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Figure 3.11: Triangular wave form used for the far-field stresses in the cyclic loading
case (three load cycles)
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Figure 3.12: Variation of σ0
xx component in load case 1 of Table 3.2.

When we solve the ODEs within Eqs. (3.9), (3.11) and (3.12) in our semi-

analytical approach, we use these same normalized time steps of loading as an

artificial time governing a series of pseudostatic increments. For the cyclic load-
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ing case, we know that the start of unloading or reloading (i.e., the point of load

direction reversal) begins a phase of purely elastic deformation. Subsequently, yield

is detected by an in-built event detection feature of ode45 in MATLAB (the “event”

is satisfaction of Eq. (3.10)). Once yield is detected, the starting elastic and plastic

state are known, and Eqs. (3.9), (3.11) and (3.12) (see section 3.3.2.2 above) are

used to compute the evolution of the stress and strain state.

Figure 3.13 (a) compares the stress components obtained from ABAQUS and

the semi-analytical method, for an ellipsoid of a1 = 1mm, a2 = 0.75mm, and

a3 = 0.5mm, and σ0 as in load case 1 of Table 3.2. Each curve seen actually

consists of two visually indistinguishable curves as above, and there is almost perfect

agreement between the ABAQUS and semi-analytical results.

Figure 3.13 (b) compares the computed plastic energy dissipation (Wd), com-

puted using

Ẇd = σ⊺ε̇pV, (3.13)

where V is the volume of the ellipsoid. Agreement is excellent. Henceforth in this

chapter, we will only use our semi-analytical method for analyses of elasto-plastic

flaws: these calculations are much quicker, demonstrated to be correct, and less

troubled by extreme shapes like very thin and flat ellipsoids.

3.4 Two special cases

3.4.1 Spherical inclusions

See the stress plot in Fig. 3.9 for an arbitrarily chosen ellipsoid under monotonic

loading. At a normalized load step of approximately 0.24, yielding begins. The

asymptotic behavior is approximately established by a normalized load step of about

0.6. In other words, there is a nonzero period of transition from initial yield to

limiting state.

In contrast, for a spherical flaw2, the establishment of the asymptotic behavior

2We note that Mura (1987) gives other formulas for the Eshelby tensor with a1 = a2 = a3, but
we use the formula for a1 > a2 > a3 (Appendix B.1) after numerically perturbing the three values
very slightly, e.g. 1.0001, 1.0, and 0.9999.
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Figure 3.13: Results for cyclic loading. (a) Stress components inside the ellipsoidal
region for ellipsoid of a1 = 1mm, a2 = 0.75mm, and a3 = 0.5mm under maximum
far-field load of load case 1 of Table 3.2. The numbers correspond to: 1-σx, 2-σz,
3-σy, 4-τxy, 5-τyz and 6-τzx. (b) Comparison of the plastic dissipation in this loading
case.

is instantaneous: see the stress plots in Fig. 3.14 for a spherical flaw of 1mm radius.

Additionally, in this case, the plastic dissipation can be determined by J2 (the

second invariant of the deviatoric stress) alone. This dependence purely on J2 can
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be confirmed using a series of simulations as follows.
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Figure 3.14: Stress state in a spherical (r = 1mm) inclusion, for the three load cases
of Table 3.2.

Consider the same spherical flaw and the three loading cases of Table 3.2. For

each of these loading cases, the following simulations are done. Cyclic loading is
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applied with a far-field stress of kcσ
0, where σ0 represents the loading case and

kc goes from 0.01 to 1 in 50 steps (i.e., there are 50 different simulations of cyclic

loading). For each such simulation of cyclic loading, the per-cycle dissipation is

computed (actually, steady state is reached after the first cycle, and so the dissipation

can be computed over any subsequent cycle). For each such simulation there is a

J2 corresponding to the maximum load applied: call it J2,m. Subsequently, the

dissipation per cycle is plotted against that J2,m. Since, there are three load cases,

there are three such curves. The key point here is that these three curves coincide

perfectly (see Fig. 3.15). Hence, if we have an elastic perfectly-plastic spherical flaw

under time-harmonic, far field, arbitrary stresses, then the dissipation per cycle is

purely a function of J2,m, i.e., J2 at the maximum stress amplitude. In terms of

section 3.2, A =
√
J2 is an acceptable choice if the inclusion is spherical.
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Figure 3.15: Cyclic dissipation against
√
J2 for three different load cases of Table

3.2 for a spherical inclusion (r = 1mm).

The same (i.e., A =
√
J2) cannot be used for a general ellipsoid, however. For

example, with a1 = 1mm, a2 = 0.75mm, and a3 = 0.25mm and the same load

cases, and the same set of simulations as described above for spherical flaws, the

three dissipation curves obtained are given in Fig. 3.16.

The search for a suitable definition of A, for general ellipsoidal flaws, seems
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Figure 3.16: Cyclic dissipation against
√
J2 for three different load cases of Table

3.2 for an ellipsoidal inclusion (a1 = 1mm, a2 = 0.75mm, and a3 = 0.25mm).

difficult. We now turn to another simple special case, namely thin and flat flaws.

3.4.2 Flat and thin ellipsoidal flaws

Consider a flat and thin ellipsoid (a1 = 1mm, a2 = 0.75mm, and a3 = 0.001mm)

and the same three load cases of Table 3.2. Since the ellipsoid is thin, with its

small-thickness direction aligned with the z-axis, we will think of the x-y plane as

being parallel to the flat face of the ellipsoid (although in reality the corresponding

surface of the ellipsoid is very slightly curved). For this ellipsoid, the stresses for

monotonic loading up to the maximum load in each case are plotted in Fig. 3.17.

We see a distinct region of transient behavior before the stresses reach their limiting

behaviors. Interestingly, the shear component τxy asymptotically goes to zero and

the normal stresses collapse onto a single line (in fact, the limiting normal stress is

the same as the far field value of σz). It follows that the limiting state is one of simple

shear on the flat face, superimposed on a linearly increasing hydrostatic stress. The

shear on the flat face must therefore equal the yield stress in simple shear. This last

point is interesting because initial yield generally occurs when τxy is not zero, and

the shear on the flat face has not reached its maximal value. Nevertheless, after a
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transient, the limiting behavior shows that all the shearing is effectively on the flat

face.

S
tr

es
se

s 
(i
n
 M

P
a)

0 0.2 0.4 0.6 0.8 1
-10

0

10

20

30

40

σ

τ

x

σy

σz

xy

τyz

τzx

load case 1
S
tr

es
se

s 
(i
n
 M

P
a)

0 0.2 0.4 0.6 0.8 1
-20

0

20

40

60

τ

σy

xy

τyz

τzx

σx

σz

load case 2

S
tr

es
se

s 
(i
n
 M

P
a)

0 0.2 0.4 0.6 0.8 1
-40

-20

0

20

Normalized load step

σ

τ

x

σy

σz

xy

τyz

τzx

load case 3

Figure 3.17: Stress state for a flat and thin ellipsoidal flaw (a1 = 1mm, a2 =
0.75mm, and a3 = 0.001mm) in three load cases of Table 3.2.
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We now conduct the same set of cyclic energy dissipation calculations for various

amplitudes of loading, as done above for the spherical inclusion with three load

cases, and generate three corresponding dissipation curves for the thin and flat

ellipsoid. Results are given in Fig. 3.18. Figure 3.18 (a) shows that, similar to the

case of a general ellipsoid,
√
J2 is not an appropriate choice for A, in that the cyclic

energy dissipation for arbitrary triaxial far-field time-harmonic loading is not simply

a function of the maximal value of J2 achieved in the loading cycle (the three curves

do not collapse into one).

However, somewhat remarkably, Fig. 3.18 (b) shows that for thin and flat flaws,

A can be taken as the maximal value of the far-field “resolved” shear stress on a

plane parallel to the flat face of the ellipsoid, which is

τ =
√

(τ 0yz)
2 + (τ 0zx)

2. (3.14)

The emergence of a clear and simple equivalent loading parameter A for thin

and flat elasto-plastic flaws is, in our opinion, noteworthy. There are two things to

consider.

First, that the limiting state is simple shear on the flat face, superposed on

a hydrostatic stress, is in retrospect not surprising. This is because, if the flaw

is flat and thin, then even moderate separation between the near parallel faces

causes a very large volumetric strain. Since such a strain is ruled out, the relative

motion between the near-parallel faces must be near-parallel also. As a result, the

dominant deformation is in simple shear. The plasticity constitutive relation then

forces the shear traction to align with this deformation. Finally, again to avoid a

large volumetric strain, the normal traction on the flat face of the ellipsoid (think

of it as a crack face) must equal the far field σz, which is as observed above.

The second and more surprising thing, at least to us, is that the long and signif-

icant transient plays essentially no role in Fig. 3.18 (b), which shows a fairly sharp

corner. We could not rationalize this with our intuition, even in hindsight; and it is

this sharp corner that allows the thin and flat flaw to be counted within the same

framework as introduced with a unidimensional model in section 3.2.
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Figure 3.18: Variation of cyclic dissipation with respect to (a)
√
J2 and (b) the

resolved shear stress (τ of Eq. (3.14)), for three different load cases of Table 3.2 for
a flat and thin ellipsoidal flaw (a1 = 1mm, a2 = 0.75mm, and a3 = 0.001mm).

3.5 Summary

In this chapter, we have considered energy dissipation within elastic perfectly-plastic

flaws. Specifically, we have considered flaws of ellipsoidal shape. Finite element sim-

ulation in ABAQUS showed that the stress state within an ellipsoidal flaw remains
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uniform under remotely applied loads, and past yield it approaches a limiting state.

The finite element results have been verified with a semi-analytical calculation

based on Eshelby’s (1957) formulas. The semi-analytical method has been extended

to cyclic loading. We showed that both stresses within the inclusion and the cyclic

energy dissipation computed using our semi-analytical method matches to an excel-

lent accuracy, the finite element simulation results.

Finally, we have identified two simple limiting special cases where a plot of energy

dissipated per cycle against some suitable scalar amplitude A resembles Fig. 3.2(c).

We have found that for spherical flaws, A can be taken as
√
J2. Additionally, for

thin and flat flaws, it has been found that A can be taken as the resolved shear

stress

τ =
√

(τ 0yz)
2 + (τ 0zx)

2.

In the next chapter, we will consider these two limiting cases for developing

macroscopic dissipation models.



Chapter 4

Macroscopic dissipation due to
dispersed elasto-plastic flaws

4.1 Introduction

In the last chapter, we have discussed dissipation due to a single microscopic plastic

flaw. In this chapter, we will average over a multitude of randomly dispersed flaws of

randomly distributed strengths, to obtain overall macroscopic dissipation formulas.

We assume that the dissipation from a single flaw is represented by an equivalent

unidimensional model as in Eq. (3.3). As seen in section 3.4, the definition of A

depends on the flaw geometry. So we will continue with the same two limiting

special cases here: spherical flaws, and flat and thin flaws.

For spherical flaws, A is
√
J2. For flat and thin flaws, A is the resolved shear

stress on the flat surface of the flaw (the flaw surface is nearly flat because it is thin,

but we say just “flat” for brevity).

The averaging approaches for these two cases are different. For example, the

orientation of the flaw plays a role for flat flaws, but for spherical flaws it does not.

We treat these cases separately, first considering the simpler case of spherical flaws.

For both cases, we assume that the flaws are small and far apart, so that their

interaction can be neglected.
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4.2 Spherical flaws

By Eq. (3.3), the energy dissipation due to a single spherical flaw is taken as

Ed = ks
(√

J2 − s
)

if
√

J2 > s, and 0 otherwise,

where J2 is the second invariant of the deviatoric stress at the maximum loading

point within the load cycle; and where s > 0 is the strength of the flaw and k depends

on the size of the flaw. For simplicity, we assume that k and s are independent, and

we can independently average over these variables.

