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Self-equilibrating, traction free stresses are known as residual stresses. They are ubiquitous

in solid manufactured components, and their presence may be either beneficial or harmful.

In this work, we consider basis functions for residual stress fields of reasonable regularity.

Specifically, we consider arbitrary pre-existing residual stress states in arbitrarily shaped,

unloaded solid bodies. Common treatments of the topic tend to focus on either the me-

chanical origins of the stress, or methods of stress measurement at certain locations. Here

we take the stress field as given and consider the problem of approximating any such stress

field, in a given body, as a linear combination of pre-determined fields which can serve as

a basis. We consider planar stress states in detail, and introduce an extremization prob-

lem that leads to a linear eigenvalue problem. Eigenfunctions ϕ of that problem form an

orthonormal basis for square integrable residual stress states. We outline the extension of

our theory to three dimensional bodies and states of stress.

In general, the eigenvalue problem is not solvable analytically, and we use numerical meth-

ods. We compute the eigenfunctions ϕ for arbitrary planar geometries using the finite

element method. We also compute them using semi-numerical methods for the following

four geometries: an annulus, a circular disk, a rectangle and an annular wedge. Results



from these two independent methods agree. We then consider several different candi-

date residual stresses on different geometries and fit them using our eigenfunctions ϕ.

We consider four candidate residual stresses with fixed circumferential wave number on

an annulus: two hypothetical, one from shrink fitting of two elastic cylinders, and one

from non-uniform heating of a thermoelastic annulus. We also fit three candidate residual

stresses obtained from metal forming simulations of (a) rolling and (b) angular extrusion

using the non-linear finite element software package Abaqus. Convergence of fits to these

stresses is noted in the L2 and the H1 norms for continuous stress fields, and in the L2

norm for stress fields with simple discontinuities.

Next, we modify our approach for two special classes of problems: (a) residual stresses

in prismatic geometries and (b) spatially localized planar residual stresses. In the first

problem, we see that the original 3D extremization problem decouples into three 2D sub-

problems: one for the planar components, one for the out of plane shear components,

and one for the axial component. In the second problem, we obtain spatially localized

eigenfunctions by weighting the objective function and the normalization constraint in the

extremization problem by appropriate functions. Finally, instead of fitting an already

given residual stress, we consider solving for one using the basis functions ϕ, given a

governing differential equation. In particular, we look at a non-uniformly heated thermoe-

lastic annulus. Our aim in this part of the work is to try Galerkin projections to obtain

convergent solutions. We find that a direct use of the weighted residual method, with ϕ as

the weighting functions, does not work. This leads us to a study of some useful properties

of harmonic functions relevant to this problem. A correct application of the weighted

residual method with ϕ then yields the correct solution with much faster convergence as

compared to a direct, displacement based, virtual work method.

The overall approach of this thesis can be used to describe arbitrary pre-existing residual

stress states in arbitrarily shaped bodies using basis functions that are determined by the

body geometry alone, independent of the physical mechanisms, the constitutive properties

of the material or the prior deformation history that have produced these stresses.
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4.11 ẼN versus N , Example 4. Left: linear scale; right: log-log scale. . . . . . . . 69

4.12 Schematic of the rolling simulation (figure not to scale). . . . . . . . . . . . 70

4.13 True and fitted stress components (GPa) for the rolling simulation with
linear strain hardening (1000 eigenfunctions). . . . . . . . . . . . . . . . . . 71

4.14 True and fitted stress components (GPa) for the rolling simulation with
linear strain hardening (using 10, 50 and 100 eigenfunctions, respectively). . 72

4.15 EN versus N , rolling simulation with linear strain hardening. Left: linear
scale; right: log-log scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
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Chapter 1

Introduction

1.1 Motivation

Practically all solid manufactured objects have residual stress locked in them as a con-

sequence of processing history. This thesis is primarily concerned with mathematical

descriptions of general states of residual stress, rather than the specific physical history

that produced a specific residual stress field. In particular, we consider basis functions for

interpolating such residual stress fields in finite solid bodies. We consider bodies that are

arbitrarily shaped, not subjected to body forces, in equilibrium, and with traction free

boundaries, but with non-zero internal residual stresses. The physical sources of the resid-

ual stresses may be prior manufacturing processes, deformation history, thermal gradients,

or other phenomena. As noted, however, here we are interested solely in mathematical

ways to discuss or describe residual stress fields that already exist, independent of the

physical mechanisms that have produced them.

For example, if residual stress states are experimentally determined at N points on a

manufactured component, and if reasonable smoothness in residual stress variations can

be assumed, how should the residual stresses be interpolated between those points in

space? As another example, in a metal forming simulation, can final residual stresses in

the formed component be reported using some sequence of orthogonal basis functions that

is specifically constructed, in advance, for the domain of interest?

With the above motivation, we seek self-equilibrating traction-free fields ϕi defined on the

finite body of interest, such that linear combinations

∞∑
i=1

aiϕi can capture any sufficiently

regular residual stress field.

1
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In this work, we will construct such fields ϕi via stationary values of a suitable quadratic

functional. These fields ϕi will serve as a basis for representing arbitrary residual stress

fields in bodies of a given but arbitrary shape, without regard for the physical source of the

residual stress. To the best of our knowledge, such a basis has not been presented in the

mechanics literature before1. The construction of such a basis is not obvious in advance.

For example, readers familiar with vibration theory [3] may be interested to see that the

stress fields induced by vibration modes cannot be used for such ϕi, because those modal

stresses necessarily satisfy the strain-compatibility conditions of linear elasticity while not

satisfying equilibrium, whereas residual stresses necessarily satisfy equilibrium and violate

strain-compatibility equations of linear elasticity2. To see the latter easily, we can use

the result that for a linearly elastic body subjected to given tractions and body forces,

the displacement is unique up to a rigid motion (see page 45, theorem 4.3.1 of [4]). The

solution to zero traction and zero body force is therefore zero stress and zero displacement,

unique up to rigid body motions, by the above result. But the stress corresponding to rigid

body motions is zero. Hence, non-zero residual stresses cannot be caused by compatible

strains in linear elasticity.

As motivation for the development that is to follow, in order to demonstrate that vibration

mode-induced (or modal) stresses cannot be used to construct a basis for residual stresses,

we choose a candidate residual stress field in an annular domain of inner radius 0.1 and

outer radius 0.3, with components

σrr(r, θ) =

(
−0.067

r2
+

1.6

r
− 12.833 + 40r − 41.667r2

)
cos 3θ,

σrθ(r, θ) =

(
−0.022

r2
+ 5.5− 40r + 75r2

)
sin 3θ,

σθθ(r, θ) =
(
3.667− 40r + 100r2

)
cos 3θ.

(1.1)

We will properly motivate and use this stress field later in the thesis, after presenting our

theory. Here we merely attempt to numerically approximate the above stress field with

the first N modal stresses on this domain, with 1 ≤ N ≤ 50. An approximation error EN

(which will be described fully in due course) is plotted against N in Figure 1.1. We see that

the error does not seem to be converging to zero. The implications of Figure 1.1, which

is given here only for motivation, will be clear as we present our theory in subsequent

sections.

1We have published the work presented in Chapters 2 - 4 in [2].
2Equilibrium, zero tractions and compatibility lead to zero stresses as a unique solution.



Chapter 1. Introduction 3

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

N

E
N

Figure 1.1: Approximation error versus number of (vibrational) modal stress fields used.
Convergence to zero is not apparent and seems unlikely.

Readers may note that residual stresses in a component can be either beneficial or harmful,

depending on the application. For example, they can impede the growth of surface micro-

cracks and extend fatigue life, or cause warping in manufactured components, respectively.

In either case, it is important to characterize a body’s residual stress state with sufficient

accuracy, both in the bulk and at the surface. Readers may refer to [1, 5, 6] for com-

prehensive discussions on the origin and measurement of residual stresses from differing

sources and at different length scales. Broadly, some common sources of residual stresses

are thermal effects [7, 8], inclusions and defects [9–14], and biological growth [15–18], in

addition to prior inelastic deformation.

A substantial amount of literature on residual stresses pays explicit attention to incom-

patibility, e.g., through equations of the form ∇4ϕ = η, where nonzero η is the source of

incompatibility [13, 14, 16]. As mentioned above, we directly seek a basis for expanding

and interpolating the stress components without approaching the problem through specific

choices of η, i.e., through specific sources or types of incompatibility. We acknowledge here

the work of Hoger [19, 20], who discussed the general residual stress fields possible in an

elastic cylinder, but did not seek to develop a basis for interpolation on arbitrary geome-

tries as we do here. Her papers led to interesting subsequent work on elastic bodies with

residual stress, in which the strain energy density is considered to be a function of both the

deformation gradient tensor and the initial residual stress. These works, like ours, make

no assumptions about the origin of the prescribed residual stress [19–26]. These works,

especially those concerned with calculating the optimal residual stress that results in a

targeted Cauchy stress (e.g. [27]), deviate almost immediately from our approach in that

they focus on elastic bodies.
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We also distinguish our approach from a more restricted interpolation employed in some

destructive measurement techniques for residual stresses. In those techniques, elasticity-

based relationships between the measured strain data [28–31], and the tractions that were

acting on surfaces that have since been exposed by cutting [32], are the key considerations.

In such measurements, the stress is often interpolated along a single spatial coordinate (like

depth of cut), using splines, polynomials, Fourier series, etc. Unlike those interpolants de-

fined on specific line segments, here we will develop self-equilibrating, traction free, tensor

valued interpolants for the entire body without appeal to any underlying material consti-

tutive relations. We also acknowledge the challenging problem of inversion of boundary

data (displacements, strains) to estimate the residual stress in a three dimensional body

[32–35]. The orthonormal basis we develop here, in such applications, may ease the need

for statistical regularization [36, 37]. Such potential applications provide yet another mo-

tivation for our work.

Finally we distinguish our approach from stress-based formulations derived in linear elas-

ticity using variations of a positive definite functional of the stress gradient [38–41], an

example of which is the Beltrami-Michell equation [42]. These formulations, too, refer

specifically to linearly elastic materials, and do not construct basis functions. Our aims

are quite different, as explained above. In particular, we will consider variations of a

functional involving the stress gradient, which leads to an eigenvalue problem, which in

turn yields a basis we can use. In the applied mathematics literature, there are similar

issues studied using the somewhat simpler Stokes operator from incompressible fluid me-

chanics (see e.g., [43]; we will discuss these similarities later). In those works, to prove

that the eigenfunctions of the Stokes operator span the space of divergence-free velocity

fields with zero boundary value, the spectral theorem is used. Readers wishing to read a

general discussion of the spectral theorem may see, e.g., [44]. However, our discussion is

less formal, accessible to a broader audience, and resembles the development of classical

vibration theory [3].

Our basic formulation, though first developed for two dimensions, is easily extended to

three dimensions.

Having developed a basis, we first compute it numerically on planar bodies. The computed

basis functions are then used to fit given, but arbitrary, candidate residual stress fields.

Subsequently, for fitting residual stress of certain special types, such as those which are

axially invariant or spatially localized, we develop new eigenfunctions with these same

characteristics by appropriately modifying our original extremization problem. Finally,
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we demonstrate yet another application of our basis by using it to compute approximate

residual stresses using the weighted residual method.

1.2 Organization of the thesis

This thesis is organized as follows. In Chapter 2, we pose an extremization problem in 2D

that leads to an eigenvalue problem. We show that the solutions of this eigenvalue problem

exist, and that they span the space of all residual stresses of interest to us. Extension of

the theory to 3D is presented at the end of the chapter.

In general, the eigenvalue problem of Chapter 2, which involves a system of partial differ-

ential equations (PDEs), is not solvable analytically. Chapter 3 is devoted to numerical

solutions of the eigenvalue problem in 2D. The numerical methods used are broadly di-

vided into two categories: finite element method (FEM), and semi-numerical methods.

The former can be used to compute the eigenfunctions in bodies of arbitrary shapes, and

the latter exploit symmetries of some special geometries to convert the PDE system into a

system of ordinary differential equations (ODEs) or algebraic equations. We consider four

such special geometries: an annulus, a circular disk, a rectangle and an annular wedge.

We observe that the solutions from FEM and semi-numerical methods agree in all cases.

In Chapter 4, we consider some candidate residual stress fields, and fit them using the

eigenfunctions developed in the previous chapters. In the first part of the chapter, we con-

sider residual stress fields on an annular geometry, and fit them using the eigenfunctions

computed semi-numerically in Chapter 3. Four such residual stresses are considered: two

hypothetically made up, one from shrink fitting of two concentric elastic cylinders, and

one from non-uniform heating of an elastic annulus. In the second part of the chapter, we

consider three residual stress fields obtained by simulating 2D metal forming processes of

rolling and angular extrusion in the FEM software Abaqus, and fit them using eigenfunc-

tions computed using the FEM formulation of Chapter 3. We demonstrate the convergence

of the fits to the actual fields in both L2 and H1 norms.

In Chapter 5, we show that the eigenvalue problem of Chapter 2 is amenable to modi-

fications for special purposes. In the first part of the chapter, we consider long (in the

z-direction) prismatic geometries, and show that the eigenvalue problem of Chapter 2 de-

couples into three separate eigenvalue problems for such bodies: one for the planar stress

components (σxx, σyy, σxy), one for the out of plane shear stress components (σxz, σyz) and

one for the axial stress (σzz). In the second part of the chapter, we modify our eigenvalue
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problem to obtain eigenfunctions that are localized in a small 2D region, and decay rapidly

away from it. Such eigenfunctions are more suitable for residual stresses that are localized,

such as that near a crack tip, or near the surface in a shot peened body.

In Chapter 6, we solve a ‘forward’ problem using our residual stress basis functions, in the

sense that instead of fitting an already given residual stress field, we solve for a residual

stress given its physical governing differential equation. For this purpose, we take up the

problem of non-uniform heating of a thermoelastic annulus. We solve for the resulting

residual stress using the weighted residual method with both free vibration displacement

modes and our stress eigenfunctions as the weighting functions; and observe that the latter

give much faster convergence. We discuss in detail some unexpected issues of convergence

and boundary conditions, and present some interesting new results necessary for developing

a correct weighted residual approximation.

In Chapter 7, we discuss how the proof presented in Chapter 2 of eigenfunctions form-

ing a basis could be adapted for the modified extremization problems considered in the

subsequent chapters.

In Chapter 8, we present conclusions and discuss possible future work.

1.3 Notation

We close this introduction with a brief description of the notation used in this thesis. The

dot product ‘·’ between two tensors of the same order represents total tensor contraction.

Using Einstein’s summation convention,

A ·B =


AiBi if A and B are vectors,

AijBij if A and B are second order tensors,

AijkBijk if A and B are third order tensors,

where Ai, Aij , Aijk etc. are the Cartesian components of the tensor A (likewise for B). For

a second order tensor A, divA represents Aij,jei, where a subscript following a comma

denotes a partial derivative and ei are the unit Cartesian basis vectors. For a vector v, Av

represents Aijvjei. The dyadic product u⊗ v for vectors u and v is defined by its action

on a vector w as (u⊗ v)w = (v ·w)u. The cross product u× v is defined as ϵijkuivjek,

where ϵ is the permutation tensor.



Chapter 2

Extremization problem and

governing PDEs

In this chapter, we pose an extremization problem that leads to an eigenvalue problem.

We show that the solutions to this eigenvalue problem form an orthogonal basis for the

set of all residual stress fields of interest to us.

The chapter is arranged as follows. Sections 2.1 through 2.4 are for 2D bodies. In Section

2.1, we define the set of residual stress fields that are of interest to us, and formally state

the problem we will address. In Section 2.2, we propose a quadratic functional involving

the gradient of an input stress field, and derive necessary and sufficient conditions satisfied

by stationary points of this functional using the calculus of variations. These conditions

are in the form of an eigenvalue problem. In Section 2.3, we show that the eigenfunctions

ϕi satisfying this eigenvalue problem form an orthogonal sequence, with real and positive

eigenvalues. In Section 2.4, we show that ϕi, assuming that they exist, span the space

of residual stresses in L2 and H1 norms. In Section 2.5 we extend our theory to three

dimensions, and derive the corresponding eigenvalue problem and boundary conditions.

Finally, in Section 2.6, we prove the existence of ϕi, something which was assumed in

Section 2.4. Due to its heavier mathematical content, we have kept this section at the end

of the chapter.

7
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2.1 Problem statement

Let Ω be an open, bounded, sufficiently regular domain in R2 with area |Ω| (the extension
to R3 is discussed towards the end of this chapter). The unit outward normal n at each

point on the boundary ∂Ω is assumed well defined1.

Let us denote the set of symmetric second order tensor fields defined over Ω by “Sym”.

We define:

S =

{
σ

∣∣∣∣σ ∈ Sym, divσ = 0, σn|∂Ω = 0,

∫
Ω
σ · σ dA <∞,

∫
Ω
∇σ · ∇σ dA <∞

}
,

(2.1)

where the five conditions included imply symmetry, equilibrium, zero tractions, square

integrability of stresses, and square integrability of stress gradients respectively; and dA

is an infinitesimal area element of the domain Ω2.

The inner product between two elements σ1 and σ2 of S is taken to be

(σ1,σ2) =

∫
Ω
σ1 · σ2 dA,

and accordingly, the norm of any σ ∈ S is

∥σ∥ = (σ,σ)
1
2 =

(∫
Ω
σ · σ dA

) 1
2

. (2.2)

Let S̄ be the closure of S. All residual stresses of interest to us are elements of S̄3. We

seek a sequence of functions ϕi that span S̄.
1Isolated corners can be rounded out using tiny radii, for simplicity. In finite element approximations,

the weak formulation allows a piecewise C1 boundary. For the definition of Cn continuity, please see page
50 of [45].

2It is easy to check that S is a real vector space. For instance, it satisfies linearity: if σ1 and σ2

are elements of S and α is a real number, then the function σ = σ1 + ασ2 satisfies div σ = 0, σn = 0,∫
Ω

σ ·σ dA < ∞ and

∫
Ω

∇σ ·∇σ dA < ∞; so, σ belongs to S. Similarly, it can be shown that S also satisfies

commutativity, associativity, distributivity, and has an additive identity and a multiplicative identity.
3Residual stresses are either (a) elements of S, or (b) have simple internal discontinuities in addition.

These are both elements of S̄. Stresses in category (b) are not elements of S because their gradients are
not square-integrable. Note however that not all elements of S̄ are residual stress fields. For example,
there could be elements of S̄ which may have discontinuities at the boundary. For such fields, σn = 0 on
the boundary may not be physically meaningful; but such fields are not of physical interest to us.
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2.2 Solution approach via an extremization problem

Let us seek stationary points of the functional

J0(σ̃) =
1

2

∫
Ω
∇σ̃ · ∇σ̃ dA (2.3)

in S, subject to the normalization constraint

∫
Ω
σ̃ · σ̃ dA = 1.

We note that for any nonzero residual stress field, the quantity J0 must be nonzero (see

e.g., [19]).

We will use the calculus of variations [46]. Since the constraint div σ̃ = 0 is defined

pointwise in Ω, we introduce a spatially varying Lagrange multiplier µ for it. Since

∫
Ω
σ̃ ·

σ̃ dA = 1 is a scalar integral constraint, we use a constant scalar Lagrange multiplier
λ

2
for it. We then consider variations of

J(σ̂) =

∫
Ω

{
1

2
∇σ̂ · ∇σ̂ − λ

2

(
σ̂ · σ̂ − 1

|Ω|

)
− µ · (div σ̂)

}
dA, (2.4)

where we have used a “hat” instead of a “tilde” on σ̂ because it belongs to the larger, or

less restricted, set

R =

{
σ̂

∣∣∣∣σ̂ ∈ Sym, σ̂n|∂Ω = 0,

∫
Ω
σ̂ · σ̂ dA <∞,

∫
Ω
∇σ̂ · ∇σ̂ dA <∞

}
. (2.5)

If a stationary point of Eq. 2.4 is σ then, for arbitrary infinitesimal variations ζ ∈ R, we

must have ∫
Ω
{∇σ · ∇ζ − λσ · ζ − µ · (div ζ)} dA = 0. (2.6)

Assuming that σ is sufficiently regular, and using integration by parts and the divergence

theorem4, we obtain∫
∂Ω

{∇nσ · ζ − µ · (ζn)} ds−
∫
Ω
{∆σ −∇µ+ λσ} · ζ dA = 0, (2.7)

where ∇nσ is the normal gradient of σ at ∂Ω. In Cartesian coordinates, ∇nσ = σij,knk.

4We need more regularity on σ than what is afforded to elements of S. We show in Appendix A that
(a) this regularity requirement is that ∆σ should be square-integrable, and (b) σ, on account of being a
stationary point, meets this requirement.
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In Eq. 2.7, since ζ ∈ R, ζn on ∂Ω is zero, yielding∫
∂Ω

∇nσ · ζ ds−
∫
Ω
{∆σ −∇µ+ λσ} · ζ dA = 0. (2.8)

By considering the set of ζ which are zero on ∂Ω, we conclude that5

−∆σ +∇µ− λσ = R in Ω,

whereR is some skew symmetric second order tensor field; and where the scalar eigenvalue

λ and the vector field µ need to be determined along with σ. Adding the above equation

to its transpose and dividing by two,

−∆σ +∇sµ− λσ = 0 in Ω, (2.9)

where

∇sµ =
∇µ+ (∇µ)T

2
.

Equation 2.8 reduces to the line integral alone, i.e.,∫
∂Ω

∇nσ · ζ ds = 0. (2.10)

Considering ζ on the boundary, at each point we have ζn = 0, so n is an eigenvector of ζ.

Since ζ is symmetric, the local tangent vector t must be the other eigenvector (we are in

two dimensions). It follows that we can consider ζ = κ(s)t⊗ t for any scalar κ(s) varying

arbitrarily along the boundary. The arbitrariness of κ(s) implies that

∇nσ · (t⊗ t) = 0 (2.11)

everywhere on the boundary ∂Ω. Less formally, this conditions means that the normal

gradient of the circumferential stress is zero at the boundary. If the domain is circular,

this circumferential stress is the hoop stress.

Finally, variation of the Lagrange multiplier µ gives the equilibrium condition

divσ = 0,

5Since ζ is symmetric, by localizing it near any x ∈ Ω we conclude that the integrand at x is skew
symmetric.
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and variation of the Lagrange multiplier
λ

2
gives

∫
Ω
σ · σ dA = 1.

To summarize, any sufficiently regular unit-norm stationary point of J0 in S, assuming for

simplicity that one exists, is a solution to the following eigenvalue problem6:

−∆σ +∇sµ = λσ and divσ = 0 in Ω,

σn = 0 and ∇nσ · (t⊗ t) = 0 on ∂Ω.
(2.12)

The eigenvalue problem in Eqs. 2.12 can be solved on arbitrary domains using the FEM,

and we will present some such solutions later in this thesis. For the simple case of an

annular domain, it can also be solved as a two-point boundary value problem using ODE

solvers after separation of variables, and we will present such solutions as well, obtaining

complete agreement with finite element solutions.

Proceeding now with our theoretical development, our primary claim is that the sequence

of eigenfunctions σk, computed for a given domain Ω, forms a basis for S̄ defined on Ω.

Any state of residual stress in S̄ can be expressed as a linear combination of these basis

functions. We shall henceforth denote these stress-eigenfunctions as ϕ throughout this

thesis.

2.3 Orthonormality of the eigenfunctions

Let λ be an eigenvalue, and ϕ and µ represent the corresponding eigenfunction. Let σ be

any element of S (recall Eq. 2.1). Consider the inner product of the first equation in 2.12

with σ, i.e., ∫
Ω
(−∆ϕ+∇sµ− λϕ) · σ dA = 0, (2.13)

which reduces to (see Appendix C)

∫
Ω
(∇ϕ · ∇σ − λϕ · σ) dA = 0 (2.14)

for any eigenvalue-eigenfunction pair (λ,ϕ) and any σ ∈ S.
6These conditions are also sufficient for stationarity, i.e., if σ is a solution to this eigenvalue problem,

it must be a stationary point. See Appendix B.
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Now let (λp,ϕp) and (λq,ϕq) be two distinct eigenvalue-eigenvector sets of Eq. 2.12, with

µp and µq the corresponding Lagrange multipliers. By Eq. 2.14,∫
Ω
∇ϕp · ∇ϕq dA = λp

∫
Ω
ϕp · ϕq dA,∫

Ω
∇ϕq · ∇ϕp dA = λq

∫
Ω
ϕq · ϕp dA,

(2.15)

and if λp ̸= λq, then ∫
Ω
ϕp · ϕq dA = 0 and

∫
Ω
∇ϕp · ∇ϕq dA = 0. (2.16)

If λp = λq but ϕp ̸= ϕq, then we can choose ϕp and ϕq to be orthogonal, and Eq. 2.16

still holds. Finally, if λp = λq and ϕp = ϕq but µp ̸= µq, then ∇sµp = ∇sµq, and there is

no distinction between these two cases.

Following arguments used by Rayleigh [3], we note that the eigenvalues λ are real and

positive. To obtain a contradiction, if λp is complex with corresponding complex eigen-

function ϕp, then by the linearity of Eq. 2.12 (for details, please see Appendix D) it follows

that their complex conjugates λp = λq and ϕp = ϕq give another solution pair. Using

these two eigenfunctions in either of Eqs. 2.15, we obtain a contradiction; so λ is real. The

eigenfunctions are real as well. Next, using the same ϕ twice (i.e., p = q), we conclude

that λ > 0 because the left hand side is strictly positive for any nonzero residual stress.

We thus have an orthogonal sequence of eigenfunctions, satisfying Eq. 2.16 whenever p ̸= q.

The orthogonal sequence of stress eigenfunctions ϕp is assumed to be normalized such that∫
Ω
ϕp · ϕp dA = 1, p = 1, 2, 3, · · ·

to obtain an orthonormal sequence, with∫
Ω
∇ϕp · ∇ϕp dA = λp.

We can arrange this sequence7 simply in order of increasing λp.

7 In some cases we may restrict attention to a subset of eigenfunctions. For an annular domain, for
example, we may sometimes consider only eigenfunctions with a fixed circumferential wave number (e.g.,
m = 3).
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2.4 Basis of S̄

Consider the sequence (λp,ϕp,µp), p = 1, 2, · · · . There are infinitely many such eigenvalue-

eigenfunction pairs, i.e., the sequence is not finite. For proof, we argue by contradiction.

Assume that only a finite number N of such eigenvalue-eigenfunction pairs exist.

Let SN be the subspace of S spanned by the finite sequence
{
ϕp

}
, p = 1, 2, · · · , N . Let

SN⊥ be the orthogonal complement of SN in S. Let us now extremize J0 (recall Eq. 2.3)

within SN⊥. To the extremizer σ, restriction to SN⊥ adds N integral constraints to the

previous extremization problem, namely∫
Ω
ϕp · σ dA = 0, p = 1, 2, · · · , N, (2.17)

for which we introduce N new scalar Lagrange multipliers, ν1, ν2, · · · , νN , and obtain the

new equations (recall Eq. 2.12)

−∆σ +∇sµ = λσ +
∑N

p=1 νpϕp and divσ = 0 in Ω,

σn = 0 and ∇nσ · (t⊗ t) = 0 on ∂Ω,
(2.18)

along with Eq. 2.17. We assume that at least one solution σ̃ ∈ SN⊥, with associated µ̃, λ̃

and ν̃p, to the above eigenvalue problem exists. Accordingly,

−∆σ̃ +∇sµ̃ = λ̃σ̃ +
N∑
p=1

ν̃pϕp. (2.19)

The proof of existence of an extremizer in SN⊥ is technical and is presented in Section 2.6.

Consider any eigenfunction ϕk, 1 ≤ k ≤ N . Compute the inner product of Eq. 2.19 with

ϕk. By the reasoning in Appendix C, the ∇sµ̃ term drops out. By Eq. 2.17, the λ̃σ̃ term

drops out. By orthonormality of the eigenfunctions obtained so far,
N∑
p=1

ν̃pϕp contributes

just ν̃k. By the manipulations that led to Eq. 2.14, the inner product thus becomes∫
Ω
∇σ̃ · ∇ϕk dA = ν̃k. (2.20)

However, since σ̃ is an element of S and also orthogonal to ϕk, Eq. 2.14 shows that∫
Ω
∇ϕk · ∇σ̃ dA = 0. (2.21)
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Thus ν̃k = 0 for 1 ≤ k ≤ N . Inserting these zeros in Eq. 2.18 we obtain exactly Eq. 2.12,

which shows that the new solution merely adds another element to the existing sequence.

We conclude that there are infinitely many eigenfunctions.

It can now be shown that these eigenfunctions form a basis for S̄, as follows. Let S∞ be

the subspace spanned by the infinite sequence
{
ϕp

}
, p = 1, 2, · · · , with all eigenfunctions

included. If indeed there is an element of S that is not in S∞, then arguments in the

same spirit as above establish that this element merely adds one more eigenfunction to the

sequence, giving a contradiction (for details, see Appendix E). Finally, since every element

of S can be expressed to arbitrary closeness in the L2 norm as a linear combination of our

basis functions, so can every element of the closure S̄8. We conclude that our eigenfunctions

provide a basis for residual stress states, as claimed9. Numerical examples presented later

will provide ample empirical evidence of the same.

