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Preface

This thesis presents results of investigations that have been carried out to understand

ion dynamics in Paul trap mass spectrometers. These mass spectrometers have a three

electrode geometry mass analyzer consisting of a central ring electrode and two end cap

electrodes. Although the electrode shape and electric potentials (applied across the elec-

trodes) are designed to create a linear trapping field, misalignments in the geometry as

well as experimental constraints introduce weak nonlinear fields within the trap cavity.

This results in altering trap performance by way of affecting mass resolutions and mass

assignments, in addition to causing nonlinear resonances which destabilize ions from the

trap. Of the three problems that have been taken up for study in this thesis, the first

concerns understanding early/delayed ejection of ions in mass selective boundary ejection

experiments. The second looks at the differential resolution observed in forward and re-

verse scan resonance ejection experiments. The third study explores a coupled nonlinear

resonance within the nominally stable region of trap operation.

The thesis has been divided into six chapters. Chapter 1 presents some background

information to help understand the Paul trap mass spectrometer. We begin with a de-

scription of the Paul trap mass spectrometer and present the Mathieu equation which

describes the motion of ions within the ideal trap. The nonlinear Mathieu equation and

the Duffing equation, two equations which have been used in our studies, are next pre-

sented. This is followed by describing two modes of operation of the mass spectrometer

which have been investigated in this thesis. Finally, the scope of the thesis is outlined.

In Chapter 2 we use the method of multiple scales to elucidate dynamics associated

with early and delayed ejection of ions in mass selective ejection experiments in Paul

traps. We develop a slow flow equation to approximate the solution of a weakly nonlinear

Mathieu equation to describe ion dynamics in the neighborhood of the stability boundary

of ideal traps (where the Mathieu parameter qz = q∗z = 0.908046). The method of multiple

scales enables us to incorporate higher order multipoles, extend computations to higher

orders, and generate phase portraits through which we view early and delayed ejection.

i
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Our use of the method of multiple scales is atypical in two ways. First, because we look

at boundary ejection, the solution to the unperturbed equation involves linearly growing

terms, requiring some care in identification and elimination of secular terms. Second, due

to analytical difficulties, we make additional harmonic balance approximations within the

formal implementation of the method.

For positive even multipoles in the ion trapping field, in the stable region of trap

operation, the phase portrait obtained from the slow flow consists of three fixed points,

two of which are saddles and the third is a center. As the qz value of an ion approaches

q∗z , the saddles approach each other, and a point is reached where all nonzero solutions

are unbounded, leading to an observation of early ejection.

The phase portraits for negative even multipoles and odd multipoles of either sign

are qualitatively similar to each other and display bounded solutions even for qz > q∗z ,
resulting in the observation of delayed ejection associated with a more gentle increase in

ion motion amplitudes, a mechanism different from the case of the positive even multipoles.

In Chapter 3 we present a study of constraints on pre-ejection dynamical states

which cause differential resolution in resonance ejection experiments using Paul traps

with stretched geometry. Both analytical and numerical computations are carried out

to elucidate the role of damping and scan rate in influencing coherence in ion motion

associated with the forward and reverse scan.

Adopting the Dehmelt approximation, our analytical study is carried out on a damped,

driven Duffing oscillator with octopole nonlinearity. Using the method of multiple scales,

we derive approximate slow flow equations which describe the ion motion. The phase

portraits generated from the slow flow equations, in the vicinity of the jump, display two

stable equilibria (centers) and an unstable fixed point (saddle). Numerical studies on

the original equation are used to understand the influence of damping and scan rate in

causing coherent ion ejection in these experiments.

In the forward scan experiments, for a given damping, low scan rates result in coherent

motion of ions of a given mass at the jump point. At this point, the amplitude and phase

of ions of a given mass, starting at different initial conditions, become effectively identical.

As the scan rate is increased, coherence is destroyed. For a given scan rate, increasing

damping introduces coherence in ion motion, while decreasing damping destroys this

coherence.

In reverse scan experiments, for a given damping, very low scan rates will cause co-

herent ion motion. Increasing the scan rate destroys this coherence.

The effect of damping in reverse scan experiments is qualitatively similar to that in
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the forward scan experiments, but settling times in the forward scan are shorter, leading

to improved coherence and resolution. For mass spectrometrically relevant scan rates and

damping values, significantly greater coherence is obtained in the forward scan.

Chapter 4 is a preliminary investigation of some coupled resonances in Paul traps. Here

we identify the points in the Mathieu stability diagram where coupled resonances occur in

experimental Paul traps. We use the harmonic balance method to determine the az and

qz values corresponding to such resonant points, from the ideal Mathieu equation. The

coupled nonlinear Mathieu equation accommodating octopole, decapole and dodecapole

superpositions is numerically solved to study the nature of instability occurring in the

neighborhood of these points.

The Poincaré sections are presented at select points on the Mathieu stability plot to

demonstrate the variety of behavior. Among the six points studied one displays stable

behavior, two display instability only in the z direction, and others show simultaneous

instability in z and r directions. The coupled resonance occurring in the neighborhood of

a∗z = −0.2313850427 and q∗z = 0.9193009931 is then selected for detailed investigation in

Chapter 5. This corresponds to the intersection of βr = 1
2
, βz = 1

2
, βr + βz = 1. The r-

direction or z- direction motions, in the neighborhood of this point, are not individually

unbounded; however, if both r and z are nonzero, then there is an instability that leads

to unbounded solutions.

In Chapter 5 we study the weakly coupled and nonlinear Mathieu equations governing

ion motion in axial and radial directions in a Paul trap in the neighborhood of the above

mentioned a∗z = −0.2313850427 and q∗z = 0.9193009931. Using harmonic balance based

approximate averaging up to second order, we obtain a slow flow that, we numerically

demonstrate, approximates the actual ion dynamics. We find that the slow flow is Hamil-

tonian. We study the slow flow numerically with the objective of exploring and displaying

some of the possible types of interesting ion motions. In particular, we choose specific but

arbitrary parameter values; study the stability of the individual radial and axial motion

invariant manifolds; examine the rather large times associated with escape of ions; notice

regions in the averaged phase space wherein trajectories do not, in fact, escape; observe

apparently chaotic dynamics preceding escape for ions that do escape; and note that

trajectories that do not escape appear to be confined to 4-tori. We conclude with some

comments on the implications for practical operation of the Paul trap near this resonant

point.

Chapter 6 presents the concluding remarks of this thesis.
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Ȧ(0) = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Comparison of amplitude (A) determined by solving the slow flow with the

original Mathieu equation (z̄) for positive and negative dodecapole. In both

plots, ε = 0.001, z̄(0) = 0.01, ˙̄z(0) = 0, A(0) = 0.0091, Ȧ(0) = 0 and h̄ = f̄ =
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4.7 Poincaré sections in the z and r direction at az = −0.1088 and qz = 0.7792 for

10% hexapole, 10% decapole and 10% dodecapole superposition corresponding

to point F in Fig. 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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5.1 Poincaré sections of the uncoupled solutions for two different sets of initial con-

ditions at az = −0.23131, qz = 0.91919 and for h = f = 0.1. (a) z-direction,

obtained by setting r̄ ≡ 0, and (b) r-direction, obtained by setting z̄ ≡ 0. . . . . 79
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5.12 (a) Trajectories and (b) Poincaré section for k = 197. . . . . . . . . . . . . . . 95
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Chapter 1

Introduction

Paul trap mass spectrometers are versatile analytical instruments which carry out frag-

ment analysis of unknown compounds to elucidate their composition and structure. This

instrument relies on trapping and storing ions in an oscillatory electric field and, sub-

sequently, mass selectively destabilizing the ions to provide the mass spectrum of the

unknown analyte. The Paul trap is one amongst a broad class of instruments referred to

as ion traps that are used by researchers for trapping and storing ions. For this invention,

Wolfgang Paul1 shared half the 1989 Nobel prize for physics with Hans G. Dehmelt (who

received the prize for the Penning trap technique).

The Paul trap mass spectrometer consists of a three-electrode geometry mass analyzer

(March and Hughes, 1989), with two end cap electrodes and a central ring electrode, all

electrodes machined to have hyperboloid geometry. Ion confinement is achieved within

the central cavity by application of dc/rf or rf only potential(s) across the ring and the

(electrically shorted) end cap electrodes. In an ideal machine, the trapping field is designed

to be linear and the equations of motion of ions in the axial and radial directions are

represented by two uncoupled Mathieu equations.

In practical traps, however, geometric misalignment and experimental constraints in-

troduces weak multipole superpositions in the field. Although the contributions of the

superpositions are small, they are known to have important consequences on trap op-

erations. Some of these include alterations in the stability diagram in non linear Paul

traps (Fischer, 1959; Dawson, 1976; Fulford et al., 1980), mass shifts (Cox et al. (1995)),

perturbation in secular frequencies (Sugiyama and Yoda, 1990, Luo et al., 1996), coupled

secular oscillations and nonlinear resonances (Vedel, 1990, Wang et al., 1993, Alheit et

al., 1995, Chu et al., 1998), and altered resolution in mass spectra in forward and reverse

scan resonance ejection experiments (Williams et al., 1994).

In spite of a large number of experimental studies reported in the literature that have

linked field inhomogeneity to altered ion dynamics, the number of analytical studies to

understand their role are relatively few. A reason for this is that in practical traps the

equations of motions of ions are nonlinear and do not have closed form solutions. Conse-

quently, researchers have relied primarily on numerical simulations to probe trapped ion

dynamics. While such simulations provide useful insights, it would be more satisfactory

1The other half of the prize was awarded to Norman F. Ramsey for his work on atomic clocks.

1
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academically and practically to have analytical expressions which describe ion dynamics

in these weakly nonlinear fields. The present thesis is an attempt in this direction.

All chapters in this thesis have been written in a stand-alone form. Consequently

all relevant literature, theory and methodology, for each problem are discussed in the

relevant chapters. In this chapter we present a few background details for completeness

of this thesis. We begin with a description of the Paul trap mass spectrometer. We next

present the Mathieu equation which describes the motion of ions in an ideal Paul trap

and this is followed by the description of the methods used for computing ion secular

frequencies. Following this, we present the nonlinear Mathieu equation and the Duffing

equation which are used in our studies. A brief description of two modes of operation of

the Paul trap which are investigated in this thesis follows. Finally, the last section of this

chapter presents the scope of this thesis.

1.1 The Paul trap mass spectrometer

The three electrodes of a Paul trap mass spectrometer (Paul and Steinwedel, 1953, 1960;

Dawson and Whetten, 1968a, 1968b) have hyperboloid geometry and the electrode sur-
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Figure 1.1: Paul trap mass analyzer
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faces (r, z) are described by the expressions (Knight, 1983)

r2

r2
0

− 2z2

r2
0

= 1 (ring electrode)

r2

2z2
0

− z2

z2
0

= −1 (end cap electrode) (1.1)

where r0 is the radius of the ring electrode and z0 is half the distance between the two

end cap electrodes.

The electrodes of the mass analyzer are isolated electrically and they are mechani-

cally mounted on a flange for easy insertion into a vacuum chamber. One of the end

cap electrodes houses an electron gun (consisting of a tungsten or rhenium filament and

associated extraction and gating electrodes) and has, typically, a 1 mm hole at its tip to

permit entry of electrons. The tip of the other end cap electrode either has a larger hole

which is covered by a fine stainless steel mesh or it may have multiple small holes for

collection of the destabilized ions on to an electron multiplier.

The entire mass analyzer assembly is inserted into a vacuum chamber and trap op-

eration is carried out in high vacuum conditions. Trap operation, which involves gating

electrons for ionization of the analyte gas, cooling of ions and finally detection of the

destabilized ions, is controlled by a personal computer. Each scan of an experiment takes

place over a few tens of milliseconds of time and several such scans are averaged to obtain

the mass spectrum of the analyte compound. In Paul trap mass spectrometers, helium

is often used as a bath gas at a pressure slightly above the background low-pressure, to

provide damping of ion motion during the cooling time.

A detailed description of the Paul trap mass spectrometer and its operation is available

in March and Hughes (1989).

1.2 Motion of ions in a Paul trap

1.2.1 The Mathieu equation

The equation of motion of an ion of mass m under the influence of an electric potential

is given by (Landau and Lifshitz, 1976)

d2u

dt2
= − e

m
∇uφ (1.2)

where u corresponds to the axial (z) or radial (r) direction of motion and e/m corresponds

to the charge to mass ratio. In an ideal trap, the potential φ at any point within the field
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may be expressed in cylindrical co-ordinates as (March and Hughes, 1989)

φ(r, z) =
φ0

r2
0

(r2 − 2z2) (1.3)

where φ0 is the applied potential which is a combination of a dc and rf potential, given

by

φ0 = U + V cos Ωt (1.4)

where Ω (= 2πf , where f is the frequency in Hz) and V are the angular frequency and

zero-to-peak amplitude of the rf potential, respectively, and U is the dc voltage. Inserting

Eqs. (1.3) and (1.4) into Eq. (1.2), we obtain

d2u

dt2
= − e

m
(U + V cos Ωt)

∂

∂u

(
1

r2
0

(z2 − r2

2
)

)
(1.5)

which may be simplified to

d2u

dt2
= − κeu

mr2
0

(U + V cos Ωt) (1.6)

where κ = 2 for the z-direction and κ = −1 for the r-direction. Further, nondimension-

alizing time by defining τ = Ωt/2, we get

d2u

dτ 2
+ (au + 2qu cos 2τ)u = 0 (1.7)

where

az = −2ar =
8eU

mr2
0Ω

2
; qz = −2qr =

4eV

mr2
0Ω

2
(1.8)

Equation (1.7) is the canonical form of the Mathieu equation. Also, it may be readily

observed from Eq. (1.8) that the Mathieu parameters au and qu are related to experimental

parameters U, V, r0, Ω as well as the ion mass m. The Mathieu equation has a general

solution of the form (McLachlan, 1947, 1958; Abromowitz and Stegun, 1970)

u = Au

∞∑
n=−∞

C2n,u cos(βu + 2n)τ + Bu

∞∑
n=−∞

C2n,u sin(βu + 2n)τ (1.9)

where C2n,u are the amplitudes of the various harmonics, Au and Bu are arbitrary con-

stants and βu is a parameter with values between 0 and 1.

1.2.2 Mathieu stability plot

In the ideal trap the equation of motion (Eq. (1.7)) in the radial and axial directions are

uncoupled and stability of ions within the trap cavity can be evaluated independently in
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Figure 1.2: Mathieu stability plot

these two directions. Ions will be trapped within the cavity of the mass analyzer only

when their motion is simultaneously stable in the radial and axial directions. The Mathieu

stability plot provided in Fig. 1.2 shows region in the az-qz plane where the ion motion is

simultaneously stable in r and z directions (Dawson, 1976; March and Todd, 1995). For

a given mass analyzer the radius of the central ring electrode and the angular frequency

of the rf drive are fixed. Consequently, the stability of ions of mass m will be determined

only by the dc (U) and rf (V ) potential applied to the electrodes.

1.2.3 Secular frequency

From Eq. (1.9) the angular frequency of ion motion of order n is given by

ωu,n = (n +
1

2
βu)Ω (1.10)

ωu,n is referred to as the secular frequency of the ion of order n. When n = 0, the secular

frequency of the ion, ωu, in either r or z direction, in the stable region closest to the origin

of the Mathieu stability plot, is given by

ωu =
1

2
βuΩ. (1.11)
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βu is a parameter which is related to the Mathieu parameters au and qu by the continuous

fraction relation (March and Hughes, 1989) which has the form

β2
u = au +

q2
u

(βu + 2)2 − au − q2
u

(βu + 4)2 − au − q2
u

(βu + 6)2 − au − . . .

+
q2
u

(βu − 2)2 − au − q2
u

(βu − 4)2 − au − q2
u

(βu − 6)2 − au − . . .

. (1.12)

Within the pseudopotential well approximation region which is valid up to qz < 0.4, βu

can be approximated as (as will be seen later in Eq. (1.33)) by the expression

β2
u = au +

q2
u

2
. (1.13)

Equation (1.13) is referred to as adiabatic or Dehmelt approximation in mass spectrometry

literature.

It needs to be pointed out that since βu is related to au and qu, for a given trap (with

fixed r0 and Ω), βu for a given mass m is determined only by the dc and rf potentials

applied to the electrodes.

1.2.4 Nonlinear Mathieu equation

The field within a practical Paul trap is weakly nonlinear on account of geometric mis-

alignments and experimental constraints. The presence of asymmetric holes in the two

end cap electrodes (March and Hughes, 1989), misalignments in geometry (Louris et al.,

1992), space charge due to trapped ions (Cox et al., 1996), truncation of electrodes to

finite size, and stretched geometry will introduce higher order multipole contributions to

the potential in an experimental trap (Franzen et al., 1995).

The potential within a nonlinear Paul trap is modelled using Legendre polynomials

(Brown and Gabrielse, 1986; Beaty, 1986). If Pn is the Legendre polynomial of order n,

then the potential distribution inside the trap in terms of spherical coordinates is given

by

φ(ρ, θ, ϕ) = φ0

∞∑
n=0

An
ρn

rn
0

Pn (cos θ) (1.14)

where An is the dimensionless weight factors for different multipole terms, ρ is the position

vector.
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In the studies presented in this thesis, we consider higher order multipoles hexapole,

octopole, decapole and dodecapole superpositions corresponding to n = 3, 4, 5 and 6 in

Eq. (1.14), respectively, along with the quadrupole (n = 2). The corresponding Legendre

polynomials in cylindrical coordinates can be written as (Beaty, 1986)

quadrupole: P2(cos θ) =
(2z2 − r2)

2ρ2
(1.15)

hexapole: P3(cos θ) =
(2z3 − 3zr2)

2ρ3
(1.16)

octopole: P4(cos θ) =
(8z4 − 24z2r2 + 3r4)

8ρ4
(1.17)

decapole: P5(cos θ) =
(8z5 − 40z3r2 + 15zr4)

8ρ5
(1.18)

dodecapole: P6(cos θ) =
(16z6 − 120z4r2 + 90z2r2 − 5r6)

16ρ6
(1.19)

where ρ2 = z2 + r2.

Substituting Eq. (1.4) and Eqs. (1.16) through (1.19) into Eq. (1.14), we get the

potential in cylindrical co-ordinates as

Φ(r, z, t) = (U + V cos Ωt)

[
A2

r2
0

(
z2 − r2

2

)
+

A3

r3
0

(
z3 − 3

2
zr2

)
+

A4

r4
0

(
z4 − 3z2r2 +

3

8
r4

)
+

A5

r5
0

(
z5 − 5z3r2 +

15

8
zr4

)
+

A6

r6
0

(
z6 − 15

2
z4r2 +

45

8
z2r4 − 5

16
r6

)]
(1.20)

where A2, A3, A4, A5 and A6 are the weights of the quadrupole, hexapole, octopole,

decapole and dodecapole superpositions, respectively. Substituting Equation (1.20) into

Equation (1.2), and introducing the transformations τ = Ωt/2, r̄ = r/r0 and z̄ = z/r0,

the equation of motion of ion in the z-direction can be derived in the form of a nonlinear

Mathieu equation as (Sevugarajan and Menon, 2002; Abraham et al., 2003)

d2z̄

dτ 2
+ (az + 2qz cos 2τ)

[
z̄ +

3

2
h

(
z̄2 − 1

2
r̄2

)
+ 2f

(
z̄3 − 3

2
z̄r̄2

)
+

5

2
d

(
z̄4 − 3z̄2r̄2 +

3

8
r̄4

)
+ 3k

(
z̄5 − 5z̄3r̄2 +

15

8
z̄r̄4

)]
= 0 (1.21)

where h = A3/A2 , f = A4/A2, d = A5/A2 and k = A6/A2 represent the ratio of the

weights of the hexapole, octopole, decapole and dodecapole superpositions with respect

to the weight of the quadrupole contribution and

az =
8eA2U

mr2
0Ω

2
(1.22)
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qz =
4eA2V

mr2
0Ω

2
. (1.23)

Similarly, the equation of motion of ion in the r-direction can be derived as

d2r̄

dτ 2
+ (ar + 2qr cos 2τ)

[
r̄ + 3hz̄r̄ + 3f

(
2z̄2r̄ − 1

2
r̄3

)
+

5d

(
2z̄3r̄ − 3

2
z̄r̄3

)
+ 15k

(
z̄4r̄ − 3

2
5z̄2r̄3 +

3

8
r̄5

)]
= 0 (1.24)

where

ar = −4eA2U

mr2
0Ω

2
(1.25)

qr = −2eA2V

mr2
0Ω

2
. (1.26)

1.2.5 Forced, damped Duffing equation

In nonlinear traps with only octopole superposition, the uncoupled equation of motion

of an ion in the axial (z) direction is a nonlinear Mathieu equation with only cubic

nonlinearity and can be obtained by putting r, h, d, k to zero in Eq. (1.21). The equation

of motion takes the form

d2z̄

dτ 2
+ (az + 2qz cos 2τ)

(
z̄ + 2f z̄3

)
= 0. (1.27)

In order to obtain the equation of motion of ion in a nonlinear trap in the presence of

dipolar excitation (excitation potential applied across the end cap electrodes), within the

pseudopotential well approximation region (Landau and Lifshitz, 1976), we consider ion

motion in spherical co-ordinates as

m
d2ρ

dt2
+ e∇Ueff (r, z) = −e∇Uexc (1.28)

where ρ is the position vector and

Uexc = A1Vs sin(ωt)(
z

r0

) (1.29)

where A1 is the weight of the dipole superposition (Beaty, 1986), Vs and ω are the zero-

to-peak amplitude and the angular frequency, respectively, of the auxiliary ac excitation

signal applied to the end caps and

Ueff (r, z) =
1

2

e

m

〈
|
∫

t

∇Φdt|2
〉

. (1.30)
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In the presence of only octopole superposition, Ueff can be evaluated from Eq. (1.20) as

(Sevugarajan and Menon, 1999)

Ueff (r, z) =
q2
zΩ

2m

64e
(4z2 +

16f

r2
0

z4). (1.31)

Substituting Equations (1.29) and (1.31) into Equation (1.28) and introducing damping

(caused by presence of He buffer gas), we get the equation for ion motion in the axial

direction in the form of a damped, forced Duffing equation as

d2z

dt2
+ c

dz

dt
+ ω2

0zz +
8f

r2
0

ω2
0zz

3 = −Fs cos ωt (1.32)

where ω0z is the secular frequency of ion motion and Fs, the amplitude of the force term,

are given by

ω0z = (az +
q2
z

2
)
Ω2

4
(1.33)

and

Fs =
eA1Vs

mr0

. (1.34)

The damping coefficient, c, in Eq. (1.32) is given by (Goeringer et al., 1992)

c =
mn

m + mn

p

kTb

e

2ε0

√
α

m + mn

mmn

(1.35)

where mn is the mass of the bath gas, α = 0.22 × 10−40 Fm2 is the polarizability of

the bath gas, ε0 = 8.854 × 10−12 F/m is the permittivity of the free space, Tb is the

temperature and p is the pressure in Pascal of the bath gas.

1.3 Modes of operation

In this thesis we consider two modes of operation of the Paul trap which are briefly

described below.

1.3.1 Mass selective boundary ejection

In the mass selective boundary ejection experiments (Stafford et al., 1984) the end cap

electrodes are grounded and dc potential is set to zero. Ion destabilization is made to

occur at the boundary of the Mathieu stability plot (along az = 0 axis) at qz = 0.908

(Fig. 2). At the start of the experiment, ions of an analyte gas are formed in situ within

the trap cavity by a gated beam of electrons. At the time of ion formation an initial rf

potential is applied between the ring and end cap electrodes. Within this trapping field,
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ions of different masses will be trapped with different qz values, the lowest mass having

the largest qz and all higher masses having progressively lower qz values.

In the experiment, the amplitude of the rf potential is increased (generally) linearly at

a predetermined rate (in commercial instruments this is of the order of 1 Th per 180 µsec,

1 Thomson (Th) = 1 u/e, where u is the atomic mass unit and e is the elementary charge

(Cooks and Rockwood, 1991)) resulting in the qz values of ions of all masses progressively

increasing. When the qz value of an ion of specific mass crosses qz = 0.908 (corresponding

to βz = 1 boundary on the Mathieu stability plot), they get destabilized from the trap

and, those ions exiting the trap through the end cap electrodes which houses the electron

multiplier, will be detected and its intensity recorded. The ion intensity versus rf potential

histogram provides the mass spectrum of the analyte gas.