For s, we consider the Weibull distribution (see Soong (2004) and Johnson et.

al. (1994)), which finds application in modeling random strengths of specimens, as

well as other quantities. The probability density function (pdf) for the Weibull

distribution is

p(s) =
c

a

(s
a

)c−1

e−(s/a)c , with c > 0, a > 0, s > 0,

and is shown in Fig. 4.1 for a few pairs of parameter values. If s is small (in the
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Figure 4.1: The Weibull distribution plotted for some choices of parameter values.
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small amplitude regime) the exponential term e−(s/a)c is close to 1 and we use

p(s) ≈ Hsq with q > −1, H > 0. (4.1)

Similar power law behavior for small s is also observed in the Gamma and Beta

distributions (see Soong (2004)), and any such distribution would serve our purposes:

our appeal to the Weibull is, to this extent, notional. The special case of c = 1 above

would give the commonly used exponential distribution.

Averaging the individual dissipation values over all strengths s gives

Dsf =

∫ √
J2

0

Edp(s) ds = Hk

∫ √
J2

0

s(
√

J2 − s)sq ds, (4.2)

where the subscript “sf” denotes spherical flaws, and where the upper limit of the

integration is
√
J2, where J2 is the second invariant of the deviatoric stress at the

maximum loading point within the load cycle. The upper limit is
√
J2 because flaws

with greater strength have not yielded (recall the closing comment of section 3.2).

The integral of Eq. (4.2) works out to

Dsf =

(
Hk

q2 + 5q + 6

)
(
√

J2)
3+q = ξ̄J

m/2
2 , (4.3)

where ξ̄ contains k and can be independently averaged over k, yielding some constant

(to be fitted experimentally); and where q > −1 implies m > 2. In experimental

settings, m close to 2 might be indistinguishable from 2. Moreover, m could also

appear to be 2 due to minute nonideal behaviors in the slip or plasticity models.

We conclude that, for dissipation from such dispersed spherical elasto-plastic

flaws, σeq of Eq. (1.1) can be taken as
√
J2, matching Eq. (1.2) with λ = 0.

We now turn to flat and thin elasto-plastic flaws.

4.3 Flat and thin flaws

For flat and thin flaws, the equivalent load parameter A is the resolved shear stress

on the plane of the flaw. Assuming the flaws are oriented randomly, we will have to

average over orientations as well.
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4.3.1 Averaging over a single plane orientation

Every flat and thin flaw is associated with a plane with a certain orientation (i.e., a

certain unit normal vector n̂). All such plane orientations are assumed equally likely,

for simplicity. Consider one such randomly chosen plane orientation (as defined by

its normal n̂), and consider all the flaws whose flat portion has that same orientation.

We will find the average dissipation from this subset of flaws, and then average over

all plane orientations.

The energy dissipation due to a single flaw in a particular plane is taken as

Ed = ks (τ − s) if τ > s, and 0 otherwise.

Here, τ is the resolved shear stress in that plane (see Eq. (3.14)), k depends on the

size of the flaw and s is the threshold strength. We treat the random variables k, s,

and the plane orientation as all independent.

Assuming that the flaw strengths are power law distributed for small s, we find

the average dissipation over all possible s (similar to Eq. (4.2) above) as

Dplane =

∫ τ

0

Edp(s) ds = Hk

∫ τ

0

s(τ − s)sq ds.

Thus, we find

Dplane =

(
Hk

q2 + 5q + 6

)
τ 3+q = ξ̄τm. (4.4)

Here ξ̄ is some constant (after averaging over the random variable k if needed, as

mentioned for the case of spherical flaws), and m > 2.

It remains to average over plane orientations.

4.3.2 Averaging over plane orientations

Consider a single plane with unit normal (see Fig. 4.2) given by

n̂ = sin θ cos φ î+ sin θ sin φ ĵ + cos θ k̂. (4.5)

For a given stress state S, the traction vector is given by t = S · n̂. The shear
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Figure 4.2: A typical plane with unit normal n̂ on the surface of a unit sphere.

component of the traction vector is τ = (I− n̂n̂) · t. In matrix form we write

τ = (I− nn⊺)Sn.

The square of the shear stress magnitude is

|τ |2 = n⊺S(I− nn⊺)(I− nn⊺)Sn = n⊺S(I− nn⊺)Sn. (4.6)

We now proceed to choose a coordinate system, scale the stress for convenience,

introduce an intermediate variable that simplifies expressions, and write the average

as an integral as follows.

It is convenient to think in terms of principal stresses (σ1 ≥ σ2 ≥ σ3), i.e., we

work in a coordinate system in which the stress tensor is diagonal. We also scale

the stress to ensure σ1 − σ3 = 1; later, the dissipation will be multiplied back by an

appropriate scaling factor. Third, using the scaled stress, we define a new variable

χ =
σ1 − σ2

σ1 − σ3
. (4.7)
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At this point, the scaled stress is

S =




σ1 0 0
0 σ1 − χ 0
0 0 σ1 − 1


 . (4.8)

From Eqs. (4.5), (4.6) and (4.8) we get the square of the scaled shear stress magnitude

as

τ 2 =
1− cos 4θ

8

(
1− χ+

(
χ− χ2

2

)
cos 2φ

)

−χ2

64
(3 cos 4θ + (3 + cos 4θ) cos 4φ+ 4(1− cos 4φ) cos 2θ − 7) . (4.9)

We note that the above does not depend on σ1, and so is independent of the mean

stress (because the plastic deformation is independent of mean hydrostatic stress).

We now average over all slip planes to obtain the average dissipation from a

random dissipation site. From Eq. (4.4), we write

Dff = ξ̄ × (σ1 − σ3)
m × 1

2π

∫ 2π

0

∫ π

2

0

(τ 2)
m

2 sin θ dθdφ, (4.10)

where the subscript “ff” denotes flat flaws; the premultiplier (σ1−σ3)
m compensates

for the earlier scaling whereby we took σ1 − σ3 = 1; and the averaging is over the

upper hemisphere in Fig. 4.2.

Thus, Eqs. (4.9) and (4.10) together give the macroscopic dissipation. In prin-

ciple Dff has to be multiplied by the density of the flaws to obtain the specific

dissipation (i.e., the dissipation per cycle and per unit volume). More practically,

we note that ξ̄ is to be considered a fitted material constant in any case.

Note that the double integral above still depends on the nondimensional stress

parameter χ, whose role is studied below. For that study, we set ξ̄ = 1 in our

formulas below, with the understanding that the actual dissipation rate would have

to be multiplied by a final single fitted material constant.
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4.3.3 Dissipation: Special cases and symmetries

We first consider analytical evaluation of the integral of Eq. (4.10). Dff can be found

analytically if m is an even integer. For m = 2 we find

Dff =
2(σ1 − σ3)

2

15
(χ2 − χ+ 1), (4.11)

which is equivalent to

Dff =
2

15

{
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
}
, (4.12)

which in turn is directly proportional to the distortional strain energy, as also the

second invariant of the deviatoric stress (Dff = 4
5
J2). For m = 4, Dff turns out to be

proportional to J2
2 (Dff = 32

35
J2
2 ). For other integer values of m (see also Appendix

C.1), there is no simple relation involving only J2. Interestingly, when m is an even

integer, Dff can be apparently be expressed using J2 and J3 together (where J3 is

the determinant of the deviatoric stress) at least up to m = 12: see Appendix C.1.

When m is not an even integer, we are unable to evaluate the integral of Eq. (4.10)

in closed form, and have found no simple relations involving J2 and J3.

We now turn to numerical evaluation in Eq. (4.10), for arbitrary m ≥ 2. For nu-

merical integration we have used MATLAB’s built-in routine “dblquad”. We present

some comparisons with analytical results for positive even integer m in Table 4.1,

where the accuracy is seen to be enough for our purposes. All subsequent numerical

dissipation results in this thesis are obtained using such numerical integration.

m Numerical integration Analytical formula
2 0.27841333333 0.27841333333
4 0.11073426306 0.11073426311
6 0.05033102734 0.05033102737
8 0.02463198442 0.02463198439
10 0.01266381088 0.01266381070

Table 4.1: Dff from Eq. (4.10) with ξ̄ = 1, for the arbitrarily chosen stress state
of σ1 = 1.26, σ2 = 0.87 and σ3 = −0.34. The numerical integration is accurate to
several significant digits.

Figure 4.3 shows plots for four m values, with each curve scaled to make Dff = 1
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at χ = 0.5; the curves are symmetric about χ = 0.5 in each case.
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Figure 4.3: Dissipation plots for four m values, normalized in each case so that
Dff = 1 at χ = 0.5.

The symmetry about χ = 0.5 can be explained using Mohr’s circle diagram. For

any given normal n̂, the resultant shear (τ , assumed positive) and normal stress (σ),

represented as a point (σ, τ) on the Mohr diagram, will lie in a region bounded by

three circles (see Malvern (1969)).

Now see Fig. 4.4. In the figure, we see that the dissipation is the same for (a)

and (b) because changing the sign of S has no effect on the dissipation since S is

multiplied by sinωt in any case. Moreover, we have already seen above that the

mean stress has no effect on the dissipation, whence (b) and (c) will be the same.

Thus, replacing χ with 1− χ will not change the dissipation, and Dff is symmetric

about χ = 0.5.

4.3.4 Relation to distortional strain energy

We note that the second invariant of the deviatoric stress differs from the distortional

strain energy by just a multiplicative constant (dependent on Young’s modulus and

Poisson’s ratio), and we treat them as equivalent for our purposes. We have seen

above that (e.g., for m an even integer greater than 4), Dff is not a function of J2
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Figure 4.4: Mohr’s circle diagrams to show that Dff is symmetric about χ = 0.5.

alone. We now check the extent to which it can be approximated purely as a function

of J2.

For any arbitrary m ≥ 2, expecting a contradiction, we nevertheless tentatively

write

Dff = f(J2),
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whence (to incorporate a convenient scaling) we may just as well write

Dff

J
m/2
2

= g(J2), (4.13)

where f and g are hypothesized (and as yet undetermined) functions.

For a simple numerical check of Eq. (4.13), we begin with 500 random stress

states (σ1 ≥ σ2 ≥ σ3) obtained as triples from a random number generator that

gives standard normal variables (mean zero, variance unity). For each of these

hypothetical stress states, we compute both Dff and J2. Figure 4.5 shows scatter

plots of Dff × J
−m/2
2 against J2 for m = 3 and 6. If Eq. (4.13) were true, these

scatter plots would collapse to single curves. But, they do not. Interestingly, they

do each lie within horizontal bands, which is a consequence of the denominator in

the left hand side of Eq. (4.13) being the correct power law. However, the nonzero

widths of these bands show that, in general, Dff is not a function of J2 alone.

Next, we generated similar scatter data for several different m, using the same

500 random stress states for uniformity. The coefficient of variation (ratio of the

standard deviation to the mean) was computed for each m. Figure 4.6 shows the

results obtained. It is now clear that, except for m = 2 and 4, Dff is not a function

of J2 alone. The deviation from a simple power law based on J2 increases with m for

m > 4. For engineering modeling purposes, for moderate m, and keeping in mind

that we have not in any case accounted for microscopic anisotropy as commented

on by Whittier (1962), it appears that a simple power law based on J2 might be

sufficient (i.e., Dff = ξ̄J
m/2
2 for, say, 2 ≤ m ≤ 6).

In case m is large (as it is for some materials (see Lazan (1968)), and also

for academic interest, we briefly studied the large-m asymptotic behavior of Dff .

Details of this asymptotic analysis is given below. The asymptotic analysis shows

analytically that, at least for large m, the dissipation is not a function of J2 alone,

consistent with our numerical observations here.
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Figure 4.5: Comparison of Dff × J
−m/2
2 against J2 for m = 3 and 6.

4.3.5 Approximation for large m

The integral in Eq. (4.10) can be found exactly for χ(1 − χ) = 0 (or equivalently,

χ = 0 or 1):

Dff |χ(1−χ)=0 =
(σ1 − σ3)

m

2m+1

√
π Γ(m+ 1)

Γ(m+ 3
2
)

, (4.14)

which for large m can be approximated via Stirling’s formula as

Dff |χ(1−χ)=0 ∼
(σ1 − σ3)

m

2m+1

√
π√
m
. (4.15)
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.