Recalling footnote 3, we emphasize that S̄ includes some elements which are not physically

meaningful, for example, those with discontinuities right at the boundary. However, all

physically meaningful residual stress fields will be elements of S̄.

2.5 Extension of the theory to three dimensions

Our derivation of the eigenvalue problem in Eq. 2.12 was for a two-dimensional domain.

The extension of the theory to three dimensions is straightforward, and is now presented

for completeness. Computations, which will require finite element formulations in 3D, are

left for future work.

Most of the development of the 2D theory is directly applicable to three dimensions if

we interpret the “dA” in the domain integrals to be volume elements. While obtaining

Eq. 2.12, the two-dimensionality of the domain Ω was used only to derive the point-wise

natural boundary condition of Eq. 2.11 from the integral condition of Eq. 2.10. As a result,

in three dimensions, only the fourth of Eqs. 2.12 changes.

Equation 2.10 in three dimensions is∫
∂Ω

∇nσ · ζ dS = 0, (2.22)

8The eigenfunctions ϕ also form a basis to the set S in the H1 norm. See Appendix F.
9One might, in some cases, consider self-equilibrating stresses under prescribed non-zero boundary

tractions. In such cases, the total stress σ can be written as the sum of a general traction free residual
stress σh and any particular self-equilibrating σp, consistent with the applied tractions, and computed in
any way we like. Our basis can then be used to represent σh.
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where “dS” is now interpreted as an infinitesimal area element on the surface ∂Ω of the

three-dimensional domain Ω.

Consider an arbitrarily small portion ∆S including any point P on ∂Ω. Restricting atten-

tion to ζ that is nonzero only on ∆S, Eq. 2.22 becomes∫
∆S

∇nσ · ζ dS = 0. (2.23)

Since ∆S is arbitrarily small, and ∇nσ, ζ are continuous, we can use localization to

conclude that

∇nσ · ζ = 0 on ∂Ω.

We choose a pair of convenient orthonormal vectors t1 and t2 in the tangent plane passing

through P . This can be done, e.g., using the Cartesian unit vector e1 as

t1 =
e1 × n

∥e1 × n∥
and t2 = n× t1,

where ‘×’ represents the vector cross product; (t1,t2,n) form a right handed orthonormal

triad. If n is parallel, or almost parallel to e1, then e1 can be replaced by e2 in the

subsequent discussion.

Since ζ is symmetric and satisfies ζn = 0, it must be expressible as

ζ = κ1 t1 ⊗ t1 + κ2 t2 ⊗ t2 + κ3 (t1 ⊗ t2 + t2 ⊗ t1)

for arbitrary κ1, κ2, κ3. First choosing κ2 = κ3 = 0 and κ1 ̸= 0, we obtain the natural

boundary condition (compare with Eq. 2.11)

∇nσ · (t1 ⊗ t1) = 0.

Similarly, we obtain two more natural boundary conditions:

∇nσ · (t2 ⊗ t2) = 0 and ∇nσ · (t1 ⊗ t2 + t2 ⊗ t1) = 0.

The last condition can be simplified, because ∇nσ is symmetric, to

∇nσ · (t1 ⊗ t2) = 0.

Since σ has six components, the essential boundary conditions σn = 0 along with these

natural boundary conditions present a total of six boundary conditions as needed.
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To summarize, the eigenvalue problem developed earlier for two dimensions is extended in

principle to three dimensions as follows:

−∆σ +∇sµ = λσ and divσ = 0 in Ω,

σn = 0 on ∂Ω,

∇nσ · (t1 ⊗ t1) = 0, ∇nσ · (t2 ⊗ t2) = 0 and ∇nσ · (t1 ⊗ t2) = 0 on ∂Ω,

for any two orthonormal unit vectors t1 and t2 tangential to the surface at the point of

interest.

In the above, σ is a symmetric three dimensional second order tensor field and µ is a three

dimensional vector.

The proof of orthogonality of eigenfunctions, and the fact that they form a basis, proceeds

along lines identical to the two dimensional case, and is omitted.

2.6 A minimizer of J0 exists in the unit ball of SN⊥

Showing the existence of minimizers in infinite dimensional spaces is tricky and filled with

traps. In the early stages of this work, we had incorrectly guessed from the non-emptiness

of SN⊥ that it must contain a minimizer of J0
10. Such ideas generally make sense for a

finite dimensional space, because the minimizing sequence is forced to converge eventually.

But the sequence need not converge in a space with infinitely many dimensions as there are

infinitely many directions in which it can go. Consequently, the minimizing sequence may

keep hopping about in orthogonal directions and never converge. This lack of compactness

can sometimes be compensated by the convexity of the space. However, the unit ball of

SN⊥ is not convex because of the constraint∫
Ω
σ · σ dA = 1.

However, this lack of convexity is compensated by two other important structural elements:

compactness of L2 in H1, and convexity of the functional J0 itself.

10Riemann made the same mistake, although he did it at a time when the notions of compactness were
not well established. See [47] for a nice discussion. For an interesting account of a somewhat bitter exchange
between Riemann and Weierstrass on this matter, see [48].
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We now present the proof of existence. Firstly, we note that the unit ball in SN⊥ is

understood to be the set

P =

{
σ

∣∣∣∣∣σ ∈ SN⊥,

(∫
Ω
σ · σ dA

) 1
2

= 1

}
.

In this section, we show that P contains a minimizer of J0(σ) =
1

2

∫
Ω
∇σ · ∇σ dA.

When we wish to include the elements in SN⊥ which have norm less than 1 as well, we

will use the symbol P̄, as in

P̄ =

{
σ

∣∣∣∣∣σ ∈ SN⊥,

(∫
Ω
σ · σ dA

) 1
2

≤ 1

}
.

We note that the problems of minimizing J0(σ) and minimizing

Ĵ(σ) = (2J0(σ))
1
2 =

(∫
Ω
∇σ · ∇σ dA

) 1
2

are equivalent. The values of Ĵ evaluated in P have a greatest lower bound ψ0. Thus,

there exists a sequence (σn) in P such that

lim
n→∞

Ĵ(σn) = ψ0.

We must show that the limit of (σn) is in P, and Ĵ evaluated at that limit is ψ0.

We will use the L2 and H1 norms of a function σ ∈ S, as in

∥σ∥L2 =

(∫
Ω
σ · σ dA

) 1
2

,

∥σ∥H1 =

(∫
Ω
σ · σ dA+

∫
Ω
∇σ · ∇σ dA

) 1
2

.

Our proof will proceed using the following steps. First we will show that the sequence

(σn) is bounded in the H1 norm, and thus has a subsequence that converges weakly in the

H1 norm, and strongly in the L2 norm, to some σ0. We will then show that σ0 belongs

to P. Finally, we will show that although Ĵ is not continuous, it is lower semi-continuous,

a property which implies that Ĵ achieves ψ0 at σ0.

Proposition 2.1. (σn) is bounded in the H1 norm.
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Proof. Since residual stresses have zero mean [19], by Poincaré’s inequality [49] there exists

a positive real number C that depends only on Ω such that

(∫
Ω
σ · σ dA

) 1
2

≤ C

(∫
Ω
∇σ · ∇σ dA

) 1
2

∀σ ∈ S.

This implies that

∥σ∥H1 ≤
√
C2 + 1 Ĵ(σ). (2.24)

By definition, all the elements in the sequence (σn) ∈ P yield finite Ĵ (Eq. 2.1). We then

conclude from the above equation that (σn) is bounded in the H1 norm.

Proposition 2.2. (σn) has a subsequence that converges to some σ0 weakly in the H1

norm, and strongly in the L2 norm.

Proof. It is well known in the theory of functional analysis that H1 (set of σ with finite

H1 norm) is a Banach space. Every bounded sequence in a Banach space has a weakly

convergent subsequence (see corollary A.60, page 506 of [49]). It follows that there is

a subsequence (σnk
) of (σn) that converges weakly to some σ0 ∈ H1. By the Rellich-

Kondrachov theorem [49],H1 is compactly embedded in L2 (set of σ with finite L2 norm)11,

and therefore (σnk
) converges strongly to σ0 in the L2 norm12 (e.g., see exercise 3.5, page

80 of [50]).

Proposition 2.3. σ0 ∈ P.

Proof. Recall that P consists of elements σ that

(i) are divergence free,

(ii) are traction free,

(iii) have

∫
Ω
∇σ · ∇σ dA <∞, and

(iv) are orthogonal to SN , and

11If a set S1 with norm ∥·∥S1
is compactly embedded in a set S2 with norm ∥·∥S2

, then for a sequence
(an) bounded in S1, there is a subsequence (ank ) that is a Cauchy sequence in S2 [49].

12Since the sequence σnk is bounded in the H1 norm, by definition of compact embedding, there is a
subsequence σnkl

that is a Cauchy sequence in the L2 norm. That is, σnkl
converges strongly in the L2

norm to some σ̃0. Since weak convergence is weaker than strong convergence, σnkl
converges weakly in

the L2 norm to σ̃0. Also, since σnk converges weakly in the H1 norm to σ0, it converges weakly in the
L2 norm to σ0. This implies that σnkl

converges weakly in the L2 norm to σ0. Finally, since weak limits

are unique, we have that σ̃0 = σ0. So, σnkl
converges strongly in the L2 norm to σ0.
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(v) satisfy ∥σ∥L2 = 1.

We now show that σ0 satisfies each of the above conditions (i) through (v).

(i) divσ0 = 0:

Since σ0 is in H1, divσ0 is a vector field in L2. Let γ be an arbitrary smooth

vector field compactly supported over Ω. Consider the inner product of divσ0 with

γ. Using integration by parts followed by Hölder’s inequality, we have∣∣∣ ∫
Ω
divσ0 · γ dA

∣∣∣ = ∣∣∣ ∫
Ω
div (σ0 − σnk

) · γ dA +

∫
Ω
�����:0
divσnk

· γ dA
∣∣∣

=
∣∣∣− ∫

Ω
(σ0 − σnk

) · ∇γ dA
∣∣∣ ≤ ∥σ0 − σnk

∥L2 ∥∇γ∥L2 .

Since γ is smooth, ∥∇γ∥L2 is finite, and the right-most expression in the above

equation goes to zero. So, we have∫
Ω
divσ0 · γ dA = 0.

Since γ is arbitrary, and smooth compactly supported functions are dense in L2 [50],

we conclude that

divσ0 = 0.

(ii) σ0n = 0:

For an arbitrary smooth vector field χ, using integration by parts, we have

0 =

∫
Ω
div (σ0 − σnk

) · χ dA =

∫
∂Ω

{(σ0 − σnk
)n} · χ ds −

∫
Ω
(σ0 − σnk

) · ∇χ dA,

or, since σnk
n = 0, ∫

∂Ω
(σ0n) · χ ds =

∫
Ω
(σ0 − σnk

) · ∇χ dA.

Again using Hölder’s inequality, we obtain that

σ0n = 0.

(iii)

∫
Ω
∇σ · ∇σ dA <∞:

This is obvious since σ0 belongs to H1 (Proposition 2.2).
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(iv) σ0 is orthogonal to SN :

Since σnk
is orthogonal to SN for all nk, and inner product is a continuous function

[51], we conclude that σ0 is orthogonal to SN .

(v) ∥σ0∥L2 = 1:

Since ∥σnk
∥L2 = 1 for all nk, and norm is a continuous function [51], we conclude

that ∥σ0∥L2 = 1.

Remark 2.4. σnk
converges to σ0 strongly in the L2 norm, and the corresponding Ĵ values

converge to ψ0. However, it is not clear if Ĵ(σ0) = ψ0, since as a function from S ⊂ L2 to

R, Ĵ is not continuous. In the following arguments, we show that Ĵ satisfies a weaker but

sufficient condition, that of lower semi-continuity.

Remark 2.5. We saw in the proof of Proposition 2.2 that if a sequence of divergence free and

traction free stress fields σn converges to σ0 in the L2 norm, then σ0 is also divergence free

and traction free. Therefore, the completion S̄ of S in the L2 norm consists of divergence

free and traction free stress fields. In particular, residual stress fields with finite number

of simple discontinuities are elements of S̄, but not of S.

Definition 2.6. A functional f is strong (respectively, weak) lower semi-continuous with

respect to a norm if it satisfies

f(x0) ≤ lim
m→∞

f(xm)

whenever a sequence (xm) converges strongly (respectively, weakly) to x0 in that norm

[52].

Remark 2.7. Weak and strong lower semi-continuity of a functional are related as follows.

In general, weak lower semi-continuity in a norm implies strong lower semi-continuity

in that norm. The converse is not true. However, if the functional is strong lower semi-

continuous and convex, and is defined on a convex set, then it is weak lower semi-continuous

[52].

Proposition 2.8. Ĵ is strong lower semi-continuous in H1.

Proof. We first show that the quantity defined as ∥σ∥Ĵ = Ĵ(σ) is a norm over set S. Since
residual stresses have zero mean, ∥σ∥Ĵ is zero only when σ is zero. Also, ∥ασ∥Ĵ = |α| ∥σ∥Ĵ
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for a real number α. Finally, using Hölder’s inequality, it can easily be shown that Ĵ(σ)

satisfies the triangle inequality. So, ∥σ∥Ĵ is a norm.

Next, we note that

0 ≤
(∫

Ω
∇σ · ∇σ dA

) 1
2

≤
(∫

Ω
σ · σ dA+

∫
Ω
∇σ · ∇σ dA

) 1
2

,

or

0 ≤ ∥σ∥Ĵ ≤ ∥σ∥H1 . (2.25)

Therefore, if a sequence (σ̃m) converges strongly to some σ̃0 in theH1 norm, i.e. lim
m→∞

∥σ̃0 − σ̃m∥H1 =

0, it follows from the above that lim
m→∞

∥σ̃0 − σ̃m∥Ĵ = 0. This implies that

lim
m→∞

Ĵ(σ̃m) = Ĵ(σ̃0).

Hence, Ĵ is strong lower semi-continuous in H1.

Proposition 2.9. Ĵ is weak lower semi-continuous in H1.

Proof. Since all norms are convex, Ĵ is a convex functional. The set P̄ defined earlier is

convex. Including Proposition 2.8, we conclude that Ĵ is weak lower semi-continuous in

H1 over P̄.

Proposition 2.10. Ĵ(σ0) = ψ0.

Proof. Since Ĵ is weak lower semi-continuous in H1, and (σnk
) ∈ P̄ converges weakly to

σ0 ∈ P̄ in the H1 norm,

Ĵ(σ0) ≤ lim
nk→∞

Ĵ(σnk
) = ψ0.

But since ψ0 is the greatest lower bound of Ĵ over P, and σ0 belongs to P, we have

ψ0 ≤ Ĵ(σ0).

Hence,

Ĵ(σ0) = ψ0.

Remark 2.11. We have now proved that σ0 is in P, minimizes Ĵ , and hence minimizes J0.
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Remark 2.12. From Eqs. 2.24 and 2.25, we conclude that the norms Ĵ and H1 are equiva-

lent. As a result, since ∥σnk
∥Ĵ → ∥σ0∥Ĵ , it follows that (a) ∥σnk

∥H1 → ∥σ0∥H1 . Moreover,

(b) σnk
converges weakly to σ0 in the H1 norm. Properties (a) and (b) together imply

that σnk
in fact converges strongly to σ0 in the H1 norm.

2.7 Summary of the chapter

In this chapter, we obtained a sequence of functions spanning the set of all residual stress

fields. These functions are stationary points of a positive definite quadratic functional.

The calculus of variations yielded necessary and sufficient conditions for stationarity in

the form of an eigenvalue problem. We showed that the eigenfunctions are stationary

points of the quadratic functional. We assumed their existence, and showed that they

form an orthogonal basis for the set of residual stress fields in the L2 and the H1 norms.

We also extended the theory to 3D and derived the corresponding eigenvalue problem.

Finally, we proved the existence of the eigenfunctions.

In the next chapter, we will compute some eigenfunctions in 2D using FEM and semi-

numerical methods.
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Computation of eigenfunctions

In general, it is not possible to solve the eigenvalue problem of Eq. 2.12 analytically, and

we use numerical methods. We have used the FEM to compute the eigenfunctions ϕi

in arbitrary two dimensional domains. For some special geometries, symmetries can be

exploited to convert the eigenvalue problem into a system of ODEs or algebraic equations.

We have considered four such geometries in this chapter: an annulus, a circular disk, a

rectangle and an annular wedge (by which we mean an annular strip subtending an angle

between 0 and 2π at the center). Our semi-numerical solutions for these geometries agree

with the corresponding FEM solutions.

This chapter is arranged as follows. In Section 3.1, we first give the details of the FEM

formulation, and then compute the eigenfunctions on five domains: an annulus, a circu-

lar disk, rectangle, an annular wedge, and an arbitrarily shaped domain. We discuss the

stability and accuracy of the FEM solutions, and justify the choice of the shape functions

used. We close the section by reporting the computation times for different mesh sizes

on a desktop computer. Section 3.2 is devoted to computation of eigenfunctions in some

special geometries. In Section 3.2.1, we compute the eigenfunctions on an annular domain

by converting the governing PDE into an ODE system for a fixed circumferential wave

number. In Section 3.2.2, we extend the treatment of the annulus to a circular disk by

appropriately modifying the conditions at the center of the disk. In Section 3.2.3, we

consider a square geometry. Unlike annuli and circular disks, there is no direction of peri-

odicity, and Fourier expansion is not possible in general. We adopt a different approach:

we generate a sequence of 1D functions with zero mean and zero boundary values, and

assume, with due justification, that the stress eigenfunctions ϕi can be expanded in terms

of these 1D functions. Our original problem of finding stationary points of J0 then yields

23
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an algebraic eigenvalue problem which can be solved using standard methods. Extension

of our treatment to rectangular shapes is easy. Finally, in Section 3.2.4, we use the same

approach to compute the eigenfunctions in an annular wedge.

3.1 Eigenfunctions on arbitrary domains using the FEM

3.1.1 Formulation

To solve the eigenvalue problem in Eq. 2.12 using the FEM, we first express it in Cartesian

coordinates, so that

−∆σ +∇sµ = λσ

becomes

−∂
2σxx
∂x2

− ∂2σxx
∂y2

+
∂µx
∂x

= λσxx,

−∂
2σyy
∂x2

− ∂2σyy
∂y2

+
∂µy
∂y

= λσyy,

−∂
2σxy
∂x2

− ∂2σxy
∂y2

+
1

2

(
∂µx
∂y

+
∂µy
∂x

)
= λσxy.

(3.1)

Equilibrium,

divσ = 0,

becomes

∂σxx
∂x

+
∂σxy
∂y

= 0,

∂σxy
∂x

+
∂σyy
∂y

= 0.

(3.2)

The traction-free boundary condition

σn = 0

gives

σxxnx + σxyny = 0,

σxynx + σyyny = 0.
(3.3)

The final, and natural, boundary condition

∇nσ · (t⊗ t) = 0
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Figure 3.1: A sample 2 × 2 mesh of serendipity elements

becomes

∂σxx
∂x

nxn
2
y +

∂σxx
∂y

n3y +
∂σyy
∂x

n3x +
∂σyy
∂y

n2xny − 2
∂σxy
∂x

n2xny − 2
∂σxy
∂y

nxn
2
y = 0. (3.4)

The above is obtained upon writing ∇nσ · (t⊗ t) in indicial notations as σij,kninjtk, and

noting that nx = ty and ny = −tx.

We discretise the domain with a mesh containing ‘e’ eight noded quadrilateral serendipity

elements and ‘n’ nodes. Figure 3.1 shows a sample mesh for e = 4 and n = 20 for a square

domain. We use the FEM software package Abaqus to generate the mesh.

We use piecewise cubic shape functions for the stress components. The shape function

that takes the value 1 at node p, and the value zero at all other nodes, is denoted as

Np. Each such shape function is cubic within individual elements, continuous on element

edges, and looks like a tent peaking at node p.

We use piecewise constant shape functions for components of the Lagrange multiplier

vector field µ. The piecewise constant shape function that is 1 on element q, and zero on

all the other elements, is denoted as Mq.
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The discretised dependent variables are written as

σxx = σxx1N1 + σxx2N2 + ...+ σxxnNn,

σyy = σyy1N1 + σyy2N2 + ...+ σyynNn,

σxy = σxy1N1 + σxy2N2 + ...+ σxynNn,

µx = µx1M1 + µx2M2 + ...+ µxeMe,

µy = µy1M1 + µy2M2 + ...+ µyeMe,

(3.5)

where σxxp denotes the value of the discretized σxx component at the p th node (likewise

for σyy and σxy); and where µxq denotes the value of the discretized µx over element q

(likewise for µy).

We arrange the 3n+ 2e unknowns in a column vector c as follows:

c = {σxx1 . . . σxxn σyy1 . . . σyyn σxy1 . . . σxyn µx1 . . . µxe µy1 . . . µye}
T , (3.6)

T denoting transpose. We need 3n+ 2e equations. For the first n equations, we take the

inner product of the first of Eqs. 3.1 with N1 through Nn. For instance, the first such

resulting equation is: ∫
Ω
(−∆σxx + µx,x − λσxx)N1 dA = 0. (3.7)

Using integration by parts, we obtain∫
∂Ω

(
−∂σxx

∂x
nx −

∂σxx
∂y

ny + µxnx

)
N1 ds−

∫
Ω

(
−∂σxx

∂x

∂N1

∂x
− ∂σxx

∂y

∂N1

∂y
+ µx

∂N1

∂x

)
dA

= λ

∫
Ω
σxxN1 dA.

We substitute from Eqs. 3.5 to obtain

n∑
r=1

σxxr

{
−
∫
∂Ω

(
∂Nr

∂x
nx +

∂Nr

∂y
ny

)
N1 ds+

∫
Ω

(
∂Nr

∂x

∂N1

∂x
+
∂Nr

∂y

∂N1

∂y

)
dA

}

+
e∑

s=1

µxs

(∫
∂Ω
N1nx ds−

∫
Ω

∂N1

∂x
dA

)
= λ

n∑
r=1

σxxr

∫
Ω
NrN1 dA.

(3.8)

The various integrals in the above equation are all meaningful because each Nr as well

as its gradient ∇Nr are bounded everywhere in the domain, including on the boundary;

and the shape functions used for µ are piecewise constant. Additionally, we note that the

boundary integrals above remain continuous even if nx and ny have a finite number of

discontinuities, i.e., the domain can have a finite number of corners.
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Equation 3.8 (recall Eq. 3.6) can be written compactly as

a1c = λa2c,

where a1 and a2 are row vectors of dimensions 1 × (3n + 2e). We obtain n − 1 more

equations by taking the inner product of the first of Eqs. (3.1) with N2 through Nn.

Similarly, we obtain 2n more equations by taking the inner product of the second and

third of Eqs. 3.1 with N1 through Nn.

Finally, we obtain the remaining 2e equations by taking the inner product of each of Eqs.

3.2 with each of M1 through Me. It can be verified easily, as for Eq. 3.8, that all integrals

in those equations are bounded.

The complete set of 3n+ 2e equations can be written in a compact form as follows:

A1c = λA2c, (3.9)

where A1 and A2 are square matrices of size (3n+ 2e)× (3n+ 2e). We have not imposed

the boundary conditions (Eqs. 3.3 and 3.4) yet. We enforce these in the weak form as well

(in an integral sense, on the domain boundary). If there are b nodes on the boundary,

there are 3b conditions to be imposed. The boundary conditions can be expressed in the

form Bc = 0, where B is a 3b× (3n+ 2e) matrix.

The constraint Bc = 0 means that the vector of unknowns is effectively 3n + 2e − 3b

dimensional. For problems of moderate size, such as we solve here, it is conceptually

simplest to compute a matrix Q whose columns span the subspace orthogonal to the rows

of B. Then, Eq. (3.9) along with boundary conditions can be reduced to an equation of

the form

Ã1c̃ = λÃ2c̃, (3.10)

where c = Qc̃, Ã1 = QTA1Q and Ã2 = QTA2Q. Equation (3.10) is a generalized eigen-

value problem. One last point is that, because of the constraints in the problem, several

eigenvalues are infinite. So we solve Eq. 3.10 in the form

Ã2c̃ =
1

λ
Ã1c̃,

select the largest eigenvalues 1/λ, and take their reciprocals. Finally, we arrange the

eigenvectors (eigenfunctions) in order of increasing λ.
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3.1.2 Computed eigenfunctions and their stability

We have computed the eigenfunctions, normalized to unit norm (i.e.,

∫
Ω
ϕ · ϕ dA = 1),

using the above formulation for five domains: an annular domain whose outer radius is

three times its inner radius, a circular disk, a rectangular domain with an aspect ratio of

1.01, an annular wedge subtending 45◦ at the center, and an arbitrarily shaped domain

(see Figures 3.2 - 3.6). We have performed convergence tests by refining the mesh, and

displayed final results in Figures 3.2 - 3.6 using a level of refinement at which the first

hundred eigenvalues varied within 0.05% upon quadrupling the number of elements. For

instance, the domain corresponding to Figure 3.4 was discretized using a mesh of 2500

elements.

Our numerical results indicate that our formulation is stable. However, we have not

formally verified the well known inf-sup condition (also known as the Ladyzhenskaya-

Babuška-Brezzi condition) for our mixed finite element formulation. We refer the inter-

ested reader to Bathe’s work [53–55] and the references therein (also see [56] for mixed

finite element formulations in linear elasticity). Here, we offer the following positive and

constructive points to demonstrate the correctness of our finite element results.

1. First, since our problem is similar to the Stokes problem, we observe on page 329, Ta-

ble 4.8 of Bathe [53], that the 8/1 element (the eight-noded quadrilateral serendipity

element with piecewise constant pressure, which is what we have used) is stable for

the Stokes problem. This does not guarantee that it will be stable for our problem,

but it is indicative, and our results have not shown instabilities.

2. Second, the qualitative consequence of instability is the appearance of spurious

checkerboard type patterns in the solution. In many solutions, at different mesh

refinements, for different domain shapes, we have not seen such checkerboard pat-

terns with our 8/1 element.

3. Third, with other elements, which are unsuitable, we did indeed obtain checkerboard

patterns. Specifically, we did so with 4/1 elements, consistent with Table 4.8 in [53].

Conversely, with 9/3 and 9/4–c, two other suitable elements mentioned in the table,

we obtained similar results as with the 8/1 element, with no spurious modes. For

demonstration, we plot the first ten eigenvalues obtained with 8/1, 9/3 and 9/4–c

elements on a square domain meshed with 10×10 and 40×40 elements, respectively,

in Figure 3.7. It is clear that the eigenvalues obtained with the three meshes agree,

even at a low level of mesh refinement; and no spurious modes are obtained.
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Figure 3.2: First six eigenfunctions for an annular domain; λ1 = 293.34, λ2 = λ3 =
348.76, λ4 = 1065.71, λ5 = λ6 = 1104.19.
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Figure 3.3: First six eigenfunctions for a circular disk; λ1 = 137.54, λ2 = λ3 = 293.11,
λ4 = λ5 = 472.56, λ6 = 523.84.
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Figure 3.4: First six eigenfunctions for a rectangular domain; λ1 = 58.54, λ2 = 102.37,
λ3 = 103.54, λ4 = 144.57, λ5 = 168.03, λ6 = 171.31.
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Figure 3.5: First six eigenfunctions for an annular wedge subtending 45◦ at center;
λ1 = 1966.50, λ2 = 3200.31, λ3 = 3529.09, λ4 = 4840.81, λ5 = 5191.44, λ6 = 5519.98.
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Figure 3.6: First six eigenfunctions for an arbitrarily shaped domain; λ1 = 131.01,
λ2 = 184.35, λ3 = 258.56, λ4 = 291.82, λ5 = 339.05, λ6 = 380.92.
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Figure 3.7: First ten eigenvalues on a square domain meshed with 8/1, 9/3 and 9/4–c
elements; left: 10× 10 elements, right: 40× 40 elements.

4. Fourth, we have separately implemented independent semi-numerical methods de-

veloped later in this chapter (Section 3.2). Those results match our FE solutions

near-perfectly. This tells us that our FE solutions are not only stable (no checker-

board) but also accurate.

5. Finally, for the rectangular domain shown in Figure 3.4, we demonstrate convergence

numerically. We consider four meshes: 5×5, 10×10, 20×20 and 40×40 elements. The

first ten eigenvalues from these four meshes are plotted in Figure 3.8. Convergence

is clear.

To close this section, we report the time required to compute the eigenfunctions using

our own code in Matlab, on a personal computer with an 8th generation i5 processor.

Computation of the first 100 eigenfunctions on the rectangular domain shown in Figure

3.4 discretized with uniform meshes of 5×5, 10×10, 20×20, 40×40, 80×80 and 160×160

elements takes 0.2, 0.6, 1.6, 10.1, 71 and 852 seconds respectively. The computation times

are plotted in Figure 3.9 on a log-log scale.
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Figure 3.8: Convergence of eigenvalues upon mesh refinement.

Figure 3.9: Time (in seconds) for computation of first one hundred eigenfunctions for
different mesh refinements (log-log scale). The data points are joined by straight lines for

visibility alone.
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3.2 Semi-numerical methods for special domains

3.2.1 Annular domain

On an annular domain, upon choosing a circumferential wave number m, the eigenvalue

problem retains one independent variable (r). Many eigenfunctions can then be computed

with great accuracy using a large number of points in the radial direction.