1.3.2 Resonance excitation

The other mode of operation which has been investigated in this thesis is referred to as

resonance ejection (Fulford and March 1978; March, 1992). Here, a dipolar auxiliary

excitation, having a fixed frequency, is applied across the end cap electrodes (as shown

in Figure 1.3). This arrangement is different from the configuration in mass selective

boundary ejection experiments in which the two end caps electrodes are grounded. In

these experiments the property of the resonance of ion secular frequency with the dipolar

auxiliary excitation frequency is used to cause destabilization of ions from the trap.

r0

Trapping 


Potential

Dipolar 


Excitation

Figure 1.3: Experimental set up for resonance ejection experiment

Like the mass selective instability experiment described earlier, here too a gated beam

of electrons is used to cause ionization of the analyte gas within a trapping field created

by an initial rf potential applied between the ring and the end cap electrodes. In these

experiments also, dc voltage is set to zero and trap operation is carried out along the
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az = 0 axis of the Mathieu stability plot. Ions of each mass which are trapped at different

qz value, oscillate at their secular frequency which is determined by the initial rf potential

(since rf potential determines the ion’s qz which in turn determines the secular frequency,

as seen in Section 1.2.3). In these experiments the motivation is to bring axial secular

frequency into resonance with the auxiliary excitation.

Resonance can be brought about in one of two ways which depends on the relative

magnitudes of ion axial secular frequency and the frequency of the applied auxiliary

excitation. When ion secular frequency is smaller than the dipolar excitation frequency

at the start of the experiment, the amplitude of the rf potential is increased to cause an

increase in qz which in turn causes ion secular frequency of a specific mass to increase.

Experiments involving an increase in amplitude of rf potential (which results in an increase

in ion secular frequency) is referred to as the forward scan experiment. Conversely, if the

ion secular frequency is larger than the frequency of the dipolar excitation at the start

of the experiment, the amplitude of the rf potential is ramped down. This experiment

is referred to as the reverse scan experiment. In resonance ejection experiments too, the

ion intensity versus rf potential histogram provides the mass spectrum of the analyte

compound.

1.4 Scope of the thesis

Analytical studies of three experimental observations in practical Paul traps have been

carried out in this thesis. The first is a study to understand the role of field inhomo-

geneities in influencing early/delayed ejection at the stability boundary. The other two

studies are related to resonances experienced by ions in nonlinear fields in practical traps.

Specifically, the three problems taken up for study include:

1. A study to understand the role of field inhomogeneities in causing early/delayed

ejection in practical Paul traps operated in the mass selective ejection mode. Here the gov-

erning equation is an uncoupled nonlinear Mathieu equation in which terms corresponding

to hexapole, octopole, decapole and dodecapole superpositions have been included.

2. A study of the altered resolution observed in resonance ejection experiments in

the forward and reverse scan directions. In this study we will include only octopole field

superposition in the governing equation. The equation of motion in this study will be a

damped forced Duffing oscillator which has validity in the Dehmelt approximation regime.

3. The final problem is concerned with coupled resonances which have been reported

in practical Paul traps. In this study we will use the coupled nonlinear Mathieu equations

with multipole superpositions up to dodecapole to first identify and subsequently select
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a specific coupled resonance point within the Mathieu stability plot for further detailed

investigation.

Investigation of early/delayed ejection of ions (Chapter 2) was a collaborative effort

with Mr. Amol Marathe, Research Scholar, Department of Mechanical Engineering, In-

dian Institute of Science, Bangalore. His important contribution lies in the development

of the slow flow equations which have been used in this study. At the time of writing this

thesis two investigations, reported in Chapters 2 and 3, have been accepted for publication

in International Journal of Mass Spectrometry.

References in the text have been given by quoting author name and year of publication.

Full references have been listed in alphabetical order at the end of the thesis.



Chapter 2

Multiple scales analysis of early and delayed
boundary ejection in Paul traps

2.1 Introduction

In this chapter we study dynamics associated with early and delayed ejection observed in

Paul traps operated in mass selective ejection mode. In particular, we study differences

in the dynamics arising from higher order field superpositions of small magnitudes. The

method of multiple scales is used to derive an approximate analytical expression which

captures the slow variation in the amplitude of ion motion near the stability boundary.

Paul trap mass spectrometers consist of a three electrode mass analyzer with two end

cap electrodes and a central ring electrode, all having hyperboloid geometry (Dawson,

1976; Knight, 1983). Ions of analyte gas, formed in situ by electron impact ionization,

are trapped within the cavity by a trapping field formed by dc and rf potentials applied

between the ring and end cap electrodes (Dawson, 1976; March and Hughes, 1989). The

motion of ions within an ideal trap is governed by two uncoupled, linear Mathieu equations

(Dawson, 1976; McLachlan, 1947) given by

d2u

dτ 2
+ (au + 2qu cos 2τ)u = 0, (2.1)

where u represents either the r (radial) or z (axial) direction of motion, τ = Ωt/2, where

in turn Ω is the angular frequency of the rf drive applied to the central ring electrode, and

t is time. In Eq. (2.1), au and qu are Mathieu parameters which determine ion stability

within the trap.

In mass selective ejection experiments, the trap is operated along the az = 0 axis

(by setting the dc potential to zero) (Stafford et al., 1984) of the Mathieu stability plot

(March and Hughes, 1989) and ions are destabilized from the trap by ramping the rf

amplitude to cause the ion’s qz value to cross the stability boundary at or near q∗z =

0.908046. In practical traps it is known that small field inhomogeneities, which arise

due to geometric imperfections and experimental constraints, cause ions to get ejected

at smaller or larger qz values (compared to q∗z = 0.908046) resulting in the observation

of early or delayed ejection, respectively. On account of this, it was observed very early

during commercialization of the Paul trap mass spectrometer that traps were prone to

errors in mass assignments (Syka et al., 1995), a problem that was subsequently overcome

13
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by increasing the distance between the two end cap electrodes. Wells et al. (1999)

showed that these mass shifts arise on account of the interplay of two primary factors

which include (1) presence of nonlinear fields (caused by holes in the end caps as well

as truncation of the electrodes) within the trap cavity which tends to delay ion ejection

and (2) elastic and inelastic collisions of the ions with the bath gas which tend to shorten

this delay. A recent report by Plass et al. (2003) has provided further understanding on

mass shifts through a study of its dependence on trap geometry, buffer gas, rf amplitude

scan rate, ion mass and the chemical structure of the ion. In the context of the influence

of field inhomogeneities causing delayed ion ejection Franzen and coworkers (Wang and

Franzen, 1994; Franzen, 1993; Wang et al., 1993; Franzen, 1994), in a series of numerical

studies, showed that positive octopole and dodecapole superpositions cause ions to come

out early (at qz < q∗z) and the presence of negative octopole and dodecapole superpositions

or hexapole and decapole superpositions of either sign cause delayed ejection of ions (at

qz > q∗z).

Understanding the dynamics associated with early and delayed ejection caused by

field nonlinearities (inhomogeneities) is important in the context of newer trap geome-

tries being investigated for their use as mass spectrometers. The 2D (linear) Paul trap,

which consists of a four-rod assembly mass analyzer, has been used in both mass selective

instability mode (Schwartz et al., 2002) as well as for resonance excitation experiments

(Collings et al., 2003). Modified geometries of 2D Paul traps with added octopole fields

have also been investigated by Michaud et al. (2004) and Collings (2005). Another di-

rection of investigation concerns traps that have greatly simplified geometries compared

to the hyperboloid geometry of the 3D Paul trap. An example of this is the cylindrical

trap (Lanmuir et al., 1962; Bonner et al., 1977) which consists of a cylindrical ring elec-

trode and two flat end cap electrodes, and has scope for MEMS scale fabrication (Blain

et al., 2004; Austin et al., 2006). Currently these instruments are being used as fieldable

instruments (Wu et al., 2005) but we hope that better appreciation of the effects of mul-

tipole superpositions on boundary ejection of ions will help in developing miniaturized

mass analyzers even for high performance applications. The common feature for all these

mass analyzers is that the governing equations of ion motion within the trap cavity are

Mathieu equations. Further, in these traps, on account of non-ideal geometries and ex-

perimental constraints, higher order multipole fields get superposed on the predominantly

linear field. This results in the equations of motion taking the form of (weakly) nonlinear

and coupled Mathieu equations. In this chapter, however, we consider a single, weakly

nonlinear Mathieu equation.

The main problem in studying ion behavior in the neighborhood of the Mathieu stabil-

ity boundary is that it is not possible to derive a closed form solution for ion motion when

field inhomogeneities are present. Sudakov (2001) has presented an insightful analysis of

the slow variation in amplitude of the ion motion, which he calls the “beat” envelope, near
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the stability boundary. He showed that in case of positive octopole superposition, there

exists an effective potential well in the stable region. The width and depth of this well

decreases as qz approaches the stability boundary. In case of negative octopole superpo-

sition and hexapole superposition of either sign, the existence of a double well potential

in the unstable region of the Mathieu stability plot causes delayed ejection of ions from

the trap.

In this chapter we present a detailed and systematic analytical study of ion ejection

near the nominal stability boundary (q∗z = 0.908046) for practical Paul traps. We go

beyond the work of Sudakov (2001) in three ways. First, we adopt a formal perturbation

method, the method of multiple scales (MMS), which has enabled us to proceed up to

the fourth order (Section 2.6.1). This may be useful when the weights of multipole su-

perpositions are relatively larger. However, we use only the second order slow flow for

obtaining the phase portraits in this chapter, since we have assumed weak multipole su-

perpositions. Secondly, we have incorporated higher order multipoles (hexapole, octopole,

decapole and dodecapole superpositions) in the governing equation. With this, we obtain

new insights into the dynamics associated with these multipole superpositions within the

trapping field. Finally, we use phase portraits to provide an alternative view of the slow

modulation dynamics as the ions approach the stability boundary, to understand early

and delayed ejection of ions. Our results match Sudakov (2001) up to second order, except

for an apparent error in one of his terms, which we have corrected.

As a technical matter, we mention that the application of the MMS at the stability

boundary involves somewhat greater complications than the application of the MMS, or

the related method of averaging (Abraham and Chatterjee, 2003), to resonant points

inside the nominal stability region because in the latter case the unperturbed equation

has two linearly independent periodic solutions.

2.2 Equation of motion

In the literature, the potential distribution inside a trap with field inhomogeneities in

terms of spherical coordinates (ρ, θ, ϕ) is given by (Beaty, 1986)

φ(ρ, θ, ϕ) = φ0

∞∑
n=0

An
ρn

rn
0

Pn(cos θ), (2.2)

where Pn is the Legendre polynomial of order n, An is the dimensionless weight factor for

the nth multipole term, ρ is the radial position and r0 is chosen to be the radius of the

central ring electrode in our study. φ0 is given by

φ0 = U + V cos Ωt, (2.3)
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where U is the applied dc potential, and V is the amplitude of the applied rf potential.

In this study we consider four higher order multipoles which include A3, A4, A5 and

A6, corresponding to hexapole, octopole, decapole and dodecapole, respectively, in Eq.

(2.2). We use the notation and sign convention of Beaty (1986) for representing the higher

order multipoles. Since our focus is on axial (z) instability, we set r ≡ 0. Following the

procedure adopted by Sevugarajan and Menon (2002) and Abraham et al. (2004), the

uncoupled equation of motion of trapped ions in the axial (z) direction in an experimental

trap reduces to a nonlinear Mathieu equation,

d2z̄

dτ 2
+ (az + 2qz cos 2τ)

(
z̄ +

3h

2
z̄2 + 2f z̄3 +

5d

2
z̄4 + 3k z̄5

)
= 0, (2.4)

where z̄ = z/r0 is the axial position of the ion normalized with respect to r0, τ =

Ωt/2, and h(= A3/A2), f(= A4/A2), d(= A5/A2) and k(= A6/A2) are the proportion of

hexapole, octopole, decapole and dodecapole nonlinearity, respectively, to the quadrupole

superposition, A2. Also, az and qz are Mathieu parameters for the nonlinear trap and are

given by

az =
8eA2U

mr2
0Ω

2
; qz =

4eA2V

mr2
0Ω

2
, (2.5)

where e/m is the charge to mass ratio of the ion.

A point that needs mention is related to the usage of the descriptors “positive” and

“negative” for multipole superpositions. In the mass spectrometry literature, the sign is

implicitly attributed to the specific multipole by assuming that the sign of the quadru-

pole superposition is positive. In actual practice, when the end cap electrodes of the ion

trap are grounded as is usually done in mass selective boundary ejection experiments, the

weight of the quadrupole superposition, A2 is negative. Consequently, “positive” multi-

pole superposition implies that An and A2 have the same sign and “negative” multipole

superposition implies An and A2 have opposite signs.

In mass selective ejection experiments, where only the rf voltage is applied, the equa-

tion of motion (Eq. (2.4)) takes the form

d2z̄

dτ 2
+ 2qz cos 2τ

(
z̄ +

3h

2
z̄2 + 2f z̄3 +

5d

2
z̄4 + 3k z̄5

)
= 0, (2.6)

since az is set to zero. Ion destabilization occurs at the stability boundary (corresponding

to βz = 1, where βz is related to the Mathieu parameters az and qz) in the Mathieu

stability plot (March and Londry, 1995). In our discussion the qz value at the nominal

point of destabilization in ideal traps will be referred to as q∗z , which happens to be

0.908046, as shown below.

In the method of multiple scales adopted here, we need to order the nonlinearities.
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The following ordering scheme has been adopted,

h =
2
√

ε h̄

3
, f =

εf̄

2
, d =

2
√

ε d̄

5
, k =

εk̄

3
, (2.7)

where h̄, f̄ , d̄, k̄ and ε will determine the strengths of the nonlinearities. Note that all

even superpositions have been ordered as ε and odd superpositions as
√

ε. Moreover, h̄, f̄ ,

d̄ and k̄ are of O(1), with the “smallness” of these terms governed by 0 < ε ¿ 1. Further,

to study the dynamics near q∗z , we introduce a detuning parameter ∆ and write

qz = q∗z + ε∆. (2.8)

Thus by assigning negative and positive values to ∆, we can study the dynamics associated

with early and delayed ejection, respectively.

Substituting Eqs. (2.7) and (2.8) into Eq. (2.6), the governing equation of our system

takes the form

d2z̄

dτ 2
+ 2(q∗z + ε∆) cos 2τ

(
z̄ +

√
ε h̄z̄2 + εf̄ z̄3 +

√
ε d̄z̄4 + εk̄z̄5

)
= 0. (2.9)

2.3 Analysis using multiple scales

In the method of multiple scales (Nayfeh, 1973; Hinch, 1991; Kevorkian and Cole, 1996),

we assume that the solution to the original equation can be represented as a function

of multiple time scales. Here, we choose T0 = τ , T1 =
√

ετ , T2 = ετ , · · · . T0 is the

fast (usual) time and T1, T2, · · · are the slow times. This particular choice is justified in

Section 2.6.2. The solution z̄(τ) to Eq. (2.9) is sought in the form

z̄(τ) = X(T0, T1, T2, · · · ). (2.10)

Further, X is expanded as

X(T0, T1, T2, · · · ) = X0(T0, T1, T2, · · · ) +
√

εX1(T0, T1, T2, · · · )
+εX2(T0, T1, T2, · · · ) + ε

√
εX3(T0, T1, T2, · · · ) +O(ε2).(2.11)

The derivatives with respect to τ are

d(.)

dτ
=

∂(.)

∂T0

+
√

ε
∂(.)

∂T1

+ ε
∂(.)

∂T2

+O(ε
√

ε), (2.12)

d2(.)

dτ 2
=

∂2(.)

∂T 2
0

+ 2
√

ε
∂2(.)

∂T0∂T1

+ ε

(
∂2(.)

∂T 2
1

+ 2
∂2(.)

∂T0∂T2

)
+O(ε

√
ε). (2.13)
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Substituting Eqs. (2.11) through (3.18) in Eq. (2.9), expanding and collecting terms using

a symbolic algebra package (MAPLE), we obtain

∂2X0

∂T 2
0

+ 2q∗z cos(2T0)X0

+
√

ε

[
∂2X1

∂T 2
0

+ 2q∗z cos(2T0)

(
X1 + h̄X2

0 + d̄X4
0

)
+ 2

∂2X0

∂T0∂T1

]

+ε

[
∂2X2

∂T 2
0

+
∂2X0

∂T 2
1

+ 2
∂2X0

∂T0∂T2

+ 2
∂2X1

∂T0∂T1

+ 2 cos(2T0)

(
q∗zX2

+2q∗z h̄X0X1 + q∗z f̄X3
0 + 2q∗z d̄X3

0X1 + q∗z k̄X5
0 + ∆X0

)]
+O(ε

√
ε) = 0. (2.14)

As is usual for the MMS, we will solve the above sequentially for different orders (powers

of ε). Indeterminacy in the solution at each stage, as usual, will be eliminated by insisting

on a bounded solution at the next stage (a process called removal of secular terms).

However, the form of the secular terms, and our process of identifying them, is somewhat

unusual and described in detail below. Note that, for our higher order calculations, we

retained more terms in the above expansion, these are not presented here for the sake of

brevity.

2.3.1 Solution at O(1)

From Eq. (2.14) at O(1), we have the linear Mathieu equation

∂2X0

∂T 2
0

+ 2 q∗z cos(2T0)X0 = 0. (2.15)

Since this equation corresponds to the ion motion at the boundary (qz = q∗z), the solution

consists of a 2π-periodic function and a linearly growing function (Stoker, 1950).

Let the periodic function be ξ1. It can be written as a cosine series given by

ξ1 =
M∑

k=0

ak cos

(
(2k + 1) T0

)
, (2.16)

where M = ∞ for the exact solution, but we will truncate the series at a suitably large

value of M . In our computation, we set M = 12.

To obtain (or rather, verify) the numerical value of q∗z , we substitute the truncated

cosine series into Eq. (2.15). Collecting the coefficients of the harmonics retained in

the approximation (Eq. (2.16)) and equating them to zero, we get M + 1 simultaneous

linear equations in unknown ak’s. For nontrivial solutions to exist, the determinant of
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the coefficient matrix, which is a polynomial in q∗z , must be zero. When this equation is

solved, the smallest root gives q∗z = 0.908046. In what follows, we take1 q∗z = 0.908046.

In order to obtain the ak’s (and thus ξ1), we substitute q∗z = 0.908046 into the M + 1

linear equations obtained earlier. Since the M + 1 equations are linearly dependent,

we choose a0 = 1 for convenience, drop the equation corresponding to the coefficient of

cos(T0), and use the remaining M equations to find the remaining ak’s (see Table 2.1).

The linearly growing part of the solution of Eq. (2.15) has the form ξ2 + T0 ξ1 (Stoker,

1950), where ξ2 is 2π-periodic. When this form is inserted into Eq. (2.15), we get the

differential equation for ξ2 as

ξ̈2 + 2 q∗z cos(2T0) ξ2 = −2 ξ̇1. (2.17)

ξ2 can be approximated by a truncated Fourier series as

ξ2 =
M∑

k=0

bk sin

(
(2k + 1) T0

)
, (2.18)

where, again, we use M = 12. Substituting this into the differential equation for ξ2 and

collecting terms, we get M +1 linear simultaneous equations which can be directly solved

to obtain the bk’s (Table 2.1). The ak’s and bk’s progressively decrease in magnitude and

their numerical values for k > 6 are not presented here, although M = 12 and many digits

of precision were used in our MAPLE calculation. It is clear that choosing M = 12 is

more than enough for practical purposes.

The general solution to Eq. (2.15) can then be written as

X0 = A(T1, T2) ξ1(T0) + B(T1, T2)

(
ξ2(T0) + T0 ξ1(T0)

)
, (2.19)

where A and B are arbitrary functions of T1 and T2.

We now set B ≡ 0 which eliminates the rapidly growing part in Eq. (2.19). This may

initially seem somewhat arbitrary. Note, however, that by choosing B ≡ 0, we can obtain

one solution and numerics will show that the solution so obtained is useful. For a similar

example of setting the coefficient of a rapidly increasing term to zero and some relevant

discussion, see Chatterjee and Chatterjee (2006). Thus the solution to the O(1) equation

is taken as

X0 = A(T1, T2) ξ1(T0). (2.20)

It may be noted that ξ2 does not appear in X0 in Eq. (2.20). However, ξ2 will be required

in the subsequent analysis.

1More digits were retained in our calculations using MAPLE. For verification by interested readers,
q∗z = 0.9080463337...
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Table 2.1: Values of ak’s and bk’s.

k ak bk

0 1.00000000 · · · −1.13521939 · · ·
1 0.10126539 · · · −0.18286643 · · ·
2 0.00368062 · · · −0.00812047 · · ·
3 0.00006822 · · · −0.00017002 · · ·
4 0.00000076 · · · −0.00000208 · · ·
5 0.57401517× 10−8 −0.16624533× 10−7

6 0.30842821× 10−10 −0.94071713× 10−10

2.3.2 Solution at O(
√

ε)

Before we go to O(
√

ε), consider

ẍ + P (t)ẋ + Q(t)x = R(t), (2.21)

where P (t), Q(t), R(t) are bounded, periodic functions with period T . Assume that the

complementary solution to Eq. (2.21) is a linear combination of h1 and h2 + α t h1 where

h1 and h2 are T -periodic and α is some nonzero constant. Das and Chatterjee (2003) show

that secular terms in the solution to Eq. (2.21) do not grow in amplitude faster than t2.

Moreover, under arbitrary but periodic forcing, secular terms in the particular solution

are a linear combination of t (2h2 + α t h1) and t h1. We will use these results below.

We now return to Eq. (2.14) at O(
√

ε), and we have

∂2X1

∂T 2
0

+ 2 q∗z cos(2T0)X1 = −2
∂2X0

∂T0∂T1

− 2 q∗z cos(2T0)

(
h̄X2

0 + d̄X4
0

)
. (2.22)

We note the similarity between Eq. (2.22) and Eq. (2.21) by identifying

x ≡ X1, P (t) ≡ 0, Q(t) ≡ 2q∗z cos(2T0), R(t) ≡ −2
∂2X0

∂T0∂T1

−2 q∗z cos(2T0)

(
h̄X2

0 +d̄X4
0

)
.

The complementary solution to Eq. (2.22) is a linear combination of ξ1 and ξ2+T0 ξ1 where

ξ1 and ξ2 are given by Eqs. (2.16) and (2.18) and are 2π-periodic. Therefore, secular terms

in the particular solution are a linear combination of T0 (2ξ2 + T0 ξ1) (α = 1 in our case)

and T0 ξ1. The general solution to Eq. (2.22) can be written as (Das and Chatterjee, 2003)

X1 = c1ξ1 + c2(ξ2 + T0ξ1) + c3T0 ξ1 + c4T0 (2ξ2 + T0 ξ1) + Ψ(T0), (2.23)
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where c1 through c4 are constants and Ψ is 2π-periodic in T0. Moreover, c1 and c2

are arbitrary, being part of the complementary solution. One linearly growing part of

the particular solution can be nullified by a linearly growing part of the complementary

solution (by choosing c2 = −c3). Although c2 is thereby fixed, c1 is still arbitrary. We

now choose c1 such that it nullifies the coefficient of cos(T0) in Ψ(T0). By these arguments

and simplifications,

X1 = c4T0 (2 ξ2 + T0 ξ1) + Ψ(T0), (2.24)

where Ψ(T0) is 2π-periodic, has absorbed c1 ξ1 − c3 ξ2 and has no cos(T0) term. That is,

X1 = C2N+1 +
N∑

k=2

Ck cos(kT0) +
N∑

k=1

Ck+N sin(kT0) + C2N+2 T0 (2ξ2 + T0ξ1), (2.25)

where N is some positive integer (here we have taken N = 12) and the Ck’s are coefficients

to be determined. Note that cos(T0) has been left out above.

Since ξ1 and ξ2 are approximate and the periodic part of X1 is also approximate,

the form of X1 satisfies Eq. (2.22) only approximately. Therefore, after substituting Eq.

(2.25) into Eq. (2.22), the left hand side will not be exactly equal to the right hand side.

Bringing all terms to the left hand side, we obtain a nonzero residual. The unknown Ck’s

are determined by carrying out the Galerkin projection procedure used in a related context

by Das and Chatterjee (2003). In this procedure the residual is separately multiplied by

each basis function in the assumed form of the general solution (right hand side of Eq.