When χ(1 − χ) is not close to zero, the leading order behavior for large m can

be found by adapting Laplace’s method (see Holmes (1995)) as

Dff |χ(1−χ)6=0 ∼
(σ1 − σ3)

m

2m+1

1

m
√

χ(1− χ)
. (4.16)

Details including higher order correction terms are given in Appendix C.2.

Figure 4.7 shows the utility of these large-m asymptotics. For χ = 0, we com-

pare with the analytical results of Eq. (4.14), and for χ = 0.5 we compare against

results from numerical integration. For better scaling, the plotted quantity has been

multiplied by 2m+1 in each case.

It is interesting to note that for large m, the dissipation for χ(1 − χ) 6= 0 is

smaller than for χ(1 − χ) = 0 by a factor of O
(
m−1/2

)
. Incidentally, Eq. (4.16)

shows that the dissipation for arbitrary m is not a function of J2 alone. To see this

by contradiction, let

ζ = χ(1− χ),

and assume that

F (σ1, σ3, ζ) = H(J2), (4.17)
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Figure 4.7: The leading-order approximations of Eq. (4.15) (i.e. for χ = 0), and
Eq. (4.16) with χ = 0.5, against their corresponding correct values. In each case,
σ1 − σ3 = 1 and only m is varied.

where F and H are any two functions, and where in turn we know that

J2 = J2(σ1, σ3, ζ) =
1

3
(1− ζ)(σ1 − σ3)

2.

From Eq. (4.17),
∂F

∂σ1
=

dH

dJ2

∂J2

∂σ1
and

∂F

∂ζ
=

dH

dJ2

∂J2

∂ζ
,

which leads to
∂F

∂σ1

÷ ∂F

∂ζ
=

∂J2

∂σ1

÷ ∂J2

∂ζ
, (4.18)

independent of H . Choosing F (σ1, σ3, ζ) to be the right hand side of Eq. (4.16) with

χ(1− χ) set equal to ζ , Eq. (4.18) reduces to

− 2ζm

σ1 − σ3
= −2(1− ζ)

σ1 − σ3
,

or

m =
1− ζ

ζ
,

which is a contradiction since m and ζ can be varied independently. Therefore, at

least for large m, the dissipation is not a function of J2 alone (consistent with the

numerical observations of Fig. 4.6).
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4.4 Summary

In this chapter, we have considered a large number of uniformly dispersed micro-

scopic elasto-plastic flaws and found their averaged macroscopic dissipation.

We have studied two special cases. In the first case, the flaws are spherical. In

this case the net dissipation averaged over all flaws, assuming the flaw strengths

are Weibull-distributed, give a purely J2 based power law damping formula for the

small-deformation regime.

In the second case, the flaws are flat and thin. In this case, the plastic dissipation

can be described using a unidimensional model based on the resolved shear stress on

the plane of the flaw. The macroscopic dissipation averaged over all flaws is obtained

assuming a uniform distribution of flaw strengths and orientations. The resulting

power law damping formula shows near-exact dependence on the distortional strain

energy for moderate m (say, 2 ≤ m ≤ 6), but a different asymptotic behavior for

larger m.

Academically, the main contribution of the present chapter is that it incorpo-

rates the triaxiality of the stress states starting from some reasonable underlying

micromechanics as opposed to the ad hoc proposal of Eq. (1.2).

We note that Whittier’s (1962) experiments with thin plate vibrations suggested

that dilatational strain energy might play a role in material dissipation. Whittier

speculated that microscopic anisotropy (due to grains) might lead to such an effect.

Moreover, his rolled steel sheets were probably not isotropic, the consequences of

which have not been worked out clearly. Nevertheless, his observation is not captured

by the present model and suggests a possible direction for future work.

Finally, we suggest that for practical engineering designing purposes for metallic

components and for moderate m (say, m between 2 to 6) a distortional strain energy

based power law formula might be reasonable. For our finite element computation

of effective damping ratios in the next chapter, we will adopt this formula.



Chapter 5

Modal damping computation
examples with solid and shell
elements

5.1 Introduction

In this chapter, we present some examples of computation of modal damping using

solid elements. A second motivation for this chapter is the fact that many engi-

neering structures are made of thin-walled (shell type) components. Use of solid

elements for finite element modeling of these structures is computationally expen-

sive and shell elements are preferred. With this view, we develop a computational

procedure for calculating modal damping ratios of shell like structures using shell

elements in ANSYS.

We have suggested, in the previous chapter, that for practical engineering design

purposes for metallic components, a distortional strain energy based power law

formula may be reasonable provided the index (m) of the power law is not large. In

this chapter, we adopt this distortional strain energy based formula1. Accordingly,

the equivalent stress (σeq) in

D = ξσm
eq (5.1)

1However, the procedure outlined in this chapter can be used for computation of modal damping
using any other dissipation formula.
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is obtained using

σ2
eq = I21 − 3I2 = 3J2 =

1

2

{
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2
}
, (5.2)

where I1 and I2 are the first and second stress invariants respectively, J2 is the

second invariant of the deviatoric stress, and σ1, σ2, and σ3 are the three principal

stresses2.

The distortional strain energy based damping formula is simple, and allows some

analytical progress. We can compute the modal damping ratios analytically for a

few selected cases. We will validate our finite element computations below against

such analytical results.

We will first consider solid elements (SOLID187) for which the procedural details

have already been presented in Chapter 2. After validating our solid element results,

we will consider shell elements (SHELL181) and develop a computational procedure

for modal damping computation. Shell results will be verified against both analytical

and solid element results.

5.2 Computation of ζeff using solid elements

Use of SOLID187 in computation of ζeff has been presented earlier in section 2.5.3

where the dissipation was computed using Eq. (2.11). In comparison to the proce-

dure outlined there, the dissipation formula will be the only change here. In the

present case, the dissipation at each Gauss point has to be calculated using Eq. (5.1)

instead of Eq. (2.11) and the rest of the calculation remains the same.

For the reader’s convenience, we summarize the entire calculation procedure in

this paragraph. The given geometry is first modeled using 10 noded tetrahedral

elements (SOLID187) using automatic meshing within ANSYS. Modal analysis is

carried out in ANSYS and nodal displacements for each mode are extracted. Element

wise volume integration of σm
eq is then carried out externally using Gauss quadrature,

where again interpolation using the element shape function is used to compute

2Note that if we use strain in place of stress in Eq. (5.1), the final result will be the same because
the macroscopic dissipation (D) is based on distortional strain energy.



5.2 Computation of ζeff using solid elements 87

strains and then stresses. The element wise integrals of σm
eq are added to obtain the

total energy dissipation (−∆E). ζeff is computed using Eq. (2.14) after noting that

the total kinetic energy (E) is just
1

2
ω2 because the mode shape is mass normalized

(see Eq. (2.18)).

5.2.1 Validation of ζeff computation with known analytical
results

In this section, we validate our finite element calculations of ζeff against a few

selected cases for which analytical results can be obtained. We mostly consider

m = 2 in Eq. (5.1). We will discuss computations for m ≥ 2 in section 5.4 below.

5.2.1.1 Transverse vibration of a simply supported beam

The fundamental mode shape for transverse vibration of a simply supported beam

(Fig. 5.1) is a half sine, and so we take the displacements

y(x, t) = A1 sin
πx

L
sinωt. (5.3)

The maximum strain energy for this vibration mode is

m, EI

1st mode shape

 L

x

y

Figure 5.1: Transverse vibration of a simply supported beam.

E = A2
1

∫ L

0

EI

2

(
π2

L2

)2

sin2 πx

L
dx =

A2
1EIπ4

4L3
. (5.4)

The amplitude of the bending stress at a distance z from the neutral axis of the

beam is given by

σ =
EIφ′′(x)z

I
= −Eπ2

L2
A1 sin

πx

L
z. (5.5)
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This same value of σ will be used as σeq. Now, using Eq. (5.2), we calculate the

energy dissipated over one cycle as

−∆E = ξ

∫

V

σ2
eqdV =

(
ξA2

1E
2π4

L4

)
×
∫

V

sin2 πx

L
z2dV

=

(
ξA2

1E
2π4

L4

)
× LI

2
=

ξA2
1E

2Iπ4

2L3
. (5.6)

Thus,

ζeff =
1

4π
× −∆E

E
=

ξE

2π
. (5.7)

From the above equation we get

2πζeff
ξE

= 1. (5.8)

Here, E is the Young’s modulus of the material, not to be confused with E which

is the total energy of the system averaged over one cycle.

In the rest of this section, all the bodies considered will be continuum objects

but we will consider specific modes thereof. For each mode, the effective damping

ratios will be normalized with
ξE

2π
and we will report

2πζeff
ξE

and compare with unity.

5.2.1.2 Comparison with finite element computation

A finite element model of the simply supported uniform beam (Fig. 5.1) is shown

in Fig. 5.2 (a). The total number of elements in the model is 33237. The beam

dimensions are 1.0 m×0.05 m×0.025 m. As a realization of simple supports, nodal

displacements were constrained along a horizontal line passing through the middle

of each end face. Material properties for this model are given in Table 5.1.

Young’s modulus (E in GPa) 210
Poisson’s ratio (ν) 0.3

Density (ρ in Kg/m3) 7800

Table 5.1: Material properties considered in the finite element model.

The finite element procedure as described above has given
2πζeff
ξE

for the mode

shown in Fig. 5.2 (b) to be 1.001, which agrees well with Eq. (5.7).
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Figure 5.2: (a) Finite element model of the simply supported beam. (b) Transverse
vibration mode from the FE model. Note that the bending is in-plane and this is
not the first mode of vibration. However, this is a mode where beam theory is more
accurate.

5.2.1.3 Modal damping in other analytically tractable geometries

We now consider several different geometries and compute their modal damping

values for specific modes. For the geometries considered here, a few closed-form

solutions are readily available. The finite element results are verified against those
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closed-form results.

We consider the following cases:

1) Torsion of a circular rod

2) Bending of a thin rectangular plate

3) Uniform radial mode of a thin-walled spherical shell

4) Longitudinal vibration of a laterally constrained rod

5) First purely radial mode of a solid sphere

Detailed description of both analytical and computational approach for the above

five solid bodies are presented in Appendix C. However, the net results in each case

are summarized in Table 5.2. The beam bending case is also included.

Solid models Modes Numerical
2πζeff
ξE

ANSYS Analytical
1 Circular rod Torsion 1.154 1.154
2 Beam Bending 1.001 1.000
3 Plate Bending 0.867 0.868
4 Thin sphere Radial 0.714 0.714
5 Laterally constrained rod Axial 0.440 0.440
6 Solid sphere Radial 0.114 0.114

Table 5.2: Values of ζeff for six solid models considered.

Although the numerical method can compute ζeff for as many vibration modes as

we wish, we have identified some that are intuitively simple and can be analytically

studied as well, as listed in Table 5.2. An interesting result is that the ratio
2πζeff
ξE

varies over one order of magnitude over the cases considered. The torsion dominated

mode has the greatest damping. The bending mode which has zero volume change

has next highest damping. Radial mode of the spherical shell which has stretching

in two directions and Poisson’s effect in one direction has less damping presumably

because some of the energy goes into volumetric strain. The laterally constrained

rod is intermediate, and the first purely radial mode of a sphere is the least damped
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of all. Thus, it is seen that shape can have an effect on damping of specific modes

of objects even when m = 2 in Eq. (5.1) (m other than 2 will be discussed later).

5.3 Computation of ζeff using shell elements

In practical situations, we might be interested to compute ζeff for thin-walled struc-

tures. Use of shell elements is convenient for finite element simulation of such struc-

tures. For this reason, in this section, we present finite element computation of ζeff

using shell elements (SHELL181) in ANSYS.

5.3.1 Analysis method

The SHELL181 element in ANSYS is used for analyzing thin to moderately-thick

shell structures. It is a four-node element with six degrees of freedom at each node:

three translations (u, v, and w in x, y, and z direction respectively), and three

rotations (θx, θy, and θz about the x, y, and z-axis respectively).