We consider an annular domain Ω, centered at the origin, with inner radius ra = 0.1 and

outer radius rb = 0.3. We denote the fields σ and µ in polar coordinates as

σ = σrr(r, θ) er ⊗ er + σrθ(r, θ) (er ⊗ eθ + eθ ⊗ er) + σθθ(r, θ) eθ ⊗ eθ,

µ = µr(r, θ)er + µθ(r, θ)eθ.

The equation −∆σ +∇sµ = λσ yields

∂2σrr
∂r2

+
1

r2
∂2σrr
∂θ2

+
1

r

∂σrr
∂r

− 4

r2
∂σrθ
∂θ

− 2σrr
r2

+
2σθθ
r2

− ∂µr
∂r

= λσrr,

∂2σθθ
∂r2

+
1

r2
∂2σθθ
∂θ2

+
1

r

∂σθθ
∂r

+
4

r2
∂σrθ
∂θ

+
2σrr
r2

− 2σθθ
r2

− 1

r

∂µθ
∂θ

− µr
r

= λσθθ,

∂2σrθ
∂r2

+
1

r2
∂2σrθ
∂θ2

+
1

r

∂σrθ
∂r

+
2

r2
∂σrr
∂θ

− 2

r2
∂σθθ
∂θ

− 4σrθ
r2

+
µθ
2r

− 1

2r

∂µr
∂θ

− 1

2

∂µθ
∂r

= λσrθ.

(3.11)

The equilibrium equation divσ = 0 becomes

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
σrr − σθθ

r
= 0

and
∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
2σrθ
r

= 0.

The boundary condition σn = 0 gives four scalar equations,

σrr = 0 at r = ra and rb; σrθ = 0 at r = ra and rb.

The natural boundary condition ∇nσ · (t⊗ t) = 0 gives two scalar equations,

∂σθθ
∂r

= 0 at r = ra and rb.
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We now choose a wave number m (any whole number). Substituting

σrr = σ̃rr(r) cosmθ, σθθ = σ̃θθ(r) cosmθ, σrθ = σ̃rθ(r) sinmθ,

µr = µ̃r(r) cosmθ and µθ = µ̃θ(r) sinmθ
(3.12)

in the above PDEs, and dropping the tildes for simplicity, we obtain the following five

ODEs:

σ′′rr −
m2

r2
σrr +

σ′rr
r

− 4mσrθ
r2

− 2σrr
r2

+
2σθθ
r2

− µ′r + λσrr = 0,

σ′′θθ −
m2

r2
σθθ +

σ′θθ
r

+
4mσrθ
r2

+
2σrr
r2

− 2σθθ
r2

− mµθ
r

− µr
r

+ λσθθ = 0,

σ′′rθ −
m2

r2
σrθ +

σ′rθ
r

− 2mσrr
r2

+
2mσθθ
r2

− 4σrθ
r2

+
µθ
2r

+
mµr
2r

−
µ′θ
2

+ λσrθ = 0,

σ′rr +
mσrθ
r

+
σrr − σθθ

r
= 0,

σ′rθ −
mσθθ
r

+
2σrθ
r

= 0,

(3.13)

where primes denote derivatives with respect to r, and we have suppressed the r-dependence

of the field variables. Equations 3.13 are differential algebraic equations, and the last two

were differentiated once each for setting up as a system of first order ODEs. Introducing

a new variable ϑ, we obtain the following equivalent set of six first order ODEs (with σ′′rr

and σ′′rθ eliminated):

σ′rr = −σrr
r

− mσrθ
r

+
σθθ
r
,

σ′rθ = −2σrθ
r

+
mσθθ
r

,

σ′θθ = ϑ,

ϑ′ =
m2σθθ
r2

− ϑ

r
− 4mσrθ

r2
− 2σrr

r2
+

2σθθ
r2

+
µr
r

+
mµθ
r

− λσθθ,

µ′r = −(m2 − 1)σθθ
r2

− mσrθ
r2

+
ϑ

r
− (m2 + 1)σrr

r2
+ λσrr,

µ′θ =
2mϑ

r
− 2m2σrθ

r2
− 4mσrr

r2
+
mµr
r

+
µθ
r

+ 2λσrθ.

(3.14)

We already have six homogeneous boundary conditions, three at ra and three at rb. Non-

zero solutions will be possible only for specific discrete values of λ, which must also be

determined as part of the solution; but the eigenfunctions will be arbitrarily scalable. To

make things definite, we introduce a normalizing boundary condition,

σθθ = 1 at r = ra.
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We have solved the above eigenvalue problem repeatedly using Matlab’s built-in routine

‘bvp4c’ as well as alternative numerical routines of our own (based on the Newton-Raphson

method with numerically estimated Jacobians), for chosenm. Each solution obtained gives

one eigenvalue-eigenfunction pair. Initial guesses for the iterative solution method must

be chosen systematically to ensure that all eigenfunctions are obtained and none missed.

The foregoing finite element solutions help identify the first one or two for any m; for the

higher modes, plots of λp against p help to identify missed eigenvalues, as does counting

the number of zero crossings of σθθ.

For demonstration, we choose m = 3. The radial variation of stress component functions

σrr, σrθ and σθθ for the first six eigenfunctions is shown in Figure 3.10.

Finally, for m > 0, all eigenvalues appear in pairs in the FEA results; and for each

eigenfunction obtained using the semi-numerical method, we can obtain another one by

taking the partial derivative with respect to θ in Eq. 3.12 and then dividing by m.

With this semi-numerical approach on the annular domain, for given m, we can accurately

compute, say, 50 eigenfunctions. Obtaining the same number of eigenfunctions withm = 3

from our finite element approach would require computation of thousands of eigenfunctions

with many different wave numbers.

3.2.2 Solid circular disk

A solid circular disk with radius rb can be thought of as the limit ra → 0 of the annulus

considered in the previous section. Equations 3.14 continue to remain valid in the interior

of the disk, except at its center. The boundary conditions

σrr = σrθ = σ′θθ = 0 at r = rb

also continue to hold. However, we must suitably replace the boundary conditions

σrr = σrθ = σ′θθ = 0 at r = ra (3.15)

by some other conditions in the event of ra becoming zero since we no longer have a

traction free boundary there. These conditions will be given by the requirement that the

quantities on the left hand side in Eqs. 3.14 be finite at r = 0. As we will see shortly, this

yields different conditions for different values of the wave number m.
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Figure 3.10: Radial variation of the first six eigenfunctions for the annular domain,
with m = 3. In the finite element solution, the first three of these are mode numbers
(9,10), (26,27) and (55,56). The eigenvalues from the semi-numerical approach and the

FEM match near-perfectly.

The case of m = 0:

For m = 0, Eqs. 3.14 reduce to:
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σ′rr = −σrr
r

+
σθθ
r
,

σ′θθ = ϑ,

ϑ′ = −ϑ
r
− 2σrr

r2
+

2σθθ
r2

+
µr
r

+ λσθθ,

µ′r =
σθθ
r2

+
ϑ

r
− σrr

r2
− λσrr.

(3.16)

The boundary conditions are

σrr = ϑ = 0 at r = rb.

For σ′rr to be finite at r = 0, we require σrr0 = σθθ0 , where the notation f0 denotes the

value of a function f at r = 0. For µ′r to be finite at r = 0, after incorporating the previous

condition, we require ϑ0 = 0. Similarly, for ϑ′ to be finite at r = 0, µr0 = 0. Thus, the

three conditions that should replace the conditions in Eqs. 3.15 at r = ra = 0 are

σrr0 = σθθ0 , ϑ0 = 0 and µr0 = 0. (3.17)

However, in the absence of a normalizing condition, the solutions are non-unique. For

non-trivial (i.e., non-zero) solutions, we introduce a normalizing boundary condition,

σrr0 = σθθ0 = 1.

But now we have more initial conditions than we require. To get around this issue, we

take ϑ0 as a variable that is to be solved as part of the boundary value problem. We know

from Eq. 3.17 that if the solutions are well behaved, ϑ0 should come out to be zero upon

solving the boundary value problem.

In summary, we solve Eqs. 3.16 subject to the conditions

σrr = σθθ = 1, µr = 0 at r = ra = 0; σrr = ϑ = 0 at r = rb.

To avoid numerical issues, instead of putting ra to be zero in the ODE solver, we put it to

be a small number (like 0.001 times rb). We plot the first four eigenfunctions for m = 0

in Figure 3.11. The results match well with those from the FEM.
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Figure 3.11: Radial variation of the first four eigenfunctions for a circular disk, with
m = 0. In the finite element solution, these are mode numbers 1, 6, 15 and 30, respectively.
The eigenvalues from the semi-numerical approach and the FEM match near-perfectly.

The case of m = 1:

For m = 1, Eqs. 3.14 reduce to

σ′rr = −σrr
r

− σrθ
r

+
σθθ
r
,

σ′rθ = −2σrθ
r

+
σθθ
r
,

σ′θθ = ϑ,

ϑ′ =
3σθθ
r2

− ϑ

r
− 4σrθ

r2
− 2σrr

r2
+
µr
r

+
µθ
r

+ λσθθ,

µ′r = −σrθ
r2

+
ϑ

r
− 2σrr

r2
− λσrr,

µ′θ =
2ϑ

r
− 2σrθ

r2
− 4σrr

r2
+
µr
r

+
µθ
r

− 2λσrθ.

(3.18)
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For the left hand side quantities in the above equations to be finite at r = 0, the following

five algebraic equations must be satisfied:

−σrr0 − σrθ0 + σθθ0 = 0,

−2σrθ0 + σθθ0 = 0,

−ϑ0 + µr0 + µθ0 = 0,

ϑ0 − 3σrθ0 = 0,

2ϑ0 − 6σrθ0 + µr0 + µθ0 = 0.

Upon solving, we get

σrr0 = σrθ0 = σθθ0 = ϑ0 = µr0 + µθ0 = 0. (3.19)

This time we put the normalizing condition as

µr0 = −µθ0 = 1. (3.20)

The other conditions imposed at r = ra = 0 are

σrr0 = σrθ0 = 0,

and we consider σθθ0 and ϑ0 as variables.

The first four eigenfunctions corresponding to m = 1 are plotted in Figure 3.12. As before,

the results match well with the FEM.

The case of m = 2:

For m = 2, Eqs. 3.14 reduce to

σ′rr = −σrr
r

− 2σrθ
r

+
σθθ
r
,

σ′rθ = −2σrθ
r

+
2σθθ
r
,

σ′θθ = ϑ,

ϑ′ =
4σθθ
r2

− ϑ

r
− 8σrθ

r2
− 2σrr

r2
+

2σθθ
r2

+
µr
r

+
2µθ
r

+ λσθθ,

µ′r = −3σθθ
r2

− 2σrθ
r2

+
ϑ

r
− 5σrr

r2
− λσrr,

µ′θ =
4ϑ

r
− 8σrθ

r2
− 8σrr

r2
+

2µr
r

+
µθ
r

− 2λσrθ.

(3.21)
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Figure 3.12: Radial variation of the first four eigenfunctions for a circular disk, with
m = 1. In the finite element solution, these are mode numbers (2,3), (9,10), (22,23) and
(37,38), respectively. The eigenvalues from the semi-numerical approach and the FEM

match near-perfectly.

The conditions for finiteness of all quantities at r = 0 are

−σrr0 − 2σrθ0 + σθθ0 = 0,

−σrθ0 + σθθ0 = 0,

3σθθ0 − 4σrθ0 − σrr0 = 0,

−ϑ0 + µr0 + 2µθ0 = 0,

ϑ0 = 0,

−3σθθ0 − 2σrθ0 − 5σrr0 = 0,

σrr0 + σrθ0 = 0,

4ϑ0 + 2µr0 + µθ0 = 0.
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Upon solving the above equations, we find that

σrθ0 = σθθ0 = −σrr0 and ϑ0 = µr0 = µθ0 = 0.

We choose the normalization condition to be

σrr0 = 1.

In the ODE solver, we put ϑ0 = µr0 = µθ0 = 0, leaving σrθ0 and σθθ0 as variables to be

computed.

The first four computed eigenfunctions are plotted in Figure 3.13, which match well with

the corresponding solutions from the FEM.

Figure 3.13: Radial variation of the first four eigenfunctions for a circular disk, with
m = 2. In the finite element solution, these are mode numbers (4,5), (13,14), (28,29) and
(47,48), respectively. The eigenvalues from the semi-numerical approach and the FEM

match near-perfectly.
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The case of m > 2:

It can be easily verified that for m > 2, the conditions for finiteness of all quantities at

r = 0 are the same as those for m = 1:

σrr0 = σrθ0 = σθθ0 = ϑ0 = µr0 + µθ0 = 0.

Using the normalizing condition in Eq. 3.20, we compute the eigenfunctions as before. The

results obtained match well with corresponding FEM solutions.

Description of stress state at the center using the Mohr’s circle:

We see that all the stress components are zero at the center of the disk (let us denote this

point as C) for m = 1 and m > 2. This can be explained using the Mohr’s circle at C

[57]. We will see below that the variation of the stress components in the circumferential

direction as determined from the Mohr’s circle can only correspond to either m = 0 or

m = 2.

We assume for the purpose of this discussion, without loss of generality, that σxy = 0 and

σxx ≥ σyy at C. A corresponding Mohr’s circle is drawn in Figure 3.14.

O

σxx

σyy

P

2θ

σrr

σθθ

σrθ

τ

σA B

B′

A′

Figure 3.14: A representative Mohr’s circle at the center C for the case σxy = 0.

We note that at C, the state of stress (σnn, σtt, σnt) on a plane with normal n oriented at

an angle θ is simply (σrr, σθθ, σrθ). Therefore, if the stress components σxx and σyy are

known, the components σrr, σθθ and σrθ at an angle θ can be determined by moving along

the Mohr’s circle by 2θ (Figure 3.14).
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We first consider σxx > σyy. This is depicted in Figure 3.14. To determine the functions

σrr(0, θ), σθθ(0, θ) and σrθ(0, θ) for 0 ≤ θ ≤ 2π, we need to traverse 4π, i.e., two cycles,

on the Mohr’s circle. It is clear that these three functions will then go through two cycles

of variation, corresponding to wave number m = 2. Thus, it is possible to have non-zero

stress at C with m = 2.

When σxx = σyy, the Mohr’s circle collapses to a point. This situation is depicted in

Figure 3.15. The stress components σrr, σθθ and σrθ do not vary with θ, in agreement

with m = 0.

O P

τ

σ

σxx = σyy = σrr = σθθ

Mohr’s circle collapses to a point

Figure 3.15: A representative Mohr’s circle at C for m = 0.

For m other than 0 and m = 2, the variation with θ cannot agree with that deduced

from the Mohr’s circle, if the stress is both non-zero and well-behaved. For instance,

m = 1 implies that σrr(0, θ) is maximum at θ = 0 and minimum at θ = π, with no other

maximum or minimum; but from the Mohr’s circle we conclude that σrr(0, 0) = σrr(0, π).

The only possibility is to have σrr = 0 at C. The other stress components must also be

zero at C by similar arguments.

We point out that the Mohr’s circle discussion above is just a way to pictorially support

our earlier conclusions. We cannot have equilibrium at C for a non-zero well-behaved

stress state with m = 1 or m > 2. These conclusions agree completely with the foregoing

results, and are presented here merely to aid intuition through graphical considerations.
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3.2.3 Rectangular domain

A third kind of special domain is rectangular. Here we consider the slightly simpler case

of a square.

We saw in the previous sections that in annular and circular domains, periodicity in the

θ-direction permits a Fourier expansion in θ, reducing the governing PDEs to ODEs in the

r-coordinate. In rectangular domains, there is no such direction of guaranteed periodicity.

However, there are other symmetries that can be exploited in rectangular geometries. In

this section, we use these symmetries to construct a sequence of 1D functions with zero

mean and zero boundary values. This sequence provides a complete representation of all

residual stress fields using a separation of variables approach. We use this representation

to convert the eigenvalue problem of Eq. 2.12 into an algebraic equation.

Our approach is developed as follows. Let us consider a residually stressed square strip

lying between x = 0, x = 1, y = 0 and y = 1. Extension of the approach to rectangular

strips is easy. The equilibrium equations in Cartesian coordinates are

σxx,x + σxy,y = 0,

σxy,x + σyy,y = 0.

The boundary conditions satisfied by the stress components are:

σxx = 0 at x = 0, x = 1,

σyy = 0 at y = 0, y = 1,

σxy = 0 at x = 0, x = 1, y = 0, y = 1.

We consider a σxy of the form

σxy = ψ(x)η(y). (3.22)

From the equilibrium equations, we have

σxx = −η′(y)
∫ x

0
ψ(ξ) dξ,

σyy = −ψ′(x)

∫ y

0
η(ξ) dξ,

(3.23)
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where the prime denotes a derivative with respect to the argument of the function. The

boundary conditions on σxy imply

ψ(0) = ψ(1) = η(0) = η(1) = 0.

From Eq. 3.23, we see that σxx automatically satisfies the boundary condition at x = 0.

Since σxx is zero on the x = 1 boundary as well, we have

η′(y) = 0 or

∫ 1

0
ψ(ξ) dξ = 0.

The first of the above conditions, if adopted for all y, leads to the trivial solution since

η(0) = 0. For non-trivial solutions, we thus require∫ 1

0
ψ(ξ) dξ = 0.

Hence, ψ(x) is a function on 0 ≤ x ≤ 1 with zero mean and zero boundary values. Identical

arguments in the y-direction imply that η(y) is a function on 0 ≤ y ≤ 1 with zero mean

and zero boundary values.

In light of the above observations, we seek a basis for 1D scalar functions f(ξ) on 0 ≤ ξ ≤ 1

with zero mean and zero boundary values. To obtain such a basis, we informally use ideas

similar to those used in Chapter 2.

3.2.3.1 Orthogonal bases for ψ and η

We begin by seeking the stationary points of the functional

F0 =
1

2

∫ 1

0
f ′(ξ)2 dξ

over sufficiently regular functions that satisfy

1

2

∫ 1

0
f(ξ)2 dξ = 1,

∫ 1

0
f(ξ) dξ = 0 and f(0) = f(1) = 0.

We incorporate the integral constraints through constant Lagrange multipliers p and q,

and seek the stationary points of the functional

F =

∫ 1

0

{
f ′(ξ)2

2
− p

(
f(ξ)2

2
− 1

)
− qf(ξ)

}
dξ.
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The Euler-Lagrange equation of this variational problem is

f ′′(ξ) + pf(ξ) + q = 0.

The general solution to the above ODE is

f(ξ) = A sin
√
pξ +B cos

√
pξ − q

p
.

The condition f(0) = 0 gives
q

p
= B,

while f(1) = 0, after incorporating the above equality, gives

A sin
√
p+B(cos

√
p− 1) = 0. (3.24)

The integral constraint

∫ 1

0
f(ξ) dξ = 0 yields

A(1− cos
√
p) +B(sin

√
p−√

p) = 0. (3.25)

For non-trivial solutions of Eqs. 3.24 and 3.25, we require that

sin
√
p(sin

√
p−√

p) + (1− cos
√
p)2 = 0.

The above equation has infinitely many roots, and the corresponding eigenfunctions have

the form

f(ξ) = A sin
√
pξ

if
√
p = 2nπ, n = 1, 2, 3 · · · , and

f(ξ) = A

{
sin

√
pξ +

sin
√
p

1− cos
√
p
(cos

√
pξ − 1)

}
otherwise. We arrange these functions in order of increasing p to obtain the sequence (fk).

We now show that the eigenfunctions are mutually orthogonal. Let f1 and f2 be two

distict eigenfunctions with corresponding eigenvalue pairs (p1, q1) and (p2, q2). Then,

f ′′1 + p1f1 + q1 = 0,

f ′′2 + p2f2 + q2 = 0.
(3.26)
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Consider the inner product of the first of Eqs. 3.26 with f2, i.e.,∫ 1

0
f ′′1 f2 dξ + p1

∫ 1

0
f1f2 dξ + q1

∫ 1

0
f2 dξ = 0.

Upon integrating by parts, the first term on the left hand side can be simplified to∫ 1

0
f ′′1 f2 dξ = f ′1(1)f2(1)− f ′1(0)f2(0)−

∫ 1

0
f ′1f

′
2 dξ = −

∫ 1

0
f ′1f

′
2 dξ

since f2 is zero on the boundaries. Moreover, since it also has zero mean, the last term on

the left hand side of the inner product also drops out. Thus, we obtain∫ 1

0
f ′1f

′
2 dξ = p1

∫ 1

0
f1f2 dξ.

Similarly, ∫ 1

0
f ′1f

′
2 dξ = p2

∫ 1

0
f1f2 dξ.

If p1 ̸= p2, we have ∫ 1

0
f ′1f

′
2 dξ =

∫ 1

0
f1f2 dξ = 0. (3.27)

If p1 = p2, then we can choose f1 and f2 to be orthogonal, and the above equation still

holds.

The first five functions of this sequence, normalized by setting A = 1, are plotted in Figure

3.16.

We assume here, and our numerics will indicate as well, that the sequence (fk) spans the

set of all sufficiently regular functions on 0 ≤ ξ ≤ 1 with zero mean and zero boundary

values. A proof could be attempted along similar lines to the one presented in Chapter 2,

but is omitted because of the excellent numerical support obtained below. However, we

indicate in Section 7.2 how the proof of Chapter 2 could be adapted for the functions f .

Recalling that the functions ψ(x) and η(y) (Eq. 3.22) have zero mean and zero boundary

values on their respective unit domains, we can express each of them as linear combinations

of these basis functions fk.
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Figure 3.16: First five functions in the sequence (fk).

3.2.3.2 A basis of variable separable residual stress fields

We now return to residual stresses σ with (Eq. 3.22):

σxy = ψ(x)η(y).

We showed above that ψ(x) has zero mean on 0 ≤ x ≤ 1, and ψ(0) = ψ(1) = 0. Therefore,

ψ(x) =
∞∑
i=1

bifi(x)

for some coefficients bi. Similarly,

η(y) =

∞∑
i=1

b̃ifi(y).

Accordingly, we write

σxy =
∞∑
i=1

∞∑
j=1

aijfi(x)fj(y),

where aij are constant coefficients.
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Using the first equilibrium equation, we have

σxx(x, y) = −
∞∑
i=1

∞∑
j=1

aijf
′
j(y)

∫ x

ξ=0
fi(ξ) dξ.

From the second equilibrium equation, we have

σyy(x, y) = −
∞∑
i=1

∞∑
j=1

aijf
′
i(x)

∫ y

ξ=0
fj(ξ) dξ.

The above representations ensure that all differential constraints and boundary conditions

on σ are satisfied. We have thus obtained a representation for all residual stresses having

the variable separable form of Eqs. 3.22–3.23, and linear combinations thereof. We ar-

range our basis functions using a single index, say k, and call them ςk. For instance, the

representation of the first basis function ς1 in Cartesian coordinates is as follows:[
ς1xx ς1xy

ς1xy ς1yy

]
=

[
−f ′1(y)

∫ x
ξ=0 f1(ξ) dξ f1(x)f1(y)

f1(x)f1(y) −f ′1(x)
∫ y
ξ=0 f1(ξ) dξ

]
.

We anticipate that ςi form a basis for all sufficiently regular residual stress fields on the

square geometry considered and will obtain empirical support for this below; however we

do not attempt a proof here. We will see that the results obtained using this semi-numerical

approach match well with those from the FEM. In particular, the first one hundred eigen-

values from the two approaches match near-perfectly. This empirical evidence does not

only strongly support that we do indeed have a basis, but also that our FE results are

correct.

We now compute the eigenfunctions ϕi.

3.2.3.3 Alternative computation of residual stress eigenfunctions ϕi

We now use the sequence ςi above, which we suppose to be a basis, to compute our residual

stress eigenfunctions.

To this end, we again seek the stationary points of the functional

J0(σ̃) =
1

2

∫
Ω
∇σ̃ · ∇σ̃ dA
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subject to the normalization constraint

∫
Ω
σ̃·σ̃ dA = 1. The normalization constraint is in-

corporated through a constant Lagrange multiplier
λ

2
. Accordingly, we seek the stationary

points of

J(σ̂) =

∫
Ω

{
1

2
∇σ̂ · ∇σ̂ − λ

2

(
σ̂ · σ̂ − 1

|Ω|

)}
dA,

where σ̂ =
N∑
i=1

aiςi for some suitably large N . The functional J can be represented in

terms of the coefficient vector a, after dropping a constant, as

J(a) = aTMa− λaTWa,

where T denotes matrix transpose. The stationary values of J are obtained by solving the

generalized eigenvalue problem

Ma = λWa. (3.28)

The orthogonality of functions f (see Eq. 3.27) leads to sparse M and W . Because N

is finite, we obtain approximate λ and a. The first 100 eigenvalues obtained using this

approach are plotted in Figure 3.17. We also plot the eigenvalues obtained with the FEM

using a fine mesh of 6400 elements for comparison. We observe that the match is near-

perfect.

Figure 3.17: First 100 eigenvalues for a square domain obtained using the semi-
numerical approach and the FEM.
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3.2.4 Annular wedge

An annular wedge, with inner radius ra and outer radius rb, subtending an angle θ0 at the

center is shown schematically in Figure 3.18.

θ0

ra

rb

Figure 3.18: An annular wedge.

The strip lies between θ = 0 and θ = θ0. The equilibrium equations in polar coordinates

are

σrr,r +
1

r
σrθ,θ +

σrr − σθθ
r

= 0,

σrθ,r +
1

r
σθθ,θ +

2

r
σrθ = 0.

The boundary conditions are

σrr = 0 at r = ra, r = rb,

σθθ = 0 at θ = 0, θ = θ0,

σrθ = 0 at r = ra, r = rb, θ = 0, θ = θ0.

We will now use an approach similar to that used in Section 3.2.3. Let

σrθ = ψ(r)η(θ).

The boundary conditions on σrθ imply that

ψ(ra) = ψ(rb) = 0 and η(0) = η(θ0) = 0.

Introducing two new functions Λ(r) and ϑ(θ) for brevity, from the second equilibrium

equation, we have

σθθ =
{
−2ψ(r)− rψ′(r)

}∫ θ

0
η(ξ) dξ = Λ(r)ϑ(θ),
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say. We see that the boundary condition on σθθ at θ = 0 is satisfied automatically. The

boundary condition at θ0 is satisfied if∫ θ0

0
η(ξ) dξ = 0,

i.e., η must have zero mean (setting Λ(r) to zero yields the trivial solution).

Similarly, to obtain σrr, we rewrite the first equilibrium equation as

(rσrr),r = −σrθ,θ + σθθ.

Integrating both sides and dividing by r, we obtain

σrr =
1

r

{
ϑ(θ)

∫ r

ra

Λ(ξ) dξ − η′(θ)

∫ r

ra

ψ(ξ) dξ

}
=

1

r

[
ϑ(θ)

∫ r

ra

{
−2ψ(ξ)− ξψ′(ξ)

}
dξ − η′(θ)

∫ r

ra

ψ(ξ) dξ

]
=

1

r

[
−ϑ(θ)

∫ r

ra

ψ(ξ) dξ − ϑ(θ)

∫ r

ra

{ξψ(ξ)}′ dξ − η′(θ)

∫ r

ra

ψ(ξ) dξ

]
=

1

r

[
(−ϑ(θ)− η′(θ))

∫ r

ra

ψ(ξ) dξ − ϑ(θ) {rψ(r)− raψ(ra)}
]
.

The boundary condition σrr = 0 at r = ra is automatically satisfied. Since ψ(ra) =

ψ(rb) = 0, the boundary condition σrr = 0 at r = rb is satisfied if∫ rb

ra

ψ(ξ) dξ = 0,

i.e., ψ has zero mean (note that taking ϑ(θ) + η′(θ) = 0 leads to the trivial solution).

Thus, the situation is similar to that in the previous section (Section 3.2.3). The shear

component σrθ is the product of two single-variable functions, each with zero boundary

values and zero mean. There is one notable difference from the previous section, however.

There, the domain of the functions fk(ξ) was 0 ≤ ξ ≤ 1 (recall that fk(ξ) form a basis for

1D functions with zero mean on 0 ≤ ξ ≤ 1 and zero boundary values). For the annular

wedge of Figure 3.18, the corresponding 1D domains are ra ≤ r ≤ rb and 0 ≤ θ ≤ θ0,

for the radial and the azimuthal directions, respectively. Accordingly, we modify the

basis functions obtained in the previous section. We call these functions f̃k(r) and f̂k(θ),

respectively, using the tilde and the cap to distinguish between the different independent
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variables to be used. The functions f̃k(r) are given as:

f̃k(r) = sin
√
pkr − sin

√
pkra −

sin
√
pkrb − sin

√
pkra

cos
√
pkrb − cos

√
pkra

(cos
√
pkr − cos

√
pkra) ,

where pk are the solutions of the equation

√
p(rb − ra) sin (

√
prb −

√
pra) + 2 cos (

√
prb −

√
pra)− 2 = 0.

The functions f̂k(θ) are given as:

f̂k(θ) = sin
√
pkθ

when

pk =
4n2π2

θ20
, n = 1, 2, 3, · · · ,

and

f̂k(θ) = sin
√
pkθ −

sin
√
pkθ0

cos
√
pkθ0 − 1

(cos
√
pkθ − 1)

when
√
pkθ0 sin

√
pkθ0 + 2 cos

√
pkθ0 − 2 = 0 and pk ̸= 4n2π2

θ20
.