(2.25)), namely

1, T0 (2ξ2 + T0ξ1), sin(T0), sin(2T0), cos(2T0), · · · ,

and then each such product is integrated over one period (from 0 to 2π). Setting the inte-

grals thus obtained to zero, we obtain 2N +1 linear equations in the unknown coefficients

Ck’s. We solve for these coefficients and substitute them in Eq. (2.25) to obtain X1.

A key point is that coefficient C2N+2 must be set to zero to avoid the secular terms

and this, as is usual in the MMS, enables us to obtain the slow flow. From MAPLE we

obtain, at O(
√

ε):

C2N+2 = 0.12873832×10−9 h̄ A2−0.30186541×10−7 d̄ A4−0.39256924×10−9 ∂A

∂T1

. (2.26)

We note that the numerical coefficients are very small. We need to determine if they are

actually numerically corrupted versions of exactly zero, i.e., if they should be set to zero.

Noting that, from the Galerkin procedure, we have simultaneously obtained

C2 = −0.67189535 d̄ A4 − 0.60163836 h̄ A2, (2.27)
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and

C4 = 0.0045506 d̄ A4 − 0.006558 h̄ A2, (2.28)

which involve much larger numerical coefficients, we conclude that C2N+2 is actually zero.

Thus, we take C2N+2 = 0, and obtain no useful information at this order. We must

proceed to a higher order calculation.

There are some technical issues in doing such higher order calculations, regarding the

asymptotic validity of the method, but good approximations will nevertheless be obtained.

The technical issues related to asymptotic validity are identical to those discussed in

Nandakumar and Chatterjee (2005b) for averaging, and are not discussed here. The

solution X1 is given in Section 2.6.3.

2.3.3 Solution at O(ε)

We now proceed to O(ε) which will provide useful information about the evolution of the

amplitude A of the solution. From Eq. (2.14), at O(ε), we have

∂2X2

∂T 2
0

+ 2 q∗z cos(2T0)X2 = −∂2X0

∂T 2
1

− 2
∂2X0

∂T0∂T2

− 2
∂2X1

∂T0∂T1

−2 cos(2T0)X0 − 2 cos(2T0) q∗z

(
2h̄ X0X1 + f̄ X3

0

+2q∗z d̄X3
0X1 + q∗z k̄X5

0

)
. (2.29)

Equation (2.29) also fits the form of Eq. (2.21). As was done for X1 at O(
√

ε), here

we take

X2 = D2N+1 +
N∑

k=2

Dk cos(kT0) +
N∑

k=1

Dk+N sin(kT0) + D2N+2 T0 (2ξ2 + T0ξ1), (2.30)

where N = 12 as earlier, and Dk’s are coefficients to be determined. We follow the

Galerkin projection procedure again (as described earlier) to solve for the unknown Dk’s.

Setting D2N+2 equal to zero, we obtain

−1.9438 h̄2A3 + 0.44483 f̄A3 − 4.7213 d̄2A7 + 0.48561 k̄A5

−6.4286 h̄d̄ A5 + 0.43865 ∆ A− 0.50000
∂2A

∂T1
2 = 0. (2.31)

From Eq. (3.18), we have

Ä =
d2A

dτ 2
=

∂2A

∂T 2
0

+ 2
√

ε
∂2A

∂T0∂T1

+ ε

(
∂2A

∂T 2
1

+ 2
∂2A

∂T0∂T2

)
+O(ε

√
ε). (2.32)
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Since amplitude A is not a function of the fast variable T0, we have

Ä = ε
∂2A

∂T 2
1

+O(ε
√

ε), (2.33)

giving the required slow flow as

Ä = ε

(
0.8773 ∆A− 3.8877 h̄2A3 + 0.8897 f̄ A3 − 12.8564 h̄ d̄ A5

+0.9712 k̄ A5 − 9.4429 d̄2A7

)
+O(ε

√
ε). (2.34)

Note that, after setting D2N+2 = 0, we also have X2. The solution X2 is provided in

Section 2.6.3 and is needed for higher order calculations.

Equation (2.34) is the second order slow flow for ion motion in the presence of hexa-

pole, octopole, decapole and dodecapole superpositions. The presence of ε and ∆ in the

equation enables us to visualize ion dynamics at different values of detuning from q∗z . In

order to compare these results with the beat envelope equations of Sudakov (2001) (where

separate equations were presented for hexapole and octopole superpositions), we plot the

time trajectories predicted by these equations. To do this we transform the coefficients of

Eq. (2.34) to the form of the beat envelope equations. Details of this comparative study

are presented in Section 2.6.4, where agreement is observed with Sudakov’s results except

for one erroneous numerical coefficient which we correct here.

Using this systematic approach we have actually carried out calculations up to the

fourth order, and the final fourth order slow flow equation is given, for completeness, in

Section 2.6.1 (details are available in Marathe (2006)). This equation may be of use in the

presence of somewhat larger weights of multipole superpositions. However, in the present

study, we will use only the second order slow flow (Eq. (2.34)) for generating relevant

phase portraits below.

2.3.4 Numerical verification

We next check the correctness of the slow flow we have obtained. We do this by first

integrating Eq. (2.9) numerically, using the built-in routine ODE45 from MATLAB, with

some chosen initial conditions. Numerical tolerances of 10−8 are specified for the integra-

tion routine.

Figures 2.1, 2.2 and 2.3 show comparisons between numerically obtained solutions of

Eq. (2.9) and the amplitude obtained by solving the slow flow (Eq. (2.34)). In these plots

we have selected ε = 0.001, and the initial conditions for integration of Eq. (2.9) were

taken as z̄(0) = 0.01 and ˙̄z(0) = 0. We obtain the corresponding initial conditions for the
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Figure 2.1: Comparison of amplitude (A) determined by solving the slow flow with the original

Mathieu equation (z̄) for positive and negative octopole. In both plots, ε = 0.001, z̄(0) = 0.01,

˙̄z(0) = 0, A(0) = 0.0091, Ȧ(0) = 0 and h̄ = d̄ = k̄ = 0. Further, we use for (a) f̄ = 1, ∆ = −1;

and for (b) f̄ = −1, ∆ = 1.

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

τ

z,
  A

0 200 400 600 800 1000
−1

−0.5

0

0.5

1

τ

z 
  A

z
A

z
A

(a)

(b)

I

I

I

_

_

Figure 2.2: Comparison of amplitude (A) determined by solving the slow flow with the original

Mathieu equation (z̄) for hexapole and decapole. In both plots, ε = 0.001, ∆ = 1, z̄(0) = 0.01,

˙̄z(0) = 0 and f̄ = k̄ = 0. Further, we use for (a) h̄ = 1, d̄ = 0, A(0) = 0.0091, Ȧ(0) = 0; and for

(b) d̄ = 1, h̄ = 0, A(0) = 0.0101, Ȧ(0) = 0.
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slow flow (Eq. (2.34)) by a method described in Section 2.6.5. The values of parameters

used are given in the respective figure captions. For the purpose of comparison of the
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Figure 2.3: Comparison of amplitude (A) determined by solving the slow flow with the original

Mathieu equation (z̄) for positive and negative dodecapole. In both plots, ε = 0.001, z̄(0) = 0.01,

˙̄z(0) = 0, A(0) = 0.0091, Ȧ(0) = 0 and h̄ = f̄ = d̄ = 0. Further, we use for (a) k̄ = 1, ∆ = −1;

and for (b) k̄ = −1, ∆ = 1.

two equations for a specific nonlinearity, the weights of the other superpositions are set

to zero in both Eqs. (2.9) and (2.34).

Figure 2.1(a) presents the results for positive octopole and Fig. 2.1(b) for negative oc-

topole. From the figure, a good match can be seen between the full numerical solution and

MMS approximation. Figures 2.2(a) and 2.2(b) show results for hexapole and decapole

superpositions where the effect of nonlinearity is sign independent. Figure 2.3(a) shows

the comparison for positive dodecapole while Fig. 2.3(b) is for negative dodecapole. From

these plots, it can be observed that the slow flow adequately represents the slow temporal

variation in amplitude of the system in the neighborhood of the stability boundary.

2.4 Results and discussion

Equation (2.34) is the second order slow flow which describes variation in amplitude of

ion motion in the presence of hexapole, octopole, decapole and dodecapole multipole

superpositions. While the octopole (f̄) and decapole (k̄) appear as linear terms, the

hexapole (h̄) and decapole (d̄) appear independently as quadratic terms as well as in

combination in one of the terms. This last observation, namely that of h̄ and d̄ appearing
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as a combination, has two interesting consequences. First, the sign of the hexapole will

affect dynamics only if decapole superposition is also present. Second, for the sign of

hexapole superposition to affect ion dynamics its sign change must be independent of

decapole superposition. These consequences are also borne out by the fourth order slow

flow which includes a larger number of terms (see Section 2.6.1 and the caveats therein).

We now return to our original problem of understanding ion dynamics in the presence

of field inhomogeneities. The nonlinearities considered here are hexapole, octopole, de-

capole and dodecapole. This study will rely on interpreting numerically generated phase

portraits, obtained from the slow flow (Eq. (2.34)), at different values of ∆. In the

Table 2.2: qz at different values of ∆, for ε = 0.001.

∆ qz

−2.0 0.9060463

−1.0 0.9070463

−0.5 0.9075463

−0.1 0.9079463

−0.001 0.9080453

0.25 0.9082963

0.6 0.9086463

1.0 0.9090463

2.0 0.9100463

8.0 0.9160463

phase portraits presented, we have varied ∆ from −2 to +8, and the corresponding qz

values are presented in Table 2.2 for ready reference. These qz values are calculated by

substituting q∗z = 0.908046 and ε = 0.001 in Eq. (2.8). All the phase portraits are gener-

ated keeping the value of ε at 0.001. The slow flow equations are integrated repeatedly

for a large number of initial conditions and the phase portraits are obtained by plotting

the derivative of the amplitude (Ȧ) on the y-axis and amplitude (A) on the x-axis.

Although in real traps the field has more than one higher order multipole superposition,

for the sake of clarity of the discussion we study the effect of each multipole superposition

individually. The effect of combinations of multipoles may be evaluated by a suitable

choice of terms in the slow flow equation (Eq.(2.34)) and will not be explicitly discussed

in this chapter.
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2.4.1 Positive octopole

We set h̄ = d̄ = k̄ = 0 in Eq. (2.34) to study the effect of octopole superpositions. The

right hand side of Eq. (2.34) is a cubic polynomial in amplitude A. The roots of this

polynomial are

(−0.9940
√
−∆/ f̄ , 0), (0, 0) and (0.9940

√
−∆/ f̄ , 0).

These, if real, are also the fixed points of the slow flow. Since f̄ is positive, for positive

values of ∆, there exists only one fixed point at (0, 0) and this is a saddle, indicating that

the ion is unstable. For negative ∆ values, however, there are three fixed points. For

instance, for f = 0.01 (i.e., f̄ = 20 for ε = 0.001) and ∆ = −2, these fixed points occur at

A = 0, A = ±0.3143. The two nonzero fixed points are now saddles and consequently ions

will be stable only near the origin (a center) where the solution is bounded. As we vary

∆ from −2 towards 0 (that is, towards the stability boundary), the non-zero fixed points

move towards each other. This can be observed from Figs. 2.4(a) to 2.4(d) which show

the phase portraits generated by numerically integrating Eq. (2.34). For ∆ = −0.5,−0.1,

and −0.001, the nonzero fixed points are ±0.1572, ±0.0703, and ±0.00703 respectively.

From Figs. 2.4(a) through 2.4(d), it can also be observed that the area of the region

around the center where the solution is bounded diminishes as ∆ is varied from −2 to

−0.001, and ions with initial conditions which would earlier have been stable now are

unstable and escape to infinity. For ∆ values very close to 0, but less than 0, the area

in the phase space where the solution is bounded is so small that all ions with significant

energies escape. The phase portraits present qualitatively a similar picture to Sudakov’s

(Sudakov, 2001) observation that for positive octopole there is a potential well within

the stable region and the width and depth of this well decreases as qz approaches the

boundary. In the context of our study, the central region in the phase portrait (with

closed curves) corresponds to the potential well discussed by Sudakov (2001).

2.4.2 Negative octopole

We now consider the ion dynamics in the neighborhood of the stability boundary with 1%

negative octopole nonlinearity. Since f̄ is negative, for negative values of ∆, Eq. (2.34)

will have only one fixed point. This will be a center and hence the ion will be stable.

For positive values of ∆ (i.e., beyond the nominal stability boundary), there exist 3 fixed

points consisting of a saddle and two centers (one on each side of the saddle). As ∆ is

increased to values greater than 0, these centers move away from each other. The centers

for ∆ = 2 are at A = ±0.3143 and for ∆ = 8 are at A = ±0.6287.

Figures 2.5(a) through 2.5(d) show the phase portraits generated by numerically in-
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Figure 2.4: Phase portrait for 1% octopole (f = 0.01, f̄ = 20, ε = 0.001) for ∆ values of (a)

−2, (b) −0.5, (c) −0.1 and (d) −0.001.

tegrating Eq. (2.34) for ∆ values corresponding to −1, 0, 2 and 8, respectively, for 1%

negative octopole nonlinearity. Referring to Figs. 2.5(a) and 2.5(b), there exists only one

fixed point and this is a center. All ions which were originally located near the trap cen-

ter will continue to execute stable oscillations and will not escape from the trap. When

the qz value of the ion is increased beyond q∗z (where ∆ is positive), the phase portrait

qualitatively changes its nature. As can be seen from Figs. 2.5(c) and 2.5(d), the origin

which was earlier a center now becomes a saddle and two new centers are created. Thus

an ion will oscillate in a path (in averaged or slow phase space) that encircle either one of

the centers, or both centers. For very small positive values of ∆, ion amplitude does not

exceed the trap boundary and ions are therefore confined within the trap cavity. Increas-

ing the detuning parameter ∆ increases the maximum amplitude that an ion oscillation

encircling a center can have. Eventually, for large enough ∆, ion motion amplitudes ex-

ceed the trap dimensions, and so the ion gets ejected (also see numerical simulation of

this phenomenon in Sudakov (2001)). Thus, in the presence of negative octopole super-

position, ion oscillations continue to be inherently stable well beyond q∗z and ion escapes

from the trap only when amplitude reaches the trap boundary.

Here too, our results are consistent with Sudakov’s (Sudakov, 2001) observation of a

double well potential function for negative octopole superposition. The regions around

the two centers (with closed curves) on either side of the saddle, observed for positive
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Figure 2.5: Phase portrait for −1% octopole (f = 0.01, f̄ = 20, ε = 0.001) for ∆ values of (a)

−1, (b) 0, (c) 2 and (d) 8.

values of ∆, correspond to the double well potential shown in that study.

2.4.3 Hexapole

The effect of hexapole superposition can be studied by setting f̄ = d̄ = k̄ = 0 in Eq.

(2.34). It is observed that the hexapole nonlinearity parameter h̄ appears in squared form

which implies that the sign of hexapole nonlinearity will not affect the slow flow. This is

in agreement with the simulation studies of Franzen et al. (1995).

The roots of the polynomial obtained by equating the right hand side of Eq. (2.34) to

zero are

(−0.4750
√

∆/ h̄2 , 0), (0, 0) and (0.4750
√

∆/ h̄2 , 0).

For negative values of ∆ there will be only one fixed point at (0, 0) and this will be a

center. When ∆ takes positive values, similar to the case of negative octopole nonlinearity,

two centers and a saddle will appear.

Figures 2.6(a) through 2.6(d) show the phase portraits for 1% positive hexapole su-

perposition (i.e., h̄ = 0.47 for ε = 0.001) for ∆ values −1, 0, 0.25 and 0.6, respectively. As

can be seen from these figures, we get the same qualitative behavior as we obtained in case
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Figure 2.6: Phase portrait for 1% hexapole (h = 0.01, h̄ = 0.47, ε = 0.001) for ∆ values of (a)

−1, (b) 0, (c) 0.25 and (d) 0.6.

of the negative octopole nonlinearity, for both negative and positive values of ∆. This

observation can also be understood from Eq. (2.34) where the qualitative behavior of the

slow flow for the hexapole nonlinearity (in the absence of all others) will become similar

to the slow flow for the negative octopole nonlinearity (in the absence of all others).

Notice, however that h̄ d̄ appears in the slow flow, so sign independence is violated

when multiple multipoles are present. Moreover, at the fourth order (see Section 2.6.1)

this symmetry is further lost due to the simultaneous presence of h̄ d̄ as well as h̄2 d̄ (but

see the caveats presented therein).

2.4.4 Decapole

To study the effect of decapole superposition we set h̄ = f̄ = k̄ = 0 in Eq. (2.34). The

slow flow equation reduces to

0.8773 ∆A− 9.4429 d̄2A7 = 0. (2.35)

Figures 2.7(a) to 2.7(d) show the phase portraits for 1% decapole superposition (i.e.,

d̄ = 0.79 for ε = 0.001). The phase portraits are qualitatively similar to the phase

portraits obtained for hexapole superposition. As in the case of hexapole, delayed ejection
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is suggested by these phase portraits. The fixed point of the system when ∆ is negative

is (0,0). In this case the system exhibits stable oscillations. For positive values of ∆ there

will be three fixed points. For ∆ = 0.25 these are (−0.5778, 0), (0, 0) and (0.5778, 0).

From the phase portraits it can be observed that origin of the A-Ȧ plane is a saddle and

the nonzero fixed points are centers. As ∆ is increased to 2, the two nonzero fixed points

move further apart to (±0.7857, 0). Ions are ejected from the trap when their amplitudes

reach the trap boundary.
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Figure 2.7: Phase portrait for 1% decapole (d = 0.01, d̄ = 0.79, ε = 0.001) for ∆ values (a) −1,

(b) 0, (c) 0.25 and (d) 2.

2.4.5 Positive dodecapole

The influence of dodecapole nonlinearity may be investigated by setting h̄ = f̄ = d̄ = 0

in Eq. (2.34). The slow flow reduces to

0.8773 ∆A− 0.9712 k̄A5 = 0. (2.36)

The system represented by this equation has three fixed points when ∆ is negative and k̄ is

positive. The phase portraits for 1% dodecapole superposition (i.e., k̄ = 30 for ε = 0.001)

are shown in Figs. 2.8(a) to 2.8(d). When ∆ = −0.5 the fixed points are (−0.3503, 0),

(0, 0) and (0.3503, 0). The two nonzero fixed points are saddles and the origin is a center.
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Figure 2.8: Phase portrait for 1% dodecapole (k = 0.01, k̄ = 30, ε = 0.001) for ∆ values of (a)

−0.5, (b) −0.1, (c) −0.01 and (d) −0.001.

As ∆ is increased (that is, when qz approaches q∗z) the two nonzero fixed points move

closer to the origin. From Fig. 2.8(d) corresponding to ∆ = −0.001, the center is almost

gone and almost all initial conditions lead to unbounded solutions (ejection).

2.4.6 Negative dodecapole

When k̄ is negative there exists only one fixed point at (0,0) for negative values of ∆.

From Fig. 2.9(a), which is plotted for −1% dodecapole superposition at ∆ = −1, it can

be seen that the system exhibits stable oscillations. However, for positive values of ∆

there are three fixed points. Figures 2.9(c) and 2.9(d) corresponding to ∆ = 1 and ∆ = 8,

respectively, show that the nonzero fixed points are centers and the origin is a saddle. Ions

are ejected from the trap when the ion oscillation amplitude reaches the trap boundary.

2.5 Concluding remarks

The motivation of this chapter was to understand the dynamics associated with early

and delayed ejection of ions in Paul traps operated in the mass selective ejection mode.

The studies reported in this chapter will be of use in understanding dynamics at the
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Figure 2.9: Phase portrait for −1% dodecapole (k = 0.01, k̄ = 30, ε = 0.001) for ∆ values of

(a) −1, (b) 0, (c) 1 and (d) 8.

stability boundary in all traps where the nonlinear Mathieu equation determines ion

stability. Examples of mass analyzer configurations which are attracting considerable

interest include the 2D (linear) Paul trap and the cylindrical trap, in addition to the

hyperboloid geometry Paul trap.

The equation of motion of ions in the axial direction of the trap with hexapole, octo-

pole, decapole and dodecapole superpositions was studied using the method of multiple

scales. The ordering scheme used has allowed a systematic inclusion of higher order multi-

poles. Details of the analysis have been provided and our results are compared with those

of Sudakov (2001). Although a fourth order slow flow equation has been computed and

reported for potential future use in traps with larger weights of multipole superpositions,

in our present study we have used the second order slow flow (Eq. (2.34)) for generating

phase portraits. Phase portraits generated by numerical integration of the slow flow have

been used to predict the qualitative behavior of ion motion near the stability boundary

in the presence of nonlinearities. The presence of positive even multipoles was seen to

cause early ejection and negative even multipoles to cause delayed ejection of ions. In-

dependently present odd multipoles of either sign have the same effect as negative even

multipoles in causing delayed ejection.

While our present study has served to reinforce conclusions arrived at by earlier workers



Chapter 2. Multiple scales analysis of early and delayed boundary ejection in Paul traps 34

who focussed on the influence of field inhomogeneities causing delayed ejection in mass

selective boundary ejection experiments, it offers a few new insights.

First, we now have a better understanding on the role of hexapole superposition,

specifically to the way in which its sign is important in discussion of ion dynamics at the

boundary. To re-iterate our observation, the common perception is that the dynamics

is unaffected if h̄ changes sign. We report that the dynamics is unaffected if h̄ and d̄

change sign simultaneously but not otherwise (assuming both h̄ and d̄ are nonzero).

Furthermore, when d̄ = 0, the sign-independence of the dynamics on h̄ holds up to even

the next order in the analysis (going beyond Franzen et al. (1995)).

A second important contribution that the present study makes is to trap designers.

As mentioned in our introductory remarks in this chapter, newer trap geometries are

under current investigation and their design optimization is performed either empirically

or through numerical simulations. These techniques do not lend themselves to easily

summarizing the effects of a large number of possible parameter variations. Considering

that calculation of multipole contribution to the field within the trap cavity for a specified

trap geometry is fairly routine and straightforward, inserting the weights of multipole

superpositions for these geometries in the slow flow will enable easy visualization of ion

dynamics at different qz values in the neighborhood of the nominal stability boundary.

This will help designers in understanding the effects of specific combinations of multipole

superpositions in mass analyzers being investigated by them for use in mass selective

boundary ejection experiments.

2.6 Appendix

2.6.1 Fourth order MMS slow flow

The slow flow equation after carrying out the fourth order multiple scales analysis will be

in the form

Ä = ε (−12.8564 h̄ d̄A5 − 9.44304 d̄2A7 − 3.88769 h̄2A3 + 0.97124 k̄ A5

+0.87729 ∆ A + 0.88965 f̄ A3 + 39.31546 h̄2Ȧ2A− 5.50581 f̄ Ȧ2A

+657.373 d̄2Ȧ2A5 − 20.2091 k̄ Ȧ2A3 + 411.774 h̄d̄ Ȧ2 A3)

+ε2 (−0.18369 ∆2A− 125.986 h̄4A5 − 1892.91 d̄4A13 + 290.186 h̄ f̄ d̄A7

+493.157 h̄ d̄ k̄ A9 + 389.577 d̄2k̄A11 − 1176.36 h̄3d̄A7 − 3572.55 h̄2d̄2A9

+151.374 h̄2k̄A7 − 7.64328 d̄ k̄ A7 + 23.3241 ∆h̄2A3 + 78.6875 h̄2d̄A5

+251.73 f̄ d̄2A9 + 133.2125 ∆ d̄2A7 − 1.76775 ∆ d̄A3 − 4394.78 h̄ d̄3A11

−3.843405 ∆k̄ A5 + 121.976 ∆ h̄ d̄A5 − 2.60912 d̄2A5 − 5.22277 k̄ 2A9) (2.37)
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Note that higher order MMS gives non-unique results (due to arbitrariness in the choice

of X1 in Eq. (2.23)). Moreover, due to harmonic balance approximations, the numerical

coefficients above are not exact. However, the spirit of the calculation is correct in prin-

ciple and a useful approximation is obtained, and so these terms are reported here for

record.

2.6.2 Choice of time scales in MMS

Time scales chosen in the MMS when applied to Eq. (2.9) are T0 = τ , T1 =
√

ε τ , T2 = ετ ,

· · · . Our choice is based on the following.