The displacement shape function (in terms of local coordinates s and t on the

parent element) for u is given as

u =
1

4
uI(1−s)(1−t)+

1

4
uJ(1+s)(1−t)+

1

4
uK(1+s)(1+t)+

1

4
uL(1−s)(1+t). (5.9)

Shape functions for v, w, θx ,θy, and θz are analogous to Eq. (5.9). Further details of

this element can be found in ANSYS theory manual (ANSYS manual, 2009), and in

Dvorkin (1982), Dvorkin (1984), Bathe and Dvorkin (1985), and Bathe and Dvorkin

(1986).

We note here that the SHELL181 element formulation within ANSYS gives ele-

ment stresses at TOP, MIDDLE, and BOTTOM of the shell thickness, if proper

key-option (KEYOPT(8)=2) is used during analysis (see Fig. 5.3 for the normal

stress component in the x direction).

We also note that in a shell formulation (see Bathe (1996)), within a shell ele-

ment, the stress components vary differently in the thickness direction. The in-plane

stress components (σx, σy, and τxy) have linear variation through the element thick-
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Figure 5.3: SHELL181 stress output at three locations through the element thick-
ness.

ness whereas the variation of the out-of-plane shear stresses (τyz and τzx) is quadratic.

Accordingly, knowing the three stresses (using SHELL TOP, MID and BOT stresses

in ANSYS) at three points through the thickness, we can use quadratic interpolation

and find the assumed stresses correctly. Consequently, more complicated functions

(for example, σeq in our case) of those stresses can be integrated using several Gauss

points through the thickness, without any contradiction. We have used five Gauss

points in our computations.

We briefly present the computational procedure of ζeff using SHELL181 elements

in ANSYS and compare the results against known analytical results. The thin-walled

vibrating object of interest is first meshed using SHELL181 elements using automatic

meshing within ANSYS. Then modal analysis is carried out which yields natural

frequencies and mass-normalized mode shapes. For each vibration mode, the element

stresses at three locations (TOP, MIDDLE and BOTTOM) are extracted for every

element in the model. Gauss point (through the thickness) stresses for each element

are calculated separately using interpolated stress values as mentioned above. Then,

the equivalent stresses are computed at these locations. The dissipation over each

element volume is approximated using

(D)e =
element volume

2
×

5∑

k=1

wkσ
2
eq,k. (5.10)

The constant ξ is not incorporated here. Final results have to be multiplied by ξ
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(as fitted from data for the material of interest).

The elementwise integrals are added up to obtain the total dissipation per cycle,

−∆E =
∑

all elements

(D)e. (5.11)

We have used mass-normalized mode shapes. Therefore, the total kinetic energy

of the body in this vibration mode is

E =
1

2
ω2

∫

V

ρφ⊺φ dV =
ω2

2
, (5.12)

where ω is the natural frequency of the selected vibration mode.

Using Eqs. (5.10), (5.11), and (5.12) we obtain the effective damping ratio (ζeff)

as

ζeff =
1

4π
×
(−∆E

E

)
=

1

4π
× ξ

∑
(D)e

1
2
ω2

. (5.13)

5.3.2 Comparison with known analytical results

We now compare the SHELL181 analysis results of ζeff with previously obtained

analytical results for two cases. In the first case, we consider the transverse vibration

of a simply supported rectangular plate. The plate (1.0 m × 0.5 m × 0.005 m) is

modeled using 648 shell elements (see Fig. 5.4). In the second case, we consider

the purely radial mode of the thin-walled spherical shell. The spherical shell (mean

diameter 4 m and thickness 0.1 m) is modeled using 2944 elements (see Fig. 5.5).

The material properties taken for these two cases were shown in Table 5.1.

Geometry Modes Numerical
2πζeff
ξE

ANSYS Shell ANSYS Solid Analytical
Plate Bending 0.867 0.867 0.868
Thin sphere Radial 0.714 0.714 0.714

Table 5.3: Results for two shell models considered for validation of ζeff computations
using SHELL181 elements. The results obtained previously using solid elements are
also given here.

The computed effective damping ratios for these shell models using above shell

formulation are reported in Table 5.3. For completeness the ζeff values from the
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Figure 5.4: Shell model of thin rectangular plate.
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Z

Figure 5.5: Shell model of thin-walled spherical shell. Half of the model is shown
on the right.

previous solid element computations are also reported in the table. We note that

shell elements give accurate results with few elements and less computation.

5.4 Normalization for m > 2

So far, in our computational examples, we have considered m = 2 in Eq. (5.1). Now,

we consider m ≥ 2. For m > 2 we require a normalization (or scaling) that has to

be incorporated in the mode shapes of our finite element computations.

If the mode shapes (i.e. the eigenvectors) are multiplied by a factor ks, then

the strain energy (E) will increase by a factor of k2
s . And for m = 2 the dissipated

energy (−∆E) will also increase by a factor of k2
s . Therefore, ζeff will not change
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due to such scaling factors when m is 2.

However, when m is greater than 2, the scaling of the eigenvectors matters. We

have chosen to scale the eigenvectors so that the average volumetric strain energy

density is unity (in our case because we are using SI units in this chapter it will be 1

Joule/m3). For steel under uniaxial tension, this corresponds to an extremely small

strain of the order of 10−11. An analyst wishing to use a different normalizing value

can easily adapt our procedure for the same.

As a consequence of the above scaling we note that, for any arbitrary m, the

size (or the volume) of a solid object does not affect the damping values. As an

example, two simply supported beams of dimensions 1.0 m× 0.05 m× 0.025 m, and

2.0 m× 0.1 m× 0.05 m will lead to the same ζeff. The advantage of such scaling is

that we can compare damping values of different shapes of objects without worrying

about their sizes being unequal.

As the mode shapes (φ) are to be scaled by ks to set the average volumetric

strain energy density to unity, we write

k2
s

(
1
2
ω2
∫
V
ρφ⊺φ dV

)

V
= 1, (5.14)

where V is the total volume of the body and the mass-normalized mode shape φ

is to be scaled by ks. Now, noting that
∫
V
ρφ⊺φ dV = 1 for the mass-normalized

mode shape, we get

ks =

√
2V

ω2
. (5.15)

Both ω and V are obtained from the finite element simulation. The effective damping

ratio is calculated as

ζeff =
1

4π
× ξ

∑
(D)e

V
, (5.16)

where the dissipation (D)e depends on ks and the denominator is just V , because

the average volumetric strain energy density is already set to 1.

The above normalization for the mode shape (i.e. extracted nodal displacements

from ANSYS) is directly applicable for the case of SOLID187 elements. But for

computations using SHELL181 element, we directly extract the element stresses
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from ANSYS. Therefore, above scaling (ks in Eq. (5.15)) has to be directly applied

to the element stresses and then ζeff will be calculated using Eq. (5.16).

5.5 Matlab GUI for automated computation of ζeff

For fast and reliable computations of ζeff, a Matlab based graphical user interface

(GUI) has been developed using GUIDE, the graphical user interface development

environment of Matlab.

The geometry of the solid object is meshed (either using SOLID187 or SHELL181

elements) within ANSYS with proper boundary conditions and material properties.

Subsequently, this model is used in the GUI for both modal analysis and the ζeff

computations for several chosen modes.

A screen shot of the GUI is shown in Fig. 5.6. The GUI consists of five panels.

In ANSYS Model panel the job directory, the ANSYS finite element model (the

database file) and the path of the ANSYS executable should be provided. The

Modal Analysis panel is for doing the modal simulation. The number of modes to

be extracted has to be given here. The third panel, Solid or Shell Model, is for the

selection of element type (SOLID187 or SHELL181) used in the ANSYS database

file. One of this box should be clicked during the analysis. The Modal Damping

panel is for the ζeff computations for the selected vibration modes. Save/Run is for

the final run. Save is for saving the existing settings in GUI for a future run, whereas

Run is for the entire computation for extracting the effective damping ratios. The

final results, i.e. the computed ζeff values, will be saved in a text file in the job

directory.

5.6 Effects of stress concentration on damping

In the previous sections, we have developed a procedure of ζeff computations using

both solid and shell elements in ANSYS. We have also verified our computations

against a few analytical results.

Now, we consider a pair of objects of less analytically tractable shape and com-
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Figure 5.6: Matlab based GUI for computing ζeff using ANSYS.

pute their modal damping ratios. We consider m ≥ 2 in Eq. (5.1). We show, with a

computational example, that form > 2 stress concentrations play a role in determin-

ing damping values. In our computational example, we consider two flat rectangular

plates. See Fig. 5.7. In Fig. 5.7 (b), slots are introduced in the plate to introduce

stress concentrations within the vibration modes. The planar dimensions of both

the plates are taken to be the same (1 m × 1 m), and the thicknesses are adjusted

such that the first natural frequencies of both plates are approximately equal. We

use SOLID187 elements for the mesh. We compute the effective damping ratios for

the first few modes of these plates with unconstrained boundary conditions. The

first three vibration modes of these plates are shown in Fig. 5.8. The figure shows

that the overall displacements in the corresponding vibration modes of these two



98 Modal damping computation examples with solid and shell elements

XY
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(a)
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Figure 5.7: Rectangular plates meshed using solid elements. (a) Uncut plate with
dimensions 1 m×1 m×0.0365 m (39856 elements). (b) Slotted plate with dimensions
1 m × 1 m× 0.04 m (53590 elements). Near the edges of this plate, 12 rectangular
(0.1 m× 0.05 m) slots are cut to introduce stress concentrations.

plates are similar.

The damping results are reported in Table 5.4 for m = 2, 3, and 6. For compari-

son purposes, the ζeff values are normalized with respect to the first vibration mode

of the uncut plate (i.e., for each m the ζeff values for the first mode of the uncut

plate is set to 1). It is seen that the damping values are higher in the slotted plate.

This is due to the presence of stress concentration. It is also seen that the effect of
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Figure 5.8: First three vibration modes of the rectangular plates.

the stress concentration increases as m increases. An increase of approximately one

and a half to two times in the ζeff values is seen for m = 6.
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Mode Frequency (Hz) ζeff for m = 2 ζeff for m = 3 ζeff for m = 6

Plate 1 Plate 2 Plate 1 Plate 2 Plate 1 Plate 2 Plate 1 Plate 2

1 120.86 120.49 1.000 1.007 1.000 1.159 1.000 1.958
2 177.90 190.93 0.963 0.986 1.016 1.160 1.294 2.260
3 220.12 221.22 0.697 0.731 0.654 0.715 0.628 0.942

Table 5.4: Computed ζeff results for both the plates. The uncut plate is denoted as
“Plate 1” and the slotted plate is denoted as “Plate 2”. For comparison purposes,
the ζeff values are normalized with respect to the first vibration mode of the uncut
plate (Plate 1) for each m.

5.7 Summary

In this chapter, we have demonstrated how the distortional strain energy based

damping formula can be used in finite element computations of modal damping

ratios using both solid and shell elements in ANSYS. We have verified our finite

element computations with several analytical results.

We have used a normalization, within the damping computation, with respect

to the average volumetric strain energy density such that the ζeff values are size

independent.

Finally, we have shown, with a computational example, that stress concentrations

within a material can increase the damping values. For materials with higher m,

a significant improvement in damping can be achieved with the introduction of

stress concentrations. That stress concentrations improve damping for materials

with m > 2 is not a fundamentally new observation; it was mentioned in passing

in Mallik and Ghosh (1973). However, our detailed computational check of the

same, for an object of complex shape, is presented both for completeness as well as

suggested direction for more practical design oriented investigations in the future.



Chapter 6

Conclusions

In this thesis, we have developed multiaxial damping formulas based on assumed

underlying micromechanical models of internal dissipation. Guided by empirical ev-

idence, we have considered two mathematically simple rate-independent dissipative

phenomena: (i) Coulomb friction, and (ii) ambient-temperature plasticity. In our

first model, we have considered dissipation due to randomly distributed frictional

microcracks embedded inside the solid body. We have used Monte Carlo averaging

for calculating the net dissipation and developed a single empirically fitted dissipa-

tion formula valid over a useful range of the friction coefficient. We have also shown

how this formula can be used in a three dimensional setting to compute an effective

measure of damping in any arbitrarily shaped solid object.