The rest of the treatment follows closely along the lines of the previous section, and

we omit those details. We plot the first 100 eigenvalues computed using this approach,

for ra = 0.1, rb = 0.3, θ0 =
π

4
, in Figure 3.19. We also plot the corresponding values

obtained from the FEM. We see that the match is near-perfect. We recall that the first

six eigenfunctions for this annular wedge obtained using the FEM were shown in Figure

3.5.

3.3 Summary of the chapter

In this chapter, we computed the eigenfunctions ϕi on several 2D domains. In the first part

of the chapter, we used the FEM to compute ϕi on planar geometries of arbitrary shapes.

We described our FEM formulation in detail, and justified our choice of the finite elements

used for discretization from the viewpoints of well-posedness, stability and convergence. In

the second part of the chapter, we considered some special geometries for which alternative

semi-numerical approaches are possible. We considered four such special geometries: an

annulus, a circular disk, a rectangle and an annular wedge. We noted that the solutions
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Figure 3.19: First 100 eigenvalues for the annular wedge with ra = 0.1, rb = 0.3, θ0 =
π

4
,

obtained using the semi-numerical approach and the FEM.

from the semi-numerical approaches matched well with those from the FEM in all cases,

providing empirical support for both.

In the next chapter, we will fit some candidate residual stress fields with eigenfunctions

computed using both the FEM and the semi-numerical methods described in this chapter.



Chapter 4

Examples of fitting residual stress

fields

In this chapter, we will consider a few candidate residual stress fields and fit them with the

basis functions computed in the previous chapter. We will consider a variety of residual

stress fields: of differing spatial complexity (1D and 2D), source (thermoelastic, plastic,

hypothetical), and regularity (smooth, discontinuous). We will show convergence in both

L2 and H1 (where possible) norms. Our intention in this chapter is to demonstrate that

all residual stresses of interest, irrespective of their origin, can be expressed as linear

combinations of the eigenfunctions ϕi, as claimed in Chapter 1.

This chapter is arranged as follows.

In Section 4.1, we consider residual stress fields on an annular domain, and fit them using

the eigenfunctions computed semi-numerically in Section 3.2.1. We consider four residual

stress fields with fixed azimuthal wave numbers: two hypothetical and arbitrary, one from

shrink fitting of two concentric elastic cylinders, and one from non-uniform heating of an

elastic annulus.

In Section 4.2, we describe in detail two 2D metal forming simulations carried out using

the non-linear FE software package Abaqus: (a) rolling of an elasto-plastic workpiece, and

(b) angular extrusion of an elasto-plastic workpiece through a bent die. For the rolling

simulation, we consider two different strain hardening models: linear and Johnson-Cook.

We then fit the resulting residual stress fields with eigenfunctions computed using our

FEM formulation on the deformed geometry.

58
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4.1 Residual stress fields in an annulus

We consider an annular domain centered at the origin with inner radius ra = 0.1 and

outer radius rb = 0.3. As we noted in Section 3.2.1, the eigenvalue problem retains one

independent variable (r) on an annular domain, along with a chosen circumferential wave

number m. Many eigenfunctions can then be computed with great accuracy using a large

number of r-points. Therefore, we consider residual stresses σ of the form

σ = σrr cosmθ er ⊗ er + σrθ sinmθ (er ⊗ eθ + eθ ⊗ er) + σθθ cosmθ eθ ⊗ eθ, (4.1)

where the r-dependence of the stress components has been suppressed (note the similarity

with Eq. 3.12). We begin with

σ =

∞∑
i=1

aiϕi, (4.2)

where the eigenfunctions ϕi were obtained in the previous chapter using the semi-numerical

approach. Using the orthogonality of ϕi, we have

ai =

∫
Ω σ · ϕi dA∫
Ωϕi · ϕi dA

,

where the denominator would be unity if we had normalized our eigenfunctions. Truncat-

ing the series in Eq. 4.2, we write

σN =
N∑
i=1

aiϕi, (4.3)

and use the squared relative error measure

EN =

∫
Ω (σ − σN ) · (σ − σN ) dA∫

Ω σ · σ dA

to study convergence in the L2 norm (Eq. 2.2). To study convergence in the H1 norm,

wherever relevant, we will use the error measure

ẼN =

∫
Ω (σ − σN ) · (σ − σN ) dA+

∫
Ω∇ (σ − σN ) · ∇ (σ − σN ) dA∫

Ω σ · σ dA+
∫
Ω∇σ · ∇σ dA

. (4.4)

We now present four examples of candidate residual stress fields, and the corresponding

fits. In the first two examples we construct hypothetical residual stress fields directly, with

wave number m = 3, from the equilibrium equations. In the third example we use the
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stress field in two concentric elastic cylinders in a shrink fit, with m = 0. In the fourth

example we consider the thermoelastic stress state in an initially unstressed elastic annular

body subjected to a subsequent non-uniform rise in temperature, with m = 3.

4.1.1 Example 1: hypothetical stress field, m = 3

Let σ be as given in Eq. 4.1, with m = 3. From equilibrium,

σ′rr +
mσrθ
r

+
σrr − σθθ

r
= 0,

σ′rθ −
mσθθ
r

+
2σrθ
r

= 0,
(4.5)

with four boundary conditions:

σrr = σrθ = 0, at r = ra and r = rb.

To construct hypothetical residual stress fields, we can assume an arbitrary functional

form

σθθ = A(r)

with two free parameters in it. We can then solve for σrθ from the second of Eqs. 4.5,

retaining an integration constant. We finally solve for σrr from the first of Eqs. 4.5,

retaining one more integration constant. The four boundary conditions can be satisfied

using the two integration constants along with the two free parameters in A(r). We show

two specific examples of stress fields computed using this approach.

For the first example, we choose

A(r) = C0 + C1r + 100r2,

where C0 and C1 are free parameters, and the numerical coefficient 100 is arbitrary. Follow-

ing the procedure above, we obtain C0 = 3.667 and C1 = −40. The resulting expressions

for components of σ are

σrr = −0.067

r2
+

1.6

r
− 12.833 + 40r − 41.667r2,

σrθ = −0.022

r2
+ 5.5− 40r + 75r2,

σθθ = 3.667− 40r + 100r2.
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Figure 4.1 shows the components of σ, along with components of the fitted σN (N = 100).

The error measure EN versus N is plotted in Figure 4.2. Convergence is rapid, like N−3

for large N , with E5 < 0.005. The error measure ẼN (Eq. 4.4) decays like 1/N for large

N , as seen in Figure 4.3.

Figure 4.1: Radial variation of true and fitted stress fields σ and σN of Example 1,
with N = 100.

We mention that the m = 3 normal vibration modes for the same domain (isotropic linear

elasticity, plane strain) were computed separately and the stresses induced by those modes

were also used in an attempted approximation of this same hypothetical stress field. The

unsuccessful results of that attempt were plotted in Figure 1.1 (recall Eqs. 1.1; further

details omitted). The reasons for that lack of convergence are clear by now.
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Figure 4.2: EN versus N , Example 1. Left: linear scale; right: log-log scale. Compare
with Figure 1.1.

Figure 4.3: ẼN versus N , Example 1. Left: linear scale; right: log-log scale.

4.1.2 Example 2: hypothetical stress field, m = 3

For another example following Section 4.1.1 above, we choose

A(r) = C0 sin(200r) +
C1

r
+ r.

The coefficient of 200 within the sine is chosen to produce several oscillations between

ra = 0.1 and rb = 0.3. Calculations yield C0 = −3.805 and C1 = −1.284 × 10−2. The
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resulting expressions for the components of σ are

σrr =
−0.321

r
− −4 r3 + 8.563× 10−4 sin (200 r) + 0.411 ln (200 r) r

r2

− 9.408× 10−3 + 7.611× 10−2 r cos (200 r)

r2
,

σrθ =
r3 − 2.854× 10−4 sin (200 r) + 5.708× 10−2 r cos (200 r)− 3.853× 10−2 r + 7.840× 10−4

r2
,

σθθ =− 3.805 sin (200 r)− 1.284× 10−2

r
+ r.

The fit (for N=100) is shown in Figure 4.4. The error measures EN and ẼN are plotted

in Figures 4.5 and 4.6, respectively.

Figure 4.4: Radial variation of true and fitted stress fields σ and σN of Example 2,
with N = 100.

In Figure 4.5 (left), we see that E13 drops low. This is because, by choice, σθθ has 13 zero

crossings. By Figure 3.10, we expect the nth eigenfunction to have n+ 1 zero crossings in
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Figure 4.5: EN versus N , Example 2. Left: linear scale; right: log-log scale.

Figure 4.6: ẼN versus N , Example 2. Left: linear scale; right: log-log scale.

σθθ. Therefore the 12th eigenfunction has 13 zero crossings, and E13 is small. Subsequent

convergence is rapid, like N−3 for large N , with E17 < 0.01. Convergence of ẼN is like
1

N
, as it was for the previous example.

4.1.3 Example 3: shrink fitted cylinder, m = 0

We consider an inner cylinder with inner radius ra and notional outer radius rc, an outer

cylinder with notional inner radius rc and outer radius rb, with a small radial interference

equal to δ. The Young’s modulus and Poisson’s ratio of both cylinders are denoted by Y
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and ν respectively. The expressions for the resulting axisymmetric stress field components

are [58]

σrr(r) = − pc
r2c
r2a

− 1

(
r2c
r2a

− r2c
r2

)
for ra ≤ r ≤ rc,

σrr(r) = − pc
r2b
r2c

− 1

(
r2b
r2

− 1

)
for rc ≤ r ≤ rb,

σθθ(r) = − pc
r2c
r2a

− 1

(
r2c
r2a

+
r2c
r2

)
for ra ≤ r < rc,

σθθ(r) =
pc

r2b
r2c

− 1

(
r2b
r2

+ 1

)
for rc < r ≤ rb,

σrθ(r) = 0 for ra ≤ r ≤ rb,

where

pc =
Y δ

rc

(
r2c + r2a
r2c − r2a

+
r2b + r2c
r2b − r2c

)−1

.

We have used ra = 0.1, rc = 0.2, rb = 0.3, ν = 0.3, and Y δ = 106, in any consistent units.

We use eigenfunctions with m = 0 in Eq. 4.3. Figure 4.7 shows the nonzero components

of σ and σN (N=100). Because σθθ is discontinuous at the contact surface between

cylinders, convergence is slower (there are Gibbs oscillations [59]). The plot of EN against

N in Figure 4.8 shows convergence like N−1 for large N , with E43 < 0.01. Recalling the

set S (Eq. 2.1) and its closure S̄, we note that σ belongs to S̄ but not S. Convergence

is still obtained because the ϕi form a basis for S̄. However, ẼN is not meaningful here

because both numerator and denominator of Eq. 4.4 are infinite.

4.1.4 Example 4: thermoelastic residual stress, m = 3

If the initially unstressed annular region, with thermal coefficient α, is subjected to a

temperature change T (r, θ) = r cos 3θ (chosen so as to produce a residual stress with

wavenumber m = 3 in the azimuthal direction), the resulting thermal strain

εT = αTI

violates local compatibility, i.e., curl curl εT ̸= 0 (see e.g., [60]). The ‘global compatibility’

equation derived from Césaro’s integral [7], for m = 3, is trivially satisfied.
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Figure 4.7: Radial variation of true and fitted stress fields σ and σN of Example 3,
with N = 100. Note the Gibbs oscillations in σNθθ

.

Figure 4.8: EN versus N , Example 3. Left: linear scale; right: log-log scale.

The resulting stress σ satisfies (see e.g., [7])

∆(trσ) = − αY

1− ν
∆T, (4.6)

where Y is Young’s modulus, ν is Poisson’s ratio, and ‘tr’ denotes ‘trace’ (trσ = σrr+σθθ).

Substituting the expressions

σ = σrr cosmθ er ⊗ er + σrθ sinmθ (er ⊗ eθ + eθ ⊗ er) + σθθ cosmθ eθ ⊗ eθ,
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Figure 4.9: Radial variation of true and fitted thermoelastic stress fields σ (Eqs. 4.7
and 4.8) and σN of Example 4, with N = 100.

T (r, θ) = r cos 3θ

in Eq. 4.6 gives

(σrr + σθθ)
′′ +

(σrr + σθθ)
′

r
− m2(σrr + σθθ)

r2
= −(m2 − 1)β

r
, (4.7)

where β =
−αY
(1− ν)

,m = 3, and primes denote r-derivatives. Eliminating σrθ from the

equilibrium equations (Eq. 4.5), we obtain another ODE:

σ′′rr +
4σ′rr
r

−
σ′θθ
r

+
2σrr
r2

+
(m2 − 2)σθθ

r2
= 0. (4.8)
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Traction free boundary conditions on the inner and outer radii, in terms of σrr and σθθ,

are

σrr = 0 at r = ra and rb,

σ′rr =
σθθ
r

at r = ra and rb.
(4.9)

Note that the second equation in Eq. 4.9 is obtained upon substituting σrr = σrθ = 0 in

the first equilibrium equation (Eq. 4.5).

The two-point boundary value problem described by Eqs. 4.7, 4.8 and 4.9 can be solved nu-

merically (iteratively; details omitted). The numerical values of the problem’s parameters

are chosen to be Y = 1, α = 0.5 and ν = 0.33, in any consistent units.

Figure 4.9 shows the components of σ and the fitted σN (N=100). Figure 4.10 shows EN

versus N . Convergence is rapid, like N−3, as expected, with E7 < 0.01. ẼN is plotted in

Figure 4.11, and shows convergence like N−1.

Figure 4.10: EN versus N , Example 4. Left: linear scale; right: log-log scale.

This concludes our demonstration of fitting reasonable but arbitrary residual stresses on

an annular domain using the basis functions developed earlier. In the next section, we fit

residual stress fields obtained from metal forming simulations in Abaqus.
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Figure 4.11: ẼN versus N , Example 4. Left: linear scale; right: log-log scale.

4.2 Residual stresses from metal forming simulations

In this section, we simulate the 2D plane strain metal forming processes of rolling and

angular extrusion using the FE software package Abaqus. We then fit the resulting residual

stress fields using our eigenfunctions, computed on the same (final) mesh with our own

finite element code described earlier in Section 3.1.

4.2.1 Rolling simulation

4.2.1.1 Details of the simulation

The schematic of the set-up is shown in Figure 4.12. The simulation is quasi-static, in the

implicit analysis mode of Abaqus. A general description of the simulation is as follows: the

workpiece is first nudged to the right using a rigid punch moving with a constant velocity,

until the former comes in contact with the rotating rigid rollers. The friction between the

workpiece and the rollers pulls the workpiece away from the rigid punch, and the formed

workpiece is then released at the other side.

The geometric, material and contact details are as follows. The workpiece is 48 mm long

and 32 mm wide, and is made of an isotropic elasto-plastic material with linear strain

hardening. Its Young’s modulus is 210 GPa, Poisson’s ratio is 0.3, yield stress is 400 MPa,

and slope of the hardening curve is such that the equivalent plastic strain is 10 when

the von Mises stress is 6000 MPa. Since the process is quasi-static, the density of the
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32 mm

48

170 mm

170 mm

30 mm

2 rad/s

2 rad/s

Rigid rollers

Workpiece

Rigid punch

x

y

25 mm/s mm

Figure 4.12: Schematic of the rolling simulation (figure not to scale).

workpiece is not required. The punch is rigid. It moves with a velocity of 25 mm/s to

right. Both rollers are rigid and each has a radius of 170 mm. They rotate at 2 rad/s

in the directions indicated in Figure 4.12. The minimum gap between the rollers is 30

mm, so that the width of the formed workpiece is reduced by 2 mm in the process. A

‘hard’ normal contact is assumed between the punch and the workpiece, as well as the

workpiece and the rollers. ‘Penalty’ friction with a coefficient of 0.3 is assumed in each of

these contacts.

The mesh details are as follows. The rollers and punch are meshed with ‘discrete rigid’

and ‘analytical rigid’ line elements, respectively. The workpiece is meshed with 20184

plane strain four-noded quadrilateral elements of size 0.275 mm and aspect ratio 1. Mesh

convergence tests are performed by comparing the nodal values of different stress compo-

nents along material lines for different element sizes, based on which we conclude that an

element size of 0.275 mm provides a converged solution.

The simulation is quasi-static, and is carried out in an implicit step of duration 6 seconds,

with minimum increment size of 10−9 seconds, and initial increment of size 10−3 seconds.

The mid-line (y = 0) running across the length of the workpiece is constrained to not

move in the y direction by using rollers. This ensures that the normal (respectively, shear)

stress components remain symmetric (respectively, anti-symmetric) with respect to y = 0.

Readers can access the input file of this Abaqus simulation here:

https://tinyurl.com/wefcwps.

https://tinyurl.com/wefcwps
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Figure 4.13: True and fitted stress components (GPa) for the rolling simulation with
linear strain hardening (1000 eigenfunctions).

4.2.1.2 Results

We show the stress components obtained from the Abaqus simulation in the left column

of Figure 4.13. This stress field is fitted using the first 1000 eigenfunctions computed over

the same (deformed) mesh as obtained from the simulation, using the procedure described

in Section 3.1. The fitted components are shown in the right column of Figure 4.13. We

observe that the fit is very good. We also plot the fitted components using 10, 50 and

100 eigenfunctions respectively in Figure 4.14 to indicate how the fits get progressively
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Figure 4.14: True and fitted stress components (GPa) for the rolling simulation with
linear strain hardening (using 10, 50 and 100 eigenfunctions, respectively).

Figure 4.15: EN versus N , rolling simulation with linear strain hardening. Left: linear
scale; right: log-log scale.

better with incorporation of more eigenfunctions. Next, we plot the squared relative error

measure EN , described in Section 4.1, versus N in Figure 4.15. Convergence is like N−2,

and may improve for even larger N , with E318 < 0.01. We plot the error measure ẼN

in Figure 4.16 and note that the error decreases more slowly, like N−1. Finally, we plot

the time required in seconds for computation of the first 1000 eigenfunctions using our

code in Matlab, on a personal computer with an 8th generation i5 processor, for different
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Figure 4.16: ẼN versus N , rolling simulation with linear strain hardening. Left: linear
scale; right: log-log scale.
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Figure 4.17: Time (in seconds) for computation of first one thousand eigenfunctions for
different refinements of mesh used in rolling simulation (log-log scale). The data points

are joined by straight lines for visibility alone.

refinements of the mesh used for the rolling simulation in Figure 4.17. The coarser meshes

used for this figure were obtained from earlier simulations done to study mesh convergence:

the stresses from those simulations are not reported here. We note that the computation

time is not unreasonably large: it takes about 17 minutes to compute 1000 eigenfunctions

on a fine mesh of 10000 elements, for example.

This example shows that an arbitrary residual stress field can indeed be fitted using our

physics-independent basis functions.
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4.2.1.3 Rolling simulation with Johnson-Cook hardening

To demonstrate that the constitutive behaviour of the material is irrelevant to our basis

functions, we repeat the above rolling simulation with a material that exhibits Johnson-

Cook hardening, keeping the elastic properties the same as before. The hardening param-

eters used in the Johnson-Cook model are as follows: A = 50.103 MPa, B = 176.091 MPa,

n = 0.5176, m = 0.5655, Tmelting = 1623◦C and Ttransition = 1223◦C. These parameters

correspond to AISI-1045 steel [61]. The fit with 1000 eigenfunctions is shown in Figure

4.18. The error measures EN and ẼN are shown in Figures 4.19 and 4.20, respectively.

The fits are good and the convergence at least for EN is clear. Our key conclusion is

that the eigenfunctions do capture residual stress fields regardless of the material used, as

expected from the theory of Chapter 2.
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Figure 4.18: True and fitted stress components (GPa) for the rolling simulation with
Johnson-Cook hardening (1000 eigenfunctions).
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Figure 4.19: EN versus N , rolling simulation with Johnson-Cook hardening. Left:
linear scale; right: log-log scale.

Figure 4.20: ẼN versus N , rolling simulation with Johnson-Cook hardening. Left:
linear scale; right: log-log scale.
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4.2.2 Angular extrusion simulation

4.2.2.1 Details of the simulation

We show the schematic of an angular extrusion simulation in Figure 4.21. This simula-

tion is also quasi-static and is carried out in the implicit analysis mode of Abaqus. The

simulation is divided into three steps. In the first step, the rigid punch is pushed down by

giving a downward velocity to the point R, until the latter coincides with the point P on

the die (the die is kept fixed for the entire duration of the simulation). In the second step,

the point R is given a pre-computed velocity profile so that it moves along the circular

arc PQ. At the end of this step, R is at Q. In the third step, the punch is kept fixed, and

the workpiece is pulled out of the die by giving the edge CD of the workpiece a constant

rightwards velocity. At the end of the third step, the workpiece is completely out of the

die, and is moving with a constant velocity, and the stress in the workpiece is a residual

stress.

25

50

20

45

17.5

90◦

90◦

Rigid punch

Workpiece

Rigid die (fixed)

y

x

P

Q

R
A B

CD

S

Figure 4.21: Schematic of the angular extrusion process at the beginning of the simu-
lation (figure not to scale). All dimensions are in millimetres.

We point out that the motion of the punch is effected by assigning the point R located on

it a pre-computed velocity profile. This profile is chosen so as to make sure that R always

moves along the edge of the die. There is no such restriction on the point S on the punch.

Consequently, as the die narrows, S is free to ‘move out’ of the die to maintain rigidity of
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the punch. This is depicted schematically in Figure 4.22. The only interactions that we

allow in the simulation are those between the punch and the workpiece, and between the

workpiece and the die. Interpenetration of the punch and the die is allowed without any

restriction.

y

x

P

Q
R

S
A

B
C

D

Figure 4.22: A schematic of the angular extrusion process during the simulation.

The geometric, material and contact details are as follows. The workpiece is 50 mm long

and 25 mm wide, and is made of an isotropic elasto-plastic material with linear strain

hardening. Its Young’s modulus is 210 GPa, Poisson’s ratio is 0.3, yield stress is 400 MPa,

and the slope of the hardening curve is such that the equivalent plastic strain is 10 when

the von Mises stress is 6000 MPa. The mass density of the workpiece is not important

because the simulation is quasi-static. The punch is rigid. It moves downwards with a

velocity of 5 mm/s in the first step, pushing the workpiece along. In the second step, it

rotates in such a way that the material point R always coincides with the right edge of the

die; in the third step, it is stationary. The workpiece is pulled out of the die by imparting

a constant rightwards velocity of 5 mm/s to the edge CD in the third step. The die is

kept fixed in all the three steps. The width of the exit channel of the die is 0.7 times that

of its input channel, so that the nominal width of the workpiece is reduced to 70% of its

initial value. A ‘hard’ normal frictionless contact is assumed in all the contacts.

The mesh details are as follows. The punch and the die are meshed with ‘analytic rigid’

elements. The workpiece is meshed with 10153 plane strain four-noded quadrilateral ele-

ments of size 0.35 mm and aspect ratio 1.
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The simulation is quasi-static and is carried out in three steps of sizes 20, 35 and 30

seconds, respectively. The minimum increment size is taken to be 10−9 seconds, with

initial increment of 10−3 seconds, for each step.

Readers can access the input file of this Abaqus simulation here:

https://tinyurl.com/46t5kdpc.

4.2.2.2 Results

We show the stress components obtained from the Abaqus simulation in the left column of

Figure 4.23. This stress field is fitted using the first 1000 eigenfunctions computed over the

same (deformed) mesh as obtained from the simulation. The fitted components are shown

in the right column of Figure 4.23. We observe that the fit quality is not as good as that

for the rolling simulation. This is because the workpiece undergoes severe deformation

in the angular extrusion process, especially at the corners, where the mesh distortion is

excessive (see Figure 4.25). As a result, the resulting stress is equilibrated only in a weak

sense. These matters are discussed in detail in [62].

We also plot the fitted components using 10, 50 and 100 eigenfunctions respectively in

Figure 4.24 to indicate how the fits get progressively better with incorporation of more

eigenfunctions. Finally, we plot the error measures EN and ẼN in Figures 4.26 and 4.27,

respectively. We see from Figure 4.26 that EN seems to be saturating at about 0.05 even as

more eigenfunctions are included, reflecting the separately known fact that the stress field

obtained from the Abaqus simulation is only approximately valid, i.e., only approximately

divergence free and traction free. ẼN does not decrease to acceptably low values for any

practical purposes.

This concludes our demonstration of fitting candidate residual stress fields obtained from

metal forming simulations.

https://tinyurl.com/46t5kdpc


Chapter 4. Examples of fitting residual stress fields 80

Figure 4.23: True and fitted (using 1000 eigenfunctions) stress components for the
angular extrusion simulation (in GPa). Note that x and y axes are unequally scaled for

better visibility.
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Figure 4.24: True and fitted (using 10, 50 and 100 eigenfunctions, respectively) stress
components for the angular extrusion simulation (in GPa). Note that x and y axes are

unequally scaled for better visibility.

Figure 4.25: The workpiece mesh at the end of the angular extrusion simulation. We
see that the corner elements are heavily distorted.
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Figure 4.26: EN versus N , angular extrusion simulation. Left: linear scale; right:
log-log scale.

Figure 4.27: ẼN versus N , angular extrusion simulation. Left: linear scale; right:
log-log scale.



Chapter 4. Examples of fitting residual stress fields 83

4.3 Summary of the chapter

In this chapter, we considered several different arbitrary but reasonable residual stress

fields and fitted them using our eigenfunctions ϕi. In the first part of the chapter, we con-

sidered residual stress fields on an annular geometry, where the eigenfunctions essentially

depend only on the radial coordinate upon choosing a wave number in the circumferen-

tial direction. This enables us to compute many eigenfunctions with great accuracy, and

allows for a convenient visual representation of convergence. We considered four different

residual stress fields on an annular geometry: two hypothetical, a third from shrink fitting

of two concentric elastic cylinders and the fourth from non-uniform heating of an elastic

annulus. Upon fitting them using the eigenfunctions having the same wave number as

the given field, we observed convergence in both the L2 and the H1 norms in all but one

example. In the shrink fit example, we obtained slower convergence in the L2 norm and

no convergence in the H1 norm because the underlying field was discontinuous.

In the second part of the chapter, we considered residual stress fields obtained from sim-

ulation of two metal forming processes in Abaqus: rolling and angular extrusion. We

presented details of both the simulations, and fitted the obtained residual stress fields

using eigenfunctions computed on the same (deformed) mesh using our own FEM code.

We considered an elasto-plastic workpiece for the rolling simulation with two different

hardening models: linear and Johnson-Cook. In both cases, we obtained good fits with

quicker convergence in the L2 norm and slower convergence in the H1 norm. For the

angular extrusion simulation, we considered an elasto-plastic workpiece with linear strain

hardening. We observed that the fit quality in this case was not as good as those for the

rolling simulations, with the fitting error EN saturating at about 0.05. This is not entirely

unexpected: the deformation is severe in the angular extrusion process, and the stress

computed by Abaqus is equilibrated only in a weak sense.

In the next chapter, we show that the extremization problem considered in Chapter 2

is amenable to useful modifications. We consider two problems: (i) residual stresses in

long prismatic bodies and (ii) spatially localized residual stresses in 2D. The modified

extremization problems yield eigenfunctions that suit our purposes.



Chapter 5

Modifications of the eigenvalue

problem for special purposes

The question that we consider in this chapter is the following: how amenable is our

theoretical formulation of Chapter 2 to modifications?

We consider two special cases. In the first case, discussed in Section 5.1, we consider resid-

ual stress fields in long prismatic bodies. In such bodies, all the spatial fields are assumed

to have zero partial derivatives in the axial direction, away from the ends. Accordingly,

we modify the 3D eigenvalue problem of Section 2.5 by putting all the partial derivatives

in the axial direction to zero in the functional J0 (Eq. 2.3). We will see that this leads to

splitting of the problem into three planar sub-problems: one for the planar stresses, one for

the out of plane shear stresses and one for the axial stress. In the second case, presented

in Section 5.2, we look at residual stress fields localized in a 2D region, decaying rapidly

away from it. For this case we multiply the functional J0, and the normalizing constraint,

with appropriate weighting factors to make our eigenfunctions spatially localized.

Examples of such stresses abound in nature as well as engineering, and our motivation

behind discussing these two special cases is of both academic and practical interest. Pris-

matic geometries with residual stresses are found in rails [63] and blood vessels [23], for

instance; some examples of spatially localized residual stresses include stresses around

crack tips and those near the surface of a shot peened component [1].

84
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5.1 Basis functions for residual stress fields in infinitely long

prismatic bodies

5.1.1 Properties of residual stress fields in such bodies

Let us assume that our residually stressed body is infinitely long and prismatic in the

z direction. We may then suppose that the spatial fields do not vary in the z direction

and depend only on the spatial coordinates x and y. All the partial derivatives in the z

direction are zero, and the equilibrium equations simplify to:

σxx,x + σxy,y = 0,

σxy,x + σyy,y = 0,

σxz,x + σyz,y = 0.

(5.1)

Since the body is prismatic, the unit normal n to its surface lies in the x–y plane, so that

nz = 0. The traction-free boundary conditions are

σxxnx + σxyny = 0,

σxynx + σyyny = 0,

σxznx + σyzny = 0.