We consider
d2x

dτ 2
+ 2(q∗z + ε∆) cos(2τ)(x + ε x3) = 0, (2.38)

which can be rewritten as

d2x

dτ 2
+ 2q∗z cos(2τ) x + 2ε cos(2τ)(q∗z x3 + ∆x) +O(ε2) = 0. (2.39)

We numerically integrate Eq. (2.39), neglecting O(ε2) terms, with initial conditions

x(0) = 0.01 and ẋ(0) = 0 for a fixed value of ε = 0.001. We observe the period of the

slowly varying amplitude to be T = 433.25 (Fig. 10(a)). With the same initial conditions,

we integrate Eq. (2.39) again, but now for ε = 0.002. This time period of the solution

is observed to be T = 306.35. Note that 433.25/306.35 ≈ 1.414.. ≈ √
2. The solution

for ε = 0.002 is therefore plotted against
√

2 τ instead of τ and we get approximately the

same period i.e. T ≈ 433.25 (Fig. 10(b)). This observation suggests that the
√

ε τ time

scale is present in the solution. We support our observation further using an analogy.

The unperturbed equation in case of Eq. (2.9) is

d2x

dτ 2
+ 2 q∗z cos(2τ) x = 0. (2.40)

This equation is a linear Mathieu equation with q∗z value corresponding to q at the

stability boundary. Eq. (2.40) has two linearly independent solutions, one periodic with

constant amplitude and the other with amplitude growing linearly with time.

Now consider
d2x

dτ 2
= 0. (2.41)

It is a second order, linear homogeneous ordinary differential equation. It has two lin-

early independent solutions, one constant and the other linearly growing with respect to

time, similar at an abstract level to the behavior of the amplitude for the linear Mathieu
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Figure 2.10: Time period of the amplitude for (a) ε = 0.001 and (b) ε = 0.002.

equation. If we perturb Eq. (2.41) as

d2x

dτ 2
+ εx = 0, (2.42)

the solution becomes

x = A cos(
√

ε τ) + B sin(
√

ε τ), (2.43)

where A and B depend upon the initial conditions. We see that time scale
√

ε τ is present

in the solution.

Equation (2.9) is a perturbation to Eq. (2.40). So we expect time scales τ ,
√

ετ , ετ ,

· · · to be present in the solution. The final MMS approximation, of course, is amply

supported by full numerical checks.

2.6.3 Expressions for X1 and X2

The solution for X1 (not displaying the coefficients which are less than 10−5) is

X1 ≈ −1.13522
∂A

∂T1

sin (T0)− 0.18287
∂A

∂T1

sin (3 T0)− 0.00812
∂A

∂T1

sin (5 T0)

−0.00017
∂A

∂T1

sin (7 T0)− 0.60164 h̄ A2 cos (2 T0)− 0.6719 d̄ A4 cos (2 T0)

+0.00066 h̄ A2 cos (4 T0) + 0.00455 d̄ A4 cos (4 T0) + 0.00268 h̄ A2 cos (6 T0)

+0.0078 d̄ A4 cos (6 T0) + 0.00016, h̄ A2 cos (8 T0) + 0.00116 d̄ A4 cos (8 T0)

+0.00011 d̄A4 cos (10 T0)− 2.07004 d̄A4 − 1.88307 h̄A2 (2.44)
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The solution for X2 (not displaying the coefficients which are less than 10−5) is

X2 ≈ 1.1332 h̄ A
∂A

∂T1

sin (2 T0) + 2.46062 d̄ A3 ∂A

∂T1

sin (2 T0)− 0.00693 h̄ A
∂A

∂T1

sin (4 T0)

+0.03699 d̄ A3 ∂A

∂T1

sin (4 T0)− 0.00963 h̄ A
∂A

∂T1

sin (6 T0)− 0.03737 d̄ A3 ∂A

∂T1

sin (6 T0)

−0.00066 h̄ A
∂A

∂T1

sin (8 T0)− 0.00662 d̄ A3 ∂A

∂T1

sin (8 T0)− 0.00002 h̄ A
∂A

∂T1

sin (10 T0)

−0.00073 d̄ A3 ∂A

∂T1

sin (10T0)− 0.00006 d̄ A3 ∂A

∂T1

sin (12 T0)

+0.14628 ∆ A cos(3T0)− 0.02631 h̄2 A3 cos(3T0)− 0.00325 f̄ A3 cos(3T0)

−0.00009 f̄ A5 cos(3T0)− 0.00195 h̄ d̄ A5 cos(3T0) + 0.02946 d̄2 A7 cos(3T0)

+0.00187 ∆ A cos(5T0)− 0.02469 h̄2 A3 cos(5T0) + 0.01234 f̄ A3 cos(5T0)

−0.15887 h̄ d̄ A5 cos(5T0) + 0.01857 f̄ A5 cos(5T0)− 0.1447 d̄2 A7 cos(5T0)

+0.00007 ∆ A cos(7T0)− 0.00159 h̄2 A3 cos(7T0) + 0.00186 f̄ A3 cos(7T0)

−0.02564 h̄ d̄ A5 cos(7T0) + 0.00456 f̄ A5 cos(7T0)− 0.02621, d̄2 A7 cos(7T0)

−0.00001 h̄2 A3 cos(9T0) + 0.00015 f̄ A3 cos(9T0)− 0.00231 h̄ d̄ A5 cos(9T0)

−0.000728 f̄ A5 cos(9T0)− 0.00246 d̄2 A7 cos(9T0)− 0.00013 h̄ d̄ A5 cos(11T0)

+0.00009 f̄ A5 cos(11T0)− 0.00011 d̄2 A7 cos(11T0) (2.45)

X1 and X2 are provided here with numerical coefficients of their terms truncated to 5

decimal places. In our calculations using MAPLE, more digits were retained.

2.6.4 Comparison of second order slow flow with beat envelope equation of Sudakov (2001)

We reproduce Sudakov’s equation of ion motion (Eq. (9) in Sudakov (2001)) below,

d2u

dξ2
+ 2q0 cos(2ξ)u = 2 (q0 − q) cos(2ξ) u− q cos(2ξ) 4 α4 u3, (2.46)

where u =
z

z0

, ξ =
Ω t

2
(= τ , in our study), q0 = q∗z (in our study), α4 = f

z2
0

r2
0

(=

ε
f̄

2

z2
0

r2
0

, in our study). The solution to Eq. (2.46) is assumed to be of the form (Eq. (A1)

in Sudakov (2001))

u(ξ) = εZ u1(ξ) + ε2

(
h1 sin(ξ) + h3 sin(3ξ) + · · ·

)
+

ε3

(
g3 cos(3ξ) + g5 cos(5ξ) + · · ·

)
, (2.47)
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where Z is the beat envelope (our “amplitude”) and u1 is the periodic solution of the

linear Mathieu equation at the stability boundary and hk’s and gk’s are slowly varying

amplitudes of the harmonics.

The beat envelope equation has been found by Sudakov (2001) to be

d2Z

dξ2
+ 0.8873 (q0 − q)Z − 1.4572 α4Z

3 = 0. (2.48)

However, the slow flow equation (Eq. (2.34)) derived by us, when there is only octopole

nonlinearity, has the form

Ä = ε (0.8773 ∆A + 0.8897 f̄A3). (2.49)

We must now transform our equation, Eq. (2.49), to the form presented by Sudakov

(2001). This will require transforming different parameters in our equation to conform to

Eq. (2.48). This is described below.

We nondimensionalized the axial position variable z as z̄ =
z

r0

; since u =
z

z0

, we have

z̄ =
z0

r0

u. Since z̄ = X0 + O(
√

ε) = A ξ1 + O(
√

ε), we write z̄ ≈ Aξ1 i.e.,
z0

r0

u ≈ Aξ1.

Sudakov shows in Appendix A of Sudakov (2001) that his hk’s and gk’s are of the first

and second orders, respectively. Since ε is a book-keeping parameter in that study (the

correspondence between Sudakov’s ε and ours is therefore not direct, and is avoided in this

discussion), we can write u ≈ Z u1, and therefore A ≈
(

z0

r0

)(
u1

ξ1

)
Z. Finally, substituting

f̄ =
2

ε

r2
0

z2
0

α4, ∆ = −q0 − q

ε
and A ≈ z0

r0

u1

ξ1

Z into Eq. (2.49), we obtain

d2Z

dξ2
+ 0.8873 (q0 − q) Z − 1.7794

(
u1

ξ1

)2

α4 Z3 = 0. (2.50)

From Eq. (10) of Sudakov (2001), it can be seen that u1 is scaled such that all coefficients

in the solution add to 1. In our study, we have not imposed this condition on ξ1 and we

have obtained, instead, u1/ξ1 = 0.90495. Substituting this, Eq. (2.50) then becomes

d2Z

dξ2
+ 0.8873 (q0 − q) Z − 1.4572α4 Z3 = 0 (2.51)

Comparing Eq. (2.48) and Eq. (2.51) indicates that, for octopole superposition, the beat

envelope equation and the slow flow are identical.

We next investigate the two equations (ours, and Sudakov’s) for the case of hexapole

superposition. Eq. (B7) in Sudakov (2001) which represents the beat envelope for hexapole

superposition is
d2Z

dξ2
+ 0.8873 (q0 − q)Z + 12.692 α2

3Z
3 = 0. (2.52)
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Following the procedure adopted for octopole nonlinearity and substituting h̄ =
3

2
√

ε

(
r0

z0

)

in the slow flow, Eq. (2.34) with only hexapole superposition can be transformed to

d2Z

dξ2
+ 0.8873 (q0 − q) Z + 7.1693α2

3 Z3 = 0. (2.53)

It is observed that the coefficient of α2
3 Z3 in Eqs. (2.52) and (2.53) differ significantly.

We now verify the correctness of the coefficients by comparing the solutions of the two

equations with the solution of the original equation (Eq. (B1)) in Sudakov (2001) with

hexapole superposition, which is

d2u

dξ2
+ 2q cos(2ξ)u = −q cos(2ξ) 3 α3 u2. (2.54)

These equations are integrated using the ODE45 routine of MATLAB with tolerance

values of 10−10. The amplitude obtained from the transformed slow flow (Eq. (2.53)),

shown as a heavy line in Fig. 2.11, follows the solution of Eq. (2.46) very closely, while

the amplitude from the beat envelope equation of Sudakov (2001), Eq. (2.52), shown as a

dash line in Fig. 2.11, shows an error in the numerical term reported in Sudakov (2001).
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Figure 2.11: Comparison between amplitude obtained by (Eq. (2.53)) and Eq. (2.52) for α3 =

0.02828 (4% hexapole), q = q0 = 0.908046, u(0) = 0.01, u̇(0) = 0, Z(0) = 0.01, Ż(0) = 0.

2.6.5 Initial condition calculation

We describe a procedure to obtain initial conditions for Eq. (2.34), correct up to O(
√

ε),

from the initial conditions used to integrate Eq. (2.9).
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We assume X(0) = X0(0). Since X0 = A(T1) ξ1(T0), we have

X0(0) = A(T1) ξ1(0).

From the expression for X0 obtained from MAPLE, we have ξ1(0) = 1.105. Therefore, the

initial condition for A is

A(0) =
X0(0)

1.105
+O(

√
ε) =

X(0)

1.105
+O(

√
ε).

We also have

Ẋ(0) = Ẋ0(0) +
√

ε Ẋ1(0) +O(ε)

= ξ1(0) Ȧ(0) +
√

ε
∂X1

∂T0

+O(ε). (2.55)

From our solution (MAPLE), we have

∂X1

∂T0

= −1.7244
∂A

∂T1

.

Substituting the above in Eq. (2.34), we get

Ȧ(0) =
Ẋ(0)

−0.6193
+O(ε).

Note that some small errors remain for nonzero ε, in light of which some small adjustments

in initial conditions are allowed to obtain better fits.



Chapter 3

Motional coherence during resonance ejection of ions
from Paul traps

3.1 Introduction

In this chapter we study the dependence of resolution on the scan direction in resonance

ejection experiments in Paul traps with stretched geometry and in the presence of a buffer

gas. In particular, we show how a forward scan direction constrains the pre-ejection

dynamical states of the ion so as to yield a coherent motion which in turn leads to good

resolution, and how a lack of this constraint results in poor resolution spectra in the

reverse scan.

Ions of an analyte gas which are confined within the cavity of the three electrode geom-

etry Paul trap mass analyzer (consisting of a ring electrode and two end cap electrodes)

oscillate at their secular frequencies, ω0u, in the axial and radial directions. The secular

frequencies can be computed by the expression (March and Hughes, 1989; March, 1992)

ω0u =
βuΩ

2
(3.1)

where u refers to the axial (z) or radial (r) directions, Ω is the angular frequency of the

rf drive (applied across the central ring and the two grounded end cap electrodes) and βu

is a parameter related to the Mathieu parameters au and qu. βu can be obtained using an

implicit continuous fraction relationship (March and Hughes, 1989) or more simply, when

qu < 0.4, by the expression (Dawson, 1976)

β2
u = au +

q2
u

2
(3.2)

within the pseudopotential well approximation.

In resonance ejection experiments, a fixed frequency ac excitation having sufficient

amplitude is applied across the end cap electrodes (Fulford et al., 1980; March et al.,

1990a; March et al., 1990b). To resonantly eject the ions from the trap, the secular

frequency of the ions is brought into resonance with the fixed frequency excitation by

varying the amplitude of the rf drive. In the mass spectrometry literature, increasing

the rf amplitude to bring ion secular frequency into resonance with the ac excitation is

41
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referred to as the forward scan experiment, and decreasing the rf amplitude is referred to

as the reverse scan experiment (Goeringer et al., 1992; Williams et al., 1994).

Mass spectra obtained by resonance ejection in stretched geometry traps, in the pres-

ence of buffer gas, are known to have high resolution in forward scan experiments and

relatively poor resolution in reverse scan experiments (Williams et al., 1994). A few

theoretical studies in the literature have focussed on understanding the dependence of

resolution on experimental parameters. Goeringer et al. (1992) developed relations for

line width as a function of mass, scan rate and bath gas pressure. They modelled the

system as a driven harmonic oscillator with damping. Arnold et al. (1994), using a similar

expression, derived a relationship for the maximum possible resolution at high ion mass-

to-charge ratio. Finally, Makarov (1996) used a forced, damped Duffing oscillator with

positive cubic nonlinearity (corresponding to the stretched trap geometry) and he utilized

Mitropol’skii’s asymptotic technique (Mitropol’skii, 1965) to obtain slow flow equations.

The fixed points of these equations were used to generate a resonance curve, and a study of

that curve, along with detailed numerical simulations, was used to understand resolution

and to obtain expressions for the same.

It is at this point that the study in this Chapter hopes to contribute. Like Makarov

(1996), we too model the system to consist of positive octopole nonlinearity, damping and

forcing and we consider ion motion to be within the pseudopotential well approximation

regime where qz < 0.4. We have taken up for investigation the dependence of resolution on

the scan direction through a study of ion dynamics in the neighborhood of resonance. We

will demonstrate that the observed resolution in the two directions can be attributed to

the constraints on the pre-ejection initial conditions that ions can possess in the forward

and reverse scan. It will be seen that coherence of ion motion in the forward scan and the

absence of coherence in the reverse scan results in the observation of differing resolutions

in the two directions.

In comparison to Makarov’s work, ours may be viewed as addressing the following

questions. How and when are studies based on the resonance curve valid in the presence

of transient motion? How do damping, scan rate and scan direction affect this validity?

What are the mechanisms responsible for the differential resolutions observed in the for-

ward and reverse scan experiments? In particular, we use phase portraits of the slow

flow to investigate these questions, thereby obtaining a qualitative understanding that

continues beyond Makarov’s treatment. Finally, full, numerical simulations will bear out

the validity of the insight obtained from our phase portraits.
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3.2 Equation of motion

The equation of motion of ions in the axial direction in a Paul trap with positive octo-

pole field superposition, damping and dipolar excitation, within the psuedopotential well

approximation, is given by (Sevugarajan and Menon, 2001)

d2z

dt2
+ c

dz

dt
+ ω2

0zz +
8f

r2
0

ω2
0zz

3 = −Fs cos ωt (3.3)

where z is the motion of the ion in the axial direction, t is the time, c is the damping

coefficient (which arises on account of helium bath gas), f is the ratio of the weight of

octopole superposition with that of quadrupole superposition, r0 is the radius of the trap,

ω0z is the secular frequency of the ion in the axial direction, ω is the frequency of the

dipolar excitation and

Fs =
eA1Vs

mr0

(3.4)

where e is the charge of electron, m is the mass of the ion, A1 is the weight of the dipole

component in the field and Vs is the amplitude of the ac dipolar excitation.

In Eq. (3.4) we have used the viscous drag model for damping proposed by Goeringer

et al. (1992) which has the form

c =
mn

m + mn

p

kTb

e

2ε0

√
α

m + mn

mmn

where mn is the mass of the bath gas, α = 0.22 × 10−40 Fm2 is the polarizability of the

bath gas, ε0 = 8.854× 10−12 F/m is the permittivity of free space, Tb is the temperature,

p is the pressure of the bath gas in Pascal and k is the Boltzmann constant.

Use of this model is supported by the observation of Major and Dehmelt (1968) where

it has been recommended that the viscous drag model could be used when the mass of the

ion is much larger than that of the neutral gas. However, a recent study by Plass et al.

(2003) has questioned the validity of this model in the context of typical commercial ion

traps and has instead suggested that an elastic collision model would be more appropriate

for predicting ion behavior. While, for the purpose of individually accurate predictions,

we appreciate the practical point made by Plass et al. (2003), we note that analytically

incorporating the effect of random infrequent collisions poses a challenge beyond the scope

of this investigation.

It needs to be emphasized that in traditional resonance ejection experiments ω in Eq.

(3.3) is in fact kept constant, and what varies when the rf amplitude is ramped is ω0z. In

order to modify Eq. (3.3) to the conventional form (in which the frequency of the forcing

function is varied) we introduce dimensionless parameters τ = ω0zt and z̄ = (z/r0) and
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we obtain
d2z̄

dτ 2
+ 2µ

dz̄

dτ
+ z̄ + α3z̄

3 = F cos ντ (3.5)

where

µ =
c

2ω0z

(3.6)

α3 = 8f (3.7)

F =
Fs

ω2
0zr0

(3.8)

ν =
ω

ω0z

. (3.9)

In Eq. (3.5) the frequency of the forcing function, ν, is the ratio of the excitation frequency

to the secular frequency. Thus, since ω (the forcing frequency in Eq. (3.3)) is held constant,

forward scan experiments will result in decreasing ν and reverse scan experiments will

cause ν to increase. α3 is the coefficient of the cubic nonlinearity and its sign will determine

the nature of the nonlinearity. In our study α3 is always positive. From Eqs. (3.6) and

(3.8), we note that the damping coefficient, µ, and the amplitude of the forcing term, F ,

will vary with the secular frequency, ω0z.

The equation of motion of the ions in a Paul trap is described by the Mathieu equation

(Dawson, 1976). In this study, however, we will be using the Duffing equation (Eq. (3.3))

which is valid in the Dehmelt approximation region corresponding to qz < 0.4. As an

aside, it will be instructive to understand how the original Mathieu equation responds to

dipolar excitation within the Dehmelt approximation region. We will do this by examining

escape velocity of ions at an arbitrarily chosen qz by a method outlined in Abraham et al.

(2004). This study will also give a flavor for the altered stability conditions experienced

by the ions in the presence of dipolar excitation.

Figure 3.1 is a plot of the escape velocity versus qz. The escape velocity plots have

been generated by assuming an ideal Mathieu equation with an additional force term, the

equation having the form

d2z

dτ 2
+ (az + 2qz cos 2τ)z = F cos

2ω

Ω
τ. (3.10)

The plots have been made along the az = 0 axis for an ion trap in which the central

ring electrode has a radius of 7 mm. The drive frequency, Ω, has been assumed to be

1 MHz and dipolar excitation frequency, ω, has been fixed at 100 kHz corresponding to

a qz value of 0.2829. The initial position and velocity of the ions, in our simulations,

have been chosen as 0 m and 0.0001 m/s, respectively. This initial velocity is sequentially

incremented in our computations and maximum ion amplitude, for a specified integration

time, is estimated. The velocity that causes ion amplitude to just reach the trap boundary
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Figure 3.1: Escape velocity versus qz. (1) unforced equation, (2) Vs = 100 mV, (3) Vs = 200

mV.

is taken to be the escape velocity of the ion at the chosen qz (Abraham et al., 2004). The

escape velocity plots in the absence of dipolar excitation (i.e., when F = 0), as well as

in the presence of force, F , corresponding to dipolar excitation amplitude, Vs, of 100

mV and 200 mV, are presented in this figure. From Fig. 3.1 (curve 2), it can be noted

that when an excitation voltage of 100mV is applied, there is a decrease in the escape

velocity compared to the escape velocity in the absence of dipolar excitation (curve 1) at

the selected qz. When the excitation voltage is increased to 200 mV the escape velocity

reduces to zero, implying that any ion encountering this condition will be unstable and

will escape from the trap. Curve 2 corresponds to the condition generally used in collision

induced dissociation studies and curve 3 is the condition maintained in resonance ejection

experiments.

3.3 Analytical treatment

We now return to the Duffing equation (Eq. (3.5)). In order to study the response of

the system to variations in damping, nonlinearity, forcing amplitude and frequency we

need to derive an analytical expression which captures the dynamics of the system. In

the context of the Duffing oscillator, several perturbation techniques have been explored

in the mathematical literature. The Lindstedt - Poincaré method and the method of

harmonic balance yield only steady state solutions and in our context will not provide an

insight into ion dynamics. Two other techniques which can provide us both the transient
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as well as steady state response are the method of averaging and method of multiple

scales. In our study we have used the method of multiple scales (Nayfeh and Mook, 1979;

Nayfeh, 1973; Hinch, 1991; Holmes, 1991) to derive the relevant slow flow equations. We

assume that the coefficients µ, α3, and F are small. To characterize the smallness of these

coefficients, Eq. (3.5) may be modified as (Nayfeh and Mook, 1979)

d2z̄

dτ 2
+ z̄ = ε

(
−2µ

dz̄

dτ
− α3z̄

3 + F cos ντ

)
(3.11)

where ε is a book keeping parameter. It is also assumed here that the perturbed frequency

is close to the natural frequency of the ideal system (in our case ν = 1) and can be

represented as

ν2 = 1 + εδ (3.12)

where δ is a detuning parameter. In resonance ejection experiments when the rf amplitude

is ramped, we may consider δ to be a function of slow time, T1, and write

δ = δ(T1) (3.13)

where T1 = ετ (discussed below).

Substituting Eq. (3.12) in Eq. (3.11) we get

d2z̄

dτ 2
+ ν2z̄ = ε

(
δz̄ − 2µ

dz̄

dτ
− α3z̄

3 + F cos ντ

)
. (3.14)

In the method of multiple scales we define

T0 = τ, T1 = ετ, · · ·

where T0 is the fast time scale and T1, · · · are slow time scales. We assume the solution

to Eq. (3.14) to have the form

z̄(τ) = X(T0, T1, · · · ) (3.15)

where X is assumed to have a form

X(T0, T1, · · · ) = X0(T0, T1, · · · ) + εX1(T0, T1, · · · ) + · · · (3.16)

The derivatives with respect to τ will become

d(.)

dτ
=

∂(.)

∂T0

+ ε
∂(.)

∂T1

+O(ε2) (3.17)

d2(.)

dτ 2
=

∂2(.)

∂T 2
0

+ 2ε
∂2(.)