In the second model, we have considered dissipation due to a multitude of ran-

domly distributed microscopic elasto-plastic flaws. We have used finite element

simulations in ABAQUS to study the deformation and dissipation in these flaws

under far-field loading (both monotonic and cyclic). We have also developed a semi-

analytical calculation based on Eshelby’s (1957) formulas for ellipsoidal flaws. We

have found two simple special cases for which the plastic dissipation is governed by a

well-defined scalar quantity. When the flaw is spherical the dissipation is governed by

the second deviatoric stress invariant (J2), which is proportional to the distortional

strain energy. For this case, our averaged dissipation over random flaw distributions

results in a purely distortional strain energy based damping formula. In the other

special case, namely a flat and thin ellipsoidal flaw, the dissipation is governed by
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the resolved shear stress applied parallel to the near-flat surface of the ellipsoid.

Somewhat surprisingly, upon averaging over all possible flaw plane orientations, the

resulting dissipation formula for this case shows simple and near-exact dependence

on the distortional strain energy for about 2 ≤ m ≤ 6. Therefore, we have suggested

that for practical engineering design purposes, and for those materials for which m

is not too large, a distortional strain energy based dissipation formula might be rea-

sonable. Academically, an important contribution of this elasto-plastic flaw based

formula is that it incorporates the triaxiality of the stress states starting from some

underlying micromechanics as opposed to prior ad hoc proposals, although the final

recommendation turns out to be based on a simple stress invariant.

The distortional strain energy based formula is finally used for finite element

computations of modal damping ratios of lightly damped objects of arbitrary shape.

We have used both solid and shell elements in ANSYS for the computation and

obtained accurate results as demonstrated by comparison against available analytical

formulas.

For m ≥ 2 in the damping power law, we have used normalization based on

the average volumetric strain energy density, so as to obtain results that depend on

shape but not on size. We have also shown that introduction of stress concentrations

in the material can, at least in some cases, significantly increase the damping values.

We note that the damping models we have developed in this thesis have fitted

material constants: C and µ in the frictional microcrack based model and ξ in the

model due to elasto-plastic flaws. These fitted constants have to be obtained from

experimental data. In all our damping calculations, we have used some normalized

values and studied our results. However, in practical cases the actual fitted values

of these material constants, obtained from suitable experiments, should be used for

exact quantification of the damping results.

As a final comment, in this thesis we have presented a complete analysis proce-

dure of modal damping values for any arbitrarily shaped solid body starting from

the development of a multiaxial damping model to the finite element formulation.

We hope that such damping computation using multiaxial damping formula might
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eventually be built into commercial finite element codes, so that modal damping

values could be computed and compared routinely along with natural frequencies

and mode shapes.





Appendix A

Supplementary materials for
Chapter 2

A.1 On possible waveforms within the dissipation

calculation

The dissipation simulation results from ABAQUS, and the subsequently used single

spring-block based formula, both hold for a variety of periodic stress histories pro-

vided (i) the changes in far-field normal and shear stresses maintain a fixed propor-

tion throughout the load cycle (i.e., the time-varying parts have similar waveforms),

and (ii) there are only two points of stress reversal per cycle. Many waveforms are

allowed within these restrictions. For example, the waveforms shown in (a), (b),

and (c) within Fig. A.1 are allowed but (d) is not allowed because it has more than

two points of stress reversal per cycle.

A.2 Simulation results from 2D finite element anal-

ysis

Finite element simulations were carried out in ABAQUS Standard, version 6.9. In

the finite element mesh, 4-node bilinear plane stress quadrilateral elements (CPS4)

were used. The domain is 10mm × 10mm (the out-of-plane thickness is specified

as 2mm), the crack is 1mm long, and contact is “hard” (no artificial numerical

contact compliance). Since the material is assumed elastic, the Young’s modulus E

used only scales the result by a constant; here, we arbitrarily took E = 210 GPa and
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Figure A.1: Some waveforms: (a), (b), (c) are allowed, but (d) is not. The scale is
arbitrary, for both stress and time.

Poisson’s ratio ν = 0.3. The energy dissipation was computed using pseudostatic

simulation. Refinement of both mesh size in space and load steps in time showed

convergence. Figure A.2 shows an intermediate mesh: the final results below used

a finer mesh. Figures A.3 and A.4 show typical results from the convergence study.

Several load cases were run with different values of stress amplitudes as well as the

friction coefficient µ, and the results are given in Table A.1.

We mention that extreme refinement near the crack tip is not necessary to obtain

a useful value for the dissipation. The crack tip stress singularity even with Coulomb

friction is like 1/
√
r (see, e.g., Xiaomin (1994)), and so errors are triply small: small
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µ τa (MPa) σa(MPa) β =

(
σm

σa

)
α =

(
τm

τa

)
Dissipation (N-mm)

0.3 70 30 0.4 0 0.0142
0.3 70 30 0.4 1.2 0.0142
0.5 90 40 0.6 0 0.0439
0.5 90 40 0.6 0.4 0.0439
0.4 100 50 0.6 0 0.0512
0.3 100 30 1.1 0 0.0496
0.3 80 30 0.6 0 0.0220
0.3 140 100 0 0 0.0406
0.3 140 80 0 0 0.0355
0.3 160 120 0 0 0.0545
0.3 100 100 0 0 0.0241
0.3 170 110 0 0 0.0566
0.3 40 100 0 0 0.0025
0.3 50 100 0 0 0.0055
0.3 180 200 0 0 0.0808
0.35 120 90 1 0 0.1327
0.4 110 60 0.4 0 0.0498
0.4 100 40 1.2 0 0.0828
0.4 100 100 1.2 0 0.1187
0.4 120 70 −0.4 0 0.0112
0.4 110 100 0 0 0.0306
0.4 60 100 0 0 0.0071
0.4 70 100 0 0 0.0113
0.4 80 100 0 0 0.0159
0.4 90 100 0 0 0.0206
0.4 190 200 0 0 0.0927
0.45 95 75 1 0 0.0916
0.5 80 40 0.4 0 0.0281
0.5 80 60 1.1 0 0.0715
0.5 110 80 −0.2 0 0.0196
0.5 160 110 0 0 0.0643
0.5 170 190 0 0 0.0684
0.5 80 60 2.57 0 0.0113
0.5 80 60 2.45 0 0.0264
0.5 80 60 −1.1 0 0.0000
0.5 80 60 −0.6 0 0.0026
0.5 80 60 0 0 0.0163
0.5 80 60 0.3 0 0.0276
0.5 80 60 1.4 0 0.0812
0.5 80 60 2.2 0 0.0521
0.5 80 60 2.5 0 0.0203
0.5 80 60 2.66 0 0.0000

Table A.1: Dissipation results for various cases in the two-dimensional finite element
analysis. The first 4 rows show that the mean value of the shear stress does not
affect the dissipation per cycle.
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Figure A.2: Finite element mesh of the 2D model. A small region is shown enlarged.
The rectangles and the arrow were drawn in later, manually and approximately, for
visualization.
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Figure A.3: Mesh convergence for a particular load case (fifth row of table A.1)
using 200 time steps in the loading cycle.

errors due to moderate refinement in the small-sliding (
√
r) dissipations in a small

region near the crack tip add up to very little overall error. For this reason, the

finite element results are accurate enough for our purposes.
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A.3 The dissipation formula from the spring block

model

We consider the spring and massless-block model of Fig. A.5. If the normal stress

σ becomes tensile, there is no dissipation; for compressive σ, there is Coulomb

friction as indicated. Several distinct cases occur, for which individual dissipation

formulas are presented below. All these cases can be collected into a single formula

containing logical variables. In all these formulas, the mean shear stress τm plays

no role, because it affects the mean position of the block but not the steady state

cyclic dissipation.

As indicated in Fig. A.5, τa is the amplitude of the tangential loading, σa is the

amplitude of normal loading, σm is the mean value of normal loading (compressive

taken as positive), and µ is the coefficient of friction. We define the following non-

dimensional ratios

ζ =
τa
σa

and β =
σm

σa

.
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Figure A.5: (a) A spring block system under periodic normal and tangential load.
(b) Applied normal and shear loads. Note the sign convention: compressive mean
normal stress is positive.

A.3.1 Case 1: zero mean normal stress (β = 0)

In each load cycle, the crack closes when the normal stress is compressive, and opens

when it is tensile. When the crack opens, prior loading history effects disappear.

Upon crack closure, sliding (and hence energy dissipation) occurs only if τa > µσa

(or ζ > µ). The steady cyclic energy dissipation for this case can be shown to be

D = [ζ > µ]× Cσ2
aµζ

{
ζ − µ

ζ + µ

}
, (A.1)

where C is a constant depending on the stiffness; and where the square brackets

denote a logical variable, taking the value 1 if the inequality holds and 0 otherwise.

A.3.2 Case 2: −1 < β < 1

The case of −1 < β < 1 is similar to that of case 1, in that the crack opens and

closes once in each cycle. The dissipation can be computed using the foregoing

result by noting that the instant of crack closure can be used as a reference point,

and subsequent stress increments until the next crack opening can be treated in the
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same way as in Case 1 above. The net result is

D = [ζ > µ]× [−1 < β < 1]× Cσ2
aµζ

{
(1 + β)2

ζ − µ

ζ + µ

}
, (A.2)

where putting β = 0 recovers Case 1.

A.3.3 Case 3: β < −1

For β < −1 the crack remain always open and there is no dissipation.

A.3.4 Case 4: β > 1

If β > 1, then the crack never opens. It can be shown that, starting from zero

displacements, the cyclic state is reached in one forcing cycle. To obtain a formula

for the steady state cyclic dissipation, the displacement at the instant of minimum

compression is first assumed to be some x0; then subsequent displacements are

computed over one cycle; and the final displacement is set equal to x0 again. Upon

solving for x0, the dissipation per cycle can be easily calculated. It is

D = [ζ > µ]× Cσ2
aµζ

{
(1 + β)2

ζ − µ

ζ + µ
− (β − 1)2

ζ + µ

ζ − µ

}
. (A.3)

The above formula holds for β <
ζ

µ
, beyond which there is no cyclic dissipation.

A.3.5 Single formula

All the foregoing results can be combined into one formula as follows:

D=[β<
ζ

µ
]×[ζ >µ]×[β>−1]×Cσ2

aµζ

{
(1+β)2

ζ−µ

ζ+µ
−[β>1](β−1)2

ζ+µ

ζ−µ

}
, (A.4)

which involves a single load-independent and friction-independent fitted coefficient

C.
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A.4 Simulation results from 3D finite element anal-

ysis

The dissipation formula of Eq. (2.3) was verified using 3D finite element simulations

of a circular and a triangular crack. Some details of those simulations are presented

below.

A.4.1 Circular crack

A cube of 10mm edge length was considered, with a central circular crack of 1mm

radius. 10-noded tetrahedral elements were used to discretize the volume. Using

symmetry, one half of the system was analyzed. The bottom half of that half is

shown in Fig. A.6.

Figure A.6: One half of the 3D finite element mesh with circular crack.

Figures A.7 and A.8 show typical results from a convergence study. Note, how-

ever, that we have used an irregular mesh, and the mesh refinement was not done by

some rational quantifiable criteria, but rather by manual (mouse-driven) selection of

regions within the mesh by a human user. As a result, the convergence against num-

ber of elements N need not show a well defined function. Nevertheless, an empirical

fit was attempted, and the resulting extrapolated value for N → ∞ was within 1

percent of the dissipation calculated with our most refined mesh.
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Figure A.7: Convergence study for the circular crack. Mesh refinement, using 100
time steps in the loading cycle. The largest number of solid elements used was
59,410. The dissipation values are fitted fairly well (empirically) by a curve of the

form a0 +
a1
N2

+
a2
N3

, where N is the number of elements. The limiting value, a0,

matches the last computed value to within about 1 percent, and so further refinement
was not attempted.
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Various loading cases were simulated and are shown in Table A.2. The computed

dissipation results from the finite element simulations were compared with Eq. (2.3)

above. Figure A.9 shows the results obtained, and the match is excellent.
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Figure A.9: Analytical formula for dissipation against computed value from finite
element (FE) simulation (with one fitted constant C) for the circular crack. The
numbers are larger than for the 2D computations because the stresses used here are
larger; note, however, that the material is linearly elastic and stress magnitudes are
notional.