(5.2)

Finally, since the body is in equilibrium on the whole, and things do not vary in the z direc-

tion, it is also reasonable to suppose that the force resultant N and the moment resultant

M across any z cross-section is zero. Accordingly, we have new integral constraints

Nx =

∫
Ωl

σxz dA = 0,

Ny =

∫
Ωl

σyz dA = 0,

Nz =

∫
Ωl

σzz dA = 0,

(5.3)

as well as

Mx =

∫
Ωl

xσzz dA = 0,

My =

∫
Ωl

yσzz dA = 0,

Mz =

∫
Ωl

(xσyz − yσxz) dA = 0.

(5.4)
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In the above equations, Ωl represents any two-dimensional section with constant z, the

subscript l denoting ‘lateral’. The origin (i.e., the point with x = 0 and y = 0 in Ωl) can

be chosen to be any convenient fixed point (for example, the centroid of Ωl).

The first and the second equations in Eqs. 5.3 need not be assumed explicitly, as they

follow from the vector field

[v] =

[
σxz

σyz

]

being divergence-free in Ωl (third of Eqs. 5.1) and having zero flux on ∂Ωl (third of Eqs.

5.2). We show this below using indicial notation. If r denotes position vector, then∫
Ωl

vi dA =

∫
Ωl

vjδij dA =

∫
Ωl

vjri,j dA =

∫
Ωl

{(vjri),j − vj,jri} dA =

∫
∂Ωl

vjnjri ds = 0,

(5.5)

since vj,j = 0 in Ωl and vjnj = 0 on ∂Ωl.

To summarize, the residual stress fields in infinitely long prismatic bodies satisfy Eqs.

5.1–5.4. We note from these equations that we can split the stress components into three

groups: (σxx, σyy, σxy), (σzz) and (σxz, σyz), such that the components in each group are

coupled with each other, but independent of components in the other groups.

We now find a basis for such residual stress fields.

5.1.2 Development of basis functions

We seek the stationary points of the functional

J0(σ) =
1

2

∫
Ωl

(
σ2xx,x + σ2xx,y + σ2yy,x + σ2yy,y + σ2zz,x + σ2zz,y

+ 2σ2xy,x + 2σ2xy,y + 2σ2xz,x + 2σ2xz,y + 2σ2yz,x + 2σ2yz,y
)
dA

over symmetric second-order tensors σ which satisfy Eqs. 5.1–5.4, subject to the normal-

ization constraint∫
Ωl

σ · σ dA =

∫
Ωl

(
σ2xx + σ2yy + σ2zz + 2σ2xy + 2σ2xz + 2σ2yz

)
dA = 1.

This extremization problem is the same as the 3D version of the problem studied in

Chapter 2, except that all partial derivatives with respect to z have been dropped, and

the invariance in the z direction has rendered the spatial domain planar.
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Let λ/2, λ̃1, λ̃2, λ̃3 and λ̃4 be the constant Lagrange multipliers corresponding to the

integral constraints

∫
Ωl

σ ·σ dA = 1,

∫
Ωl

σzz dA = 0,

∫
Ωl

xσzz dA = 0,

∫
Ωl

yσzz dA = 0 and∫
Ωl

(xσyz − yσxz) dA = 0, respectively; and µx, µy and µz be the spatially varying La-

grange multipliers corresponding to the differential constraints in Eqs. 5.1. Then, proceed-

ing in the usual manner, it is not difficult to see that we obtain the following Euler-Lagrange

equations:

−∆σxx + µx,x = λσxx,

−∆σyy + µy,y = λσyy,

−∆σxy +
µx,y + µy,x

2
= λσxy,

−∆σzz − λ̃1 − λ̃2x− λ̃3y = λσzz,

−∆σxz + λ̃4y +
µz,x
2

= λσxz,

−∆σyz − λ̃4x+
µz,y
2

= λσyz,

(5.6)

where ∆ denotes the 2D Laplacian:
∂2

∂x2
+

∂2

∂y2
. We also obtain the following ‘natural’

boundary conditions (t is the tangent vector to ∂Ωl in the plane of Ωl):

σxx,xnxn
2
y + σxx,yn

3
y + σyy,xn

3
x + σyy,yn

2
xny − 2σxy,xn

2
xny − 2σxy,ynxn

2
y = 0,

σzz,xnx + σzz,yny = 0,

(σxz,xnx + σxz,yny)tx + (σyz,xnx + σyz,yny)ty = 0.

(5.7)

Eqs. 5.1–5.7 represent the complete boundary value problem that must be solved to com-

pute the eigenfunctions. We see from these equations that the three groups of stress

components mentioned in the previous section are coupled with each other only through

the Lagrange multiplier λ, and we can split the system of Eqs. 5.1–5.7 into three sub-

systems mutually related only through λ. However, λ can be determined using either of

the three sub-systems independently, and unless those values match, we have an ill-posed

problem in our hands. The simplest remedy is to have three independent norm constraints:∫
Ωl

(
σ2xx + σ2yy + 2σ2xy

)
dA = 1,∫

Ωl

σ2zz dA = 1,∫
Ωl

(
σ2xz + σ2yz

)
dA = 1.
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This completely decouples the three groups of stress components, and we can state three

separate extremization problems as below. We will see that the solutions of each problem

span the corresponding space of stress components.

In what follows, all the operators are meant to act on 2D fields. For instance, if u(x, y) is

a scalar field and v(x, y) is a vector field, then ∇u =
∂u

∂x
ex+

∂u

∂y
ey and divv =

∂vx
∂x

+
∂vy
∂y

.

We now state the three extremization problems.

Problem 1: Find the stationary points of the functional

J1(σ) =
1

2

∫
Ωl

∇σ · ∇σ dA

over the set

S1 =

{
σ

∣∣∣∣σ ∈ Sym, divσ = 0, σn|∂Ωl
= 0,

∫
Ωl

σ · σ dA <∞,

∫
Ωl

∇σ · ∇σ dA <∞
}
,

where ‘Sym’ is the set of all planar symmetric second order tensors over Ω, subject to the

normalization constraint ∫
Ωl

σ · σ dA = 1.

We have already solved this problem in Chapter 2, where we saw that the solutions span

the closure of S1. The next two problems are more interesting in the context of this

chapter.

Problem 2: Find the stationary points of the functional

J2(σzz) =
1

2

∫
Ωl

∇σzz · ∇σzz dA

over the unit norm elements

∫
Ωl

σ2zz dA = 1 of the following set of scalar functions:

S2 =

{
σzz

∣∣∣∣∫
Ωl

σ2zz dA <∞,

∫
Ωl

∇σzz · ∇σzz dA <∞,

∫
Ωl

σzz dA = 0,

∫
Ωl

rσzz dA = 0

}
,

where r is the position vector (r = xex + yey in Cartesian coordinates); and the four

conditions included imply square integrability of σzz, square integrability of its gradient,

zero net force in z direction across Ωl, and zero net bending moment across Ωl.
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This extremization problem leads us to the following eigenvalue problem, with eigenvalue

λ and eigenvector
{
σzz, λ̃1,ϖ

}
,: 1

−∆σzz − λ̃1 −ϖ · r = λσzz in Ωl,

∇σzz · n = 0 on ∂Ωl,∫
Ωl

σzz dA = 0,∫
Ωl

rσzz dA = 0,

(5.8)

where
λ

2
is the constant Lagrange multiplier corresponding to the normalization constraint;

and λ̃1 and ϖ are the constant Lagrange multipliers corresponding to the constraints∫
Ωl

σzz dA = 0 and

∫
Ωl

rσzz dA = 0, respectively.

In Cartesian coordinates, the above equations become

−∆σzz + λ̃1 − λ̃2x− λ̃3y = λσzz in Ωl,

σzz,xnx + σzz,yny = 0 on ∂Ωl,∫
Ωl

σzzdA =

∫
Ωl

xσzzdA =

∫
Ωl

yσzzdA = 0,

(5.9)

where λ̃2 =ϖ · ex and λ̃3 =ϖ · ey.

We now show that the solutions of the above eigenvalue problem form an orthogonal se-

quence. Let ϕzzi and ϕzzj be two distinct solutions of Eq. 5.8 with corresponding Lagrange

multipliers
(
λi, λ̃1i,ϖi

)
and

(
λj , λ̃1j ,ϖj

)
, respectively. Then, they satisfy

−∆ϕzzi − λ̃1i −ϖi · r = λiϕzzi,

−∆ϕzzj − λ̃1j −ϖj · r = λjϕzzj .

Consider the inner product of the first of the above equations with ϕzzj , i.e.,∫
Ωl

(
−∆ϕzzi − λ̃1i −ϖi · r

)
ϕzzj dA = λi

∫
Ωl

ϕzzi ϕzzj dA.

1In our FEM code for solving this eigenvalue problem, we arrange σzz, λ̃1 and ϖ in a column vector a
to obtain a generalized eigenvalue problem Aa = λBa, for some square matrices A and B.
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Integrating by parts, and using the divergence theorem, we obtain

−
∫
∂Ωl

∇nϕzzi ϕzzj ds+

∫
Ωl

∇ϕzzi · ∇ϕzzj dA− λ̃1i

∫
Ωl

ϕzzj dA−ϖi ·
∫
Ωl

rϕzzj dA

= λi

∫
Ωl

ϕzzi ϕzzj dA.

Using the boundary condition and the integral constraints given in Eqs. 5.8, we obtain∫
Ωl

∇ϕzzi · ∇ϕzzj dA = λi

∫
Ωl

ϕzzi ϕzzj dA.

Similarly, ∫
Ωl

∇ϕzzj · ∇ϕzzi dA = λj

∫
Ωl

ϕzzj ϕzzi dA.

If λi ̸= λj , then ∫
Ωl

ϕzzi ϕzzj dA = 0 and

∫
Ωl

∇ϕzzi · ∇ϕzzj dA = 0, (5.10)

i.e., ϕzzi and ϕzzj are orthogonal. If λi = λj but ϕzzi ̸= ϕzzj , then we can choose ϕzzi and

ϕzzj to be orthogonal, and Eq. 5.10 still holds. We thus have an orthogonal sequence of

eigenfunctions.

Our numerics below will indicate that these eigenfunctions span the set S2, and we do

not attempt to prove this formally here. However, we point out that the above eigenvalue

problem (Eq. 5.8) is similar to our original eigenvalue problem of Chapter 2 (Eq. 2.12), with

only a few differences (e.g., the presence of additional integral constraints in the former).

Hence, a formal proof could be attempted along similar lines to the one presented in

Chapter 2. We also refer the reader to Section 7.3, where we indicate how these differences

might be handled.

We solve Eq. 5.9 using our own FE formulation, which is similar to that presented in

Section 3.1. The first four eigenfunctions computed on an annulus of inner radius 0.1 and

outer radius 0.3 are shown in Figure 5.1.

We now demonstrate that the eigenfunctions ϕzzi lead to quick convergence when used to

fit a given axial stress. Let us consider a candidate σzz field in a prismatic geometry with

the square cross section 0 ≤ x, y ≤ 1:

σzz =

(
x− 3

2
x2
)(

−2

3
y + y2

)
.
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Figure 5.1: First four eigenfunctions for σzz computed using our own FEM code on an
annular domain, with eigenvalues λ = 95.58, 95.58, 192.71, 192.71, respectively.

It can be verified that σzz satisfies the zero mean condition (third of Eqs. 5.3) and the

zero net bending moment condition (first and second of Eqs. 5.4). We fit σzz with ϕzzi.

For comparison, we also fit it using another standard basis: scalar eigenfunctions of the

Laplace operator

−∆ũi = λũi

with zero boundary value [64].

The field σzz, along with fits obtained using the first 100 functions of each of these bases,

is plotted in Figure 5.2. The corresponding fitting errors EN are plotted in Figures 5.3

and 5.4. It is evident from the figures that while convergence is obtained with both the

bases, it is much faster with ϕzzi. The reason is that the elements of the second basis do

not satisfy the zero net force and moment constraints, while each element of the first basis

does satisfy them.
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Figure 5.2: A candidate σzz field (top-left), and fits obtained with the first 100 basis
functions ϕzzi (top-right) and the first 100 Laplace eigenfunctions ũi (bottom).

Figure 5.3: EN versus N with our basis ϕzzi. Left: linear scale; right: log-log scale.
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Figure 5.4: EN versus N with Laplace eigenfunctions ũi. Left: linear scale; right:
log-log scale.

We demonstrate yet another utility of the functions ϕzzi by using them to interpolate an

axial stress in a rail given its value at a few points. Figure 5.5 (adapted from Figure 1.12 of

[1]) shows the schematic of the cross section of a typical axially stressed rail. We roughly

estimate the values of this axial stress at 10 points (marked with light yellow crosses in

the figure) using the contours provided in the Figure 1.12 of [1], and use these values to

interpolate with ϕzzi. These values are reported in Table 5.1.

We first show the first four eigenfunctions ϕzzi on the rail geometry in Figure 5.6. In Figure

5.7, we show the interpolated stress using the first N eigenfunctions, with N = 2, 4, 6 and

8. Note that the interpolation has been done using the least squares method. We see

that the interpolants are reasonably good, except for N = 2. For comparison, we also

interpolate with the first four and six Laplace operator eigenfunctions ũi, respectively, and

plot in Figure 5.8. Although this is a limited comparison, it appears that the ϕzzi yield a

physically more realistic picture. Moreover, with the Laplace operator eigenfunctions, the

N = 6 interpolant is significantly less correct than the N = 4 interpolant, and both these

interpolants also violate the zero net force and moment conditions.
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Figure 5.5: Schematic of an axially stressed rail (adapted from Figure 1.12 of [1]).
We use the values of the axial stress at 10 points, marked with light yellow crosses, for

interpolation.

Point label in Figure 5.5 Axial stress (in MPa)

1 −420

2 300

3 −420

4 −150

5 −240

6 −90

7 60

8 −420

9 270

10 −60

Table 5.1: Axial stress values at points marked with light yellow crosses in Figure 5.5
(as estimated from Figure 1.12 of [1]).
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Figure 5.6: The first four eigenfunctions ϕzzi on the rail geometry.
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Figure 5.7: Interpolated axial stress (in MPa) using the first N eigenfunctions ϕzzi,
with N = 2, 4, 6 and 8.

Figure 5.8: Interpolated axial stress (in MPa) using the first N Laplace operator eigen-
functions with zero boundary value ũi, with N = 4 and 6.
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Problem 3: Before stating the third extremization problem, we mention a useful point.

Let

[v] =

[
σxz

σyz

]
,

where by square brackets we imply representation in Cartesian coordinates. Then, the

condition of zero net twisting moment,∫
Ωl

(xσyz − yσxz) dA = 0, (5.11)

can be represented in a coordinate free manner as∫
Ωl

r × v dA = 0, (5.12)

where r is the position vector. Note that r and v are to be interpreted as 3D vectors,

but with zero z component, while computing the above cross product. Although Eq. 5.12

is a vector equation, only its z component is non-trivial. We have chosen this represen-

tation because with a coordinate free description, the eigenvalue problem can be written

succinctly, and the algebra involved in deriving the orthogonality relations is simpler.

We now state the extremization problem.

We seek the stationary points of the functional

J3(v) =
1

2

∫
Ωl

∇v · ∇v dA

over the set

S3 =

{
v

∣∣∣∣ divv = 0, v · n|∂Ωl
= 0,

∫
Ωl

v · v dA <∞,

∫
Ωl

∇v · ∇v dA <∞,

∫
Ωl

r × v dA = 0

}
,

subject to the normalization constraint

∫
Ωl

v · v dA = 1.



Chapter 5. Modification of the eigenvalue problem for special purposes 98

Calculus of variations leads us to the following eigenvalue problem, with eigenvalue λ and

eigenvector {v, µz,ϖ},: 2

−∆v +∇µz −ϖ × r = λv in Ωl,

divv = 0 in Ωl,

v · n = 0 on ∂Ωl,

∇v n = 0 on ∂Ωl,∫
Ωl

r × v dA = 0,

(5.13)

where
λ

2
is the constant Lagrange multiplier corresponding to the normalization constraint,

µz is the spatially varying Lagrange multiplier corresponding to the differential constraint

divv = 0, and ϖ is the constant vector-valued Lagrange multiplier corresponding to the

zero net twisting moment condition in Eq. 5.12. Note that the x and y components of ϖ

are zero, so that ϖ = λ̃4ez for some scalar λ̃4
3. Also note that r is to be interpreted as

a 3D vector, but with zero z component, while computing the cross product in the first of

Eqs. 5.13.

In Cartesian coordinates, the above equations become

−∆σxz + λ̃4y + µz,x = λσxz in Ωl,

−∆σyz − λ̃4x+ µz,y = λσyz in Ωl,

σxz,x + σyz,y = 0 in Ωl,

σxznx + σyzny = 0 on ∂Ωl,

(σxz,xnx + σxz,yny)tx + (σyz,xnx + σyz,yny)ty = 0 on ∂Ωl,∫
Ωl

(xσyz − yσxz) dA = 0.

We now show that the solutions v of the eigenvalue problem in Eq. 5.13 form an orthogonal

sequence. Let us assume that vi and vj are two distinct solutions with corresponding

2In our FEM code for solving this eigenvalue problem, we arrange v, µz and ϖ in a column vector a
to obtain a generalized eigenvalue problem Aa = λBa, for some square matrices A and B.

3Since the zero net twisting moment condition is a scalar equation (Eq. 5.11), the corresponding La-
grange multiplier is also a scalar. Since we have opted to write our equations in a coordinate free manner,
it is a vector pointing in the z-direction.
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Lagrange multipliers (µzi,ϖi, λi) and (µzj ,ϖj , λj), respectively. Then,

−∆vi +∇µzi −ϖi × r = λivi,

−∆vj +∇µzj −ϖj × r = λjvj .
(5.14)

Consider the inner product of the first of Eqs. 5.14 with vj , i.e.,∫
Ωl

(−∆vi +∇µzi −ϖi × r) · vj dA = λi

∫
Ωl

vi · vj dA. (5.15)

Upon integrating by parts and using the divergence theorem, the inner product of −∆vi

and vj can be simplified as follows:

−
∫
Ωl

∆vi · vj dA = −
∫
∂Ωl

(∇vin) · vj ds+
∫
Ωl

∇vi · ∇vj dA =

∫
Ωl

∇vi · ∇vj dA,

where the boundary term drops out because ∇vin = 0 on ∂Ωl from Eq. 5.13.

Similarly, the inner product of ∇µzi and vj is zero since∫
Ωl

∇µzi · vj dA =

∫
∂Ωl

µzivj · n ds−
∫
Ωl

µzi divvj dA = 0,

where we have used vj · n = 0 on ∂Ωl and divvj = 0 in Ωl.

Finally, rearranging the scalar triple product, we obtain that the inner product of ϖi × r
and vj is zero since∫

Ωl

vj · (ϖi × r) dA =

∫
Ωl

ϖi · (r × vj) dA =ϖi ·
∫
Ωl

r × vj dA = 0.

So, Eq. 5.15 simplifies to: ∫
Ωl

∇vi · ∇vj dA = λi

∫
Ωl

vi · vj dA.

Similarly, ∫
Ωl

∇vj · ∇vi dA = λj

∫
Ωl

vj · vi dA.

If λi ̸= λj , then ∫
Ωl

vi · vj dA =

∫
Ωl

∇vi · ∇vj dA = 0. (5.16)

If λi = λj while vi and vj are linearly independent, then we can choose vi and vj to be

orthogonal, and the above equation still holds.
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Thus, the eigenfunctions are mutually orthogonal, or can be chosen to be so.

We show the first three eigenfunctions in Figure 5.9 on an annulus of inner radius 0.1 and

outer radius 0.3. For better visual representation, we show the stress components σrz and

σθz instead of σxz and σyz.

Figure 5.9: First three eigenfunctions for out of plane shear components computed
using our own FEM code on an annular domain, with eigenvalues λ = 293.41, 293.41 and

356.19, respectively.
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We see that the eigenvalue problem in Eq. 5.13 is similar to our original eigenvalue problem

of Chapter 2. Consequently, we believe that it can be formally proved that the eigenfunc-

tions span the set S3 along similar lines to the proof presented in Chapter 2. We refer the

interested reader to Section 7.4 where we discuss the points where such a formal proof, if

attempted, may differ from the one presented in Chapter 2. However, a detailed proof is

not attempted here.

We now demonstrate that the eigenfunctions vi lead to quick convergence when used to fit

a candidate out of plane shear stress field in a prismatic geometry. Let the cross-section

of the prismatic domain be the unit square 0 ≤ x, y ≤ 1, and the given stress field be

σxz = x(x− 1)(2x− 1)(1− 2y),

σyz = y(y − 1)(6x2 − 6x+ 1).

It can be verified that the above stress field satisfies the divergence-free condition (third of

Eqs. 5.1), traction-free boundary condition (third of Eqs. 5.2), zero mean condition (first

and second of Eqs. 5.3) and zero net twisting moment condition (third of Eqs. 5.4). We

fit this stress with vi. For comparison, we also fit it using another standard basis for

divergence-free vector fields: the eigenfunctions with zero boundary value (i.e., with both

the normal and the tangential components zero at the boundary) of the Stokes operator [43]

(let us denote them as vi). Since vi are divergence-free and have zero flux at the boundary

(i.e., vi ·n = 0), it follows from Eq. 5.5 that they satisfy the zero mean condition (first and

second of Eqs. 5.3), like vi. However, they do not satisfy the zero net twisting moment

condition.

The actual fields σxz and σyz, along with fits obtained using the first 200 functions of

each of these bases, are plotted in Figure 5.10. The corresponding fitting errors EN are

plotted in Figures 5.11 and 5.12. It is clear from the figures that while convergence is

obtained with both the bases, it is much faster with vi. The reason is that both the

normal and the tangential components of the eigenfunctions of the Stokes operator are

zero at the boundary, while vi satisfy only the zero flux boundary condition satisfied by

the candidate field. Moreover, the former do not satisfy the zero net twisting moment

condition, while each vi does satisfy it.

In general, a state of stress with only the out of plane shear stress components σxz and σyz

non-zero is difficult to achieve in long prismatic bodies. For instance, when the material

is linear elastic and deformations are infinitesimal, 8 elastic constants (out of 21) in the

fourth-order elasticity tensor C have to be zero if such a stress state is to be possible [65].
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Figure 5.10: A candidate out of plane shear stress field (top row), and fits obtained
with the first 200 basis functions vi (middle row) and the first 200 Stokes operator eigen-

functions vi (bottom row).

Similarly, it seems difficult to think of a practical loading history that will leave a prismatic

body with a residual stress state dominated by the out of plane shear stress components.

Thus, although our basis computation problem splits into three sub-problems for such

bodies, it seems likely that actual residual stress states encountered may involve basis
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Figure 5.11: EN versus N with our basis vi. Left: linear scale; right: log-log scale.

Figure 5.12: EN versus N with the Stokes operator eigenfunctions vi. Left: linear
scale; right: log-log scale.

elements from all three sub-problems.

With this, we conclude our presentation of how the extremization problem of Chapter 2 can

be modified for long prismatic geometries, and move on to another practically important

problem.
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5.2 Basis functions for localized 2D residual stress fields

Sometimes, residual stresses are localized in a small region, e.g., around a crack tip or

near the surface after shot peening. Far from these regions, the residual stresses decay

rapidly and have little practical significance. The residual stress basis we developed in

Chapter 2 may not be effective in such cases. Here we seek a basis that whose elements

are spatially localized. To this end, we modify the extremization problem of Chapter 2 by

multiplying the objective function and the normalizing constraint by suitable weighting

functions. We will see that the localized basis fares better in capturing localized residual

stresses in comparison with the original (unweighted) basis of Chapter 2.

5.2.1 Demonstration of the concept in 1D

To explain the basic idea, we first solve a simpler problem of developing a spatially localized

basis in 1D. The insights gained from the 1D problem will be directly transferable to 2D.

Let us consider the following extremization problem. For given everywhere positive smooth

functions w1 and w2, we seek the stationary points of

J0 =

∫ 1

x=0
w1y

′2 dx,

over scalar functions y satisfying the boundary conditions

y′(0) = 0 and y(1) = 0,

and the normalization constraint ∫ 1

x=0
w2y

2 dx = 1. (5.17)

Incorporating the normalization constraint through the Lagrange multiplier λ, we seek

variations of

J =

∫ 1

x=0

{
w1y

′2 − λ
(
w2y

2 − 1
)}

dx.

If y0 is a stationary point (an extremizing function), then it satisfies the boundary value

problem

(w1y
′
0)

′ + λw2y0 = 0, y′0(0) = 0 and y0(1) = 0. (5.18)
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This is a Sturm-Liouville eigenvalue problem, and the corresponding eigenfunctions form

a basis for functions in 0 ≤ x ≤ 1 with the same boundary conditions as above [66].

We want y0 to decay as x goes from 0 to 1, and hence w2 should be an increasing function.

Also, we want to arrest the oscillations of y0 as x increases, and hence w1 should also be

an increasing function. We choose w1(x) = w2(x) = enx. Then, Eq. 5.18 becomes

y′′0 + ny′0 + λy0 = 0, y′0(0) = 0 and y0(1) = 0.

Substituting y0 = Cesx, we obtain

s2 + ns+ λ = 0,

whose solutions are

s =
−n±

√
n2 − 4λ

2
.

To have osillatory solutions, n2 < 4λ. The general form of y0 then is

y0 = e
−nx
2

(
C1e

i
√

4λ−n2

2
x + C2e

− i
√

4λ−n2

2
x

)
.

This can equivalently be written as

y0 = e
−nx
2

(
A sin

√
λ− n2

4
x+B cos

√
λ− n2

4
x

)
,

where A and B are arbitrary constants. The condition y′0(0) = 0 gives

A =
n

2
√
λ− n2

4

B,

so that

y0 = Be
−nx
2

 n

2
√
λ− n2

4

sin

√
λ− n2

4
x+ cos

√
λ− n2

4
x

 . (5.19)

The other boundary condition implies that

n

2
√
λ− n2

4

sin

√
λ− n2

4
+ cos

√
λ− n2

4
= 0.

We solve for the eigenvalue λ from the above equation using a Newton-Raphson scheme

(for a fixed n). The solutions are then substituted in Eq. 5.19 to obtain the corresponding
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eigenfunctions. Finally, since the eigenfunctions are arbitrary up to a scalar multiplicative

factor, we scale them so that they have the value 1 at x = 0 (in place of the normalization

of Eq. 5.17). We plot the first five localized eigenfunctions for n = 10 and n = 20 in

Figure 5.13. It is seen that the eigenfunctions decay as we move towards x = 1; the decay

is larger for greater n.

Figure 5.13: First five localized 1D eigenfunctions for n = 10 and n = 20.

5.2.2 Spatially localized basis functions in 2D

Taking a cue from the 1D example, we modify our extremization problem of Chapter 2 by

appropriately weighting the objective function and the normalization constraint to obtain

spatially localized basis functions in 2D.

5.2.2.1 Extremization problem

Recall the set S of residual stress fields defined in Chapter 2:

S =

{
σ

∣∣∣∣σ ∈ Sym, divσ = 0, σn|∂Ω = 0,

∫
Ω
σ · σ dA <∞,

∫
Ω
∇σ · ∇σ dA <∞

}
.

This time, we seek stationary points of the functional

J0(σ) =
1

2

∫
Ω
w1∇σ · ∇σ dA
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in S, subject to the normalization constraint∫
Ω
w2 σ · σ dA = 1. (5.20)

We assume the following about w1, w2 :

1. They are smooth.

2. They are positive everywhere in Ω.

We note that J0(σ) is finite for all σ ∈ S, since

J0(σ) =
1

2

∫
Ω
w1∇σ · ∇σ dA ≤

∥w1∥∞
2

∫
Ω
∇σ · ∇σ dA,

where ∥w1∥∞ is the supremum of w1 on Ω4. Since w1 is smooth, ∥w1∥∞ is finite.

Upon introducing Lagrange multipliers
λ

2
and µ, we consider variations of

J(σ̂) =

∫
Ω

{
1

2
w1∇σ̂ · ∇σ̂ − λ

2

(
w2 σ̂ · σ̂ − 1

|Ω|

)
− µ · (div σ̂)

}
dA,

in the set

R =

{
σ̂

∣∣∣∣σ̂ ∈ Sym, σ̂n|∂Ω = 0,

∫
Ω
σ̂ · σ̂ dA <∞,

∫
Ω
∇σ̂ · ∇σ̂ dA <∞

}
.

If σ is a stationary point of J , then for arbitrary infinitesimal variations ζ ∈ R, after

ignoring the second order terms in ζ and simplifying, we obtain∫
Ω
(w1∇σ · ∇ζ − λw2 σ · ζ − µ · div ζ) dA = 0.

The gradient of ζ in the above can be eliminated as follows. Using the divergence theorem,

we have∫
Ω
w1∇σ · ∇ζ dA =

∫
∂Ω
w1∇nσ · ζ ds−

∫
Ω
(∇σ ⊙∇w1 + w1∆σ) · ζ dA, (5.21)

where the operation A⊙ v for a third order tensor A and a vector v is defined as

A⊙ v = Aijkvkei ⊗ ej .
4That is, the least upper bound of the set W = {w1(x) |x ∈ Ω}.
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Proceeding in the usual manner, we find that a stationary point, assuming one exists,

satisfies the following eigenvalue problem:

−w1∆σ −∇σ ⊙∇w1 +∇sµ = λw2 σ and divσ = 0 in Ω,

∇nσ · (t⊗ t) = 0 and σn = 0 on ∂Ω,
(5.22)

along with Eq. 5.20. Note that upon substituting w1 = w2 = 1 in the above, we recover

our original eigenvalue problem of Chapter 2 (Eq. 2.12).