∂T0∂T1

+O(ε2). (3.18)
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Substituting Equations (3.16), (3.17), (3.18) in Equation (3.14) and expanding the cubic

term, we obtain

∂2X0

∂T 2
0

+ ν2X0 + ε

[
∂2X1

∂T 2
0

+ ν2X1 + 2
∂2X0

∂T0∂T1

− δ X0 +

2µ
∂X0

∂T0

+ α3 X3
0 − F cos(νT0)

]
+O(ε2) = 0. (3.19)

Collecting the coefficients of ε0, ε in Equation (3.19) we have

∂2X0

∂T 2
0

+ ν2 X0 = 0. (3.20)

∂2X1

∂T 2
0

+ ν2X1 = −2
∂2X0

∂T0∂T1

+ δ X0 − 2µ
∂X0

∂T0

− α3 X3
0 + F cos(νT0) (3.21)

We consider the general solution to Equation (3.20) in the form

x0 = A(T1) cos ν T0 + B(T1) sin ν T0 (3.22)

where A and B are arbitrary functions of slow time, T1. Substituting Equation (3.22)

into Equation (3.21) we get

∂2X1

∂T0
2 + ν2X1 − 2

dA

dT1

sin(ν T0) + 2
dB

dT1

cos(ν T0)

−δ A cos(ν T0)− δ B sin(ν T0)− 2µA sin(νT0)ν

+2µB cos(νT0)ν +
1

4
α3A

3 cos(3νT0)− 1

4
α3B

3 sin(3νT0)

+
3

4
α3A

3 cos(νT0) +
3

4
α3B

3 sin(νT0) +
3

4
α3A

2B sin(3νT0)

−3

4
α3AB2 cos(3νT0) +

3

4
α3A

2B sin(νT0)

+
3

4
α3AB2 cos(νT0)− F cos(νT0) = 0. (3.23)

Equation (3.23) is a nonhomogeneous equation in X1. The terms involving sin(νT0)

and cos(νT0) will lead to secular terms (terms whose amplitude grows with time) in the

particular solution. In order to eliminate the secular terms from the solution we set the

coefficients of sin(νT0) and cos(νT0) to zero. When we do so we get the following equations

which are the slow flow equations at O(ε) as

dA

dT1

=
1

8ν
(−8µAν − 4δ(T1)B + 3α3A

2B + 3α3B
3) (3.24)
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dB

dT1

=
1

8ν
(−8µBν + 4δ(T1)A− 3α3AB2 − 3α3A

3 + 4F ). (3.25)

From Equation (3.17), we have

Ȧ =
dA

dτ
=

∂A

∂T0

+ ε
∂A

∂T1

+O(ε2) (3.26)

and

Ḃ =
dB

dτ
=

∂B

∂T0

+ ε
∂B

∂T1

+O(ε2). (3.27)

Since the A and B are not functions of T0, and by putting ε = 1 we get

Ȧ =
1

8ν
(−8µAν − 4δ(τ)B + 3α3A

2B + 3α3B
3) (3.28)

Ḃ =
1

8ν
(−8µBν + 4δ(τ)A− 3α3AB2 − 3α3A

3 + 4F ) (3.29)

and

x ≈ A cos ν τ + B sin ν τ. (3.30)

Eqs. (3.28) and (3.29) are the slow flow equations from which we can determine the fixed

points of the system. It can be observed that Ȧ and Ḃ are dependent on the damping

(µ), nonlinearity (α3) and forcing (F ) as well as the detuning (δ). We will be using these

equations to generate phase portraits to understand the mechanism of destabilization in

resonance ejection experiments.

3.3.1 Numerical verification

The validity of the slow flow equations obtained above (Eqs. (3.28) and (3.29)) to describe

the behavior of the original system will be verified by two calculations. In the first, for

a given point on the phase portrait, slow changes in the amplitude predicted by the slow

flow will be compared with the variation in the amplitude obtained by the integration of

the original equation (Eq. (3.5)). In the second, we compare amplitude response curves

obtained from the slow flow equations and the original equation.

The slow flow equations (Eqs. (3.28) and (3.29)) are two first order differential equa-

tions in the state variables A and B. The time evolution of the solution of the slow flow

equations (which is related to the motion of ions) from any initial point can be plotted as

a curve on the A-B phase plane and is called a trajectory. A number of such trajectories

plotted together is called a phase portrait (Strogatz, 1994; Hilborn, 1994). To generate

phase portraits we integrate the slow flow equations for a large number of arbitrarily

chosen initial conditions and plot B against A in each case on the same graph.

Figure 3.2(a) presents the phase portrait obtained from the slow flow at ν = 1.2

(δ = 0.44) for an undamped condition for an ion of mass 78 Th, an excitation voltage
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Figure 3.2: (a) Phase portrait of the system ((Eqs. (3.28) and (3.29)) at ν = 1.2 (δ = 0.44),

Vs = 500 mV, α3 = 0.4, µ = 0. (b) The time response from the original equation and amplitude

from the slow flow for the initial condition corresponding to point P on the phase portrait.

amplitude of 500 mV and for +5% octopole (f) superposition. The slow flow equations

are integrated repeatedly for several different initial conditions and phase portraits are

generated by plotting A on the x−axis and B on the y−axis. We present this phase

portrait in Fig. 3.2(a) which displays two stable equilibria (centers) marked X and Y ,

and an unstable equilibrium (saddle) marked Z.

For generating the time response plot (Fig. 3.2(b)) we choose initial conditions A =

−1.091 and B = 0.3146 corresponding to the point P close to the saddle in Fig. 3.2(a).

For plotting the time response of the original equation we use Eq. (3.30) to obtain the

corresponding initial conditions as z̄(0) = −1.091 and ˙̄z(0) = 0.3775. From the phase

portrait it can be seen that the trajectory first goes around the low amplitude solution

before it swings around the larger amplitude solution. This behavior is reflected in the

time response plots in Fig. 3.2(b). In Fig. 3.2(b) we also superimpose the variation in

amplitude, R =
√

A2 + B2, obtained by integrating the slow flow equations, as a heavy

line. This comparison bears out the validity of the slow flow in approximating the behavior

of the original equation.

Note that although the analysis is formally valid for very small δ and α3, the final

match is good even for somewhat large values like δ = 0.44, α3 = 0.4. For smaller values

of these parameters, the match will be better.

The phase portrait generated in Fig. 3.2(a) was for an undamped system and conse-

quently the stable solutions appear as centers in the A − B phase space of Eqs. (3.28)

and (3.29). In the presence of a buffer gas (damping), when µ > 0, the trajectories in the
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A−B phase space will eventually settle to one of the fixed points, as shown in Fig. 3.3.
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Figure 3.3: Phase trajectories of slow flow equations generated for mass 78 Th, Vs = 500 mV,

pressure = 1 Pascal and +5% octopole superposition at ν = 1.2.

A second verification of the accuracy of the slow flow to describe our original system

is studied through amplitude-response curves. An amplitude-response curve obtained

from the original nonlinear equation (Eq. (3.5)) is compared with the curve obtained

from the slow flow (Eqs. (3.28) and (3.29)) in Fig. 3.4. These curves are generated for

an ion of mass 78 Th, pressure of 0.1 Pascal, an excitation voltage amplitude of 500

mV and for +5% octopole superposition. The amplitude-response curve of the original

equation is generated by a simple numerical arc-length based continuation method used by

Nandakumar and Chatterjee (2005a) and is shown by the continuous curve. For obtaining

the amplitudes from the slow flow we use R =
√

A2 + B2, where A and B are equilibrium

values of the first order slow flow equations for different values of ν. The values obtained

are indicated by ‘?’. The trap boundary is indicated by a horizontal line at R ≈ 0.71

corresponding to z0/r0. The amplitudes determined from the slow flow equations closely

match those obtained from the original equation, validating the slow flow.

These curves also display the well known jump event observed in systems with cubic

nonlinearities (McLachlan, 1954; Landau and Lifshitz, 1976; Nayfeh and Mook, 1979).

Jumps are known to occur at the vertical tangents to these curves. In the context of

resonance ejection experiments, in the forward scan, at the vertical tangent in the neigh-

borhood of M (Fig. 3.4), the solution jumps from the lower curve towards the amplitude

determined by the upper curve (this has also been pointed out by Makarov (1996)) and

ions get detected at the trap boundary at this jump point. In reverse scan experiments,

however, ion detection occurs when the ion amplitude corresponding to the upper curve

reaches the trap boundary and here there is no sudden change in ion amplitude as it

happens in the forward scan experiment.
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Figure 3.4: Amplitude-response curve of an ion of mass 78 Th with pressure= 0.1 Pascal and

+5% octopole superposition. (—) for Vs = 500 mV, (....) for Vs = 1.5 V. (*) denotes the

amplitude obtained from the slow flow equations.

Also shown in Fig. 3.4 is the amplitude response curve for larger Vs, to demonstrate

that the magnitude of the jump depends on the applied excitation voltage Vs. A larger

Vs results in a larger jump (see dotted curve in Fig. 3.4, made for Vs = 1.5 V). Since very

small Vs will not make the ion amplitude jump across the trap boundary, a minimum Vs

is required for obtaining a spectrum in the forward scan.

3.4 Results and discussion

It needs to be pointed out that Eq. (3.5), the Duffing equation, was developed using the

pseudopotential well approximation which is valid only for qz < 0.4. In that sense the

results we present below are useful only within this range. However, since the discussion

we present is qualitative in nature we hope this may provide an insight into resonant ion

dynamics even at higher qz values.

As an aside, we point out that the Duffing equation has on occasion been seen to

provide useful quantitative information at values of qz greater than 0.4. An example of

this is the study of Makarov (1996) who used a Duffing equation to develop expressions

for line width and resolution which provided very good matches with experimental results

at qz = 0.86.
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3.4.1 Phase portraits

We now turn to investigate coherence. For this, we first present the phase portraits

derived from the slow flow equations in the region close to resonance. Figure 5 presents

the phase portraits at two different values of ν on the amplitude response curve. These

plots have been made for a mass of 78 Th, excitation voltage amplitude of 500 mV and

for +5% octopole superposition in the absence of damping.
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Figure 3.5: Phase portraits of the system ((Eqs. (3.28) and (3.29)) for Vs = 500 mV, α3 = 0.4,

µ = 0 (no damping) at (a) ν = 0.8 (δ = −0.36) (b) ν = 1.2 (δ = 0.44).

Figure 3.5(a) has been plotted for ν = 0.8 corresponding to δ = −0.36. At this detun-

ing, there exists only one (stable) equilibrium point1 corresponding to the upper curve of

the amplitude response plot. Figure 3.5(b) has been plotted for ν = 1.2 corresponding to

δ = 0.44. At this detuning, three equilibrium points exist, of which two are stable and the

third is unstable. The phase portraits for better understanding, cover amplitudes much

larger than the trap dimension. Actually, for Fig. 3.5(b), the trap physically restricts

ion motion amplitudes and so all ion motions are close to the point X. Similarly for

Fig. 3.5(a), ion motion is close to the unique periodic solution. In the presence of damp-

ing, moreover, all solutions will settle on to the respective equilibrium points (periodic

solutions in terms of the original variable z̄).

Six more thumb-nail phase portraits are presented in Fig. 3.6 corresponding to different

ν values. Of these, (a) and (b) correspond to regions where the value of ν is smaller than

the ν value at the jump point; (c) corresponds to ν value at the jump point and (d), (e)

and (f) are the plots for higher ν values. We emphasize that these phase portraits are for

zero damping as well as six independently fixed values of δ.

1An equilibrium of the slow flow represents a periodic solution in the original z variable.
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In the phase portraits, at large ν there are three equilibrium points. We have shaded

an area of the phase space enclosed by a homoclinic orbit. All trajectories in this area

are closed curves representing periodic solutions in A and B (and periodically modulated

solutions in the original variable z). In the presence of damping, essentially all of these

solutions will settle to equilibrium solution in the middle of the shaded region (amplitude

corresponding to the lower curve of the amplitude response plot). As δ varies quasista-

tically, from a high value to lower values (implying ν varies from higher values to lower

values), the area of the shaded region decreases. At the jump point, the area of the

shaded region has gone to zero and for an infinitesimally smaller δ the phase portrait

displays a single periodic solution with an amplitude corresponding to the upper curve of

the amplitude response plot.

In contrast, phase portraits (a) and (b) in Fig. 3.6 do not display any qualitative

change in structure.

3.4.2 Mass resolution

There are some interesting characteristics associated with the jump point which provide

an insight into the improved resolution observed in forward scan experiments. One fea-

ture has been presented in the discussion above in relation to Fig. 6, namely, at the

jump point ions of the same mass, having different initial conditions at the start of the

experiment, have the same amplitude and these ions eject from the trap simultaneously.

Another feature of this curve can be seen in Fig. 3.7 which has been plotted for identical

experimental conditions for two different masses, 78 Th and 79 Th. In Fig. 3.7(a) the

frequency response curves appear to be indistinguishable but the clear separation of the

curves is evident in Fig. 3.7(b) which shows a magnified view of a portion near the jump

point of Fig. 3.7(a). Here, the jump points corresponding to the two masses are labelled

J78 and J79. This separation determines the ultimate resolution achievable by the mass

analyzer. In practice, however, the resolution will be determined by the actual spread

in amplitude of the two adjacent masses at the time of jump and, this in turn, will be

influenced for a given pressure of the bath gas, by the scan rate.

3.4.3 Damping, scan rate, and coherence

So far, we have studied the phase portrait with δ = constant (no scan rate) and in

the absence of damping. Consider, now, the effect of some damping: it merely causes

trajectories within the shaded regions drawn in Fig. 3.6 to collapse on to the equilibrium

point (we ignore delicate issues in resolving what happens to trajectories very close to the

original homoclininc orbit, as borderline cases will at most involve a few ions only). As
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Figure 3.7: (a) Amplitude-response curves of ions of mass 78 Th and 79 Th with pressure=

0.1 Pascal and +5% octopole superposition and Vs = 500 mV. (b) Magnified region close to the

jump point

will be seen in the numerical simulations below, the magnitude of damping will determine

this rate of collapse and thus will influence resolution in both the forward as well as reverse

directions.

Let us now turn to scan rate. Suppose, in addition to damping, there is a very slow but

nonzero scan rate. The damped trajectories still have enough time to collapse on to the

equilibrium point and then quasistatically follow the equilibrium point as it moves along

the appropriate branch of the amplitude response curve (upper or lower, depending on

whether it is a reverse or forward scan, respectively). These trajectories therefore remain

effectively phase locked with the forcing; all of them have effectively the same amplitude

and phase, i.e., the ion motions will be coherent; and all are ejected and detected virtually

at the same instant, giving good resolution in the spectrum in both directions. However,

in traditional resonance ejection experiments such extremely slow scan rates have not

been used since very slow scan rates will result in large time delays before detection of

high mass ions and this will lead to deterioration of the quality of the spectrum.

Imagine, therefore, we increase the scan rate. There is now a more complex dynamics

associated with the ion trajectories (as may be seen by studying the slow flow with

a time-varying δ, something we avoid here to maintain focus on the issue of primary

interest). Analytically elucidating this complex dynamics would require sophisticated

analysis not attempted here; rather, we will use direct numerical integration to elucidate

these phenomena in the next Section. Here, we present a simple linearized analysis near

the periodic solutions which shows that the approach towards the coherent motion is

faster during forward scan compared to reverse scan.
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Defining Θ =

(
A
B

)
, Eqs. (3.28) and (3.29) can be written as

Θ̇ = f(Θ) (3.31)

where

f(Θ) =

(
f1

f2

)
=




1

8ν
(−8µAν − 4δ(τ)B + 3α3A

2B + 3α3B
3)

1

8ν
(−8µBν + 4δ(τ)A− 3α3AB2 − 3α3A

3 + 4F )


 (3.32)

Let Θ∗ =

(
A∗

B∗

)
be a fixed point (with δ held constant) of the above system, i.e.,

f(Θ∗) = 0. For any perturbation about the fixed point Θ∗, Θ = Θ∗ + ξ, we have

(Guckenheimer and Holmes, 1983)

ξ̇ ≈ Jξ (3.33)

where J is the Jacobian of f(Θ) given by

J =




∂f1

∂A

∂f1

∂B

∂f2

∂A

∂f2

∂B


 (3.34)

From Eq. (3.32) we get the Jacobian at Θ∗ as

J =
1

8ν




−8µν + 6α3A
∗B∗ −4δ + 9α3B

∗2 + 3α3A
∗2

4δ − 3α3B
∗2 − 9α3A

∗2 −8µν − 6α3A
∗B∗


 (3.35)

The real part of the eigenvalues of the Jacobian will determine the rate of approach of

(A,B) to the fixed point (A∗, B∗). The characteristic equation of J is

λ2 − tr(J)λ + det(J) = 0 (3.36)

and so

λ =
tr(J)±

√
(tr(J))2 − 4det(J)

2
. (3.37)

Assuming low damping, solutions will spiral into (A∗, B∗), therefore λ is complex. The

real part of λ is given by
tr(J)

2
= −16µν

16ν
= −µ (3.38)

But

µ =
c

2ω0z

=
cν

ω
(3.39)
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Since c and ω are constants in Eq. (3.39), the rate of approach of amplitude of ion

motion to the fixed point (A∗, B∗), is proportional to ν. In the forward and reverse scan

experiments, the ν values are close to each other, with ν being larger for the forward scan

case. However, the small difference in ν values is amplified by the larger times involved

(many cycles of forcing). Therefore, damping-induced coherence is greater for the forward

scan.

Finally, consider the case where the scan rate is high enough to be dynamically far

more relevant than the damping. The quasistatic behavior referred to earlier eventually

disappears. In such cases, phase locking cannot be expected even in an approximate sense

and even in the forward scan direction there will be loss of coherence in ion motion. This

occurs primarily due to rate of decrease of amplitude due to damping being much smaller

than the scan rate thus resulting in ions not having sufficient time to settle to the stable

solution. This, too, will be numerically studied below.

3.4.4 Numerical simulations

The numerical integration of the original equation (Eq. (3.5)) has been carried out to study

the effect that damping and scan rate have on the resolution in the two scan directions.

This study will investigate the response of our system for two initial conditions, viz.,

(z̄(0), ˙̄z(0)) corresponding to (0.1, 0) and (0.25, 0). In all the plots the y-axis corresponds

to the nondimensionalized amplitude. Ejection will occur at z̄ ≈ 0.71 on this scale. Three

damping conditions have been considered and the scan rate is introduced by expressing

ν as

ν = ν0 + γτ (3.40)

where ν0 is the starting value of ν, γ is a dimensionless number akin to the scan rate and

τ is dimensionless time. For forward scan the sign of γ is negative and we fix ν0 as 3 and

for reverse scan γ is positive and ν0 is chosen as 0.1.

The abscissa in these plots correspond to ν0 + 2γτ . We briefly explain this choice

since in the amplitude response plots in Figs. 3.4 and 3.6, the abscissa is ν. To justify

this change of independent variable we think of the forcing term F cos(ντ) in Eq. (3.5) as

F cos(θ). Then the abscissa of the amplitude response curve should really be θ̇, i.e., the

rate of change of phase in the forcing itself. During a scan, we have

ν = ν0 + γτ ; ν̇ = γ, (3.41)

and so

θ̇ = ν + ν̇τ = ν0 + 2γτ. (3.42)

We have, therefore, plotted ν0 + 2γτ on the abscissa of the time response plots.
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We first investigate the effect of damping. For this we fix γ at 0.0005. Figures 3.8 and

3.9 are plots for forward and reverse scan, respectively, for no damping. Figures 3.10 and

3.11 and Figs. 11 and 12 are the plots for damping corresponding to He bath gas pressure

of 0.1 Pascal and 1 Pascal, respectively. In all these figures subplot (a) corresponds to

initial condition (0.1, 0), subplot (b) corresponds to initial condition (0.25, 0) and in

subplot (c) we have provided the magnified portion of the plots in (a) and (b) where the

amplitude of ion motion crosses the trap boundary. The traces shown in Figs. 3.9, 3.11

and 3.12 for large initial conditions are similar to those presented by Franzen (1993) to

explain ejection delays caused by multipole superposition in mass selective ejection at the

βz = 1 stability boundary.

In the absence of damping, trajectories in Fig. 3.8 and 3.9 display no coherence in both

forward as well as reverse scan. Ions with two different initial conditions, at the start of

the experiment, encounter the trap boundary at different values of ν. The situation is

dramatically altered in the forward scan in the presence of 0.1 Pascal He bath gas pressure.

As anticipated from earlier discussions, motion of ions of two different initial conditions

fall in step, and they have coherent motion at the approach to the trap boundary. This is

demonstrated by the indistinguishable trajectories of the two different initial conditions

shown in Fig. 3.10(c). In the reverse scan, at this pressure, there continues to be lack

of coherence as seen in Fig. 3.11(c). When the He bath gas pressure is further increased

to 1 Pascal, ion motion in the forward scan continues to be coherent. Although the ion

motion in the reverse scan displays greater coherence at 1 Pascal when compared to the

0.1 Pascal case, there is still some separation in the trajectories corresponding to the two

initial conditions as seen in Fig. 3.12.

To investigate the effect of scan rate, we consider increased scan rate of γ = 0.0051,

corresponding to He bath gas pressure of 0.1 Pascal. The time trajectories are presented

in Fig. 3.13. From a comparison of Fig. 3.10 (which was plotted for γ = 0.0005) and Fig.

3.13 it is evident that increasing scan rate has the effect of destroying coherence in the

forward direction as has been suggested in our earlier discussion.

3.5 Concluding remarks

The motivation of this chapter was to understand constraints on the pre-ejection dynamics

of ions in the forward and reverse scan resonance ejection experiments. Both analytical

and numerical computations have been carried out to understand the cause for the varia-

tion in resolution of mass spectra observed in the two scan directions. For our analytical

study, ion motion was modelled as a damped, driven Duffing oscillator with positive cubic

nonlinearity and, using the method of multiple scales, slow flow equations were derived.

These slow flow equations were validated using numerical simulations. Numerical studies
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Figure 3.8: Time trajectories in the forward scan for initial conditions (a) (0.1, 0) and

(b) (0.25, 0), in the absence of damping. ν0 = 3, γ = −0.0005. The trajectories for the

two initial conditions in the vicinity of the trap boundary (z̄ ≈ 0.7) are presented in (c).

Light curve corresponds to initial condition (0.1, 0) and dark curve corresponds to initial

condition (0.25, 0).
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Figure 3.9: Time trajectories in the reverse scan for initial conditions (a) (0.1, 0) and (b)

(0.25, 0), in the absence of damping. ν0 = 0.1, γ = 0.0005. The trajectories for the two initial

conditions in the vicinity of the trap boundary (z̄ ≈ 0.7) are presented in (c). Light curve

corresponds to initial condition (0.1, 0) and dark curve to initial condition (0.25, 0).
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Figure 3.10: Time trajectories in the forward scan for initial conditions (a) (0.1, 0) and (b)

(0.25, 0), He gas pressure 0.1 Pascal, ν0 = 3, γ = −0.0005. The trajectories for the two initial

conditions in the vicinity of the trap boundary (z̄ ≈ 0.7) are presented in (c). Continuous curve

corresponds to initial condition (0.1, 0) and ‘*’ to initial condition (0.25, 0).
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Figure 3.11: Time trajectories in the reverse scan for initial conditions (a) (0.1, 0) and

(b) (0.25, 0), He gas pressure 0.1 Pascal, ν0 = 0.1, γ = 0.0005. The trajectories for the

two initial conditions in the vicinity of the trap boundary (z̄ ≈ 0.7) are presented in (c).

Light curve corresponds to initial condition (0.1, 0) and dark curve to initial condition

(0.25, 0).
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Figure 3.12: Time trajectories in the reverse scan for initial conditions (a) (0.1, 0) and (b) (0.25,

0), He gas pressure 1 Pascal, ν0 = 0.1, γ = 0.0005. The trajectories for the two initial conditions

in the vicinity of the trap boundary (z̄ ≈ 0.7) are presented in (c). Light curve corresponds to

initial condition (0.1, 0) and dark curve to initial condition (0.25, 0).
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Figure 3.13: Time trajectories in the forward scan for initial conditions (a) (0.1, 0) and (b)

(0.25, 0), He gas pressure 0.1 Pascal, ν0 = 3, γ = −0.0051. The trajectories for the two initial

conditions in the vicinity of the trap boundary (z̄ ≈ 0.7) are presented in (c). Light curve

corresponds to initial condition (0.1, 0) and dark curve to initial condition (0.25, 0).
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have also been carried out on the original Duffing equation to support our qualitative

conclusions obtained from the phase portraits.

First confining attention to the amplitude-response curve (as done by Makarov (1996))

it was observed that the mechanisms of ion ejection in the two scan directions are different.

In the forward scan experiment, as previously noted by Makarov, ejection occurs when

the ions of a given mass encounter the jump point. At this point, a sudden change in

amplitude of ions causes them to get ejected from the trap. In reverse scan experiment, we

point out that ion ejection occurs not on account of any jump, but because ion amplitude

grows steadily and reaches the trap boundary.

We have, further, studied transient motions away from the amplitude response curve.

The role of both damping and scan rate in bringing about coherence in ion motion in

the two scan directions has been presented. It is seen that increasing damping leads

to coherent ion motion for both scan directions, and decreasing damping leads to loss

of coherence. Similarly, very low scan rates result in coherent ion motion in both scan

directions and increasing the scan rate destroys the coherence in both directions. However,

this effect is larger for reverse scan compared to forward scan. This is because the rate

of settling of ions to the periodic motion (coherence) is faster in the forward direction

compared to the reverse scan direction.