A.4.2 Triangular crack

For the triangular crack, the analysis procedures and the overall dimensions of the

cubic cell were the same as for the circular crack case, only the crack was here an

isoceles triangle of base 2mm and height 2mm. Using symmetry, one half of the

system was analyzed. The bottom half of that half is shown in Fig. A.10. The

number of solid elements used was 53,499, and a systematic convergence study was

not carried out.

Various loading cases were simulated and are shown in Table A.3. The computed

dissipation results from the finite element simulations were compared with Eq. (2.3)

above. Figure A.11 shows the results obtained, and the match is excellent.
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µ τa (MPa) σa(MPa) β =

(
σm

σa

)
α =

(
τm

τa

)
Dissipation (N-mm)

0.2 1100 1000 0 0 2.0002
0.2 1100 1000 0 0.4 1.9997
0.3 1400 1000 0 0 3.5870
0.3 1400 800 0 0 3.1418
0.3 1600 1200 0 0 4.8161
0.3 1000 1000 0 0 2.1160
0.4 500 1000 0 0 0.2822
0.4 600 1000 0 0 0.6193
0.2 1100 800 0.3 0 2.9342
0.4 700 1000 0 0 0.9909
0.4 800 1000 0 0 1.3891
0.4 1000 1000 0 0 2.2460
0.4 1100 1000 0 0 2.6960
0.3 800 10 0.4 0 0.0641
0.4 1200 1000 0 0 3.1566
0.4 1300 1000 0 0 3.6265
0.5 1600 1100 0 0 5.6768
0.4 1100 1000 0.4 0 5.3253
0.5 1000 1000 0 0 2.1828
0.5 1300 800 0 0 3.6301
0.5 900 900 0 0 1.7645
0.2 1300 1000 0 0 2.5135
0.2 1400 1600 0 0 3.7009
0.2 800 1000 0 0 1.2498
0.2 900 800 0 0 1.3148
0.3 1200 900 0 0 2.6988
0.3 1700 1100 0 0 5.0128
0.3 400 1000 0 0 0.2151
0.4 600 1000 0.7 0 1.8383
0.3 500 1000 0 0 0.4796
0.6 1500 1100 0 0 5.0804
0.6 1200 1000 0 0 3.1555
0.45 900 900 0 0 1.8072
0.25 1300 2000 0 0 3.7867
0.35 1430 1290 0 0 4.4251
0.35 1600 950 0 0 4.6179
0.35 1600 1000 0 0 4.7496
0.45 1400 1000 0 0 4.2683
0.55 1700 1900 0 0 5.5847
0.55 900 900 0 0 1.6910

Table A.2: Dissipation results for various load cases: flat circular crack. The first
2 rows show that the mean value of the shear stress does not affect the dissipation
per cycle.
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µ τa (MPa) σa(MPa) β =

(
σm

σa

)
α =

(
τm

τa

)
Dissipation (N-mm)

0.2 800 1000 0 0 0.5538
0.2 800 1000 0 0.4 0.5536
0.4 1000 1000 0 0 0.9971
0.4 1000 1000 0 0.4 0.9968
0.2 900 800 0 0 0.5834
0.2 1100 800 0.3 0 1.3077
0.2 1400 1600 0 0 1.6494
0.3 500 1000 0 0 0.2103
0.3 800 1000 0.4 0 1.2506
0.3 1000 400 0 0 0.5508
0.3 1400 1000 0 0 1.5981
0.3 1600 1200 0 0 2.1478
0.4 500 1000 0 0 0.1222
0.4 600 1000 0 0 0.2722
0.4 600 1000 0.7 0 0.8148
0.4 700 1000 0 0 0.4375
0.4 700 900 0.3 0 0.7951
0.4 800 1000 0 0 0.6150
0.4 1100 1000 0.4 0 2.3731
0.4 1200 700 −0.4 0 0.4346
0.5 900 900 0 0 0.7824
0.5 1100 800 −0.2 0 0.7631
0.5 1300 800 0 0 1.6159
0.6 1500 1100 0 0 2.2634
0.3 1300 1000 0 0 1.4303
0.42 1300 1100 0 0 1.6746
0.48 1200 800 0 0 1.3904
0.5 1500 900 0 0 2.1401
0.57 1400 1000 0 0 1.9743
0.35 1100 900 0 0 1.1227
0.33 1400 1400 0 0 1.9110

Table A.3: Dissipation results for various load cases: flat triangular crack. The first
4 rows show that the mean value of the shear stress does not affect the dissipation
per cycle.
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Figure A.10: One half of the 3D finite element mesh with a triangular crack.
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Figure A.11: Analytical formula for dissipation against computed value from finite
element (FE) simulation (with one fitted constant C). The crack is an isoceles
triangle.
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A.5 Matrix B for the constitutive model

For Eq. (2.11), the fitted matrix B was found to be

B =




0.0502 −0.2919 1.4014 −2.2672 1.2207
−0.2404 1.1032 −8.5528 15.6248 −8.8444
0.9590 −1.9703 19.1510 −37.1280 22.1110

−1.3023 1.7092 −18.3802 37.1835 −23.2254
0.5354 −0.5540 6.3899 −13.4358 8.7562

−0.1639 0.2904 −2.4921 5.2895 −3.4713
1.4849 −1.5920 22.4593 −53.7902 37.0354

−4.4902 5.6752 −70.7569 170.3431 −117.5853
5.0411 −8.3716 88.1836 −208.9717 143.4247

−1.8201 3.9436 −37.2935 87.0923 −59.4126
0.2007 −0.3217 3.4993 −8.2660 5.6588

−1.8590 3.0802 −34.4736 84.1598 −58.3400
5.0382 −11.5023 111.2467 −266.1229 182.3608

−5.0664 16.2774 −139.9197 326.2059 −220.4225
1.6216 −7.4579 59.4630 −135.8272 90.6983

−0.0755 0.1573 −1.6178 3.8573 −2.6340
0.6723 −1.6798 15.9470 −38.2460 26.1804

−1.6712 5.9580 −50.6344 118.6870 −80.1494
1.5056 −8.0587 62.8622 −143.7174 95.6099

−0.4069 3.5941 −26.4779 59.3444 −38.9797




. (A.5)

A.6 Brief review of some topics in vibration the-

ory

A.6.1 Response of a typical damped harmonic oscillator

Consider the lightly damped harmonic oscillator

ẍ+ 2ζẋ+ x = sinωt. (A.6)

The steady state response amplitude is
1√

(1− ω2)2 + 4ζ2ω2
, which is plotted in Fig.

A.12. It is seen that small damping has a sensible effect on the response only close

to resonance.
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Figure A.12: Response of the damped oscillator in Eq. (A.6).

A.6.2 Modal damping

In the commonest version of linear vibration theory, we work with discrete systems

of the form

Mẍ + Cdẋ+Kx = f, (A.7)

where overdots denote time derivatives, lower case symbols denote n × 1 column

matrices, upper case symbols denote n × n matrices, M = MT > 0 (symmetric

positive definite; no confusion with M of Eq. (2.11)), K = KT ≥ 0 (symmetric

positive semidefinite), and Cd = CT
d ≥ 0 as well.

The unforced and undamped system is

Mẍ+Kx = 0. (A.8)

Assembling the (guaranteed real) eigenvectors of the system in a matrix Φ, it is

shown in elementary textbooks that ΦTMΦ can be chosen (by scaling) to be the

identity matrix I, for which choice

ΦTKΦ = Λ,

a diagonal matrix whose diagonal elements are the squares of the natural frequencies.
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Considering the unforced but damped system, however, if Cd has no special struc-

ture then the system has complex eigenvectors (the structure, even when vibrating

in a single mode, does not have all parts of it moving perfectly in phase).

In the special case where the real eigenvectors of the undamped system also diag-

onalize the damping matrix Cd, the damped system continues to have real eigenvec-

tors. In such cases, staying within real arithmetic, the system can be diagonalized

and the responses of individual modes can be studied independently. In many ap-

plications, it is routine to assume that Cd can be so diagonalized. Examples lie in

experimental modal analysis, and in estimating the responses of some structures un-

der arbitrary loading (where the investigators might, e.g., assume 2 percent damping

uniformly for all modes).

Academically, it remains to ask what matrices Cd can be so diagonalized. A

restricted answer is

Cd = α0M + α1K,

commonly called proportional damping, which is itself a special case of

Cd =M
n−1∑

i=0

αi(M
−1K)i=α0M+α1K+α2KM

−1K + · · ·+αn−1K(M
−1K)n−2. (A.9)

The representation of Eq. (A.9) is well known (see e.g., Adhikari (2001)). Retention

of higher powers of M−1K adds no modeling benefit because of the Cayley-Hamilton

theorem.

Note that the above representation is in the end merely a convenient matrix-

algebra trick: it has no physical basis. After all, the linear viscous damping model is

already invalidated by the observed frequency-independence of per-cycle dissipation

(Lord Kelvin, 1865; and many others after him).

The linear viscous damping model continues to be widely used in engineering

models, however, especially for lightly-damped structures. This is both for con-

venience as well as the fact that small damping is only important near resonance

anyway (see above), and in near-resonance responses merely matching the energy

dissipated per cycle may meet many modeling goals.
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The net result is that, provided the energy dissipation in each individual mode is

correctly captured by whatever equivalent damping ratio we are using in our model,

further details of the damping become irrelevant for many practical purposes.

With this background motivation, assume (for convenience or simplicity) that

Cd can in fact be diagonalized as above. Let us now consider modal coordinates q

such that x = Φq. Equation (A.7) becomes

MΦq̈ + CdΦq̇ +KΦq = f, (A.10)

or

ΦTMΦq̈ + ΦTCdΦq̇ + ΦTKΦq = ΦTf, (A.11)

or (as discussed above)

Iq̈ +Ddq̇ + Λq = f̄ , (A.12)

where Dd is a diagonal matrix by assumption. The decoupled equations now look

like

q̈i + diq̇i + ω2
i qi = f̄i, (A.13)

where ωi is the i
th natural frequency, di is the i

th diagonal element of Dd, and f̄i can

be called the ith modal forcing. For simplest interpretation, we usually write

di = 2ζiωi, (A.14)

where ζi is the i
th nondimensional damping ratio. In applied work (e.g., simulations

of automotive components in industrial design), ζi is often estimated or even arbi-

trarily specified in simulation, e.g., “ζi = 0.02 for all i”. That is, one works with

effective modal damping values, usually small values, without regard to the source of

the damping. The fact that damping plays a significant role only close to resonance

makes this a reasonable approach in many cases.

Finally, if we have a way (as explained in Chapter 2) of considering the modes

one by one; of assuming that the structure has a response dominated by that mode;

and then of estimating its equivalent damping ratio ζi; then we have Dd by Eq.



122 Supplementary materials for Chapter 2

(A.14). We then automatically have

Cd = Φ−TDdΦ
−1, (A.15)

should we need it. Not assuming that Cd is diagonalizable as above would lead to

greater modeling complications and numerical difficulties, with doubtful incremental

benefits.
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B.1 Eshelby tensor for an ellipsoidal inclusion

We present below the formula for calculating the Eshelby tensor for a general ellip-

soidal inclusion. For details of this formula, see Mura (1987).

For an ellipsoidal inclusion described by
x2

a21
+

y2

a22
+

z2

a23
≤ 1 with a1 > a2 > a3,

we denote

F (θ, k) =

∫ θ

0

dw√
1− k2 sin2w

,

and

E(θ, k) =

∫ θ

0

√
1− k2 sin2w dw,

where we define θ = sin−1

√
1− a23

a21
, and k =

√
a21 − a22
a21 − a23

.

We now define Ii and Iij values as follows (no confusion with I1, I2 and I3 for

the first, second, and third stress invariants respectively).