We now show that the solutions of the above problem (eigenfunctions) are orthogonal to

each other in a weighted inner product that we define below.

5.2.2.2 Orthogonality of the eigenfunctions

We equip S with the inner product

(σ1,σ2)w =

∫
Ω
w2 σ1 · σ2 dA, (5.23)

for any σ1,σ2 ∈ S. Then, the norm of any element σ ∈ S is

∥σ∥w =
√
(σ,σ)w =

(∫
Ω
w2 σ · σ dA

) 1
2

. (5.24)

We show in Appendix G that the operations (·, ·)w and ∥·∥w meet the criteria of being an

inner product and a norm, respectively.

Let σ = φ and µ constitute a solution to the eigenvalue problem of Eq. 5.22, with

corresponding eigenvalue λ. Let σ̂ be any element of S. Consider the inner product of the
first of Eqs. 5.22 with σ̂, i.e.,∫

Ω
(−w1∆φ−∇φ⊙∇w1 +∇sµ) · σ̂ dA = λ

∫
Ω
w2φ · σ̂ dA. (5.25)

By the reasoning given in Appendix C,∫
Ω
∇sµ · σ̂ dA = 0. (5.26)
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What remains on the left hand side can be simplified using the divergence theorem (e.g.,

see Eq. 5.21) and the natural boundary condition (fourth of Eqs. 5.22) to∫
Ω
(−w1∆φ−∇φ⊙∇w1) · σ̂ dA =

∫
Ω
w1∇φ · ∇σ̂ dA. (5.27)

Substituting Eqs. 5.26 and 5.27 in Eq. 5.25, we obtain∫
Ω
w1∇φ · ∇σ̂ dA = λ

∫
Ω
w2φ · σ̂ dA. (5.28)

Consider now two eigenvalue-eigenfunctions pairs: (λi,φi,µi) and (λj ,φj ,µj), such that

λi ̸= λj . Then, from Eq. 5.28,∫
Ω
w1∇φi · ∇φj dA = λi

∫
Ω
w2φi ·φj dA,

∫
Ω
w1∇φj · ∇φi dA = λj

∫
Ω
w2φj ·φi dA,

and we conclude that∫
Ω
w1∇φi · ∇φj dA =

∫
Ω
w2φi ·φj dA = (φi,φj)w = 0. (5.29)

So, φi and φj are orthogonal. If λi = λj for linearly independent ϕi and ϕj , we can still

choose the corresponding eigenfunctions to be orthogonal, and Eq. 5.29 still holds.

Thus the eigenfunctions φ form an orthogonal sequence. We normalize them so that∫
Ω
w2φp ·φp dA = 1, p = 1, 2, 3, · · · .

We do not formally prove here that φ span the set S (and its closure). However, we

anticipate that a proof could be constructed along similar lines to that in Chapter 2. We

refer the reader to Section 7.5 where we indicate that if such a proof is attempted, the

presence of the weighting functions w1 and w2, on account of our assumption that they

are smooth and everywhere positive, should offer no difficulties.

5.2.2.3 Computation of eigenfunctions using the FEM

Since the eigenvalue problem in Eq. 5.22 differs from that of Chapter 2 only in the pres-

ence of the weighting functions and the term ∇σ ⊙ ∇w1 (in the first of Eqs. 5.22), the
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corresponding FEM formulation is similar to that presented in Section 3.1. In this section,

we demonstrate that in the weak formulation, this additional term drops out, and our

FEM formulation remains largely unaffected.

To solve the eigenvalue problem in Eq. 5.22 using the FEM, we first express it in Cartesian

coordinates, so that

−w1∆σ −∇σ ⊙∇w1 +∇sµ = λw2 σ

becomes

−w1

(
∂2σxx
∂x2

+
∂2σxx
∂y2

)
− ∂σxx

∂x

∂w1

∂x
− ∂σxx

∂y

∂w1

∂y
+
∂µx
∂x

= λw2 σxx,

−w1

(
∂2σyy
∂x2

+
∂2σyy
∂y2

)
− ∂σyy

∂x

∂w1

∂x
− ∂σyy

∂y

∂w1

∂y
+
∂µy
∂y

= λw2 σyy,

−w1

(
∂2σxy
∂x2

+
∂2σxy
∂y2

)
− ∂σxy

∂x

∂w1

∂x
− ∂σxy

∂y

∂w1

∂y
+

1

2

(
∂µx
∂y

+
∂µy
∂x

)
= λw2 σxy.

(5.30)

Consider the inner product of the first of the above equations with a shape function Np,

i.e.,∫
Ω

{
−w1

(
∂2σxx
∂x2

+
∂2σxx
∂y2

)
− ∂σxx

∂x

∂w1

∂x
− ∂σxx

∂y

∂w1

∂y
+
∂µx
∂x

− λw2 σxx

}
Np dA = 0.

(5.31)

We restrict attention to the inner product of the term −w1∆σxx with Np. Integrating by

parts, we obtain

−
∫
Ω
w1

(
∂2σxx
∂x2

+
∂2σxx
∂y2

)
Np dA = −

∫
∂Ω

(
∂σxx
∂x

nx +
∂σxx
∂y

ny

)
w1Np dA

+

∫
Ω

(
w1
∂σxx
∂x

∂Np

∂x
+ w1

∂σxx
∂y

∂Np

∂y

)
dA+

∫
Ω

(
Np

∂σxx
∂x

∂w1

∂x
+Np

∂σxx
∂y

∂w1

∂y

)
dA.

Upon substituting the above in Eq. 5.31, we see that the latter simplifies to∫
Ω

(
−w1

∂2σxx
∂x2

− w1
∂2σxx
∂y2

+
∂µx
∂x

)
Np dA = λ

∫
Ω
w2 σxxNp dA.

We note that the above equation is the same as the corresponding equation (Eq. 3.7) in

Section 3.1, if we set w1 = w2 = 1.

The weak formulations corresponding to the equations for the other stress components can

be obtained in a similar fashion. The rest of the equations in the eigenvalue problem are

the same as in Chapter 3, and we obtain their weak forms using the procedure detailed
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therein. The other details such as the elements used for discretization of the domain, the

shape functions used for the stress components and the Lagrange multiplier components,

etc., also remain the same.

For demonstration, we choose an arbitrarily shaped domain centered approximately at the

origin, with size comparable to that of a unit square. We wish the eigenfunctions to be

localized around the origin, and thus, we choose

w1 = w2 = e20
√

x2+y2 .

We plot the first three eigenfunctions, scaled to unit-norm, in Figure 5.14. We see, with

the aid of the accompanying colour bars, that all the stress components decay as we move

away from the origin. The unweighted basis functions ϕi on this same geometry were

plotted in Figure 3.6.

Figure 5.14: First three eigenfunctions on an arbitrarily shaped domain, localized
around the origin.

In the next section, we compute these spatially localized residual stress basis functions on

an annular domain.
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5.2.2.4 Computation of eigenfunctions on an annulus

If the domain is annular, we can solve the eigenvalue problem in Eq. 5.22 as a two-point

boundary value problem, upon choosing a wave number in the circumferential direction.

We take the domain to be centered at the origin and having an inner radius ra and an

outer radius rb. Taking cues from the 1D case, we choose

w1(r, θ) = w2(r, θ) = e
nr
L ,

where L is some typical dimension of the body considered.

Upon choosing σ and µ of the form

σ = σrr(r) cosmθ er ⊗ er + σrθ(r) sinmθ (er ⊗ eθ + eθ ⊗ er) + σθθ(r) cosmθ eθ ⊗ eθ,

µ = µr(r)e
nr
L cosmθer + µθ(r)e

nr
L sinmθeθ,

and introducing a new variable ϑ, the eigenvalue problem reduces to the following set of

six first order ordinary differential equations:

σ′rr = −σrr
r

− mσrθ
r

+
σθθ
r
,

σ′rθ = −2σrθ
r

+
mσθθ
r

,

σ′θθ = ϑ,

ϑ′ =
m2σθθ
r2

− ϑ

r
− nϑ

L
− 4mσrθ

r2
− 2σrr

r2
+

2σθθ
r2

+
µr
r

+
mµθ
r

− λσθθ,

µ′r = −(m2 − 1)σθθ
r2

+
nσθθ
rL

− mσrθ
r2

− mnσrθ
rL

+
ϑ

r
− (m2 + 1)σrr

r2
− nσrr

rL
− nµr

L
+ λσrr,

µ′θ =
2mϑ

r
− 2m2σrθ

r2
− 4nσrθ

rL
− 4mσrr

r2
+

2mnσθθ
rL

+
mµr
r

+
µθ
r

− nµθ
L

+ 2λσrθ,

(5.32)

with boundary conditions

σrr(ra) = σrθ(ra) = σ′θθ(ra) = σrr(rb) = σrθ(rb) = σ′θθ(rb) = 0.

These equations resemble Eqs. 3.14, but are not identical. They are solved as described in

Section 3.2.1 of Chapter 3. For demonstration, we choose m = 3, ra = 0.1, rb = 0.3 and

L = 0.2. We show the stress components corresponding to the first four eigenfunctions in

Figures 5.15 and 5.16, for n = 10 and n = 20, respectively.
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Figure 5.15: Radial variation of the first four spatially localized eigenfunctions on an
annular geometry with n = 10.

5.2.2.5 Fitting a given spatially localized residual stress field

We now fit a candidate spatially localized residual stress with both the weighted eigenfunc-

tions developed in this section, and the unweighted eigenfunctions of Chapter 2. We obtain

a hypothetical localized residual stress field using the procedure employed in Section 4.1
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Figure 5.16: Radial variation of the first four spatially localized eigenfunctions on an
annular geometry with n = 20.

(details omitted). Its components are as follows5:

σrr =e−75 r+7.5

(
119986.4385 r2 − 1125000 r3 + 12749.71685 r + 1349.860391

84375 r2

)
− 0.03386574357

84375 r2
− 0.000001131237818 r−1,

σθθ =1000
(
r2 − 0.2533212787 r + 0.01568753329

)
e−75 r+7.5,

σrθ =
1

r2

(
−
(
1125000 r3 − 239986.4386 r2 + 11248.83659 r + 149.9844878

)
e−75 r+7.5

28125

)
+

0.0000001337905919

r2
.

5The background calculations were done using Maple. The expressions are reported as is, without
further round-off or simplification, in the interest of avoiding new inadvertent deviations from the computed
quantities.
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These stress components, along with the fits obtained with both unweighted and weighted

(with n = 20) functions are plotted in Figure 5.17. Ten eigenfunctions are used in each

case for fitting. We see that the weighted basis functions give better fits. The relative

square measure EN described in Chapter 4 is plotted in Figure 5.18. We obtain a much

faster convergence with the weighted functions for small N ; the behaviour for large N

is the same with both sets of basis functions: EN decays like N−3. Note that while

computing the fit with the weighted eigenfunctions and the corresponding fitting error, we

have used the weighted inner product defined in Eq. 5.23. Therefore a direct comparison

of the reported numbers, which seems to indicate superiority by a factor of about 100,

would be misleading.

Figure 5.17: Radial variation of the candidate localized residual stress field fitted with
10 weighted (with n = 20) and 10 unweighted eigenfunctions.
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Figure 5.18: Fitting error EN versus the number of eigenfunctions N ; left: linear scale,
right: loglog scale.
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5.3 Summary of the chapter

In Chapter 2, we developed general purpose basis functions for arbitrary domains. In this

chapter we looked at two special cases.

The first special case is that of long prismatic bodies wherein the residual stresses do not

vary in the axial direction. Here, we modified our original 3D eigenvalue problem of Chap-

ter 2 by setting all axial derivatives to zero everywhere. We observed that the eigenvalue

problem splits into three 2D sub-problems. The first of these sub-problems involves the

planar stress components, the second concerns the axial component, and the third deals

with the out of plane shear components. We showed that each sub-problem yields an

orthogonal sequence of functions spanning the corresponding space of stress components.

We demonstrated that, because these bases incorporate the essential properties exhibited

by residual stresses in prismatic bodies, they give faster convergence in comparison with

other standard bases blind to such properties, such as the Laplace operator eigenfunctions

or the Stokes operator eigenfunctions. We used the axial basis to interpolate a given axial

stress in a rail using its values at 10 interior points, and observed that the interpolant

seems much better in comparison to that obtained using the same number of Laplace

eigenfunctions.

The second special case is that of planar residual stresses that are localized in a 2D

region, decaying rapidly away from it. To develop spatially localized basis functions, we

first considered a 1D problem to clarify ideas. We considered an extremization problem

with an objective function similar to that of Chapter 2, but with a weighting function

increasing exponentially away from the region where localization is intended. Such a

weighting function helps arrest oscillations in far away regions. We also weighted the

normalization constraint with a similar function to make the eigenfunctions decay rapidly,

away from the region of intended localization. Using the calculus of variations, we obtained

a Sturm-Liouville eigenvalue problem whose solutions are known to form a basis for the

space of scalar functions with the same boundary conditions. Taking cues from the 1D

problem, we modified the extremization problem of Chapter 2 by incorporating appropriate

weighting functions, and obtained an eigenvalue problem similar to our original eigenvalue

problem of Chapter 2. We showed that the corresponding eigenfunctions are mutually

orthogonal in a weighted inner product. We briefly discussed the modifications needed

in our FEM formulation due to the presence of the additional term in the eigenvalue

problem, and plotted the first few eigenfunctions, localized around an interior point, on

an arbitrarily shaped domain. Finally, we demonstrated on an annular geometry that this
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basis gives faster convergence than the global basis of Chapter 2 when used for fitting a

spatially localized candidate residual stress field.

So far, we have demonstrated the utility of our residual stress basis functions ϕi by suc-

cessfully fitting given candidate residual stresses with them. In the next chapter, we solve

for a residual stress state, given its governing differential equation. For illustration, we

will consider the problem of non-uniform heating of a thermo-elastic annulus.



Chapter 6

Solution of a thermoelasticity

problem using residual stress basis

So far, we have used the residual stress basis functions ϕi to fit given residual stress

fields. In this chapter, we solve for a residual stress field given its governing differential

equation. For illustration, we consider the problem considered in Section 4.1.4 of non-

uniform heating of a thermoelastic annulus. There, we solved this problem numerically

by directly integrating the governing differential equations, and then fitted the solution

σ with ϕi to demonstrate that σ lies in the span of ϕi, as expected from the theory. In

this chapter, our aim is to solve for σ approximately using the weighted residual method,

which is summarized below.

Let us say that we wish to solve approximately for a variable x satisfying

Lx = f,

where we assume for simplicity that L is a linear differential operator and that x satisfies

some homogeneous boundary conditions. We choose a complete basis (χi) satisfying the

same boundary conditions as x and write

x =
N∑
i=1

aiχi

119
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for some sufficiently large N . We then impose the following N conditions on the residual

R = f −
N∑
i=1

ai Lχi to solve for the coefficients ai:

(R,wi) = 0, 1 ≤ i ≤ N,

where wi are some appropriate weighting functions and (·, ·) denotes an inner product.

The weighted residual methods with wi = χi and wi = Lχi are known as the Galerkin

method and the least squares method, respectively.1

In this chapter, we will solve the thermoelasticity problem using two weighted residual

approaches. The first approach is displacement based, where we use the free vibration

modes ui as the weighting functions (this approach is a special case of using virtual work,

ui being the virtual displacements [68]). In the second approach, we use the traces of the

residual stress basis functions ϕi as the weights. We see that a naive direct application

of the weighted residual method with ϕi gives us an incorrect solution. We then carefully

develop a correct approach to solving the thermoelasticity problem using the weighted

residual method with ϕi, obtaining a much faster convergence to the true solution in

comparison to the virtual work approach.

This chapter is arranged as follows. In Section 6.1, we describe the problem of non-uniform

heating of a thermoelastic annulus and present the complete boundary value problem. In

Section 6.2, we solve for the resulting residual stress approximately using the displacement

based virtual work method. We use two different displacement bases for this purpose: the

free vibration modes and the eigenfunctions of the Laplace operator, and find that the

approximate stresses converge to the true stress with both the bases, albeit slowly. In

Section 6.3, we solve the thermoelasticity problem using the weighted residual method

with traces of ϕi as the weights, obtaining some interesting new results along the way.

In Section 6.4, we construct a new residual stress basis whose elements are zero at the

boundary. We observe that this basis spans all residual stress fields in the L2 norm, and

residual stress fields with zero boundary value in the H1 norm. We use this basis to

solve a thermoelasticity problem whose true solution is a stress field which is zero on the

boundary, using the weighted residual method.

1The Galerkin method and the least squares method are examples of a class of approximation methods
called the ‘spectral methods’. See [67] for a comprehensive discussion of spectral methods.
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6.1 Problem description

We look at the thermoelasticity problem considered in Section 4.1.4. An initially unstressed

annulus with inner radius ra = 0.1 and outer radius rb = 0.3, obeying linear isotropic

elasticity, is subjected to the temperature field

T (r, θ) = r cos 3θ. (6.1)

The resulting residual stress σ is the solution to the following boundary value problem:

∆(trσ) = β∆T =
−8β cos 3θ

r
in Ω,

divσ = 0 in Ω,

σn = 0 on ∂Ω.

(6.2)

In the above, β =
−αY
1− ν

, where Y is the Young’s modulus, ν is the Poisson’s ratio, α is

the coefficient of thermal expansion, and trσ = σxx + σyy = σrr + σθθ is the sum of the

planar normal stress components. Since the problem is essentially 2D, we will refer to trσ

as the trace of σ henceforth.2

In Section 4.1.4, we solved this problem by converting Eqs. 6.2 into a system of two

second order ODEs in r by considering a σ with a fixed circumferential wave number,

and integrating those ODEs numerically. Our aim in this chapter is to find approximate

solutions using the weighted residual method. To this end, we use two approaches: the

displacement based virtual work method, and the weighted residual method with residual

stress basis ϕi.

In what follows, we will assume the following numerical values for the material constants:

Y = 1, α = 0.5 and ν = 0.33, in any consistent units.

6.2 Approximate solution using the virtual work method

6.2.1 Computation of the free vibration modes

For the sake of completeness, we discuss briefly how we have computed the free vibration

modes to be used in the virtual work method. We refer the interested reader to [68] for

2The trace of σ is σxx + σyy + σzz, while trσ is σxx + σyy. Since this is a plane strain problem, σzz is
non-zero, and the two are different.
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more details on free vibration modes.

Let u be a free vibration mode such that the corresponding modal stress is traction-free.

In view of the azimuthal dependence of T (Eq. 6.1), we assume u to be of the form

u(r, θ; t) = sinωt {ur(r) cos 3θ er + uθ(r) sin 3θ eθ} . (6.3)

In absence of any body force, the equation of motion is

div σ̃ = ρü,

where σ̃ = C∇su is the modal stress corresponding to u, C is the fourth order elasticity

tensor and ∇su is the symmetric part of gradient of u. Upon substituting Eq. 6.3 in the

above equation and simplifying, we obtain the following second order ODEs:

u′′r =−
4 ur ν

2ω2r2ρ+ 2 ur ν ω
2r2ρ− 2 ur ω

2r2ρ+ 2Y u′r ν r − 2Y u′r r − 3Y u′θ r

2Y r2 (ν − 1)

+
20 ur ν + 12 uθ ν − 11 ur − 9 uθ

2r2 (ν − 1)
,

u′′θ =−
4 ν2ω2r2ρ uθ + 2 ν ω2r2ρ uθ − 2ω2r2ρ uθ + 2Y u′θ ν r + 3Y u′r r − Y u′θ r − 12Y ν ur

Y r2 (2 ν − 1)

+
−20 ν uθ + 9 ur + 19 uθ

r2 (2 ν − 1)
.

(6.4)

We also have four boundary conditions: σ̃rr = σ̃rθ = 0 at r = ra and r = rb. In terms of

displacements, these become

u′r =
ν (3uθ + ur)

r (ν − 1)
at r = ra and r = rb,

u′θ =
uθ + 3ur

r
at r = ra and r = rb.

(6.5)

Finally, we scale the free vibration modes by setting

ur = 1 at r = ra. (6.6)

We solve the boundary value problem of Eqs. 6.4 - 6.6 numerically using ode45 in Matlab.

The first five free vibration modes are plotted in Figure 6.1, where we have taken ρ = 1.

We now use a large number of these free vibration modes to solve Eq. 6.2 using the virtual

work method.
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Figure 6.1: Radial variation of the first five free vibration modes with m = 3 in an
annulus, corresponding to free-free boundary condition.

6.2.2 Computation of approximate residual stress

Consider the inner product of the second of Eqs. 6.2 with a free vibration mode ui, i.e.,∫
Ω
divσ · ui dA = 0. (6.7)

Using the divergence theorem and the traction-free boundary condition (third of Eqs. 6.2),

Eq. 6.7 becomes ∫
Ω
σ · ∇ui dA = 0. (6.8)

The residual stress field σ can be expressed in terms of the displacement u as follows:

σ = Cεe = C
(
ε− εT

)
= C (∇su− αTI) . (6.9)

In the above, ε, εe and εT denote ‘total strain’, ‘elastic strain’ and ‘thermal strain’,

respectively; and I is the (3× 3) second order identity tensor. Substituting the above into

Eq. 6.8, we obtain ∫
Ω
(C∇su) · ∇ui dA = α

∫
Ω
T (CI) · ∇ui dA.

Since ui form a basis [3], we can write

u =
∞∑
j=1

ajuj .
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Substituting this into the preceding equation, we obtain

∞∑
j=1

aj

∫
Ω
(C∇suj) · ∇ui dA = α

∫
Ω
T (CI) · ∇ui dA.

Truncating the expansion in the above to N terms, and considering 1 ≤ i ≤ N , we obtain

a system of N linear equations in N coefficients aj . These equations can be written

compactly as

Ma = f,

where M is an N ×N matrix with

M(i, j) =

∫
Ω
∇ui · (C∇suj) dA

and f is an N × 1 column vector with

f(i) = α

∫
Ω
T (CI) · ∇ui dA.

If εi = ∇sui is the strain corresponding to the free vibration mode ui, and σi = Cεi =

C∇sui is the corresponding linear elastic stress, then M and f have the following simple

interpretations:

M(i, j) =

∫
Ω
εi · σj dA and f(i) = α

∫
Ω
Tσi · I dA.

The actual displacement u, along with the approximate displacements uN obtained with

N = 10, 20 and 100, are plotted in Figure 6.2. We see that this method works well if

displacements are considered.

However, the convergence of the corresponding approximate stress3

σA
N = C (∇suN − αTI)

to the actual stress σ is slow, as seen in Figure 6.3. The same is seen upon plotting the

squared relative error

EN =

∫
Ω(σ − σA

N ) · (σ − σA
N ) dA∫

Ω σ · σ dA

in Figure 6.4; EN decays like N−1 for large N .

3We use the superscript ‘A’ to distinguish between the approximate stresses obtained using the weighted
residual methods and the fits obtained by directly projecting the true stress solutions onto the basis, as in
Chapter 4. The latter will be denoted with a superscript ‘F’ in this chapter.
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Figure 6.2: Radial variation of the actual and the approximate displacements obtained
using the virtual work method, with 10, 20 and 100 free vibration modes.

We can also use the eigenfunctions of the Laplace operator

∆ũ+ λũ = 0

with boundary values that correspond to zero traction (i.e., the eigenfunctions satisfy the

boundary conditions in Eqs. 6.5) as the basis in the virtual work method. The results

with these functions are at par with those with the free vibration modes: the convergence

is fast for the displacements, but slow for the stresses. We show the fits with the Laplace

operator eigenfunctions for displacements and stresses in Figures 6.5 and 6.6, respectively;

the approximation error EN is plotted in Figure 6.7. We see that the convergence to the

true stress is slow: EN decays like 1/N for large N . Computational details are omitted

for brevity.

In the next section, we use ϕi to obtain the approximate stress, and study the convergence

obtained.
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Figure 6.3: Radial variation of the actual and the approximate stresses obtained using
the virtual work method, with 10, 20 and 100 free vibration modes.

Figure 6.4: Approximation error EN versus N with the free vibration modes. Left:
linear scale; right: log-log scale.
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Figure 6.5: Radial variation of the actual and the approximate displacements obtained
using virtual work, with 10, 20 and 100 Laplace operator eigenfunctions.

Figure 6.6: Radial variation of the the actual and the approximate stresses obtained
using virtual work, with 10, 20 and 100 Laplace operator eigenfunctions.
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Figure 6.7: Approximation error EN versus N using the Laplace operator eigenfunc-
tions. Left: linear scale; right: log-log scale.
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6.3 Approximate solution using the residual stress basis func-

tions ϕi

Since the basis functions ϕi already satisfy the divergence-free and the traction-free con-

ditions, we only need to worry about the first of Eqs. 6.2:

∆(trσ) = β∆T. (6.10)

Our aim in this section is to solve the above equation using the weighted residual method

with ϕi.

For brevity, for any second order tensor S, we will denote trS as S̄ from now on. In

particular, trϕi = ϕ̄i.

6.3.1 A direct (incorrect) application of the weighted residual method

We first try the simplest approach: write σ =

N∑
i=1

aiϕi in Eq. 6.10, take inner products

with ϕ̄i for 1 ≤ i ≤ N , and put the weighted residuals to zero. We then have the following

system of equations:

Ma = f,

where

M(i, j) =

∫
Ω
ϕ̄i∆ϕ̄j dA and f(i) = β

∫
Ω
∆T ϕ̄i dA.

Using the above expressions, we compute the coefficient vector a and compute a candidate

approximate stress σA
N . We plot σ̄ and σ̄AN in Figure 6.8 for N = 10, 20 and 100, σ being

the true solution. The approximate stress does not seem to be converging to the true

stress. The same is borne out by the plot of the approximation error

EN =

∫
Ω(σ̄ − σ̄AN )2 dA∫

Ω σ̄
2 dA

in Figure 6.9; we see EN saturating at about 0.686.

We also try the ‘least squares’ method: we seek ai that minimize

∫
Ω

(
∆σ̄AN − β∆T

)2
dA =

∫
Ω

(
N∑
i=1

ai∆ϕ̄i − β∆T

)2

dA.
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Figure 6.8: Radial variation of the actual and the approximate traces σ̄ and σ̄A
N using

the weighted residual method, with 10, 20 and 100 residual stress basis functions.

Figure 6.9: Approximation error EN versus N using the weighted residual method with
ϕi. Left: linear scale; right: log-log scale.

By setting the gradient of the above with respect to ai equal to zero, we obtain the following

set of N linear equations:

Ma = f,

with

M(i, j) =

∫
Ω
∆ϕ̄i∆ϕ̄j dA and f(i) = β

∫
Ω
∆T ∆ϕ̄i dA.

The least squares method does not do too well either; σ̄AN computed using the least squares

method is plotted in Figure 6.10 and the corresponding approximation error is plotted in
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Figure 6.11. In fact, EN converges to a value greater than unity. This solution is slightly

worse than nothing at all.

Figure 6.10: Radial variation of the actual and the approximate traces σ̄ and σ̄A
N using

least squares approximation, with 10, 20 and 100 residual stress basis functions.

Figure 6.11: Approximation error EN versus N using least squares approximation with
ϕi. Left: linear scale; right: log-log scale.

6.3.2 Reasons for the failure of the direct approach

To understand why the direct approach does not work, we first plot the fit σF obtained by

directly projecting the correct stress solution onto the basis functions ϕi (as in Chapter 4),

and its derivatives. From these plots, it becomes clear that the two factors that determine
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the success of a direct approach are: (a) the order of the differential operator in the

governing differential equation, and (b) the order of the convergence of the basis used.

6.3.2.1 The fit σF , and its derivatives

Suppose we directly project the correct stress solution onto the basis functions ϕi (as in

Chapter 4), and call that fit σF . We saw in Section 4.1.4 that the H1 norm of σ − σF

goes to zero, which means that the L2 norms of both the r-variation of σ̄− σ̄F and its first

derivative go to zero. We see this in the top row of Figure 6.12, where we have plotted the

r-variations of σ̄ and σ̄F (computed using 100 basis functions), and their first derivatives.

However, as seen in the bottom row of Figure 6.12, the second derivative of the r-variation

of σ̄F (and hence the r-variation of the Laplacian of σ̄F ) is highly oscillatory, and the L2

norm of ∆σ̄ −∆σ̄F is large. The squared relative L2 norm of ∆σ̄ −∆σ̄F ,

EN =

∫
Ω

(
∆σ̄ −∆σ̄F

)2
dA∫

Ω∆σ̄2 dA
,

increases with N , as seen in Figure 6.13.

We can now see why does the least squares method discussed above, for instance, not give

us the correct solution. It seeks a solution that minimizes the L2 norm of ∆σ̄−∆σ̄AN (for

a fixed N), and σ̄F is clearly not that solution. The L2 norm of ∆σ̄−∆σ̄F is much greater

than that of ∆σ̄ −∆σ̄AN , where σ̄AN is obtained from the least squares method.