Finally, we briefly comment on the mechanism proposed in the experimental study

reported in Williams et al. (1994). In this paper, they have used the fact that octo-

pole superposition causes the secular frequency of ions to be related to ion oscillation

amplitude. Thus in forward scan experiments, the ion secular frequency “runs into” the

dipolar excitation frequency causing ejection compacted in time which results in spectra

with good resolution. In reverse scan, as ion oscillation amplitude increases, the secular

frequency moves away from the dipolar excitation frequency resulting in spectra having

poor resolution. The mechanism we have proposed in the present study does not explic-

itly invoke this amplitude frequency relationship but instead focuses on the constraints

on pre-ejection dynamical states to explain the differential resolution. Nevertheless, a

shadow of the discussion in Williams et al. (1994) may be seen in our discussion in that

in one direction a jump is encountered while in the other direction it is not.



Chapter 4

Preliminary study of some coupled resonances

4.1 Introduction

This chapter presents results of a preliminary study of coupled resonances in Paul traps.

The motivation of this chapter is to identify points on the Mathieu stability plot where

coupled resonances occur and to select one for detailed numerical study in Chapter 5.

Through the studies in this, and the next, chapters we hope to present some results which

will give an insight into the complicated, but rich, dynamics associated with coupled

resonances experienced by ions in Paul trap mass spectrometers.

Several investigations have confirmed the existence of nonlinear resonances, by iden-

tifying points or lines within the Mathieu stability plots where the trapping strength is

lower than the neighboring regions. Some notable experimental investigations include

those of Guidugli and Traldi (1991), Morand et al. (1993), Guidugli et al. (1992), Alheit

et al. (1995), Alheit et al. (1996) and Chu et al. (1998). Loss of ions from the trap

along these lines and points has been attributed to nonlinear resonances which arise due

to superposition of higher order fields on the predominantly linear field within the trap

cavity.

In an early study, Franzen et al. (1995) proposed a relationship between the radial

secular frequency, axial secular frequency and the frequency of the rf drive ωr, ωz and

Ω, respectively, that would represent potential nonlinear resonances. The relationship

proposed in their study has the form

nrωr + nzωz = νΩ (4.1)

where nr, nz and ν are integers; pure axial resonance occurs when nz is zero, pure radial

resonance occurs when nr is zero, and coupled resonance occurs when both nr and nz

are non zero (ν may or may not be zero). The study also suggested that specific multi-

pole superpositions contribute to specific nonlinear resonance. This last observation was

confirmed in subsequent analysis of resonance points along the az = 0 axis by Abraham

et al. (2004) who have identified hexapole superposition as a an important contributor

to the βz = 2/3 resonance and octopole superposition to the βz = 1/2 resonance. In

another investigation, Prasanna (2005) pointed to the role of decapole superposition in

63
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the βz = 2/5 resonance.

In this chapter we will use Eq. (4.1) to begin our search for candidate resonance points

(within the Mathieu stability plot) for our study of coupled resonances. The multipole

superpositions considered include hexapole, octopole, decapole and dodecapole. For each

multipole superposition we first arbitrarily choose some resonances predicted by Eq. (4.1).

Potential candidates for our study could be any point along a coupled resonance line or

a point where two pure resonances, one in the radial direction and the other in the axial

direction, intersect. From amongst the several intersections of different resonance lines

we start with, we take up for investigation only those points where at least one coupled

nonlinear resonance is also involved. i.e., there is a common intersection of three curves

(see Fig. 4.1 below). We then carry out a numerical study at the chosen resonance points,

to select a specific resonance for further detailed investigation in Chapter 5.

4.2 Equations of motion

In experimental traps, multipole superpositions are introduced by including higher or-

der terms in the equation of motion. Because of axial symmetry, Legendre polynomials

(Beaty,1986) have been used in the mass spectrometry literature (Franzen et al., 1995) to

represent the contribution of higher order terms in the potential function. The equations

of motion of ions in the axial (z) and radial (r) directions in the practical Paul trap,

with hexapole, octopole, decapole and dodecapole superpositions incorporated, takes the

form of a coupled, nonlinear Mathieu equation given by (Sevugarajan and Menon, 2002;

Abraham et al., 2003)

d2z̄

dτ 2
+ (az + 2qz cos 2τ)

(
z̄ +

3h

2
z̄2 − 3h

4
r̄2 + 2f z̄3 − 3f z̄r̄2 +

5d

2
z̄4 − 15d

2
z̄2r̄2 +

15d

16
r̄4 + 3kz̄5 − 15kz̄3r̄2 +

45k

8
z̄r̄4

)
= 0 (4.2)

d2r̄

dτ 2
+ (ar + 2qr cos 2τ)

(
r̄ + 3hz̄r̄ + 6f z̄2r̄ − 3

2
r̄3 +

10dz̄3r̄ − 15d

2
z̄r̄3 + 15kz̄4r̄ − 45k

2
z̄2r̄3 +

15k

8
r̄5

)
= 0 (4.3)

where h, f , d and k are the relative weights (with respect to the weight of the quadrupole

superposition, A2) of hexapole, octopole, decapole and dodecapole nonlinearity, respec-

tively; z̄(= z/r0) and r̄(= r/r0) are scaled displacements in z and r directions and az, qz,

ar and qr are Mathieu parameters for the nonlinear Paul trap which are given by

az = −2ar =
8eA2U

mr2
0Ω

2
(4.4)
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qz = −2qr = −4eA2V

mr2
0Ω

2
(4.5)

Equations (4.2) and(4.3) are coupled nonlinear Mathieu equations, with the former

equation representing the motion in the axial direction and the latter equation the ra-

dial direction motion. These nonlinear equations will be used in our numerical studies

presented below.

4.3 Nonlinear resonances

The resonance conditions, derived from the conditions outlined in Franzen et. al. (1995)

and considered in the present study are summarized in Table 4.1. Briefly, Franzen’s rec-

ommendations on nr and nz in Eq. (4.1), pertaining to which multipoles they correspond

with, are:

nr is even for all multipoles,

nz is even for even multipoles and

any integer for odd multipoles.

and |nr|+ |nz| ≤ ℵ+ 1

where ℵ refers to the order (number of pairs of poles) of the multipoles. Some choices

satisfying these criteria are listed in Table 1. As seen from the table, each nonlinearity is

Table 4.1: Nonlinearities and resonance curves.

Nonlinearity Nonlinear resonances

hexapole βz = 1
2
, βr = 1

2
, βz = 2

3
, βr + βz = 1

otopole βz = 1
2
, βr = 1

2
, βr + βz = 1

decapole βr = 1
3
, βr = 1

2
, βz = 1

2
βz = 1

3
, βz = 2

5

βr + βz = 1, 2βr + βz = 1, 4βr + βz = 2

dodecapole βr = 1
3
, βr = 1

2
, βz = 1

2
, βz = 1

3
, βz = 2

5

βr + βz = 1, 2βr + βz = 1, 4βr + βz = 2

associated with specific nonlinear resonances in the trap. These resonances include both

one-direction resonance (which involves either βr or βz) as well as coupled resonances

(which involves both βr and βz). A point to be noted is that resonances βz = 1
2
, βr = 1

2
,

βr + βz = 1 are common to all superpositions.
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Figure 4.1 is the Mathieu stability plot with the nonlinear resonance curves (presented

in Table 1) corresponding to the different superpositions. At several points on the plot

we observe intersection of two or more nonlinear resonance curves. These intersections

involve intersections of one-direction resonance curves as well as intersections with curves

of coupled resonances.
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Figure 4.1: Nonlinear resonance lines in Mathieu stability plot

In order to numerically study the ion behavior at these points we need to first determine

the values of az and qz at the points of intersection of the resonance curves. In our present

study, we restrict our attention to only those points in which at least one coupled resonance

(resonance involving both βz and βr) is involved. In Fig. 1, these points have been labelled

as A, B, C, D, E and F.

To determine the az and qz values for points A to F we first substitute the general

solution (Eq. (1.9)) into the linear Mathieu equation (Eq. (1.7)) after expressing ar and

qr in terms of az and qz (Eq. 1.8)). For a given point we apply the harmonic balance

method (below) to obtain two equations in four unknowns viz., βz, βr, az and qz. These

two equations, when combined with the additional equations of nonlinear resonance at

the point under study, enables us to obtain the values of az, qz, βr and βz at the chosen

point. The values of az and qz at the point of intersection will be referred to as a∗z and q∗z
in our discussions.
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The linear Mathieu equation in the r and z directions can be written as

d2r

dτ 2
− (

az

2
+ qz cos 2τ)r = 0 (4.6)

d2z

dτ 2
+ (az + 2qz cos 2τ)z = 0 (4.7)

As the cosine series and sine series of the general solution (Equation 1.4) are inde-

pendent solutions of the linear Mathieu equation, for finding az and qz we substitute the

cosine solution

u =
∞∑

n=−∞
Cn,u cos(βu + 2n)τ (4.8)

into the linear Mathieu equations. In the presentation below we use a truncated series for

−3 ≤ n ≤ 3, although in our actual calculations, we used −5 ≤ n ≤ 5. We therefore have

r(τ) = c−3,r cos (βr τ − 6 τ) + c−2,r cos (βr τ − 4 τ) + c−1,r cos (βr τ − 2 τ)

+c0,r cos (βr τ) + c1,r cos (βr τ + 2 τ) + c2,r cos (βr τ + 4 τ)

+c3,r cos (βr τ + 6 τ) (4.9)

z(τ) = c−3,z cos (βz τ − 6 τ) + c−2,z cos (βz τ − 4 τ) + c−1,z cos (βz τ − 2 τ)

+c0,z cos (βz τ) + c1,z cos (βz τ + 2 τ) + c2,z cos (βz τ + 4 τ)

+c3,z cos (βz τ + 6 τ) . (4.10)

Substituting Equations (4.9) and (4.10) into Equations (4.6) and (4.7), respectively and

equating separately to zero the coefficients of the cosine terms used in the expansion, we

have
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For the set of equations given by the above two matrices to have nontrivial solutions,

the determinants of the 7× 7 coefficient matrices must be zero. These conditions provide

us two equations in the four unknowns βz, βr, az and qz. We solve these equations together

with βr + βz = 1 and βz = 1
2

or βr = 1
2

to determine the parameters at A. The values

of βz, βr, az and qz at points B, C, D, E and F can be determined by the same method.

The special az, qz values corresponding to these resonances are denoted with stars below.

The a∗z, q∗z for points A to F are presented in Table 4.2. The az and qz values at

Table 4.2: a∗z and q∗z at the intersection of nonlinear resonance curves.

Point Intersecting curves a∗z q∗z

A βz = 1
2
, βr = 1

2
, -0.2313850427 0.9193009931

βr + βz = 1

B βr = 1
3
, βr + βz = 1, -0.0365773350 0.8226392657

4βr + βz = 2

C βz = 1
2
, 2βr + βz = 1, -0.0119395698 0.6556667239

2βr + 3βz = 2

D βz = 1
3
,2βr + βz = 1 , -0.1079706121 0.6423010023

βr = 1
3
, βr + 2βz = 1

E βz = 2
5
, 2βr + 3βz = 2, -0.1530910493 0.7582156960

4βr + βz = 2

F βz = 1
2
, 4βr + βz = 2 -0.1088800013 0.7792799900

which we expect to observe nonlinear resonant behavior in the experimental traps may

be slightly detuned from a∗z and q∗z . Consequently, our numerical study will probe ion

behavior at az, qz values in the neighborhood of a∗z, q∗z .

4.4 Numerical study

We use Poincaré sections (Strogatz, 1994; Rand, 2005) to study the stability of ions at the

chosen points on the Mathieu stability diagram. The Poincaré sections are generated by

strobing the solutions at intervals equal to the period of the parametric forcing. Figures

4.2 to 4.7 show the Poincaré sections for r and z directions at points A to F, with an initial

condition (z, ż, r, ṙ) = (0.05, 0, 0.05, 0). In all these figures, ¦ corresponds to the radial
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motion and ? corresponds to axial motion. Although these plots present the behavior of

ions for a specific combination of multipole superpositions, they have been selected from a

large set of combinations of field superpositions which were analyzed. Table 4.3 presents

one example, at point A, of how we proceeded to analyze the stability of ion motion.
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Figure 4.2: Poincaré sections in the z and r direction at az = −0.23131 and qz = 0.91919 for

10% hexapole and 10% octopole superposition corresponding to point A in Fig. 4.1.

Consider the intersection of the lines βr = 1
2
, βz = 1

2
, βr + βz = 1, resonances corre-

sponding to point A in Fig. 4.1. These resonances are common to all nonlinearities. Our

detailed study of various combination of nonlinearities revealed that some combinations

(Table 4.3) displayed simultaneous unstable behavior in r and z directions, other combi-

nations resulted in only z direction instability and several combinations resulted in stable

behavior. Figure 4.2 is a Poincaré section for 10% hexapole and 10% octopole superposi-

tions, where ion motion is unstable in the r and z directions simultaneously. The azand

qz values chosen for this plots are −0.23131 and 0.91919, respectively, values which are

detuned from a∗z and q∗z .

Figure 4.3 is the Poincaré section at the intersection of βr = 1
3
, βr + βz = 1 and

4βr + βz = 2 corresponding to point B in Fig. 4.1. Here the curve βr + βz = 1 is common

for all nonlinearities and curves βr = 1
3

and 4βr + βz = 2 are specific to only decapole

nonlinearity (as per Franzen’s recommendations). Some combinations of nonlinearities

displayed stable behavior while other combinations displayed instability only in the z

direction; no combination of nonlinearity, including those with negative signs assigned to
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Table 4.3: Stability of ion motion for different combinations of higher order superposi-

tions in the neighborhood of point A (az = −0.23131 and qz = 0.91919). All nonzero

superpositions were arbitrarily taken to be ±10%, to exaggerate their influence.

Percentage of

hexapole octopole decapole dodecapole stability

10 10 0 0 r, z unstable

10 10 10 0 r, z unstable

10 10 0 10 r, z unstable

10 10 10 10 r, z unstable

−10 10 0 0 r, z unstable

−10 0 −10 0 r, z unstable

10 10 −10 0 r, z unstable

−10 10 10 0 r, z unstable

−10 10 0 10 r, z unstable

−10 10 10 10 r, z unstable

10 10 −10 10 r, z unstable

10 10 10 −10 r, z unstable

10 0 0 10 z unstable

10 0 10 10 z unstable

10 0 −10 0 z unstable

−10 0 10 0 z unstable

64 other combinations involving 0 and ±10% r, z stable
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Figure 4.3: Poincaré sections in the z and r direction at az = −0.0365 and qz = 0.8226 for

10% hexapole, 10% octopole, 10% decapole and 10% dodecapole superposition corresponding

to point B in Fig. 4.1.
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Figure 4.4: Poincaré sections in the z and r direction at az = −0.0119 and qz = 0.6556 for 10%

hexapole, 10% decapole and 10% dodecapole superposition corresponding to point C in Fig. 4.1.
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Figure 4.5: Poincaré sections in the z and r direction at (az = −0.1079, qz = 0.6423) for 10%

decapole and 10% dodecapole superposition corresponding to point D in Fig. 4.1.
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Figure 4.6: Poincaré sections in the z and r direction at az = −0.1531 and qz = 0.7582 for 10%

decapole superposition corresponding to point E in Fig. 4.1.
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Figure 4.7: Poincaré sections in the z and r direction at az = −0.1088 and qz = 0.7792 for 10%

hexapole, 10% decapole and 10% dodecapole superposition corresponding to point F in Fig. 4.1.

the nonlinearity, displayed instability in both directions simultaneously. It may be noted

that βr = 1
3
, which implies βz = 2

3
, causes the 3π periodicity in the z direction motion

observed in the figure. Detuned az and qz values used for this plot are −0.0365 and 0.8226,

respectively.

Figure 4.4 is the Poincaré section at the intersection of βz = 1
2
, 2βr + βz = 1 and

2βr + 3βz = 2 corresponding to point C in Fig. 4.1. Resonance occurs along βz = 1
2

for all nonlinearities. 2βr + βz = 1 is a resonance curve corresponding to decapole and

dodecapole superpositions while 2βr + 3βz = 2 is specific to decapole superposition only

(as per Franzen’s recommendations). Here two situations arise for different combinations

of nonlinearities, one which displays stable behavior in r and z directions and the other

which displays unstable behavior in both z and r directions. Figure 4.4 shows the Poincaré

plot for 10% hexapole, 10% decapole and 10% dodecapole nonlinearities at the detuned az

and qz values of −0.0119 and 0.6557, respectively, for a situation in which the ion becomes

simultaneously unstable in both the z and r directions. We further observed that in the

absence of hexapole the ions are stable, and the presence of octopole stabilizes the ion

motion.

Figure 4.5 is the Poincaré section at the intersection of βr = 1
3
, βz = 1

3
, 2βr + βz = 1

and βr +2βz = 1 corresponding to point D in Fig. 4.1. All these resonance curves are due
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to the superposition of decapole and dodecapole nonlinearities only, and we observed that

all combinations of decapole and dodecapole superpositions resulted in stable behavior.

The Poincaré section for 10% decapole and 10% dodecapole superpositions shown in Fig.

4.5 displays stable trajectories in both directions for az = −0.1079 and qz = 0.6423.

Figure 4.6 is the Poincaré section at the intersection of βz = 2
5
, 2βr + 3βz = 2 and

4βr + βz = 2 corresponding to point E in Fig. 4.1. The resonance curves here are due to

decapole superposition alone. Figure 4.6 is a Poincaré plot for 10% decapole superposition

which displays instability in both z and r directions at az = −0.1531 and qz = 0.6536.

Figure 4.7 is the Poincaré section at the intersection of βz = 1
2

and 4βr + βz = 2

corresponding to point F in Fig. 4.1. βz = 1
2

is a resonance line for all nonlinearities and

4βr + βz = 2 corresponds to decapole superposition alone. Here a combination of 10%

hexapole, 10% decapole and 10% dodecapole resulted in unstable z direction motion while

all other combinations displayed stable behavior in both directions for detuned az and qz

values of −0.1088 and 0.7792, respectively. In this figure it may be seen that z direction

motion has a 4π periodicity since βz = 1
2
.

4.5 Concluding remarks

The Poincaré sections presented above at select points on the Mathieu stability plot (Fig.

4.1 and Table 4.2) reveal a variety of behaviors. Amongst these six points studied it

was seen that D displayed stable behavior, B and F displayed instability only in the z

direction, and points A, C and E showed simultaneous instability in z and r directions.

We note that all the figures generated were for specific arbitrary choices of detuning,

and so the study necessarily presents a limited picture. However, as will be seen, this is

sufficient for our purpose.

For proceeding with our detailed study in Chapter 5 we select the resonance at βr = 1
2
,

βz = 1
2
, βr + βz = 1 (corresponding to A in Fig. 4.1). We choose this point from among

A, C and E primarily on the experimental observation of Alheit et al., (1995) where

it was noted that this resonance is very prominent. Our study will consequently focus

on the dynamics of coupled resonance in the neighborhood of a∗z = −0.2313850427 and

q∗z = 0.9193009931.

In order to confirm that the instability seen in Fig. 4.2 is indeed due to coupling, we

generated Poincaré sections of the uncoupled solutions. The uncoupled solution in the

axial direction is obtained by setting the initial conditions as (z̄, ˙̄z, r̄, ˙̄r) = (0.05, 0, 0, 0)

and for the uncoupled solution in the radial direction the initial conditions were chosen as

(z̄, ˙̄z, r̄, ˙̄r) = (0, 0, 0.05, 0). Figure 5.1 shows the Poincaré sections in the r and z directions
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Figure 4.8: Poincaré sections of the uncoupled solutions in r direction and z direction at

az = −0.23131 and qz = 0.91919 for 10% hexapole and 10% octopole superposition.

for the uncoupled system at az = −.23131 and qz = .91919 for 10 percent heaxapole and

octopole superposition. The uncoupled solutions are seen to be stable confirming that

the dynamics observed in Fig. 4.2 was on account of coupled resonance.

In the numerical study above it was seen that at point A in Fig. 4.1 ion destabi-

lization occurs simultaneously in the z and r directions. Although the resonance curves

at this point are relevant to all nonlinearities, we saw that inclusion of hexapole and

octopole nonlinearities alone were adequate to display this coupled resonance. Further,

we also determined that even weaker nonlinearity was sufficient to cause simultaneous

ion destabilization. Consequently in the analytical study presented in the next chapter

our equation of motion will include only hexapole and octopole nonlinearities, and the

strength of these nonlinearities will be fixed at 2%.



Chapter 5

Approximate averaging of coupled radial/axial ion
motions in Paul trap near a double resonance point

5.1 Introduction

In this chapter we make a detailed study of the resonant point proposed in Chapter

4. We consider the coupled nonlinear Mathieu equations, with hexapole and octopole

superpositions only, which has the form

d2z̄

dτ 2
+ (az + 2qz cos 2τ)

[
z̄ +

3h

2
z̄2 − 3h

4
r̄2 + 2f z̄3 − 3f z̄r̄2

]
= 0 (5.1)

d2r̄

dτ 2
+ (ar + 2qr cos 2τ)

[
r̄ + 3hz̄r̄ + 6f z̄2r̄ − 3f

2
r̄3

]
= 0 (5.2)

where h and f are small. az (= −2ar) and qz (= −2qr) are called Mathieu parameters,

and r̄ and z̄ refer to the nondimesionalized radial and axial displacements of ions. We

develop new analytical approximations for the ion dynamics in the neighborhood of an

interesting coupled nonlinear resonance, and investigate several aspects of the resonant

dynamics that precedes eventual escape of the ion from the trap.

The unperturbed Mathieu equation has a general solution, referred to as the Mathieu

function (McLachlan, 1947, 1958; Abromowitz and Stegun, 1970), of the form

u = Au

∞∑
n=−∞

C2n,u cos(βu + 2n)τ + Bu

∞∑
n=−∞

C2n,u sin(βu + 2n)τ (5.3)

where u could refer to either r or z, Au and Bu are arbitrary constants and C2n,u are

interrelated constants which give the relative amplitudes of the various harmonics in the

solution. Finally, βu is a parameter dependent on the Mathieu parameters au and qu

(more on this below).

It is known that in Paul traps nonlinear resonances lead to instability of ions within

the trap (Franzen et al., 1995). These resonances may lead to individual z- or r- direction

instabilities or to inherently coupled z- and r- instability as was seen in Chapter 4. An

earlier analytical study has looked at uncoupled resonances when az = 0 and qz = 0.64

and 0.78 in Eq. (5.1) (Abraham and Chatterjee, 2003). In the present study we take up

77
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one prominent coupled resonance, which has also been observed experimentally (Alheit

et al., 1995), at the intersection on the (az, qz) plane of the curves along which βz = 1
2
,

βr = 1
2

and, consequently βr + βz = 1.

Equations (5.1) and (5.2) are not solvable in closed form. We note however that the

secular frequency (a quantity proportional to βu) of the linearized system in the z- and

r- directions are subharmonics of the forcing frequency.

In this chapter, we will develop approximate analytical expressions using the method

of harmonic balance based averaging (Chatterjee, 2002; Abraham and Chatterjee, 2003)

for the slow flow equations governing motion of ion in the two directions. These will be

used to understand some features of the dynamics of coupled resonance at the intersection

of βz = 1
2
, βr = 1

2
and βr + βz = 1.

We will present a numerical, and admittedly limited, study of the slow flow with the

objective of exploring and displaying some of the possible types of interesting ion motions.

In particular, we will choose specific but arbitrary parameter values; study the stability

of the individual radial and axial motion invariant manifolds; examine the rather large

times associated with escape of ions; notice regions in the averaged phase space wherein

trajectories do not, in fact, escape; observe apparently chaotic dynamics preceding escape

for ions that do escape; and note that trajectories that do not escape appear to be confined

to 4-tori. We will finally conclude with some comments on the implications for practical

operation of the Paul trap near this resonant point.

5.2 Harmonic balance and initial numerics

The values of az and qz at the resonant point of interest, were determined by the harmonic

balance method in Chapter 4. The main result is that, for the linearized system (f = 0,

h = 0 in Eqs. (5.1) and (5.2)), if az = −0.2313850427, qz = 0.9193009931, ar = −az/2,

and qr = −qz/2, then βr = 1/2, βz = 1/2, and βr + βz = 1. These values of az and

qz will be referred to as a∗z and q∗z . In this chapter, we will consider the effects of small

nonlinearities (small f and h), as well as az and qz values that are detuned slightly from

these ideal resonant values.