I1 =
4πa1a2a3

(a21 − a22)
√

a21 − a23
(F (θ, k)− E(θ, k))

I3 =
4πa1a2a3

(a21 − a22)
√

a21 − a23

(
a2
√
a21 − a23
a1a3

−E(θ, k)

)

I2 = 4π − I1 − I3

I12 =
I2 − I1
a21 − a22

(B.1)
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I13 =
I3 − I1
a21 − a23

I23 =
I3 − I2
a22 − a23

I11 =
1

3

(
4π

a21
− I12 − I13

)

I22 =
1

3

(
4π

a22
− I12 − I23

)

I33 =
1

3

(
4π

a23
− I13 − I23

)
, (B.2)

Having defined the above, the Eshelby tensor for an isotropic material in Voigt

form is

S =




S1111 S1122 S1133 0 0 0
S2211 S2222 S2233 0 0 0
S3311 S3322 S3333 0 0 0
0 0 0 2S2323 0 0
0 0 0 0 2S3131 0
0 0 0 0 0 2S1212



, (B.3)

where the elements (Sijkl) are

S1111 =
3

8π(1− ν)
a21I11 +

1− 2ν

8π(1− ν)
I1

S1122 =
1

8π(1− ν)
a22I12 −

1− 2ν

8π(1− ν)
I1

S1133 =
1

8π(1− ν)
a23I13 −

1− 2ν

8π(1− ν)
I1

S1212 =
a21 + a22

16π(1− ν)
I12 +

1− 2ν

16π(1− ν)
(I1 + I2)

S2222 =
3

8π(1− ν)
a22I22 +

1− 2ν

8π(1− ν)
I2

S2211 =
1

8π(1− ν)
a21I12 −

1− 2ν

8π(1− ν)
I2

S2233 =
1

8π(1− ν)
a23I23 −

1− 2ν

8π(1− ν)
I2

S2323 =
a22 + a23

16π(1− ν)
I23 +

1− 2ν

16π(1− ν)
(I2 + I3)

(B.4)
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S3333 =
3

8π(1− ν)
a23I33 +

1− 2ν

8π(1− ν)
I3

S3311 =
1

8π(1− ν)
a21I13 −

1− 2ν

8π(1− ν)
I3

S3322 =
1

8π(1− ν)
a22I23 −

1− 2ν

8π(1− ν)
I3

S3131 =
a21 + a23

16π(1− ν)
I13 +

1− 2ν

16π(1− ν)
(I1 + I3). (B.5)

B.2 Details of 6 × 6 matrices G and H

The tensors G and H of Eq. (3.9) are given by

G = C∗ −C∗SP, and H = C∗SQ−C∗,

where

P = [C+ (C∗ −C)S]−1 (C−C∗), and Q = [C+ (C∗ −C)S]−1C∗.

In the above equations, S is the Eshelby tensor in Voigt form (6×6 matrix) as given

above, and the matrices C and C∗ are the stiffness tensors, given also in Voigt form

as

C =
E

(1 + ν)(1− 2ν)




1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1

2
− ν 0 0

0 0 0 0 1
2
− ν 0

0 0 0 0 0 1
2
− ν



, (B.6)

and

C∗ =
E∗

(1 + ν∗)(1− 2ν∗)




1− ν∗ ν∗ ν∗ 0 0 0
ν∗ 1− ν∗ ν∗ 0 0 0
ν∗ ν∗ 1− ν∗ 0 0 0
0 0 0 1

2
− ν∗ 0 0

0 0 0 0 1
2
− ν∗ 0

0 0 0 0 0 1
2
− ν∗



,

(B.7)
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where E and ν are the Young’s moduli and Poission’s ratio of the outer material,

and E∗ and ν∗ are the Young’s moduli and Poission’s ratio of the flaw material.
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C.1 D from Eq. (4.10) for even integer m

It appears that when m is an even integer, Dff can be expressed as a function of J2

and J3. Some results for m > 4 are given below. We have not investigated this issue

further.

Dff |m=6 =
16

5005
(49J3

2 − 27J2
3 )

Dff |m=8 =
128

85085
(79J4

2 − 108J2J
2
3 )

Dff |m=10 =
768

969969
(121J5

2 − 270J2
2J

2
3 )

Dff |m=12 =
1024

185910725
(14579J6

2 − 44820J3
2J

2
3 + 3645J4

3 )

We can also introduce a new symmetrical variable ζ = χ(1− χ), and obtain

Dff |m=2 =
2

15
(σ1 − σ3)

2(1− ζ)

Dff |m=4 =
8

315
(σ1 − σ3)

4(1− ζ)2

Dff |m=6 =
16

3003
(σ1 − σ3)

6

(
1− 3ζ +

18

5
ζ2 − ζ3

)

Dff |m=8 =
128

109395
(σ1 − σ3)

8(1− ζ)

(
1− 3ζ +

33

7
ζ2 − ζ3

)

Dff |m=10 =
256

969969
(σ1 − σ3)

10(1− ζ)2
(
1− 3ζ +

19

3
ζ2 − ζ3

)
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Dff |m=12 =
1024

16900975
(σ1 − σ3)

10

(
1− 6ζ +

225

11
ζ2 − 400

11
ζ3 +

350

11
ζ4 − 126

11
ζ5 + ζ6

)

C.2 Mathematical details of the large m approx-

imation

We note that our proposed dissipation mechanism is shear driven. Therefore, the

dissipation for large m would be due to the maximum shear (σ1 − σ3) and the

contributions from other shear stress components can be neglected. In Fig. 4.2 we see

that the maximum shear is at θ = π/4 and φ = 0 (i.e. n̂ = (1/
√
2, 0,±1/

√
2)). Using

this fact we have used Laplace’s method to determine the large m approximation of

the integral. We briefly present the calculations below.

We first rewrite the integral in Eq. (4.10) as

I(m,χ) =

∫ 2π

0

∫ π

2

0

e
m

2
log(τ2) sin θdθdφ. (C.1)

The above integral can be looked upon as a more general integral of the form

I(m,χ) =

∫ b

a

∫ d

c

e−mf1(χ; θ,φ)f2(χ; θ, φ)dθdφ. (C.2)

Here f1(χ; θ, φ) has minimum at θ = π/4 and φ = 0 or π (minimum because a

minus sign is introduced in Eq. (C.2)). We approximate the integral about one

critical point (φ = 0) and later the result is multiplied by 2 to compensate for the

other critical point (φ = π). To obtain the asymptotic approximation both f1 and f2

are replaced by local Taylor approximations of appropriate degree about the critical

point (θ = π/4 + ζ and φ = 0 + η). Now for large m, the main contribution to the

integral comes from a small neighborhood of the critical point only, therefore the

integral limit can be taken as −∞ to ∞.

To illustrate, let the Taylor expansion of f1 be written as

f1 ∼ α0 + α1ζ
2 + β1η

2 + α2ζ
3 + β2η

3 + α3ζ
4 + β3η

4 + . . .

= (α0 + α1ζ
2 + β1η

2) + g1(m,χ; ζ, η) (C.3)
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where, αk and βk are functions of m and χ. A truncated Taylor expansion of f2

gives some other function g2(χ; ζ, η). Therefore, the integral in Eq. (C.2)) becomes

I(m,χ) ∼
∫ ∞

−∞

∫ ∞

−∞
e−m(α0+α1ζ2+β1η2)h1(m,χ; ζ, η)dζdη, (C.4)

where

h1(m,χ, ζ, η) = e−mg1(m,χ;ζ,η)g2(χ; ζ, η).

We now Taylor expand h1(m,χ; ζ, η) and evaluate the integral in Eq. (C.4)). Note

that for each Taylor expansion we need to keep sufficiently many terms for getting

the higher-order correction terms.

Using the above method for the leading-order approximation of Eq. (C.1) we get

I(m,χ) ∼ 2

2m

∫ ∞

−∞

∫ ∞

−∞
e−m(α1ζ2+β1η2)

1√
2
dζdη

=
1

2m
× 2π

m
√
2α1β1

. (C.5)

In our specific case, α1 = 2 and β1 = χ(1 − χ). A higher-order approximation

including the correction terms is

I(m,χ) ∼ 2π

m2m+1
√

χ(1− χ)

(
1 +

6χ2 − 6χ+ 1

4mχ(1− χ)
+

68χ4 − 136χ3 + 116χ2 − 48χ+ 9

32m2χ2(1− χ)2

)

(C.6)

C.2.1 Corrections terms for χ = 0 or 1

For χ = 0 the integral of Eq. (4.10) is just

I(m, 0) =

∫ 2π

0

∫ π

2

0

sinm θ cosm θ sin θdθdφ (C.7)

which is a Beta function. However, to develop a series along the above lines, we can

rewrite Eq. (C.7) as

I(m, 0) =
1

2m

∫ 2π

0

∫ π

2

0

em log(sin 2θ) sin θdθdφ. (C.8)

We know that the dissipation curve is symmetric about χ = 0.5. Therefore,
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the integrals in Eq. (C.7) and Eq. (C.8) are also applied to χ = 1. We now use

the approach outlined above for the Laplace’s method and get the higher-order

approximation of Eq. (C.8) as

I(m, 0) ∼ 2π
√
π

2m+1
√
m

(
1− 3

8m
+

25

128m2

)
. (C.9)
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D.1 Torsion of a circular rod

D.1.1 Analytical calculation

The governing differential equation of torsional vibration of a circular rod is given

by

I0
∂2φ

∂2t
= GIp

∂2φ

∂2x
(D.1)

where I0 is the mass polar moment of inertia per unit length, Ip is the area polar

moment of inertia of the cross section of the rod, and G is the shear modulus of the

material. The angular displacement (φ) of the built-in rod (see Fig. D.1) executing

first mode of torsional vibration is given by

φ(x, t) = A1 sin
πx

2L
sinωt. (D.2)

dxx

L

f

Figure D.1: Pure torsional vibration of a circular rod.
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Using Eqs. (D.2) and (D.1), we get the natural frequency of the torsional mode

as

ω =
π

2L

√
G

ρ
, (D.3)

where ρ is the mass density of the material. The maximum kinetic energy of this

torsional mode is

E =
1

2
I0ω

2

∫ L

0

A2
1 sin

2 πx

2L
dx =

A2
1LI0ω

2

4
. (D.4)

For this pure torsional mode, σ2
eq = 3τ 2, where τ is the shear stress at a distance r

from the neutral axis. The shear stress τ is given by

τ =
Tr

Ip
,

where T = GIp
∂φ

∂x
. The dissipated energy (see Eq. (5.2)) over one cycle is obtained

as

−∆E = ξ

∫

V

σ2
eqdV = ξ

∫

V

3τ 2dV = 3ξA2
1G

2Ip
π2

8L
. (D.5)

Using Eqs. (D.4), and (D.5) we obtain the effective damping ratio as

ζeff =
1

4π
× −∆E

E
=

3Gξ

2π
=

3ξE

4π(1 + ν)
. (D.6)

For ν = 0.3, we get
2πζeff
ξE

= 1.154 (D.7)

D.1.2 Finite element computations of ζeff

The finite element model of the circular rod is shown in Fig. D.2. The rod, built-in

at one end and free at the other end, is of length 1.0 m and of circular cross section

with radius 0.025 m. 29816 elements are used for the mesh. Material properties

considered for this model are the same as in Table 5.1. General 3D motions of this

rod were considered in the analysis, and so bending, twisting, and stretching modes

were all in principle included.

The first few modes of the rod are bending modes (see Table D.1). The seventh
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X
Y

Z

Figure D.2: FE model of the rounded rod.
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SMX =.511076

Figure D.3: Mode shape of the torsional mode.

mode for the present geometry happens to be a torsional mode. The lateral modes

are basically bending modes and the effective damping ratio (normalized by
ξE

2π
as

mentioned earlier) for those modes are very close to 11. The computed
2πζeff
ξE

for the

torsional mode is 1.154, which matches Eq. (D.7). The mode shape of the torsional

mode is shown in Fig. D.3.

1Wherever the state of stress varies over the body only in terms of a scalar multiple the damping
ratios for these cases are found to be the same for m = 2. We will also see this below in other
examples
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Mode No. Frequency (Hz) Numerical
2πζeff
ξE

Mode type

1 36.32 0.994 bending mode
2 36.32 0.994 bending mode
3 225.73 0.996 bending mode
4 225.73 0.996 bending mode
5 623.88 0.998 bending mode
6 623.88 0.998 bending mode
7 804.50 1.154 torsional mode
8 1200.40 1.001 bending mode

Table D.1: First eight vibration modes of the circular rod and their corresponding
normalized ζeff values.