6.3.2.2 What role do the operator and the basis play?

We saw in Chapter 2 that ϕi form a basis to residual stress fields in the H1 norm. Simi-

larly, the free vibration modes corresponding to the traction free boundary condition span

the displacements with the same boundary condition in the H1 norm. The governing

differential equations

∆ trσ = β∆T

and

divσ = 0

that are used in the stress and the displacement formulations of the weighted residual

approach, respectively, are both second order in the corresponding variables. Despite

these similarities, we see that the weighted residual method works with the free vibration
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Figure 6.12: Radial variation of σ̄ and σ̄F , and their r-derivatives. We see that the
second derivatives, and hence the Laplacians, do not match well.

modes in the displacement formulation, and does not work with the residual stress basis

functions in the stress formulation. The reason is that an application of the divergence

theorem in the displacement formulation yields a boundary term that drops out, lowering

the order of integrand in the domain integral (Eq. 6.7). An order reduction of this nature

is not possible in the stress formulation since the boundary term is non-zero.

In separate calculations not shown here, we have noted that if in the virtual work method

used in Section 6.2 we do not reduce the order of the integrand by using the divergence

theorem (while using the free vibration modes), we obtain an incorrect solution. This is

because the left hand side of the governing equation

div {C(∇su− αTI)} = 0
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Figure 6.13: Squared relative L2 norm of ∆σ̄ −∆σ̄F . Left: linear scale; right: log-log
scale.

has terms with second order derivatives of u; while the basis ui converges to u in the H1

norm, which only guarantees convergence up to first order derivatives.

These observations indicate that the convergence properties of the basis and the order of

the operator in the governing differential equation together determine if techniques like

the weighted residual method or the least squares method will work. If, after possible

removal of the boundary term upon using the divergence theorem, the highest order of

differentiation of the concerned variable is greater than the order of the norm in which the

basis converges, the method is unlikely to work.

With this insight, in the next section, we will exploit some properties of residual stress

traces to successfully solve the thermoelasticity problem using ϕi.

6.3.3 A characterization of harmonic functions in terms of planar resid-

ual stresses

In 2D, the ‘Airy stress function’ representation of an equilibrated stress,

σxx =
∂2ψ

∂y2
, σyy =

∂2ψ

∂x2
, σxy = − ∂2ψ

∂x∂y
, (6.11)

is complete, by which we mean that all stresses of the above form are divergence-free, and

for every divergence-free stress, there exists an Airy stress function ψ [60]. It follows from
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Eq. 6.11 that ψ is arbitrary up to an added factor of c1x+ c2y+ c3 for arbitrary constants

c1, c2 and c3, i.e., adding this to ψ does not change the corresponding stresses.

If the equilibrated stress is traction-free as well, i.e., it is a residual stress, then the neces-

sary and sufficient boundary conditions on ψ are (see Eq. 4.5.13 and 4.5.14 in [7]):

ψ = c4x+ c5y + c6 and ψ,n =
∂ψ

∂n
= c4nx + c5ny on ∂Ω,

where c4, c5 and c6 are arbitrary constants which can be chosen according to convenience.

For simplicity, we choose c4 = c5 = c6 = 0, so that

ψ = 0 and ψ,n = 0 on ∂Ω. (6.12)

This choice of the constants c4, c5 and c6 also exhausts the arbitrariness in ψ by fixing the

constants c1, c2 and c3. Thus, for a given planar residual stress σ, there corresponds a

unique Airy stress function ψ that satisfies the boundary conditions in Eq. 6.12.

Moreover, by the definition of the Airy stress function, any given ψ satisfying the boundary

conditions in Eq. 6.12 corresponds to a unique residual stress. Thus, we have established

that there is a one to one correspondence between the space of planar residual stresses

and the space of Airy stress functions satisfying the boundary condition in Eq. 6.12.

Note that the first condition in Eq. 6.12 implies that the derivative of ψ in the locally

tangential direction t is also zero, i.e.,

ψ,t = 0 on ∂Ω.

Since both normal and tangential derivatives of ψ are zero at the boundary, we have

∇ψ = 0 on ∂Ω.

In particular,

ψ,x = 0 and ψ,y = 0 on ∂Ω. (6.13)

We will use the above condition in a later section.

We also note that any residual stress trace σ̄ is the Laplacian of a unique scalar function

ψ satisfying the boundary conditions in Eq. 6.12 since

σ̄ = σxx + σyy =
∂2ψ

∂y2
+
∂2ψ

∂x2
= ∆ψ. (6.14)
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We use Eq. 6.14 to obtain a useful characterization of harmonic functions in 2D.

Proposition 6.1. A scalar function h in 2D is harmonic (i.e., ∆h = 0) if and only if it

is orthogonal to all residual stress traces.

Proof. Let h be a harmonic function. Consider its inner product with a residual stress

trace:∫
Ω
hσ̄ dA =

∫
Ω
h∆ψ dA =

∫
∂Ω
hψ,n ds−

∫
Ω
∇h∇ψ dA = −

∫
∂Ω
h,n ψ ds+

∫
Ω
∆hψ dA = 0.

The first equality in the above follows from Eq. 6.14; the second equality follows from the

divergence theorem; the third equality follows from the second of Eqs. 6.12 followed by

the divergence theorem; the final equality is because of the first of Eqs. 6.12 and the fact

that ∆h = 0.

We now prove the other side of the proposition. Let g be a scalar function whose inner

product with all residual traces is zero. Equivalently,∫
Ω
g∆ψ dA = 0

for all twice differentiable ψ satisfying the boundary conditions in Eq. 6.12. Using the

divergence theorem twice, along with the boundary conditions on ψ, we have∫
Ω
g∆ψ dA =

∫
Ω
∆g ψ dA = 0.

The considered ψ include the set of all smooth functions with derivatives of all orders zero

on the boundary (this set is usually denoted as C∞
c ), which in turn is dense4 in L2 [45].

Therefore,

∆g = 0.

We now use Proposition 6.1 to solve the thermoelasticity problem using the weighted

residual method with ϕi.

4If a set A is dense in a set B, then every element of B either belongs to A or is arbitrarily close to an
element of A.
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6.3.4 A correct application of the weighted residual method with ϕi

As we mentioned in the beginning of Section 6.3, since ϕi are already divergence-free and

traction-free, we only need to worry about the equation

∆(σ̄ − βT ) = 0,

i.e., σ̄ − βT is harmonic. According to Proposition 6.1, this is equivalent to writing∫
Ω
(σ̄ − βT )χdA = 0

for all residual stress traces χ. But ϕ̄i span the set of residual stress traces5, and hence,

the above is equivalent to ∫
Ω
(σ̄ − βT ) ϕ̄i dA = 0 ∀ ϕ̄i.

Writing σ̄ =
∞∑
j=1

ajϕ̄j , we have

∫
Ω

 ∞∑
j=1

ajϕ̄j

 ϕ̄i dA = β

∫
Ω
T ϕ̄i dA.

Truncating the expansion to N terms, and considering 1 ≤ i ≤ N , we set up a system of

N linear equations

Ma = f,

where

M(i, j) =

∫
Ω
ϕ̄i ϕ̄j dA and f(i) = β

∫
Ω
T ϕ̄i dA. (6.15)

We know that this time the approximations σA
N will converge quickly to σ because ϕi

form a basis in the H1 norm, whereas all we require for the above approach to work is

that ϕi form a basis in the L2 norm.

5Any residual stress trace χ̃ = tr σ̃ for some residual stress σ̃, and σ̃ =
∞∑
i=1

ãiϕi for some unique

coefficients ãi. Thus, χ̃ =

∞∑
i=1

ãiϕ̄i, and we have shown that an arbitrary residual stress trace χ̃ can be

represented as a unique linear combination of the functions ϕ̄i. Thus, ϕ̄i span the set of residual stress
traces.
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We plot the approximations σA
N , along with the actual stress σ, in Figure 6.14 for N =

10, 20 and 100. We plot the approximation error

EN =

∫
Ω(σ − σA

N ) · (σ − σA
N ) dA∫

Ω σ · σ dA

in Figure 6.15. We see that the convergence is rapid, EN decays like 1/N3 for large N .

We note that this convergence is much faster than that obtained using the displacement

based virtual work method (Figures 6.4 and 6.7).

Figure 6.14: Radial variation of the actual and the approximate stresses with a correct
application of the weighted residual method, using 10, 20 and 100 residual stress basis

functions ϕi.

We can simplify the expressions in Eq. 6.15 using the following interesting result for residual

stresses in 2D.
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Figure 6.15: Approximation error EN versus N with a correct application of the
weighted residual method using ϕi. Left: linear scale; right: log-log scale.

Proposition 6.2. The inner product of any two planar residual stresses σ1 and σ2 is

equal to the inner product of their traces, i.e.,∫
Ω
σ1 · σ2 dA =

∫
Ω
σ̄1 σ̄2 dA.

Proof. Let the Airy stress functions corresponding to σ1 and σ2 be ψ1 and ψ2. We will

assume that ψ1 and ψ2 possess the regularity required for all the operations in this proof.

Consider the quantity

∫
Ω
ψ1,xy ψ2,xy dA. Using Green’s theorem, and boundary conditions

on ψ1 and ψ2 (Eqs. 6.12 and 6.13), we have∫
Ω
ψ1,xy ψ2,xy dA = −

∫
∂Ω
ψ1,xy ψ2,x dx−

∫
Ω
ψ1,xyy ψ2,x dA

= −
∫
∂Ω
ψ1,xyy ψ2 dy +

∫
Ω
ψ1,xxyy ψ2 dA =

∫
Ω
ψ1,xxyy ψ2 dA.

Similarly,∫
Ω
ψ1,yy ψ2,xx dA =

∫
∂Ω
ψ1,yy ψ2,x dy −

∫
Ω
ψ1,yyx ψ2,x dA

= −
∫
∂Ω
ψ1,yyx ψ2 dy +

∫
Ω
ψ1,yyxx ψ2 dA =

∫
Ω
ψ1,yyxx ψ2 dA =

∫
Ω
ψ1,xxyy ψ2 dA.

From the above two equations, we have that∫
Ω
ψ1,xy ψ2,xy dA =

∫
Ω
ψ1,yy ψ2,xx dA. (6.16)
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We can similarly show that∫
Ω
ψ1,xy ψ2,xy dA =

∫
Ω
ψ1,xx ψ2,yy dA. (6.17)

Let us now consider the inner product of σ1 and σ2. Using the above two identities, we

have ∫
Ω
σ1 · σ2 dA =

∫
Ω
(σ1xxσ2xx + σ1yyσ2yy + 2σ1xyσ2xy) dA

=

∫
Ω
(ψ1,yyψ2,yy + ψ1,xxψ2,xx + 2ψ1,xyψ2,xy) dA

=

∫
Ω
(ψ1,yyψ2,yy + ψ1,xxψ2,xx + ψ1,xxψ2,yy + ψ1,yyψ2,xx) dA

=

∫
Ω
(ψ1,xx + ψ1,yy) (ψ2,xx + ψ2,yy) dA =

∫
Ω
σ̄1σ̄2 dA.

This completes the proof.

Using the above proposition, we conclude that the traces ϕ̄i of the orthonormal basis

functions ϕi are also orthonormal. As a result, the matrix M in Eq. 6.15 is simply the

identity matrix. Consequently, a = f , and

a(i) = β

∫
Ω
T ϕ̄i dA.

If ψi is the Airy stress function corresponding to ϕi, then using Green’s theorem and the

boundary conditions in Eqs. 6.12 and 6.13, we have

a(i) = β

∫
Ω
T ϕ̄i dA = β

∫
Ω
T ∆ψi dA = β

∫
Ω
∆T ψi dA,

which implies that a(i) = 0 ∀ i if T is harmonic. Thus, we obtain the well known result

for linear isotropic elastic materials: only a non-harmonic rise in temperature can induce

strain incompatibility, and hence, non-zero residual stress (e.g., see Problem 17.4 of [8]).

Proposition 6.2 can be used to prove the following interesting corollary regarding deter-

minants of planar residual stresses.

Corollary 6.3. The mean (or average) of the determinant of a planar residual stress is

zero.
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Proof. The determinant of a planar residual stress σ is

detσ = σxxσyy − σ2xy = ψ,yyψ,xx − ψ2
,xy.

Setting ψ1 = ψ2 = ψ in Eq. 6.16, we immediately obtain that∫
Ω
detσ dA =

∫
Ω

(
ψ,yyψ,xx − ψ2

,xy

)
dA = 0.

In the next section, we construct a new basis for residual stresses, one whose elements

are zero at the boundary. With this basis, a direct application of the weighted residual

method gives us the correct solution if the true stress is also zero at the boundary.

6.4 A new basis for residual stresses

The eigenfunctions of the Laplace operator with zero boundary value form a basis for the

space of all scalar square integrable functions (including those which are non-zero on the

boundary) on a given domain [64]. Motivated by this, we construct a new basis for residual

stresses, one whose elements are zero at the boundary. The construction will be identical

to that presented in Chapter 2, the only significant difference being that the set S over

which the functional J0 is minimized (see Sections 2.1 and 2.2) will now consist of tensors

which are zero on the boundary.6

These basis functions, denoted as Φi, span the set of those residual stresses which are zero

on the boundary in the H1 norm, and the set of all residual stresses (i.e., including the

ones not zero on the boundary) in the L2 norm. Moreover, for a residual stress σ which

is zero on the boundary, σ −
N∑
i=1

aiΦi → 0 implies that ∆σ − ∆

(
N∑
i=1

aiΦi

)
→ 0 in a

sense we will make precise below. We will use this last property to demonstrate that in a

thermoelasticity problem whose true solution is a residual stress with zero boundary value,

a direct application of the weighted residual method with Φi as the weights gives us the

correct solution.

6It is difficult to think of practical situations in which all the components of a residual stress are zero
on the boundary. However, consideration of this basis provides us with useful insights into the workings
of the approximation methods we have been discussing.
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6.4.1 Construction of the new basis

We seek the stationary points of the functional

J0(σ) =
1

2

∫
Ω
∇σ · ∇σ dA (6.18)

over those elements of the set

S =

{
σ

∣∣∣∣σ ∈ Sym, divσ = 0, σ |∂Ω = 0,

∫
Ω
σ · σ dA <∞,

∫
Ω
∇σ · ∇σ dA <∞

}
,

(6.19)

which satisfy ∫
Ω
σ · σ dA = 1.

Note that the set S differs from that in Chapter 2 only in the boundary condition satisfied

by its elements: σ = 0 here and σn = 0 in Chapter 2. Proceeding along lines identical

to the construction in Chapter 2, we find that a stationary point σ satisfies the following

eigenvalue problem

−∆σ +∇sµ = λσ in Ω,

divσ = 0 in Ω,

σ = 0 on ∂Ω.

It is easily seen that the eigenfunctions Φi are mutually orthogonal with respect to both

the L2 and the H1 inner products. The proof of existence of the eigenfunctions and the

fact that they form a basis for the set of residual stresses with zero boundary value in the

H1 norm, and the set of all residual stresses in the L2 norm, is almost identical to the

one presented in Chapter 2, and is omitted (for more details, see Section 7.6). This last

property is closely related to a similar property of the zero boundary value eigenfunctions

of the Laplace operator and the zero boundary value eigenfunctions of the Stokes operator:

the former provide an L2 basis for all scalar functions [64], and the latter form an L2 basis

for all divergence-free vector fields [43].

We plot the first four eigenfunctions on an annular domain corresponding to wave number

m = 3 in Figure 6.16. We scale the eigenfunctions by setting σ′θθ = 1 at the inner boundary

r = ra.

Before moving on to using the weighted residual method with Φi, we demonstrate that

Φi span even those residual stress fields that are non-zero on the boundary. We fit the
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Figure 6.16: Radial variation of the first four residual stress eigenfunctions Φi for the
annular domain, with m = 3.

thermoelastic residual stress field considered in the previous sections of this chapter (Eq.

6.2) using Φi, and plot the corresponding stress components in Figure 6.17. We plot the

fitting error EN in Figure 6.18. It is clear from these figures that the fits σF converge to

σ in the L2 norm as N increases. However, the convergence is slow: EN decays like 1/N

for large N . Recall that with our usual residual stress basis functions ϕi, EN decays like

1/N3 for large N for the same residual stress σ (see Figure 4.10).

The eigenfunctions Φi satisfy another important property that will be useful while using

the weighted residual method: if for a residual stress σ which is zero at the boundary,

N∑
i=1

aiΦi → σ, (6.20)
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Figure 6.17: Radial variation of the thermal stress σ of Section 6.1 and its fits σF using
10, 20 and 50 residual stress basis functions Φi.

then,

∆

(
N∑
i=1

aiΦi

)
→ ∆σ. (6.21)

Moreover, the rate of convergence in Eq. 6.21 is the same as the rate of convergence in

Eq. 6.20 (the convergence in Eq. 6.20 is in the H1 norm). The proof is technical, and

we omit it. However, we point out that the proof is along similar lines to the proof of

an identical property exhibited by the zero boundary value scalar eigenfunctions ũi of the

Laplace operator. This property is as follows. If u0 is a scalar function with zero boundary

value and
N∑
i=1

aiũi → u0, (6.22)
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Figure 6.18: Fitting error EN versus N for fitting of the thermal stress σ of Section 6.1
using Φi. Left: linear scale; right: log-log scale.

then

∆

(
N∑
i=1

aiũi

)
→ ∆u0. (6.23)

The above is true because the Laplace operator is an isomorphism from H1
0 (the set of

scalar functions with finite H1 norm and zero boundary value) to H−1 (the dual space

of H1
0 ) [64]. Moreover, according to the definition of an isomorphism between Banach

spaces7, there exist constants C1 and C2 such that8

C1∥u0 −
N∑
i=1

aiũi∥H1 ≤ ∥∆u0 −
N∑
i=1

ai∆ũi∥H−1 ≤ C2∥u0 −
N∑
i=1

aiũi∥H1 ,

i.e., the rate of convergence in Eq. 6.23 is the same as the rate of convergence in Eq. 6.22

(the convergence in Eq. 6.22 is in the H1 norm). We omit further technical details.

In the next section, we consider a thermoelastic annulus heated in such a way that the

resulting residual stress is zero at the boundary. We will see that with a direct application

of the weighted residual method with Φ̄i as the weights gives us the correct solution.

7Let P and Q be two Banach spaces equipped with norms ∥·∥P and ∥·∥Q. Let p be an arbitrary element
in P and q = Sp. An isomorphism S : P → Q is a continuous bijective map, with a continuous inverse, so
that there exist constants C1 and C2 independent of p and q, that satisfy C1 ∥p∥P ≤ ∥q∥Q ≤ C2 ∥p∥P .

8The norm of a function f ∈ H−1 defined on Ω is ∥f∥H−1 = sup
{
|f(g)| : ∥g∥H1 = 1 and g ∈ H1

}
.
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6.4.2 Weighted residual method with Φi

We first construct a thermoelasticity problem in which the resulting residual stress is zero

at the boundary. Let the applied temperature T be of the form

T =
(
r + c1r

2 + c2r
4
)
cos 3θ,

so that

β∆T = β

(
−8

r
− 5c1 + 7c2r

2

)
cos 3θ. (6.24)

The free parameters c1 and c2 are to be determined so that the resulting residual stress σ

is zero at the boundaries. σ satisfies the following ODE system (see Eqs. 4.7 and 4.8)

(σrr + σθθ)
′′ +

(σrr + σθθ)
′

r
− 9(σrr + σθθ)

r2
= β

(
−8

r
− 5c1 + 7c2r

2

)
,

σ′′rr +
4σ′rr
r

−
σ′θθ
r

+
2σrr
r2

+
7σθθ
r2

= 0.

We see from Eq. 4.9 that with σrr = σθθ = 0 at the boundary, the condition σrθ = 0 implies

that σ′rr = 0 at the boundary. We therefore have the following boundary conditions on

σrr and σθθ:

σrr = σ′rr = σθθ = 0 at r = ra and r = rb.

We solve this boundary value problem numerically (taking β = 1 and iteratively adjusting

c1 and c2) and obtain the required stress σ. The parameters c1 and c2 are found as part

of the solution to be

c1 = −13.04 and c2 = −77.14. (6.25)

We now show that we can also solve the above problem (with c1 and c2 as given in Eq.

6.25) using the weighted residual method, with Φ̄i as the weighting functions. Since Φi

are already divergence-free and zero at the boundary, the only equation we need to worry

about is (recall that β = 1)

∆σ̄ = ∆T.
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Substituting σ̄ =

N∑
i=1

ajΦ̄j , and taking the inner product of the above with Φ̄1 through

Φ̄N , we obtain N linear equations arranged as9.

Ma = f,

where

M(i, j) =

∫
Ω
∆Φ̄jΦ̄i dA and f(i) =

∫
Ω
∆T Φ̄i dA.

We plot the approximate solutions σA
N , along with the actual stress σ, in Figure 6.19 for

N = 10, 20 and 50. We also plot the approximation error

EN =

∫
Ω(σ − σA

N ) · (σ − σA
N ) dA∫

Ω σ · σ dA

in Figure 6.20. We see that the convergence is rapid; EN decays like 1/N6 for large N .10

9Although a reduction in order of derivatives is possible through the divergence theorem (since Φi are
zero on the boundary), it is not needed since the rate of convergence of the Laplacians of the approximants
to the Laplacian of the true solution is the same as the rate of convergence of the approximants to the true
solution, as noted earlier (see the comment following Eq. 6.21)

10We have verified in calculations not shown here that the least squares method with Φi also works just
as well for this problem.
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Figure 6.19: Radial variation of the actual and the approximate stresses using the
weighted residual method with 10, 20 and 50 residual stress basis functions Φi.
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Figure 6.20: Approximation error EN versus N using residual stress basis functions Φi.
Left: linear scale; right: log-log scale.
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6.5 Summary of the chapter

This chapter was devoted to solving a thermoelasticity problem with the weighted residual

method using the residual stress basis functions ϕi. We considered the problem of non-

uniform heating of a thermoelastic annulus that induces strain incompatibility and renders

the annulus residually stressed. We first solved for the approximate stress using the virtual

work method employing two standard displacement bases: the free vibration modes and

the eigenfunctions of the Laplace operator, both corresponding to the free-free boundary

condition (Eq. 6.5). We saw that the approximated stress converges to the true stress,

but the convergence is slow. Subsequently, we first used ϕi to approximate the stress

using the weighted residual method directly, but without success. We then derived a

useful characterization of harmonic functions in terms of residual stresses, using which we

did a different weighted residual calculation and obtained the correct approximate stress

using ϕi. The corresponding convergence was much faster than that obtained using the

displacement based virtual work method. In the final section, we developed a new residual

stress basis, one whose elements are zero at the boundary. We showed that if this new basis

is used in a direct application of the weighted residual method to solve a thermoelasticity

problem whose true solution is a residual stress field which is also zero at the boundary,

then approximate solutions converge even more rapidly to the true solution.

We also discovered some new results along the way. We showed that a scalar function

in 2D is harmonic if and only if it is orthogonal to all residual stress traces. This result

is new because the study of residual stresses has so far been tied to the physical origins

thereof, and such general properties have not been studied much. We proved that the

inner product of any two planar residual stresses is equal to the inner product of their

traces. We also showed that the mean of determinant of a planar residual stress is zero.

Perhaps the main practical takeaway from this chapter for an engineering audience is the

insight into approximation methods like the weighted residual method or the least squares

approximation method. We saw that for the thermoelasticity problem considered in this

chapter, success depended on whether the basis used converges in the norm dictated by the

order of the differential operator in the governing equation, after reduction to the lowest

possible order using the divergence theorem (or similar manipulations).

We also obtained the following useful insight into the Galerkin method. When considering

the weighted residual of the governing differential equation with a basis function, it is

useful to integrate by parts or use the divergence theorem to see if the resulting boundary

term drops out on account of a boundary condition satisfied by the true solution. The
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resulting domain integral then has differentials of a reduced order, which allows us to

choose the basis functions from a bigger space.

Finally, this chapter demonstrated direct use of the residual stress basis functions ϕi in

solving forward problems using the weighted residual method. There is no comparable

published result in the mechanics literature to the best of our knowledge.



Chapter 7

Comments on the modified

extremization problems studied in

this thesis

To obtain a basis for residual stress fields in Chapter 2, we used an indirect approach: we

extremized a quadratic functional involving the gradient of an input stress and obtained a

linear eigenvalue problem involving its Laplacian. The proof that the eigenfunctions exist

and form a basis was lengthy and technical.

In subsequent chapters, we repeatedly employed this indirect approach of extremizing

quadratic functionals involving gradient of an input field and obtained eigenvalue problems

similar to the one obtained in Chapter 2. We showed that these eigenvalue problems

yielded orthogonal sequences of eigenfunctions which were used for fitting or interpolation

applications. In each of these applications, we assumed without proof that the sequence

forms a basis for the corresponding space, and the excellent numerical support obtained

justified our assumption.

Since these extremization problems (and the corresponding eigenvalue problems) are sim-

ilar to that of Chapter 2, proofs that the corresponding sequences form bases could be

attempted along similar lines, requiring only minor modifications. In this chapter, we dis-

cuss how the proof of Chapter 2 could be adapted for the modified extremization problems.

This chapter is arranged as follows. In Section 7.1, we present an outline of the proof

presented in Chapter 2 for reference. In Section 7.2, we discuss the 1D eigenfunctions f ,

which have zero mean and zero boundary value, considered in Section 3.2.3.1. In Section

152
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7.3, we discuss the axial stress eigenfunctions ϕzz considered in Problem 2 of Section 5.1.2.

In Section 7.4, we discuss the eigenfunctions v corresponding to the out of plane shear

stresses considered in Problem 3 of Section 5.1.2. In Section 7.5, we discuss the spatially

localized eigenfunctions φ considered in Section 5.2.2. Finally, in Section 7.6, we discuss

the residual stress eigenfunctions with zero boundary value Φ, which were obtained in

Section 6.4.

7.1 An outline of the proof presented in Chapter 2

To recall, we considered the following extremization problem in Chapter 2:

Find the stationary points of the functional

J0(σ) =
1

2

∫
Ω
∇σ · ∇σ dA (7.1)

in the set

S =

{
σ

∣∣∣∣σ ∈ Sym, divσ = 0, σn|∂Ω = 0,

∫
Ω
σ · σ dA <∞,

∫
Ω
∇σ · ∇σ dA <∞

}
,

(7.2)

subject to the normalization constraint

∫
Ω
σ · σ dA = 1.

We showed that the stationary points ϕ are the solutions of a linear eigenvalue problem,

and are mutually orthogonal in the L2 inner product. The proof that they span S, pre-
sented in Chapter 2 can be divided into two major parts: (1) assuming the existence of

the eigenfunctions and proving by contradiction that they span S, and (2) proving that

the eigenfunctions exist.

We enumerate below the major steps involved in part (1):

Step 1a: We first showed that there are infinitely many eigenfunctions. To do so, we

argued by contradiction, and assumed that there are only N eigenfunctions ϕ1 to ϕN .

We extremized J0 within SN⊥, the orthogonal complement of the span SN of ϕk within

S. Using the orthogonality relations satisfied by ϕk, we showed that the solution of this

new extremization problem satisfies the same conditions as ϕk, obtaining a contradiction.

Hence, the eigenfunctions are infinitely many.

Step 1b: We then showed that the eigenfunctions span S, again arguing by contradiction.

We assumed that the eigenfunctions span a subspace S∞ of S and extremized J0 within

S∞⊥, the orthogonal complement of S∞ within S. We showed that the extremizer satisfies
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the same conditions as ϕk, again obtaining a contradiction. Hence, the eigenfunctions

span S.

Part (2) of the proof, in which we showed that the minimizers of J0 exist in the unit ball

P of S, contained the following major steps:

Step 2a: To begin with, we noted that the problems of minimizing J0(σ) and minimizing

Ĵ(σ) = (2J0(σ))
1
2 =

(∫
Ω
∇σ · ∇σ dA

) 1
2

are equivalent. Since, the values of Ĵ evaluated

in P have a greatest lower bound ψ0, there exists a minimizing sequence (σn) in P such

that

lim
n→∞

Ĵ(σn) = ψ0.

Step 2b: Since residual stresses have zero mean, we were able to use Poincaré’s inequality

to show that (σn) is bounded in the H1 norm. Consequently, there is a subsequence (σnk
)

that converges weakly in the H1 norm and strongly in the L2 norm to some σ0.

Step 2c: We then showed that σ0 belongs to the set P.

Step 2d: We showed that Ĵ is weak lower semi-continuous in the H1 norm. Using this

and Step 2a, we concluded Ĵ(σ0) = ψ0. Hence, at least one minimizer σ0 exists in the

unit ball of S.

Step 2e: The same line of argument was invoked repeatedly to show the existence of a

minimizer in each SN⊥, N ∈ N.

We will see that for each of the extremization problems discussed in the subsequent chap-

ters, a proof could be constructed along the same template as above, with small modifi-

cations to accommodate the requirements of each problem.

7.2 1D eigenfunctions f of Section 3.2.3.1

In Section 3.2.3.1, we obtained a sequence of 1D functions fk(ξ) defined on the unit interval

0 ≤ ξ ≤ 1 such that each of these functions has zero mean and is zero on the boundary.

We assumed there, without proof, that fk(ξ) span the set of functions on the same domain

having zero mean and zero boundary values. We discuss below the modifications required

if we were to construct a proof along the lines of Section 7.1.