To numerically study the stability of the system (Eqsz. (5.1) and (5.2)) we generate

Poincaré maps by strobing the solutions at periodic intervals corresponding to the period

of the parametric forcing (cos 2τ). Figures 5.1(a) and 5.1(b) are the Poincaré maps for

uncoupled solutions for two sets of initial conditions, one with r̄ ≡ 0 and one with z̄ ≡ 0.

These figures show that r and z motions are individually stable. Figure 5.2 shows the

coupled instability in the z- and r- directions, for a solution in which both r̄ and z̄

are nonzero. The point here is that r or z motions, at these parameter values, are not
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individually unbounded; however, if both r̄ and z̄ are nonzero, then there is an instability

that leads to unbounded solutions.
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Figure 5.1: Poincaré sections of the uncoupled solutions for two different sets of initial conditions

at az = −0.23131, qz = 0.91919 and for h = f = 0.1. (a) z-direction, obtained by setting r̄ ≡ 0,

and (b) r-direction, obtained by setting z̄ ≡ 0.

5.3 Analytical treatment

To investigate the behavior of the ions near the point of our interest we develop approx-

imate analytical expressions using harmonic balance based averaging (Chatterjee, 2002;

Abraham and Chatterjee, 2003; Nandakumar and Chatterjee, 2004). In particular, in

formally conducting higher order averaging even though we use harmonic balance approx-

imations for the solution of the unperturbed system, we are really doing pseudoaveraging

that is not asymptotically valid, but nevertheless useful, as discussed in Nandakumar and

Chatterjee (2005 (b)).

5.3.1 Change of variables

We begin by rewriting Eqs. (5.1) and (5.2) in the form

d2z̄

dτ 2
+ (a∗z + 2q∗z cos 2τ)z̄ + εF1(z̄, r̄, τ) = 0 (5.4)

d2r̄

dτ 2
+ (a∗r + 2q∗r cos 2τ)r + εF2(z̄, r̄, τ) = 0 (5.5)
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Figure 5.2: Poincaré sections of the coupled solutions at az = −0.23131, qz = 0.91919 and for

h = f = 0.1. Initial conditions for (z̄, ˙̄z, r̄, ˙̄r) = (0.05, 0, 0.05, 0). (a) z- direction motion (b) r-

direction motion.

where F1 and F2 are π-periodic functions in τ and represent perturbations to the linear

Mathieu equations at the resonant point. The perturbation is assumed to be small, i.e.,

0 < ε ¿ 1. The parameters of Eqs. (5.1) and (5.2) are expressed as

az = a∗z + εāz qz = q∗z + εq̄z (5.6)

and

h = εh̄ f = εf̄ (5.7)

where āz and q̄z are called detuning parameters. F1 and F2 in Eqs. (5.4) and (5.5) are

then

F1 = (āz + 2q̄z cos 2τ)z̄ + (a∗z + 2q∗z cos 2τ)

(
3

2
h̄z̄2 − 3

4
h̄r̄2 + 2f̄ z̄3 − 3f̄ z̄r̄2

)
(5.8)

F2 = (ār + 2q̄r cos 2τ)r̄ + (a∗r + 2q∗r cos 2τ)

(
3h̄r̄ + 6h̄z̄r̄ − 3

2
f̄ r̄3

)
(5.9)

When ε = 0, Eqs. (5.4) and (5.5) represent the unperturbed system which will have

periodic solutions of the form

z̄ = Azgz1(τ) + Bzgz2(τ) (5.10)

r̄ = Argr1(τ) + Brgr2(τ) (5.11)
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where Az, Bz, Ar, Br are arbitrary constants and gz1, gz2, gr1, gr2 are linearly independent

solutions having the form

gz1(τ) =
∞∑

n=−∞
C2n,z cos(βz + 2n)τ (5.12)

gz2(τ) =
∞∑

n=−∞
S2n,z sin(βz + 2n)τ (5.13)

gr1(τ) =
∞∑

n=−∞
C2n,r cos(βr + 2n)τ (5.14)

gr2(τ) =
∞∑

n=−∞
S2n,r sin(βr + 2n)τ (5.15)

Any finite number of the coefficients C2n,z, S2n,z, C2n,r and S2n,r can be evaluated by the

method of harmonic balance (Abraham and Chatterjee, 2003). gz1, gz2, gr1 and gr2 for

−3 < n < 3, are given in Section 5.6.1.

When ε 6= 0 we assume, as is usual in the method of averaging, that the perturbed

equations continue to have solutions of the form of Eqs. (5.10) and (5.11), but the coeffi-

cients Az, Bz, Ar and Br will now be slowly varying functions of τ . The solutions of Eqs.

(5.4) and (5.5) can then be written as

z̄ = Az(τ)gz1(τ) + Bz(τ)gz2(τ) (5.16)

r̄ = Ar(τ)gr1(τ) + Br(τ)gr2(τ) (5.17)

To solve Eqs. (5.4) and (5.5) after substituting Eqs. (5.16) and (5.17), we impose

additional constraints as usual,

˙̄z = Az(τ)ġz1(τ) + Bz(τ)ġz2(τ) (5.18)

˙̄r = Ar(τ)ġr1(τ) + Br(τ)ġr2(τ) (5.19)

Substituting Eqs. (5.18) and (5.19) into Eqs. (5.4) and (5.5), and dropping the dependence

on τ for the sake of brevity, we get

Az g̈z1 + Ȧzġz1 + Bzg̈z2 + Ḃz ġz2 + (az + 2qz cos 2τ) (Azgz1 + Bzgz2) + εF1 = 0 (5.20)

Arg̈r1 + Ȧrġr1 + Brg̈r2 + Ḃrġr2 + (ar + 2qr cos 2τ ) (Argr1 + Brgr2) + εF2 = 0 (5.21)

As gz1, gz2, gr1, gr2 are solutions to the unperturbed equations, from Eqs. (5.4) and (5.5)

we have

Azg̈z1 + Bz g̈z2 + (az + 2qz cos 2τ) (Azgz1 + Bzgz2) = 0 (5.22)
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Arg̈r1 + Brg̈r2 + (ar + 2qr cos 2τ) (Argr1 + Brgr2) = 0 (5.23)

Substituting Eqs. (5.22) and (5.23) in Eqs. (5.20) and (5.21) we get

Ȧzġz1 + Ḃzġz2 = −εF1 (5.24)

Ȧrġr1 + Ḃrġr2 = −εF2 (5.25)

To solve for Ȧz, Ḃz, Ȧr, Ḃr, we need two more equations, obtained by differentiating

Eqs. (5.16) and (5.17) with respect to τ and comparing them with Eqs. (5.18) and (5.19),

giving

Ȧzgz1 + Ḃzgz2 = 0 (5.26)

Ȧrgr1 + Ḃrgr2 = 0 (5.27)

Solving Eqs. (5.24), (5.25), (5.26) and (5.27) we get

Ȧz =
εF1gz2

ġz1gz2 − ġz2gz1

; Ḃz =
εF1gz1

ġz2gz1 − ġz1gz2

(5.28)

Ȧr =
εF2gr2

ġr1gr2 − ġr2gr1

; Ḃr =
εF2gr1

ġr2gr1 − ġr1gr2

(5.29)

The above equations represent the dynamics of the original system.

5.3.2 Verification of modified equations

Equations (5.28) and (5.29) are modified equations which transform z̄- ˙̄z and r̄- ˙̄r co-

ordinates of the original equations into Az-Bz and Ar-Br co-ordinates. In principle, there

is no approximation so far, since this is only a change of variables. However, we have used

harmonic balance to approximately determine the periodic functions (g’s) used here. For

validation of the approximations made so far, a comparison of solutions obtained from

the modified equations with those from the original equations are presented in Fig. 5.3.

In Fig. 5.3, the initial conditions for the modified equations are arbitrarily selected

as (Az, Bz, Ar, Br) = (0.2439, 0.2439, 0.2439, 0.2439). We choose the initial conditions for

the original equations by transforming these initial conditions to z̄- ˙̄z and r̄- ˙̄r by using Eqs.

(5.16), (5.17), (5.18) and (5.19) at τ = 0. The initial values of (z̄, ˙̄z, r̄, ˙̄r) are obtained as

(0.1244, 0.1582, 0.3176, 0.0830). For the simulation, ε is chosen as 0.02 and the parameters

h̄ and f̄ are both taken as 1; and the parameters āz and q̄z are chosen as −0.3 and 0.1,

respectively. The values of z̄, ˙̄z and r̄, ˙̄r obtained from numerical integration of the

original equations of motion are transformed back into Az, Bz and Ar, Br for comparison,

using Eqs. (5.16), (5.17), (5.18) and (5.19). These values, obtained from the original

equations, are called Azeval, Bzeval and Areval, Breval. Figures 5.3(a) and 5.3(b) show the

results obtained for τ = 5000, which corresponds to about 1600 rf cycles. In other words,
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the curves drawn are actually the envelopes of about 400 cycles of slowly modulated,

almost periodic functions. Agreement over this rather long time shows that the modified

equations, in spite of the harmonic balance approximations made, faithfully represent the

original dynamics. We henceforth accept these modified equations as accurate.

(a) (b)

Figure 5.3: (a) Azeval (from original equations) and Az (modified equations) versus time (b)

Areval (from original equations) and Ar (modified equations) versus time for ε = 0.02, h̄ = f̄ = 1,

āz = −0.3, q̄z = 0.1.

Also, in the interest of limiting our search somewhat, all subsequent numerical results

are generated for parameters āz and q̄z chosen as −0.3 and 0.1, respectively. We also

arbitrarily fix the numerical value of ε in simulations at 0.02. A more detailed investigation

of other parameter values is left for future work.

5.3.3 Averaging

We next carry out averaging up to second order, which involves a tedious calculation

made practical by symbolic algebra programs (see, e.g., Rand and Armbruster, 1987).

A key point in the averaging calculation is that the denominators of the right hand

sides of Eqs. (5.28) and (5.29) turn out to be essentially constants (we drop some small

oscillating parts with numerical coefficient‘s of about 10−4 or lower, since these are com-

parable to other approximations we are making along the way). The constancy of the

denominator allows the usual averaging procedure to be carried out more easily.

Since ε is small the variation of Ȧz, Ḃz, Ȧr, Ḃr is slow with respect to time and

these are approximately constant over one period of gz1, gz2, gr1 and gr2. Consequently
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averaging these equations over the period 4π will give us the required slow flow equations

to first order (Verhulst, 1990). The first order averaged are given in Section 5.6.2

The first order averaged equations do not contain terms with h̄ which corresponds to

the hexapole superposition. This term was, however, seen to play a role in making the

system unstable in both r and z directions in our numerical study. In view of this we will

seek a second order averaged equation to introduce hexapole superposition’s contribution

to ion dynamics at the resonance point.

In order to derive the second order averaged equations we introduce near-identity

transformations. The near-identity transformation for Az, Bz, Ar and Br are as follows:

Az = Āz + εWz1

(
Āz , B̄z , Ār, B̄r, τ

)
+ ε2Wz2

(
Āz, B̄z, Ār , B̄r , τ

)
(5.30)

Bz = B̄z + εVz1

(
Āz , B̄z , Ār, B̄r, τ

)
+ ε2Vz2

(
Āz, B̄z, Ār , B̄r , τ

)
(5.31)

Ar = Ār + εWr1

(
Āz , B̄z , Ār, B̄r, τ

)
+ ε2Wr2

(
Āz, B̄z, Ār , B̄r , τ

)
(5.32)

Br = B̄r + εVr1

(
Āz , B̄z , Ār, B̄r, τ

)
+ ε2Vr2

(
Āz, B̄z, Ār , B̄r , τ

)
(5.33)

where Āz, B̄z, Ār, B̄r are averaged quantities, and Wz1, Wz2, Vz1, Vz2, Wr1, Wr2, Vr1, Vr2

are functions yet to be determined. In order to obtain Ȧz, Ḃz, Ȧr, Ḃr we differentiate Eqs.

(5.30) to (5.33) with respect to τ to get

Ȧz = ε
∂

∂τ
Wz1(Āz, B̄z, Ār, B̄r, τ) + ε2 ∂

∂τ
Wz2(Āz, B̄z, Ār, B̄r, τ)

+

(
1 + ε

∂

∂Āz

Wz1(Āz, B̄z, Ār, B̄r, τ) + ε2 ∂

∂Āz

Wz2(Āz, B̄z, Ār, B̄r, τ)

)
˙̄Az

+

(
ε

∂

∂B̄z

Wz1(Āz, B̄z, Ār, B̄r, τ) + ε2 ∂

∂B̄z

Wz2(Āz, B̄z, Ār, B̄r, τ)

)
˙̄Bz (5.34)

Ḃz = ε
∂

∂τ
Vz1(Āz, B̄z, Ār, B̄r, τ) + ε2 ∂

∂τ
Vz2(Āz, B̄z, Ār, B̄r, τ)

+

(
1 + ε

∂

∂Āz

Vz1(Āz, B̄z, Ār, B̄r, τ) + ε2 ∂

∂Āz

Vz2(Āz, B̄z, Ār, B̄r, τ)

)
˙̄Az

+

(
ε

∂

∂B̄z

Vz1(Āz, B̄z, Ār, B̄r, τ) + ε2 ∂

∂B̄z

Vz2(Āz, B̄z, Ār, B̄r, τ)

)
˙̄Bz (5.35)

Ȧr = ε
∂

∂τ
Wz1(Āz, B̄z, Ār, B̄r, τ) + ε2 ∂

∂τ
Wz2(Āz, B̄z, Ār, B̄r, τ)

+

(
1 + ε

∂

∂Ār

Wz1(Āz, B̄z, Ār, B̄r, τ) + ε2 ∂

∂Ār

Wz2(Āz, B̄z, Ār, B̄r, τ)

)
˙̄Ar

+

(
ε

∂

∂B̄r

Wz1(Āz, B̄z, Ār, B̄r, τ) + ε2 ∂

∂B̄r

Wz2(Āz, B̄z, Ār, B̄r, τ)

)
˙̄Br (5.36)
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Ḃr = ε
∂

∂τ
Vz1(Āz, B̄z, Ār, B̄r, τ) + ε2 ∂

∂τ
Vz2(Āz, B̄z, Ār, B̄r, τ)

+

(
1 + ε

∂

∂Ār

Vz1(Āz, B̄z, Ār, B̄r, τ) + ε2 ∂

∂Ār

Vz2(Āz, B̄z, Ār, B̄r, τ)

)
˙̄Ar

+

(
ε

∂

∂B̄r

Vz1(Āz, B̄z, Ār, B̄r, τ) + ε2 ∂

∂B̄r

Vz2(Āz, B̄z, Ār, B̄r, τ)

)
˙̄Br (5.37)

Since Ȧz, Ḃz , Ȧr and Ḃr are of O(ε) and Āz, B̄z, Ār and B̄r are close to Az, Bz, Ar and

Br, therefore ˙̄Az,
˙̄Bz

˙̄Ar and ˙̄Br are also of O(ε). For book keeping we write

˙̄Az = ε ˙̄Az1 + ε2 ˙̄Az2 (5.38)

˙̄Bz = ε ˙̄Bz1 + ε2 ˙̄Bz2 (5.39)

˙̄Ar = ε ˙̄Ar1 + ε2 ˙̄Ar2 (5.40)

˙̄Br = ε ˙̄Br1 + ε2 ˙̄Br2 (5.41)

We now use the method outlined in Rand (1994) to derive the second order averaged

equations which are given in Section 5.6.3 (where numerical coefficients have been replaced

with rational approximations).

To confirm that the second order averaged equations are useful we compare the solu-

tions obtained from them with those obtained from the original equations. This compar-

ison is presented in Fig. 5.4. The initial conditions for the averaged equations and the

original equations are the same as in Fig. 5.3. Here too, we transform the values of z̄,
˙̄z and r̄, ˙̄r obtained from numerical integration of the original equations of motion back

into Az, Bz and Ar, Br, using Eqs. (5.16), (5.17), (5.18) and (5.19). The figure shows

that there is now a small error in the time scale of the modulation dynamics; however,

the shape of the curve is faithfully retained, and so we expect that qualitative conclu-

sions drawn from the averaged equations will remain valid. In principle, tightening the

harmonic balance and subsequent approximations, as well as using smaller values of ε,

should improve the match.

Readers interested in error analysis (which we do not attempt here) may note that,

before averaging, the transformed equations contained errors only due to harmonic balance

approximations. Now, after averaging, there are further errors that go to zero as ε → 0.

The formal guarantees for averaging, even in the absence of harmonic balance errors, hold

for time scales of O (1/ε). Here, we have used ε = 0.02, whence 1/ε = 50, but we are

looking at time scales of a few thousands, which is large. Thus, the results of Fig. 5.4 are

actually quite good.

It may be noted that the original system is Hamiltonian. We have verified that the
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averaged equations also satisfy the Hamiltonian conditions

∂Ȧz

∂Az

+
∂Ḃz

∂Bz

= 0 (5.42)

and
∂Ȧr

∂Ar

+
∂Ḃr

∂Br

= 0. (5.43)

(a) (b)

Figure 5.4: (a) Azeval (from original equations) and Az (averaged equations) versus time and (b)

Areval (from original equations) and Ar (averaged equations) versus time for ε = 0.02, h̄ = f̄ = 1,

āz = −0.3, q̄z = 0.1.

The dynamics of Hamiltonian systems comprises a mature subject, and the reader is

referred to, e.g., Ott (1993) and Hilborn (1994) for introductions. However, no formal

exploitation of the Hamiltonian structure of the averaged system is attempted in this

chapter. Instead, faced with the formidable analytical form of the averaged equations, as

well as the presence of four free parameters (two for detuning in the operating point and

two for the relative strengths of nonlinear terms), we will confine ourselves to a numerical

study of the dynamics of some solutions of this system. As stated in the introduction of

this chapter, we will choose specific but arbitrary parameter values; study the stability

of the individual radial and axial motion invariant manifolds; examine the rather large

times associated with escape of ions; notice regions in the averaged phase space wherein

trajectories do not, in fact, escape; observe apparently chaotic dynamics preceding escape

for ions that do escape; and note that trajectories that do not escape appear to be confined

to 4-tori.
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5.4 Numerical investigation of the averaged equations

Henceforth, we use

τ̄ = ε τ.

We will look at τ̄ on the order of 1000-10000. In our study of this system, we do not

aim for a complete understanding of this system. Rather, we are able to demonstrate

some interesting behavior in this system, as mentioned above, by a process of successively

limiting our search in a sequence of steps. Further detailed understanding of this system

may emerge with future work.

5.4.1 Invariant manifolds

To begin our study of the averaged equations, we first study the two invariant manifolds,

(Az = Bz = 0) and (Ar = Br = 0), which represent the uncoupled dynamics. Our study

of near-resonant dynamics, near the intersection of βz = 1
2
, βr = 1

2
and βz + βr = 1,

will eventually be carried out using initial conditions that are close to these invariant

manifolds (the computed trajectories may travel far from these manifolds, however).

We now generate the phase portraits for these two invariant manifolds. Figure 5.5(a)

is the phase portrait of Ar-Br in the invariant manifold (Az = Bz = 0). It can be observed

that the uncoupled r direction ion motion is stable at the origin. There are additional

fixed points away from the origin. Figure 5.5(b) is the phase portrait of Az-Bz in the

invariant manifold (Ar = Br = 0). Here too the ion motion is stable at the center and

there exist fixed points away from the center. These observations are consistent with the

initial study of the original system using Poincaré sections (as is well understood, the

Poincaré map is approximated by the slow flow).

5.4.2 Neighborhoods of invariant manifolds

We now move slightly away from the two invariant manifolds.

The dynamics in the vicinity of the invariant manifold (Az = Bz = 0) is investigated

by linearizing the averaged equations for Az and Bz nonzero but small (note that Ar and

Br are not small).

Under these conditions we can neglect the terms involving A2
z, B2

z , AzBz and higher

order terms involving Az and Bz in the slow flow equations. The resulting equations are

of the form

Ȧz = f1(Ar, Br)Az + f2(Ar, Br)Bz (5.44)

Ḃz = g1(Ar, Br)Az + g2(Ar, Br)Bz (5.45)
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Figure 5.5: Phase portraits generated for the invariant manifolds (a) (Ar = 0, Br = 0) and (b)

(Az = 0, Bz = 0) for ε = 0.02, h̄ = f̄ = 1, āz = −0.3, q̄z = 0.1.

Ȧr = h1(Ar, Br) (5.46)

and

Ḃr = h2(Ar, Br) (5.47)

where f1, f2, g1, g2, h1, h2 are functions of Ar and Br (the long expressions involved are not

presented here). It turns out that Az and Bz do not appear in the Ar and Br equations

at all. If the solutions for Ar and Br are periodic which they mostly are, then the linear

dynamics of Az and Bz involves time-periodic coefficients, and could show exponential

instabilities (as per Floquet theory, which we do not explicitly use here).

We now integrate the above set of equations, linearized in Az, Bz. We choose randomly

generated initial conditions for Az and Bz. Since the trajectories are symmetric on the

Ar-Br plane (as seen in Fig. 5.5(b)) it is sufficient to investigate only the first quadrant

of the Ar-Br plane. The initial conditions for Ar and Br are considered along a grid of

300 × 300 points with Ar and Br varying from 0 to 1. The numerical integration of the

ODEs is carried out for a time τ̄ = 1000. With a view to delineating stable and unstable

regions we use a measure of the average exponential growth in the magnitudes of Az and

Bz. This is done by calculating

λz(τ̄) = ln

(√
Az(τ̄)2 + Bz(τ̄)2

)
(5.48)

for each set of initial conditions. Then the exponent

σz = lim
τ̄→∞

1

τ̄
λ(τ̄) ≈ λ(1000)

1000
(5.49)
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is a measure of the growth of the amplitude in the z direction. We calculate the parameter

σz for the 300 × 300 points chosen in the grid. Positive values of σz indicate unstable

behavior whereas zero values (in our numerical work, values close to zero) suggest stable

behavior. Figure 5.6(a) shows the results. The ring-like regions of instability presumably

correspond to combinations of amplitude and frequency of the parametric forcing in the

Az and Bz equations that cause exponential growth. The several distinct ‘rings’ each

clearly correspond to disjoint sets of contiguous periodic solutions of Ar and Br. While

an analytical Floquet treatment of the equations is not attempted here, we point out

that different periodic solutions of Ar and Br correspond to different amplitudes and

frequencies of parametric forcing in the Az and Bz equations, and the alternating ‘rings’ of

instability qualitatively correspond to the passage through alternating instability regions

of a curve on, to draw a parallel, the plane of parameters of the familiar linear Mathieu

equation.
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Figure 5.6: Stability of invariant manifolds (a) (Az = 0, Bz = 0) (b) (Ar = 0, Br = 0). See

text for details.

The same procedure is repeated for studying the stability of the invariant subspace

Ar = 0 and Br = 0. Here we linearize the Ar and Br terms in the averaged equations,

and retain terms nonlinear in Az and Bz. Results (σr values) are shown in Fig. 5.6(b).

Much of the region shown is stable in this case (in contrast to the previous case), though

some small unstable regions (‘rings’ again) are seen.

The primary qualitative conclusion from the analysis so far is that large regions on the

invariant manifolds are actually stable; and thus, there are several nonzero sized regions in

the 4-dimensional averaged phase space from which unbounded trajectories do not arise.
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In other words, there are nonzero sized regions of the phase space which contain bounded

trajectories.

Yet, there are also regions on the invariant manifolds which are unstable, and trajec-

tories starting close to such regions diverge from the unstable manifold. Can some such

trajectories be unbounded, leading to escape of the ion? Can some other trajectories

remain bounded? We find below, based on a study near one arbitrarily chosen point, that

both answers are in the affirmative, although they involve complex dynamics which we

can only partially explore in this chapter.

5.4.3 Further investigation of specific solutions

Figure 5.6(b) indicates that the dominant behavior of the ion motion in the neighborhood

of the invariant manifold (Ar = 0, Br = 0) in the grid of (Az(0), Bz(0)) involves bounded

ion trajectories. However, some portions of the invariant manifold are unstable.

We select a point in one such region, where the initial conditions for Az and Bz are

Az(0) = 0.1 and Bz(0) = 0.15 (an arbitrary choice), for further investigation.