D.2 Bending of a thin rectangular plate

D.2.1 Analytical approach

We have used Kirchhoff’s plate model for our analytical calculation. The displace-

ment variables of the simply supported rectangular plate (see Fig. D.4), vibrating

x

y

z

a

b

h

Figure D.4: Thin rectangular plate.

in its first fundamental mode, are

w = A1 sin
πx

a
sin

πy

b

u = −z
∂w

∂x

v = −z
∂w

∂y
. (D.8)
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In this case, the strain-displacement relations are

ǫx =
∂u

∂x
=

A1π
2

a2
z sin

πx

a
sin

πy

b

ǫy =
∂v

∂y
=

A1π
2

b2
z sin

πx

a
sin

πy

b

γxy =
∂u

∂y
+

∂v

∂x
= −2A1π

2

ab
z cos

πx

a
cos

πy

b
, (D.9)

and the stress-strain relations are

σx =
E

1− ν2
(ǫx + νǫy)

σy =
E

1− ν2
(ǫy + νǫx)

τxy =
E

2(1 + ν)
γxy. (D.10)

Here, the out-of-plane normal stress (σz), and shear stresses (τyz, and τzx) are as-

sumed to be small, and neglected.

The first and second stress invariants, for this case, turn out to be

I1 = σx + σy

I2 = σxσy − τ 2xy. (D.11)

Now, using Eqs. (D.8), (D.9), (D.10), and (D.11), the dissipated energy over one

cycle is obtained as

−∆E = ξ

∫

V

(I21 − 3I2)dV =
ξA2

1E
2h3π4(a2 + b2)2(1− ν + ν2)

48a3b3(1− ν2)2
(D.12)

The total energy is

E =
1

2

∫

V

(σxǫx + σyǫy + τxyγxy)dV =
A2

1Eh3π4(a2 + b2)2

96a3b3(1− ν2)
(D.13)

Therefore, we obtain ζeff as

ζeff =
1

4π
× −∆E

E
=

ξE(1− ν + ν2)

2π(1− ν2)
. (D.14)

For ν = 0.3,
2πζeff
ξE

turns out to be 0.868.
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D.2.2 Computational solution

The finite element model of the rectangular plate is shown in Fig. D.5. The plate is

of dimensions 1.0 m × 0.5 m × 0.005 m. A total of 30559 elements are used in the

mesh. Material properties taken for this model are the same as in Table 5.1. Simply

supported boundary condition is applied on all the four edges.

X

Y

1

U

Z

Figure D.5: FE model of the rectangular plate.
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Figure D.6: First vibration mode of the simply supported rectangular plate.

The computed results for the first five modes (see Fig. D.6 for the first mode) of
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transverse vibration are tabulated in Table. D.2. The computed ζeff matches well

with the analytical result.

Mode No. Frequency (Hz) Numerical
2πζeff
ξE

Mode type

1 61.58 0.867 bending mode
2 98.46 0.867 bending mode
3 160.05 0.867 bending mode
4 209.56 0.868 bending mode
5 246.34 0.867 bending mode

Table D.2: ζeff in the transverse vibration of the rectangular plate.

D.3 Radial mode of a thin-walled spherical shell

D.3.1 Analytical calculation

A schematic of the radial mode vibration of a thin-walled spherical shell is shown in

Fig. D.7. For this vibration mode, the stresses in the radial and hoop directions are

R

t

Figure D.7: Radial mode vibration of thin-walled spherical shell (half of the sphere
is shown).

the principal stresses and are identical by symmetry. Therefore, the state of stress

(or strain) are

ǫ1 = ǫ2 = ǫ ; σ1 = σ2 = σ ; σ3 = 0,
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which gives

σ =
Eǫ

(1− ν)
. (D.15)

The first and second stress invariants, for this case, are

I1 = σ1 + σ2 + σ3 =
2Eǫ

(1− ν)

I2 = σ1σ2 + σ2σ3 + σ3σ1 =
E2ǫ2

(1− ν)2
(D.16)

The equivalent stress is calculated using

σ2
eq = I21 − 3I2 =

E2ǫ2

(1− ν)2
. (D.17)

Maximum strain energy (SEmax) over one cycle of vibration is

SEmax =
I21
2E

− (1 + ν)I2
E

=
Eǫ2

(1− ν)
. (D.18)

Now, using Eqs. (D.17), and (D.18), we obtain ζeff as

ζeff =
1

4π
×

∫
V
ξσ2

eqdV∫
V
SEmaxdV

=
ξE

4π(1− ν)
.

For ν = 0.3,
2πζeff
ξE

turns out to be 0.714.

D.3.2 Computational solution

The finite element model of a thin-walled spherical shell is shown in Fig. D.8. The

spherical shell is of mean diameter 4 m and thickness 0.1 m. Material properties

taken for this model are the same as in Table 5.1. Total number of elements in the

mesh is 8488. The element size is on the order of the wall thickness. This does not

affect us adversely in this particular calculation because our primary interest is in

the uniform radial breathing mode.

It turns out that the 108th mode is the uniform breathing radial mode (see Fig.

D.9). For that mode we find the
2πζeff
ξE

is 0.714, which matches well with the

analytical result.
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Figure D.8: FE model of the thin sphere.
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Figure D.9: Uniform radial mode vibration of the sphere.

Mode No. Frequency (Hz) Numerical
2πζeff
ξE

Mode type

7 to 11 304.1 1.096 bending mode
12 to 18 363.6 1.053 bending mode
19 to 27 395.3 1.027 bending mode
28 to 38 425.8 1.006 bending mode

108 698.1 0.714 uniform radial mode

Table D.3: ζeff for thin spherical shell.
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D.4 Longitudinal vibration of a laterally constrained

rod

D.4.1 Analytical approach

The rod shown in Fig. D.10 is constrained in y and z-directions. Thus, the stress

state of the beam is given by

σ1 = C(1− ν)ǫ1

σ2 = σ3 = Cνǫ1, (D.19)

where

C =
E

(1 + ν)(1− 2ν)
. (D.20)

x

z

y
u  = 0 on this and bottom face

u  = 0 on this  and back face

y

z

Figure D.10: Laterally constrained rod. uy = 0 on the top and bottom faces. uz = 0
on the front and back faces. Displacements are unconstrained in the right most face.
The left most face is fixed.

The stress invariants, for this case, are

I1 = σ1 + σ2 + σ3 = Cǫ1(1 + ν)

I2 = σ1σ2 + σ2σ3 + σ3σ1 = C2ǫ21(2ν − ν2). (D.21)

Therefore, the equivalent stress is

σ2
eq = I21 − 3I2 = C2ǫ21(1− 2ν)2. (D.22)
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Maximum strain energy (SEmax) over one cycle of oscillation is

SEmax =
I21
2E

− (1 + ν)I2
E

=
C2ǫ21
2E

(1− ν2)(1− 2ν). (D.23)

Now, using Eq. (D.22) and Eq. (D.23), we obtain ζeff as

ζeff =
1

4π
×

∫
V
ξσ2

eqdV∫
V
SEmaxdV

=
ξE(1− 2ν)

2π(1− ν2)
. (D.24)

For ν = 0.3, we get
2πζeff
ξE

= 0.440.

D.4.2 Computational solution

A 15 m × 1 m × 1 m rod is modeled in ANSYS. Material properties taken for this

model are the same as in Table 5.1. The FE model is shown in Fig. D.11. The model

is built-in at one end and laterally constrained. The FE model has 17919 elements.

X

Y

Z

1

Figure D.11: FE model of the laterally constrained rod.

The calculated
2πζeff
ξE

using this model turns out to be 0.440, which matches the

analytical result. The first mode shape is shown in Fig. D.12.



142 Supplementary materials for Chapter 5
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.002297
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.003216
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AUG 24 2013
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STEP=1
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FREQ=100.336

USUM(AVG)
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DMX =.004134

SMX =.004134

Figure D.12: First mode of the laterally constrained rod.

D.5 First radial mode of a solid sphere

D.5.1 Analytical calculation for the radial mode

Here, we compute the frequency as well as the effective damping ratio of a solid

sphere when it executes a purely radial mode of vibration. Fig. D.13 shows a

schematic representation of the radial mode oscillation.

R

Figure D.13: Radial mode vibration of solid sphere (half of the sphere is shown).

Fig. D.14 represents the free body diagram of a small elemental volume for
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the radial mode of vibration. Carrying out force balance in the radial direction

(assuming radially outward forces as positive) we write

ρr2∆θ∆φ∆ r ü = −2σt

(
r +

∆r

2

)
∆φ∆r∆θ − σrr

2∆θ∆φ

+

(
σr +

∂σr

∂r
∆r

)
(r +∆r)2∆θ∆φ. (D.25)

Here, u is the displacement in the radial direction. Assuming a harmonic solution

r

r

θ

f

σ

tσ

r

tσ

tσ

tσ

+

σr

σr

r
r

Figure D.14: Free body diagram of the element.

(ü = −ω2u) and eliminating the higher order terms we obtain

−2σt + 2σr + r
∂σr

∂r
+ ρrω2u = 0. (D.26)

The stress-strain relations for the radial mode of vibration are

ǫr =
σr

E
− 2ν

σt

E
and ǫθ =

(1− ν)σt

E
− ν

σr

E
. (D.27)

The strain-displacement relations are

ǫr =
∂u

∂r
and ǫθ =

u

r
. (D.28)
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Combining Eqs. (D.26), (D.27), and (D.28) we get a partial differential equation

(PDE) involving u(r) as

r
∂2u

∂r2
+ 2

∂u

∂r
+

2

r
u+

ρω2r(1− ν − 2ν2)

E(1− ν)
u = 0. (D.29)

The boundary conditions for the above PDE are

u(0) = 0, and σr(R) = 0. (D.30)

Now, we need to solve Eq. (D.29) with the boundary conditions in Eq. (D.30). It

is difficult to obtain the solution in algebraic form. So, we solve Eq. (D.29) with

R = 1 m and the material properties of Table 5.1. The calculations are carried out

using the symbolic computation software Maple. Long symbolic calculations are

not reproduced here for reasons of space. The calculated values for frequency and

effective damping ratio are (details skipped)

ω = 16075.18 rad/sec,

and
2πζeff
ξE

= 0.114. (D.31)

D.5.2 Computational solution

A solid sphere with 1 m radius is modeled in ANSYS. The finite element model

is shown in Fig. D.15. Total number of elements in the model is 10457. Material

properties used for this model are the same as in Table 5.1.

Effective damping ratios have been calculated for 50 modes of unconstrained

vibrations of the sphere. The first six modes are rigid body modes. The 7th to 33rd

modes are not purely radial. Numerical results are reported in Table D.4. The 34th

mode is a purely radial mode. The radial mode (34th) and a twisting mode (7th) are

shown in Figs. D.16 and D.17 respectively.

For the radial mode we find,

2πζeff
ξE

= 0.114 (D.32)
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X

Y Z

X

Y Z

Full model Half portion

Figure D.15: FE model of the solid sphere.
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SMN =.387E-03
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Figure D.16: Radial mode of the solid sphere.

which matches Eq. (D.31).

The ζeff for this radial mode is the lowest among all the cases we have studied so

far (either analytically or numerically). This may be a consequence of considering the

fact that the damping is based on the distortional strain energy. If there is damping

associated with volumetric strain, then this damping estimate will be higher. It is

interesting that the damping value for the twisting mode equals that for twisting of

a circular rod (Fig. D.17).
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Figure D.17: Twisting mode of the solid sphere.

Mode No. Frequency (Hz) Numerical
2πζeff
ξE

Mode type

7 to 11 1281.0 1.154 twisting modes
12 to 16 1355.2 1.136 bending and twisting modes
17 to 19 1808.0 0.923 bending modes
20 to 26 1979.5 1.154 twisting modes
27 to 33 2016.9 1.113 bending and twisting modes

34 2558.4 0.114 pure radial mode
35 to 39 2565.0 0.934 bending modes

Table D.4: ζeff for solid sphere.
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