We further choose two sets of initial conditions for Ar and Br. These are (i) Ar(0) =

0.2215, Br(0) = 0.1609 and (ii) Ar(0) = 0.1369, Br(0) = 0.2371. Note that the value of√
Ar(0)2 + Br(0)2 is 0.2738 in both cases, i.e., the magnitudes are the same though the

phases are different.

Figure 5.7(a) shows the solution for the first set (Ar(0) = 0.2215, Br(0) = 0.1609).

The integration is carried out for τ̄ from 0 to 3000. The trajectories seem stable and

periodic, though large departures occur from the (Ar = 0, Br = 0) invariant manifold.

Thus, there are solutions not confined close to the invariant manifolds that nevertheless

appear to remain bounded and periodic or near-periodic for at least an extended period

of time (the figure shows only 1/30 of the full duration of the simulation).

In contrast to the above, Fig. 5.7(b) shows the plots of Az, Bz and Ar, Br versus τ̄

for the other set of initial conditions (Ar(0) = 0.1369 and Br(0) = 0.2371). Now, after

a long time, and without any obvious warning, the solutions develop a larger amplitude,

aperiodic structure and then, again without discernible warning, escape to infinity at

about τ̄ = 1, 990. The aperiodic motions preceding final escape appear chaotic, and are

expected to be chaotic within the Hamiltonian context (see Ott, 1993); however, given

the finite time of such motions preceding escape, we have not conducted formal checks

for chaos.
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5.4.4 Probabilities of escape

The possibility of escape, and its dependence on initial conditions, is investigated further

below. We consider a larger grid of initial conditions for Ar and Br while still keeping

Az(0), Bz(0) fixed at 0.1 and 0.15, respectively.
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Figure 5.7: Zoomed portion of the plot of Az (-), Bz (..), Ar (- -) and Br (- . -) for (a)

Ar(0) = 0.2215 and Br(0) = 0.1609 (b) Ar(0) = 0.1369 and Br(0) = 0.2371.

The grid of initial conditions for Ar and Br is chosen by first defining Ar(0) = R cos θ

and Br(0) = R sin θ. By varying R and θ we generate different initial conditions for Ar

and Br. In the present study R has been varied between 0.0001 and 0.5 in 100 steps on

a logarithmic scale. (Few initial states below R = 0.0001 grew unbounded within our

integration duration (τ̄ = 12, 000) and very many initial states above R = 0.5 escaped

within this duration.) Also, θ is chosen as θ = 2π k
N

where N = 300 and k varies from 1

to 300. Thus, our numerical investigation involves 30,000 initial conditions for Ar and Br

(while still keeping Az(0), Bz(0) fixed at 0.1 and 0.15, respectively).

The integration is carried out for τ̄ = 12000 which is rather long because τ̄ = ετ ,

as mentioned above. We look for the instability (escape) of solutions of the averaged

equation within three different times: τ̄ = 3000, 6000 and 12000. We keep count of

the number of initial conditions of θ for a given R which results in unstable trajectories

(escape). This count is used to estimate the probability that an ion will escape within a

given time, if it starts from a given value of R.

Figure 5.8 is a plot of the probability of escape versus the value of R. Curve A

represents escape before τ̄ = 3000, curve B represents escape before τ̄ = 6000, and curve

C represents escape before τ̄ = 12000. For all three curves, for trajectories starting from
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small R, the probability of escape within the time of observation is relatively small. Also,

for any given R, if a larger time interval is allowed, then the probability of escape increases.

As is known to occur for other Hamiltonian systems (see, e.g., Guzzo et al. (2001) and

references therein), however, there may be some trajectories that remain bounded over

arbitrarily long times of observation.

The figure also shows that, as the initial R value increases, the probability of escape on

the whole increases as well, peaking at around R = 0.14 before dipping down sharply at

about R = 0.2738. Except for this dipping down, by and large an increase in R increases

the probability of escape within a given time.

5.4.5 Closer look at R = 0.2738

The dip at R = 0.2738 is interesting especially because it appears in the large initial

condition region, a region where we might loosely expect ions to be unstable. Furthermore,

this decrease and subsequent increase in probability is seen for plots corresponding to all

the three integration times. This reduction in probability suggests that not all the initial

conditions along the circle with R = 0.2738 are actually escaping: some trajectories are

indeed bounded, at least for very long times.

Accordingly, we now explore the dynamics at R = 0.2738. Thus, of the 4 possi-

ble initial condition components, we are still keeping Az(0) and Bz(0) fixed at 0.1 and

0.15, respectively; we are further fixing R; and only θ remains as an independent initial

condition.

In particular, we consider θ = 2π k
600

, with k varied from 1 to 600. By numerically

integrating the averaged equations for time τ̄ = 12000 we can determine the values of k

for which solutions escape and values for which they do not.

Figure 5.9 shows the results plotted against a normalized k. On the vertical axis, we

assign and plot a value of 1 when ion motion is bounded (stable) and a value of 0 when

it escapes (unstable). The figure suggests that there are some bands of initial conditions

where the solution is bounded and others where it is unbounded.

5.4.6 Further investigation of the dependence on θ

In order to understand Fig. 5.9 we now further study three dimensional plots which depict

the evolution of the system. There are two types of plots that we generate.

First, we solve the slow flow equations and plot only Bz, Ar and Br, dropping Az.

Then, we generate some three dimensional Poincaré sections taken at Az = 0 with Az
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Chapter 5. Approximate averaging of coupled radial/axial ion motions in Paul trap near a double resonance point 94

going from positive to negative values (linear interpolation near the zero crossing is used

for accurate determination of the points on the section).

In Figs. 5.10 through 5.13 we present the three dimensional trajectories and the corre-

sponding Poincaré sections for four different values of k for which escape does not occur.

These k values are 27, 63, 197 and 422, and correspond to θ = 2π k
600

in each case, as

mentioned above. The figures suggest that each of these solutions lie on 4-tori, thereby

eliminating the possibilities of either chaos or escape; an extremely slow departure from

these tori leading to eventual escape, of course, is not ruled out by our finite-time numer-

ics.

Figure 5.10: (a) Trajectories and (b) Poincaré section for k = 27.

Figure 5.11: (a) Trajectories and (b) Poincaré section for k = 63.

We finally turn our attention to one transition between bounded and unbounded

solutions. We study the system between k = 28 (bounded) and k = 29 (unbounded),
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Figure 5.12: (a) Trajectories and (b) Poincaré section for k = 197.

Figure 5.13: (a) Trajectories and (b) Poincaré section for k = 422.
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allowing fractional values of k. We observed that at k = 28.7050 the solution appears

bounded and at k = 28.7060 the solution is unbounded. As k moves towards instability,

the trajectories lose their toroidal structure. This is illustrated in Figs. 5.14 through 5.19

which present time plots, trajectories, and Poincaré sections for k = 28.7050 (apparently

stable), 28.7055 (visibly borderline) and k = 28.7060 (unstable).
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Figure 5.14: Plot of Az, Bz, Ar, Br versus τ for k = 28.7050.

Figure 5.15: Trajectory and Poincaré section for k = 28.7050.

Thus, it appears that escape may be typical for trajectories that are not confined to

tori (by definition, trajectories confined to tori do not escape).
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Figure 5.16: Plot of Az, Bz, Ar, Br versus τ for k = 28.7055.

Figure 5.17: Trajectory and Poincaré section for k = 28.7055.
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Figure 5.18: Plot of Az, Bz, Ar, Br versus τ for k = 28.7060.

Figure 5.19: Trajectory and Poincaré section for k = 28.7060.
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5.5 Concluding remarks

The motivation of this study was to explore solutions near the coupled resonance which

occurs at βr = 1
2
, βz = 1

2
and βr + βz = 1.

In order to analytically probe the resonance we developed second order averaged equa-

tions to approximate the original nonlinear Mathieu equation. Using the averaged equa-

tion, we identified on the Az-Bz and Ar-Br planes, close to the invariant manifolds, regions

where the system becomes unstable. An interesting observation was made in this inves-

tigation. For some set of initial conditions in the neighborhood of the invariant manifold

(Ar = 0, Br = 0), the system was seen to be unstable. One of these points, corresponding

to Az(0) = 0.1 and Bz(0) = 0.15 was selected for detailed study.

The stability of the system at these points was studied by varying the initial con-

ditions of Ar(0) and Br(0) as well as by varying the integration times. What emerged

from this study was yet another interesting observation, namely that at along particular

surface corresponding to R = 0.2738, there is a dramatic increase in the stability and the

probability of ions getting destabilized suddenly diminishes.

This sudden change in the stability of ions was then probed using three dimensional

plots as well as three dimensional Poincaré sections, the latter being obtained by strobing

the magnitude of three variables on the zero-crossing of the fourth.

Using harmonic balance based approximate averaging up to second order, we obtained

a slow flow that, we have numerically demonstrated, approximates the actual ion dynam-

ics. We have found that the slow flow is Hamiltonian. We have studied the slow flow

numerically for specific but arbitrary parameter values; studied the stability of the in-

dividual radial and axial motion invariant manifolds; examined the rather large times

associated with escape of ions; noticed regions in the averaged phase space wherein tra-

jectories do not, in fact, escape; observed apparently chaotic dynamics preceding escape

for ions that do escape; and noted that trajectories that do not escape appear to be

confined to 4-tori.

From a mass spectroscopic point of view, this chapter may be contrasted with previous

studies of resonance induced ejection of ions from Paul traps (Sudakov, 2001; Abraham

et al., 2003; Prasanna, 2005) as follows. In these investigations, only the axial motion

(decoupled from the radial motion) was studied numerically and analytically. There, it

was found that as the resonant point was approached and crossed, depending on the

type of nonlinearity, ions could become inherently unstable with unbounded solutions, or

develop periodic modulations that grow in amplitude as parameter cross and go beyond

the resonant point. Here, we have studied the system at an arbitrary but fixed point

close to the resonant point, i.e., for fixed values of the detuning parameters. However, we
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have simultaneously considered motions in both axial and radial directions. Much of the

complex behavior observed here can exist only when both radial and axial motions are

simultaneously nonzero. In particular, the possibility has not previously been noted in

the ion trapping literature that, even if we hold the system fixed near a resonance point,

some ions may get ejected sequentially and essentially randomly, and over a long period

of time. Moreover, the complex nature of motions inside the trap, preceding escape, has

not hitherto been pointed out.

5.6 Appendix

5.6.1 Linearly independent solutions of the unperturbed Mathieu equations at az = −0.2313850427

and qz = 0.9193009931.

The solutions gz1, gz2, gr1 and gz2, obtained by harmonic balance, with coefficients

replaced with rational approximations are provided below.

gz1(τ) = − 3

3538
cos (β − 6) τ +

23

818
cos (β − 4) τ − 315

827
cos (β − 2) τ

+ cos (βτ)− 184

1289
cos (β + 2) τ +

13

2027
cos (β + 4) τ

− 1

7205
cos (β + 6) τ (5.50)

gz2(τ) = − 3

3538
sin (β − 6) τ +

23

818
sin (β − 4) τ − 315

827
sin (β − 2) τ

+ sin (βτ)− 184

1289
sin (β + 2) τ +

13

2027
sin (β + 4) τ

− 1

7205
sin (β + 6) τ (5.51)

gr1(τ) =
1

7966
cos (β − 6) τ +

2

243
cos (β − 4) τ +

38

175
cos (β − 2) τ

+ cos (βτ) +
31

413
cos (β + 2) τ +

7

4084
cos (β + 4) τ

+
1

53481
cos (β + 6 ) τ (5.52)

gr2(τ) =
1

7966
sin (β − 6) τ +

2

243
sin (β − 4) τ +

38

175
sin (β − 2) τ

+ sin (βτ) +
31

413
sin (β + 2) τ +

7

4084
sin (β + 4) τ

+
1

53481
sin (β + 6 ) τ (5.53)
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5.6.2 First order slow flow equations.

The slow equations obtained by carrying out out first order averaging are given below.

Ȧz = ε
(
0.97382 f̄ Bz Ar

2 − 0.19803 f̄ Bz Br
2 − 9.3511 f̄ A2

zBz

+2.0388 f̄ Az Ar Br − 1.6186 q̄z Bz − 1.7633 āz Bz

−3.0003 f̄ Bz
3
)

(5.54)

Ḃz = ε
(
1.6186 q̄z Az − 2.0388 f̄ Bz Ar Br + 0.19803 f̄ Az Ar

2

−0.97382 f̄ Az Br
2 + 9.3511 f̄ Az Bz

2 + 3.0003 f̄ A3
z

+1.7633 āz Az

)
(5.55)

Ȧr = ε
(− 0.14778 f̄ Bz

2Br + 0.72669 f̄ Az
2Br − 0.093252 f̄ Ar

2Br

+1.5215 f̄ Az Bz Ar − 0.33185 q̄z Br + 0.59396 āz Br

+1.2699 f̄ Br
3
)

(5.56)

Ḃr = ε
(− 0.72669 f̄ Bz

2Ar + 0.14778 f̄ Az
2Ar + 0.093252 f̄ Ar Br

2

−1.5215 f̄ Az Bz Br − 0.59396 āz Ar + 0.33185 q̄z Ar

−1.2699 f̄ Ar
3
)

(5.57)
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5.6.3 Second order slow flow equations

The second order slow flow equations, with numerical coefficients approximated using

fractions correct up to 4 decimal places, are as follows:

Ȧz = ε

(
36

37
f̄ Br Ar

2 − 187

20
f̄ Az

2Bz − 23

116
f̄ Bz Br

2 +
53

26
f̄ Az Ar Br − 3 f̄ Bz

3

−34

21
q̄z Bz − 30

17
āz Bz

)

+ε2

(
161

27
f̄ Bz

3āz − 46

15
f̄ 2Ar

2Bz Br
2 +

37

73
f̄ 2Az Ar Br

3 +
61

2
f̄ 2Az

2Bz Br
2

+
150

29
f̄ Br

2q̄z Bz − 37

28
f̄ Ar

2q̄z Bz +
203

34
f̄ Br

2āz Bz +
37

4
f̄ 2Az

4Bz

−23

28
q̄2
z Bz +

33

35
f̄ Ar Br āz Az +

76

3
h̄2Bz

3 − 59

29
f̄ Ar Br q̄z Az

+
73

49
ā2
z Bz − 178

31
f̄ Az

2Bz q̄z +
43

10
f̄ 2Bz Ar

4 − 47

15
Br f̄ 2Az

3Ar

−44

63
f̄ 2Bz

3Ar
2 − 61

20
f̄ Bz

3q̄z +
202

11
f̄ 2Bz

3Br
2 +

83

21
h̄2Bz Ar

2

+
35

34
āz q̄z Bz +

65

57
f̄ 2Bz Br

4 − 353

11
h̄2Az

2Bz +
65

21
h̄2Bz Br

2

−47

5
Br f̄ 2Az Bz

2Ar +
61

2
f̄ 2Az

2Ar
2Bz + 21 f̄ Az

2Bz āz

+
207

31
h̄2Br Az Ar +

63

314
f̄ Ar

2āz Bz +
37

73
Br f̄ 2Az Ar

3

+
37

2
f̄ 2Az

2Bz
3 − 13

24
f̄ 2Bz

5

)
(5.58)
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Ḃz = ε

(
23

116
f̄ Az Ar

2 − 36

37
f̄ Az Br

2 +
187

20
f̄ Az Bz

2 − 53

26
f̄ Bz Ar Br

+
30

17
āz Az +

34

21
q̄z Az + 3 f̄ Az

3

)

+ε2

(
23

28
q̄2
z Az − 76

3
h̄2Az

3 − 73

49
ā2
z Az +

59

29
Br f̄ Ar q̄z Bz

+
47

5
f̄ 2Az

2Ar Bz Br +
13

24
f̄ 2Az

5 − 37

2
f̄ 2Bz

2Az
3 − 202

11
f̄ 2Az

3Ar
2

−35

34
āz q̄z Az +

353

11
h̄2Az Bz

2 − 65

21
h̄2Az Ar

2 +
44

63
f̄ 2Az

3Br
2

+
61

20
f̄ Az

3q̄z − 161

27
f̄ Az

3āz − 65

57
f̄ 2Az Ar

4 − 43

10
f̄ 2Az Br

4 − 37

4
f̄ 2Az Bz

4

−83

21
h̄2Az Br

2 − 33

35
Br f̄ Ar āz Bz − 61

2
f̄ 2Az Ar

2Bz
2 − 61

2
barf 2Az Bz

2Br
2

+
178

31
f̄ Az Bz

2q̄z − 207

31
h̄2Bz Ar Br − 203

34
f̄ Az Ar

2āz +
37

28
f̄ Br

2q̄z Az

−37

73
f̄ 2Ar

3Bz Br − 21 f̄ Az Bz
2āz − 63

314
f̄ Az āz Br

2 +
47

15
Br f̄ 2Ar Bz

3

−150

29
q̄z f̄ Az Ar

2 +
46

15
f̄ 2Az Ar

2Br
2 − 37

73
f̄ 2Ar Bz Br

3

)
(5.59)

Ȧr = ε

(
8

11
f̄ Az

2Br − 4

27
f̄ Bz

2Br − 11

118
f̄ Ar

2Br +
19

32
āz Br

+
33

26
f̄ Br

3 − 74

223
q̄z Br +

35

23
f̄ Az Bz Ar

)

+ε2

(
48

7
f̄ 2Bz

4Br +
45

7
f̄ 2Az

2Br
3 +

63

37
f̄ 2Br

3Bz
2 +

67

29
h̄2Br Bz

2

+
13

98
h̄2Br Ar

2 − 6

23
f̄ 2Az

4Br − 21

58
f̄ 2Ar

4Br − 11

101
q̄z āz Br +

66

79
q̄z f̄ Br

3

−21

29
f̄ 2Ar

2Br
3 +

86

49
āz f̄ Br

3 +
62

21
h̄2Az

2Br +
17

15
f̄ 2Ar Br

2Az Bz

+
9

32
ā2
z Br − 14

79
q̄2
z Br +

25

39
f̄ 2Br

5 − 41

27
f̄ Az Bz q̄z Ar − 21

43
h̄2Br

3

+
19

27
f̄ Az Bz āz Ar − 16

7
f̄ 2Ar

2Bz
2Br +

17

45
f̄ 2Ar

3Az Bz

−138

59
f̄ 2Az

3Bz Ar − 16

7
f̄ 2Ar

2Az
2Br − 73

74
q̄z f̄ Az

2Br +
27

7
q̄z f̄ Bz

2Br

+
114

5
f̄ 2Az

2Bz
2Br − 138

59
f̄ 2Az Bz

3Ar +
19

71
f̄ Ar

2Br q̄z +
25

167
āz f̄ Az

2Br

−13

53
f̄ Ar

2Br āz +
49

11
āz f̄ Bz

2Br +
334

67
h̄2Az Bz Ar

)
(5.60)
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Ḃr = ε

(
11

118
f̄ Ar Br

2 +
4

27
f̄ Az

2Ar − 8

11
f̄ Bz

2Ar +
74

223
q̄z Ar

−35

23
f̄ Az Bz Br − 19

32
āz Ar − 33

26
f̄ Ar

3

)

+ε2

(
− 13

98
h̄2Br

2Ar − 48

7
f̄ 2Az

4Ar − 25

39
f̄ 2Ar

5 − 66

79
f̄ Ar

3q̄z − 86

49
f̄ Ar

3āz

+
41

27
q̄z f̄ Az Bz Br − 63

37
f̄ 2Ar

3Az
2 − 67

29
h̄2Az

2Ar +
11

101
q̄z āz Ar

+
6

23
f̄ 2Bz

4Ar +
21

58
f̄ 2Ar Br

4 − 62

21
h̄2Ar Bz

2 +
21

43
h̄2Ar

3

−45

7
f̄ 2Ar

3Bz
2 +

14

79
q̄2
z Ar +

21

29
f̄ 2Ar

3Br
2 − 17

15
f̄ 2Ar

2Br Az Bz

− 9

32
ā2
z Br − 19

27
āz f̄ Az Bz Br +

138

59
f̄ 2Az

3Bz Br − 19

71
f̄ Br

2q̄z Ar

+
16

7
f̄ 2Br

2Bz
2Ar +

138

59
f̄ 2Bz

3Az Br − 25

167
āz f̄ Bz

2Ar +
13

53
f̄ Ar Br

2āz

−114

5
f̄ 2Az

2Ar Bz
2 − 27

7
f̄ Az

2q̄z Ar +
73

74
f̄ Bz

2Ar q̄z +
16

7
f̄ 2Br

2Az
2Ar

−49

11
f̄ Az

2Ar āz − 17

45
f̄ 2Br

3Az Bz − 334

67
h̄2Br Az Bz

)
(5.61)



Chapter 6

Summary and concluding remarks

The motivation of this thesis was to investigate dynamics of trapped ions in nonlinear

Paul trap mass spectrometers. Three problems have been taken up for investigation in

this thesis. These include (1) understanding the early/delayed ejection of ions in mass

selective boundary ejection experiments, (2) investigation of the dependence of resolution

on scan direction in resonance ejection experiments, and (3) study of coupled nonlinear

resonance which causes destabilization of ions within the nominally stable region of the

Mathieu stability plot.

In the first problem, the method of multiple scales was used to derive approximate

solutions of a weakly nonlinear Mathieu equation in the neighborhood of the stability

boundary. This method allowed easy inclusion of higher order multipoles (we included

multipole superpositions up to dodecapole) as well as permitted extension of computations

to higher orders. The dynamics associated with early and delayed ejection was understood

through phase portraits where it was seen that the mechanism of ion ejection was different

for positive even multipoles, on the one hand, and negative even multipoles and odd

multipoles of either sign, on the other. Through phase portraits, in the first case, it

was seen that ion destabilization occurs before the nominal stability boundary at q∗z =

0.908046. In the second case, ion motion is stable beyond q∗z , and ions get destabilized

from the trap only when their oscillation amplitude increases beyond the trap boundary.

It was further seen that sign of the odd multipoles did not alter dynamics so long as the

sign of the individual odd multipoles changed together.

The differential resolution in the forward and reverse scan in resonance ejection exper-

iments was analyzed within the Dehmelt approximation region which is applicable when

qz < 0.4. The equation of motion has the form of a damped, forced Duffing equation.

Here too, the method multiple scales was used to obtain approximate solution and using

this, phase portraits were constructed in different regions close to the jump point of the

amplitude response curve. It was seen that the good resolution in froward scan experi-

ment was due to motional coherence at the jump point. In reverse scan experiments it

was suggested that lack of coherence for mass spectrometrically relevant scan rates was

the cause for poor resolution.

In the study of coupled resonance, an approximate solution of the weakly coupled

nonlinear Mathieu equation was derived using harmonic balanced based averaging up to

second order. Having demonstrated that the unbounded solutions are caused by coupling
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(since r- and z-direction motion in the absence of coupling are individually stable), we

proceeded to numerically study the nature of instability in the neighborhood of the in-

variant manifolds. Several aspects of this very interesting dynamics have been explored

and they reveal apparently chaotic ion motion prior to escape.

The important contribution of these studies is that it offers new perspective on the role

of field inhomogeneities in altering trap performance. This was possible through develop-

ment of analytical expressions which enable estimation of the contribution of specific field

superpositions in the different problems that we investigated. As shown in our studies,

the governing equations were weakly nonlinear and they were not solvable in closed form.

Consequently, using perturbation techniques we derived slow flow equations to approxi-

mate the original equations. The solution of the slow flow equations were compared with

that of original equations and a close match was noted. These slow flow equations are now

available for researchers who may wish to analytical expressions in their investigations.

In some sense, the work embodied in this thesis is the culmination of a collaborative

effort which began 5 years ago. Inspired by the dynamics of ions in Paul traps, Chatterjee

(2002) developed the Harmonic Balance Based Averaging (HBBA) technique to study

resonances along the az = 0 axis of the Mathieu stability plot (Abraham and Chatterjee,

2003). The latter study relied on the fact that when nonlinear resonances occur, axial and

drive frequency have a simple rational relationship. Using this, Abraham (2002), Abraham

et al. (2004) and Prasanna (2005) demonstrated that the β = 2/3, β = 1/2, and β = 2/5

were primarily influenced by hexapole, octopole and decapole superpositions, respectively.

The above studies, the investigations in this thesis and the reports in Rajanbabu et al.

(2006a, 2006b) are perhaps the first formal use of the techniques of nonlinear dynamics to

Paul trap mass spectrometry. The utility of these results may gain importance in coming

years which will see a renewed interest in novel trap geometries for their ability to be

miniaturized and made portable.
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