Recall that we considered the following extremization problem in Section 3.2.3.1:
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Find the stationary points of the functional

F0(g) =
1

2

∫ 1

0
g′2 dξ

in the set

S =

{
g

∣∣∣∣g(0) = g(1) = 0,

∫ 1

0
g dξ = 0,

∫ 1

0
g2 dξ <∞,

∫ 1

0
g′2 dξ <∞

}
, (7.3)

subject to the normalization constraint
1

2

∫ 1

0
g2 dξ = 1. Let us denote the set of g belonging

to S and satisfying this constraint as P.

While the extremized functional is the same as that in Section 7.1, the set in which the

extremizers are sought differs in the following aspects:

� g are 1D scalar functions while σ are symmetric second order tensor fields.

� There is no pointwise divergence constraint on g.

� g are zero at the boundary, while the t⊗ t component of σ may be non-zero at the

boundary.

� g satisfy an explicit integral constraint: they have zero mean. Note that while σ also

satisfy this constraint, it does not need to be enforced explicitly because it follows

from σ being divergence-free and traction-free.

We now run through Steps 1a through 2e of Section 7.1 and point out what changes due

to the above differences.

Steps 1a and 1b: Since the eigenfunctions fk satisfy the orthogonality conditions (Eq.

3.27) ∫ 1

0
f ′if

′
j dξ =

∫ 1

0
fifj dξ = 0, i ̸= j,

we obtain the same contradictions as Section 7.1, and we conclude that fk span the set S
and its closure S̄.

Step 2a Since the extremized functional is the same, we obtain a minimizing sequence

(gn) here too.

Step 2b: Since the functions g have zero mean, we can use the Poincaré’s inequality to

show that (gn) is bounded in the H1 norm. Moreover, since g are zero on the boundary,
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(gn) belongs to the Sobolev space H1
0 (the set of functions which have a finite H1 norm

and zero boundary value). Thus, there is a subsequence (gnk
) that converges weakly in

the H1 norm and strongly in the L2 norm to some g0 ∈ H1
0 .

Step 2c: In showing that g0 belongs to P, we need to pay attention to the two conditions

that we did not encounter in the proof of Section 7.1.The first condition is that g0 is zero

on the boundary; this is obvious since it belongs to the space H1
0 . The second condition

is that g0 has zero mean, i.e., ∫ 1

0
g0 dξ = 0.

However, the above can be easily shown using the fact that gnk
converges strongly in the

L2 norm to g0, as follows:

∣∣∣∣∫ 1

0
g0 dξ

∣∣∣∣ =
∣∣∣∣∣∣∣∣
∫ 1

0
(g0 − gnk

) dξ +
�

�
�
��
0∫ 1

0
gnk

dξ

∣∣∣∣∣∣∣∣ ≤ ∥g0 − gnk
∥L2 ∥1∥L2 → 0,

where the inequality follows from the Cauchy-Schwartz inequality.

Step 2d and 2e: These steps are identical to the corresponding steps in Section 7.1.

7.3 Axial stress eigenfunctions ϕzz of Section 5.1.2

In Problem 2 of Section 5.1.2, we obtained a sequence of orthogonal functions ϕzz corre-

sponding to axial stresses that transmit zero net force and zero net bending moment across

any lateral cross-section in a long prismatic body. To recall, these functions are solutions

of the following extremization problem:

Find the stationary points of the functional

J0(σzz) =
1

2

∫
Ωl

∇σzz · ∇σzz dA

in the set

S =

{
σzz

∣∣∣∣∫
Ωl

σ2zz dA <∞,

∫
Ωl

∇σzz · ∇σzz dA <∞,

∫
Ωl

σzz dA = 0,

∫
Ωl

rσzz dA = 0

}
,

subject to the constraint

∫
Ωl

σ2zz dA = 1. We denote the set of unit-norm elements belong-

ing to S as P.
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Again, the functional whose stationary points are sought is the same as that in Section 7.1.

However, the set in which the stationary points are sought differs from the corresponding

set in Section 7.1 in the following aspects:

� σzz are 1D scalar functions while σ are symmetric second order tensor fields.

� There is no pointwise divergence constraint on σzz.

� σ satisfies the traction-free boundary condition, while there is no condition on the

boundary on σzz.

� σzz satisfy the explicit integral constraint of having zero mean. We repeat that while

σ also satisfy this constraint, it does not need to be enforced explicitly because it

follows from σ being divergence-free and traction-free.

� σzz also satisfy an additional integral constraint of having zero first moment:∫
Ωl

rσzz dA = 0.

As before, we look at Steps 1a through 2e and point out the modifications required.

Steps 1a and 1b: Since the eigenfunctions ϕzzk satisfy the orthogonality conditions (Eq.

5.10) ∫
Ωl

ϕzzi ϕzzj dA =

∫
Ωl

∇ϕzzi · ∇ϕzzj dA = 0,

we obtain the same contradictions as Section 7.1, and we conclude that ϕzzk span the set

S and its closure S̄.

Step 2a Since the extremized functional is the same, we obtain a minimizing sequence

(σzzn) here too.

Step 2b: Since the functions σzz have zero mean, we can use Poincaré’s inequality to

show that (σzzn) is bounded in the H1 norm. Thus, there is a subsequence (σzznk
) that

converges weakly in the H1 norm and strongly in the L2 norm to some σzz0.

Step 2c: In showing that σzz0 belongs to P, we need to pay attention to the two conditions

involving the integral constraints that we did not encounter in the proof of Section 7.1.

Let us look at them one by one.

We first show that ∫
Ωl

σzz0 dA = 0.
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Using the fact that each member of the sequence (σzznk
) has zero mean, and that this

sequence converges strongly in the L2 norm to σzz0, we have

∣∣∣∣∫
Ωl

σzz0 dA

∣∣∣∣ =
∣∣∣∣∣∣∣
∫
Ωl

(σzz0 − σzznk
) dA+

�
�
�

��>
0∫

Ω
σzznk

dA

∣∣∣∣∣∣∣ ≤ ∥σzz0 − σzznk
∥L2 ∥1∥L2 → 0,

where the inequality follows from the Cauchy-Schwartz inequality.

We also need to show that ∫
Ω
rσzz0 dA = 0.

Again, using the fact that each member of the sequence (σzznk
) satisfies the above condi-

tion, we have

∣∣∣∣∫
Ωl

rσzz0 dA

∣∣∣∣ =
∣∣∣∣∣∣
∫
Ωl

r (σzz0 − σzznk
) dA+

�
�����*

0∫
Ωl

rσzznk
dA

∣∣∣∣∣∣ ≤ ∥r (σzz0 − σzznk
)∥L2 ∥1∥L2

≤ ∥r∥∞
√
|Ωl| ∥σzz0 − σzznk

∥L2 → 0,

where ∥r∥∞ is the supremum of magnitude of r on Ωl and |Ωl| is the area of Ωl.

Step 2d and 2e: These steps are identical to the corresponding steps in Section 7.1.

7.4 Out of plane shear stress eigenfunctions v of Section

5.1.2

In Problem 3 of Section 5.1.2, we obtained functions v with the following orthogonality

property (Eq. 5.16):∫
Ωl

vi · vj dA =

∫
Ωl

∇vi · ∇vj dA = 0, i ̸= j.

These functions correspond to the out of plane shear stress components in an infinitely

long prismatic body with no stress variation in the axial direction. They are solutions of

the following extremization problem:

Find the stationary points of the functional

J0(v) =
1

2

∫
Ωl

∇v · ∇v dA
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over the set

S =

{
v

∣∣∣∣divv = 0, v · n|∂Ωl
= 0,

∫
Ωl

v · v dA <∞,

∫
Ωl

∇v · ∇v dA <∞,

∫
Ωl

r × v dA = 0

}
,

subject to the normalization constraint

∫
Ωl

v ·v dA = 1. We denote the set of v belonging

to S and satisfying this normalization constraint as P.

The set in which the stationary points are sought differs from that of Section 7.1 in the

following:

� v are vector fields while σ are symmetric second-order tensor fields.

� v satisfy an additional integral constraint corresponding to zero net torque:∫
Ωl

r × v dA = 0.

Thus we see that the above problem differs from that of Section 7.1, apart from the order

of the input field, only in the presence of an additional integral constraint in the former.

We have seen in the previous sections that this has a bearing only on Step 2c of the proof

template that we have been following, wherein we need to show that the limit v0 of the

minimizing sequence (vn) satisfies ∫
Ωl

r × v0 dA = 0.

We show this now. Let us first note that since r and un = v0 − vn are planar vectors,

r × un = (xuyn − yuxn) ez,

where uxn = un · ex and uyn = un · ey. Then,∣∣∣∣∫
Ωl

r × v0 dA
∣∣∣∣ = ∣∣∣∣∫

Ωl

r × (v0 − vn) dA+

∫
Ωl

r × vn dA
∣∣∣∣ = ∣∣∣∣∫

Ωl

r × un dA

∣∣∣∣
=

∣∣∣∣∫
Ωl

(xuyn − yuxn) dA

∣∣∣∣ ≤ ∥xuyn − yuxn∥L2 ∥1∥L2 .

(7.4)

(vn) converging strongly to v0 in the L2 norm means that

∥v0 − vn∥2L2 = ∥un∥2L2 → 0,
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which in turn implies that ∫
Ωl

(
u2xn + u2yn

)
dA→ 0,

or, ∫
Ωl

u2xn dA→ 0 and

∫
Ωl

u2yn dA→ 0. (7.5)

So,

∥xuyn − yuxn∥2L2 =

∫
Ωl

(xuyn − yuxn)
2 dA =

∫
Ωl

(
x2u2yn + y2u2xn − 2xyuxnuyn

)
dA

≤
∫
Ωl

(
x2u2yn + y2u2xn + 2|x||y||uxn||uyn|

)
dA

≤
∫
Ωl

{
x2u2yn + y2u2xn + |x||y|

(
u2xn + u2yn

)}
dA

≤ ∥x∥2∞
∫
Ωl

u2yn dA+ ∥y∥2∞
∫
Ωl

u2xn dA+ ∥xy∥∞
∫
Ωl

(
u2xn + u2yn

)
dA→ 0,

where in the last step we have used Eq. 7.5. Substituting the above result in Eq. 7.4, we

obtain ∫
Ωl

r × v0 dA = 0.

The rest of the proof follows along identical lines to that in Section 7.1.

7.5 Spatially localized residual stress eigenfunctions φ of

Section 5.2.2

In Section 5.2.2, we obtained a sequence of functions (φn) which are localized in a 2D

region, decaying rapidly away from it. These functions are the solutions of the following

extremization problem:

Find the stationary points of the functional

J0(σ) =
1

2

∫
Ω
w1∇σ · ∇σ dA

in the set

S =

{
σ

∣∣∣∣σ ∈ Sym, divσ = 0, σn|∂Ω = 0,

∫
Ω
σ · σ dA <∞,

∫
Ω
∇σ · ∇σ dA <∞

}
.
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subject to the normalization constraint∫
Ω
w2 σ · σ dA = 1.

We denote the set of σ that belong to S and satisfy the above constraint as P.

We assumed that w1 and w2 are smooth functions which are positive everywhere.

This time we see that the set over which the stationary points of the functional are sought

is the same as that in Section 7.1, however the functional itself includes an extra weighting

function. Moreover, we saw that the stationary points satisfy a different orthogonality

property (Eq. 5.29):∫
Ω
w1∇φi · ∇φj dA =

∫
Ω
w2φi ·φj dA = (φi,φj)w = 0.

We now look at steps 1a through 2e of the proof template of Section 7.1, and point out

the modifications required.

Step 1a: Since the functions φ are orthogonal in a different inner product (than the L2

inner product that we have been using), the algebra involved in proving that there are

infinitely many eigenfunctions is slightly more involved, but we will see below that the

principles remain the same.

We argue by contradiction.

Let us assume that only a finite number N of eigenvalue-eigenfunction pairs (λp,φp,µp)

exist.

Let SN be the subspace of S spanned by the finite sequence
(
φp

)
, p = 1, 2, · · · , N . Let

SN⊥ be the orthogonal complement (in the weighted inner product) of SN in S. Let us

now extremize J0 within SN⊥. To the extremizer σ, restriction to SN⊥ adds N integral

constraints to the previous extremization problem, namely∫
Ω
w2φp · σ dA = 0, p = 1, 2, · · · , N, (7.6)

for which we introduce N new scalar Lagrange multipliers, ν1, ν2, · · · , νN , and find that

the extremizer σ satisfies the following eigenvalue problem:

−w1∆σ −∇σ ⊙∇w1 +∇sµ = λw2 σ +
∑N

p=1 νpw2φp and divσ = 0 in Ω,

∇nσ · (t⊗ t) = 0 and σn = 0 on ∂Ω.

(7.7)
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Consider the inner product of the first of Eq. 7.7 with any eigenfunction φk, 1 ≤ k ≤ N ,

i.e.,

∫
Ω
(−w1∆σ −∇σ ⊙∇w1 +∇sµ) ·φk dA = λ

∫
Ω
w2 σ ·φk dA+

N∑
p=1

νp

∫
Ω
w2φp ·φk dA.

(7.8)

Let us first consider the term (−w1∆σ −∇σ ⊙∇w1) · φk. Using indicial notations, it

simplifies to (omitting the index k for clarity):

(−w1∆σ −∇σ ⊙∇w1) ·φ = −w1σij,llφij − σij,lw1,lφij

= (−w1σij,lφij),l + w1,lσij,lφij + w1σij,lφij,l − σij,lw1,lφij = (−w1σij,lφij),l + w1σij,lφij,l.

Thereupon using the divergence theorem, we have∫
Ω
(−w1∆σ −∇σ ⊙∇w1) ·φk dA = −

∫
∂Ω
w1∇nσ ·φk ds +

∫
Ω
w1∇σ · ∇φk dA

=

∫
Ω
w1∇σ · ∇φk dA,

(7.9)

where the boundary integral drops out because φk = γt⊗ t for some scalar function γ on

the boundary, and ∇nσ · (t⊗ t) = 0 on the boundary.

Let us now return to Eq. 7.8. By the reasoning in Appendix C, the

∫
Ω
∇sµ · φk dA term

drops out. By Eq. 7.6, the λ

∫
Ω
w2 σ · φk dA term drops out. By orthonormality of the

eigenfunctions,
N∑
p=1

νp

∫
Ω
w2φp ·φk dA contributes just νk. Thus, we get

∫
Ω
w1∇σ · ∇φk dA = νk. (7.10)

However, since σ is an element of S and also orthogonal to φk, Eq. 5.28 shows that∫
Ω
∇φk · ∇σ dA = 0.

Thus νk = 0 for 1 ≤ k ≤ N . Inserting these zeros in Eq. 7.7 we obtain exactly Eq. 5.22,

which shows that the new solution merely adds another element to the existing sequence.

We conclude that there are infinitely many eigenfunctions.

Step 1b: We use the same ideas above to show that the eigenfunctions span S.
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Step 2a: Since w1 is assumed to be positive everywhere, the functional Ĵ = (2J0)
1
2 is

bounded below by zero on P. Thus, there exists a minimizing sequence (σn).

Step 2b: The details in this step remain the same as in Section 7.1. We conclude that

(σn) converges weakly in the H1 norm and strongly in the L2 norm to some σ0.

Step 2c: In this step, we need to show that σ0 belongs to P. For that, we need to show

that σ0 is divergence-free, traction-free, has finite H
1 norm, and has unit norm. The proof

of the first three conditions is identical to that of Section 7.1. We prove that σ0 has unit

norm below.

By the Cauchy-Schwartz inequality, and the fact that ∥σn∥w = 1,

∥σ0 − σn∥2w = ∥σ0∥2w + ∥σn∥2w − 2

∫
Ω
w2 σ0 · σn dA

≥ ∥σ0∥2w + 1− 2 ∥σ0∥w = (∥σ0∥w − 1)2.

(7.11)

But,

∥σ0 − σn∥2w =

∫
Ω
w2(σ0 − σn) · (σ0 − σn) dA

≤ ∥w2∥∞
∫
Ω
(σ0 − σn) · (σ0 − σn) dA = ∥w2∥∞ ∥σ0 − σn∥2L2 ,

which implies that

∥σ0 − σn∥2w → 0

since (σn) converges strongly in the L2 norm to σ0 and ∥w2∥∞ is bounded.

So, from Eq. 7.11, we have

∥σ0∥w = 1.

Step 2d: Next, we show that Ĵ is strong lower semi-continuous in the H1 norm. This is

true because, for a given σ,

0 ≤ Ĵ(σ) =

(∫
Ω
w1∇σ · ∇σ dA

) 1
2

≤ ∥w1∥
1
2∞

(∫
Ω
∇σ · ∇σ dA

) 1
2

≤ ∥w1∥
1
2∞

(∫
Ω
σ · σ dA+

∫
Ω
∇σ · ∇σ dA

) 1
2

= ∥w1∥
1
2∞ ∥σ∥H1 .

Consequently, if a sequence (σ̃m) converges strongly to some σ̃0 in the H1 norm, Ĵ(σ̃m) =

Ĵ(σ̃0). Thus, Ĵ is strong lower semi-continuous in the H1 norm.
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It is straightforward to show that Ĵ is a norm, and hence convex. Consequently, it is weak

lower semi-continuous in the H1 norm.

We then proceed as in Section 7.1 to conclude that at least one minimizer exists in P : σ0.

Step 2e: Using the above procedure repeatedly, we can show the existence of a minimizer

in each SN⊥, N ∈ N.

7.6 Residual stress eigenfunctions Φ with zero boundary

value of Section 6.4

In section 7.6, we obtained an orthogonal sequence (Φn) of residual stresses which are

zero on the boundary. Those functions are the solutions of the following extremization

problem:

Find the stationary points of the functional

J0(σ) =
1

2

∫
Ω
∇σ · ∇σ dA

over those elements of the set

S =

{
σ

∣∣∣∣σ ∈ Sym, divσ = 0, σ |∂Ω = 0,

∫
Ω
σ · σ dA <∞,

∫
Ω
∇σ · ∇σ dA <∞

}
,

which satisfy ∫
Ω
σ · σ dA = 1.

As we mentioned in Section 6.4, the only difference between this problem and that of

Chapter 2 is that the elements of the set S are zero at the boundary. We have seen in

the previous sections of this chapter that this difference has a bearing only on Step 2d

of the proof template of Section 7.1, wherein we now need to show that the limit of the

minimizing sequence σ0 will be zero at the boundary. This is straightforward because

the minimizing sequence is bounded in the Sobolev space H1
0 , and the weak limit of a

subsequence σ0 also belongs to H1
0 . As a result, σ0 is zero at the boundary.

Finally, since any residual stress of interest (even with non-zero boundary value) is arbi-

trarily close in the L2 norm to a residual stress which is zero on the boundary, Φ span the

set of all residual stresses with finite L2 norm.
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7.7 Summary of the chapter

In this chapter, we saw how the proof of Chapter 2 may be modified for the extremiza-

tion problems considered in the subsequent chapters, if similar formal proofs are to be

attempted. We saw that most of the proof remains unaltered in spirit in each of these

cases, with only the algebraic details varying from case to case.



Chapter 8

Conclusions and future work

8.1 Conclusions

In this thesis, we obtained a sequence of second-order tensors that span all continuous

residual stress fields in the L2 and the H1 norms, and residual stress fields with simple

discontinuities in the L2 norm. We demonstrated that the basis functions ϕi can be used for

fitting given but arbitrary residual stress fields (Chapter 4), interpolating residual stresses

(Chapter 5), and representing residual stress fields in forward problems (Chapter 6). There

is no comparable deliberate construction of such a basis in the mechanics literature, to the

best of our knowledge.

We used an indirect approach to develop these basis functions by considering the extrem-

ization of a quadratic functional involving the gradient of an input stress field. We obtained

a linear eigenvalue problem, and we showed that the eigenfunctions span all residual stress

fields with sufficient regularity. The main portion of our proof of the eigenfunctions form-

ing a basis uses simple ideas accessible to an audience with no background in functional

analysis.

We computed the basis functions using the FEM for arbitrarily shaped bodies, and we also

developed semi-numerical methods for some special geometries. In particular, to develop

the semi-numerical methods for a rectangle and an annular prism, we used ideas that are

new to the best of our knowledge. For each of these geometries, we used a sequence of 1D

functions with zero mean and zero boundary values to develop a complete representation

of all residual stress fields in that geometry. We used these representations to convert the

foregoing eigenvalue problem, which is a PDE system, into a system of algebraic equations.

166
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We presented ample evidence that ϕi form a basis for residual stresses irrespective of the

material properties or the deformation history of the stressed component. We successfully

fitted hypothetical residual stresses, elastic stresses from shrink fitting and non-uniform

heating, and stresses obtained from metal forming of elasto-plastic workpieces with differ-

ent strain-hardening models. Moreover, since ϕi form a basis in the H1 norm, we noted

that for smooth fields the fitted stresses converge rapidly to the actual fields.

We demonstrated that our theoretical formulation is amenable to some useful modifi-

cations. We modified our formulation by introducing three different normalization con-

straints to obtain a basis for residual stress fields in infinitely long prismatic geometries.

We illustrated that this basis gives better convergence than other standard bases such

as the Laplace operator eigenfunctions and the Stokes operator eigenfunctions. We also

modified our theoretical formulation by weighting the functional J0 and the normalization

constraint to obtain spatially localized eigenfunctions.

We also demonstrated direct use of the residual stress basis functions ϕi in solving a

forward problem using the weighted residual method. There is no comparable published

solution in the mechanics literature to the best of our knowledge. Along the way, we noted

some interesting new results concerning planar residual stresses. We found that a function

in 2D is harmonic if and only if it is orthogonal to all residual stress traces. We showed

that the inner product of any two planar residual stress fields is equal to the inner product

of their traces, and that the mean of the determinant of a planar residual stress is zero.

We also offered some useful insights into the workings of approximation methods like the

Galerkin method and the least squares method. We hope that these insights will be useful

for an engineering audience in avoiding some potential pitfalls while using such methods.

The importance of our work is two-fold. The first is academic: this work presents a

new framework to discuss residual stresses without tying them to deformation history

or constitutive behaviour. The second is practical: this work opens the door to useful

new computations in industrial settings, for interpolation and representation of residual

stresses.

We now discuss some ideas for future work.

8.2 Future work

We list below some work that could perhaps be undertaken in future.
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Modification of our formulation to obtain other bases: We have demonstrated in

Chapter 5 that our theoretical formulation is quite amenable to modifications. We believe

that our framework is general enough to obtain bases for other constrained vector/tensor

spaces. For instance, if we wish to develop a basis for irrotational fluids (which are not

necessarily incompressible), we might include those vector fields v in the set S that satisfy

the constraint

curlv = 0 in Ω.

It remains to be seen if the resulting eigenvalue problem (with the same, or perhaps a

different, J0) yields a basis, but our framework offers a fresh possibility that uses only

basic calculus of variations for the actual computations.

Capturing residual stresses with point singularities: Since our basis functions (in-

cluding the spatially localized eigenfunctions developed in Chapter 5) have high regularity,

they give slow convergence for residual stress fields in L2 with point singularities, such as

those due to dislocations or cracks. We do not know if our formulation can be adapted to

cover such cases.

Infinite domains: In this work, we have assumed the domain of interest Ω to be finite.

However, there are many problems in mechanics where an infinite domain is of interest. We

do not presently know how to develop general descriptions of stresses in infinite domains.

Theoretical stability of our FEM formulation: In our FEM formulation (Section

3.1), we used the 8-noded serendipity elements for the interpolation of the stress com-

ponents, while the Lagrange multipliers were assumed to be piecewise constant. Although

we did not theoretically prove the stability of our FEM formulation, we gave ample ev-

idence of it. In addition to providing numerical support, we noted the similarity of our

eigenvalue problem with the Stokes operator used in fluid mechanics. It is established for

the Stokes operator FEM formulation that the 8-noded serendipity elements (with piece-

wise constant pressure) satisfy the inf-sup condition guaranteeing stability [53]. Extending

this result to our framework might be attempted in future work.

Theoretical estimates of convergence rate: In Chapter 4, we observed from the log-

log plots of the fitting errors EN and ẼN that they follow a power law decay for large N .

For smooth fields, these decay rates were like N−3 and N−1, respectively. In future work,

formal proof of such convergence rates could be attempted.
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Removal of Gibbs oscillations: In the shrink fitting example in Chapter 4, we saw

Gibbs oscillations in the fit for σθθ since the candidate hoop stress was discontinuous (Fig-

ure 4.7). The Fourier series also exhibits such oscillations when used to fit discontinuous

functions. There are ways of quenching those oscillations without affecting the conver-

gence, one of them being the ‘sigma approximation’ [69]. In future work, ways to remove

these Gibbs oscillations could be studied.



Appendix A

Proof that the stationary points

are sufficiently regular

We restrict attention to the set of smooth compactly supported ζ in Eq. 2.6 of Chapter 2

(note that the infinitesimal variations ζ belong to the set R defined in Eq. 2.5). Denoting

the distribution ∆σ −∇µ+ λσ as D, we have that for such ζ,

D(ζ) = 0. (A.1)

Since D acts linearly on ζ, we can scale ζ arbitrarily to conclude from the above equation

that

D(Φ) = 0 (A.2)

for all Φ that are symmetric, smooth and supported compactly in Ω. This means that D
is a skew-symmetric distribution. Adding D to its transpose, we obtain, in a distributional

sense,

∆σ = ∇sµ− λσ, (A.3)

where

∇sµ =
∇µ+ (∇µ)T

2
.

The function λσ is square integrable. The Lagrange multiplier µ is a construct, and can

be assumed to have a square integrable gradient. Then, from Eq. A.3, ∆σ is a square

integrable function.

Finally, for functions with square integrable gradient and square integrable Laplacian, the

normal gradient at the boundary ∇nσ (= σij,knk in indicial notation) makes sense through
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the following relation:∫
∂Ω

∇nσ · σ ds =
∫
Ω
∆σ · σ dA+

∫
Ω
∇σ · ∇σ dA. (A.4)

Technically, the left hand side in the above equation is a duality product between ∇nσ

and σ, considered as elements of Sobolev spaces H−1/2(∂Ω) and H1/2(∂Ω), respectively

(e.g., see Eq. IV.10, Page 248 of [45]).

Hence, although the elements of set S do not in general have the required regularity for

us to proceed from Eq. 2.6 to Eq. 2.7, we have concluded in this section that a stationary

point σ possesses enough regularity enabling us to carry out the analysis in Chapter 2.



Appendix B

Sufficient conditions for a

stationary point

In this section, we show that if a unit-normed σ satisfies Eqs. 2.12, it must be a stationary

point of J0 on the unit ball of S.

If σ is perturbed infinitesimally to a unit-normed element σ + ζ ∈ S, it is clear that

div ζ = 0 and ζn = 0. Moreover, up to first order,

1 =

∫
Ω
(σ + ζ) · (σ + ζ) dA =

∫
Ω
σ · σ dA+ 2

∫
Ω
σ · ζ dA = 1 + 2

∫
Ω
σ · ζ dA,

and hence, ∫
Ω
σ · ζ dA = 0. (B.1)

We will need this result below.

Let us now evaluate J0 at σ + ζ:

J0(σ + ζ) =
1

2

∫
Ω
∇(σ + ζ) · ∇(σ + ζ) dA = J0(σ) +

∫
Ω
∇σ · ∇ζ dA, (B.2)

where we have ignored the second order term. Using integration by parts and the diver-

gence theorem on the term

∫
Ω
∇σ · ∇ζ dA, we obtain

∫
Ω
∇σ · ∇ζ dA =

∫
∂Ω

∇nσ · ζ ds−
∫
Ω
∆σ · ζ dA. (B.3)

Since ζn = 0 on ∂Ω, by the reasoning given after Eq. 2.10, ζ = κ(s)t ⊗ t for some

boundary function κ(s). Substituting this into the boundary integral of Eq. B.3 and using
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the natural boundary condition ∇nσ · (t⊗ t) = 0, we see that the boundary integral drops

out. Using the first of Eqs. 2.12 and Eq. B.1, we can simplify the domain integral in Eq.

B.3 as ∫
Ω
∆σ · ζ dA =

∫
Ω
(∇sµ− λσ) · ζ dA =

∫
Ω
∇sµ · ζ dA

The right-most term in the above equation is the inner product of a gradient function and

a divergence free function, and we show in Appendix C that it is zero. Thus,∫
Ω
∇σ · ∇ζ dA = 0, (B.4)

and we conclude from Eq. B.2 that, up to first order,

J0(σ) = J0(σ + ζ)

for arbitrary infinitesimal perturbations on the unit ball of S. Thus, if a unit-normed σ

satisfies Eqs. 2.12, it must be a stationary point of J0 on the unit ball of S.



Appendix C

Proof of Eq. 2.14

First, we show that ∫
Ω
∇sµ · σ dA = 0 (C.1)

in Eq. 2.13. Note that

∇sµ · σ =
µi,j + µj,i

2
σij = µi,jσij = (µiσij),j − µiσij,j = (µiσij),j

where we have used σij = σji and σij,j = 0. Using the divergence theorem,∫
Ω
(µiσij),j dA =

∫
∂Ω
µiσijnjds = 0

because σijnj = 0 on ∂Ω. Thus Eq. 2.13 becomes∫
Ω
(−∆ϕ− λϕ) · σdA = 0. (C.2)

Next, observe that

∆ϕ · σ = ϕij,kkσij = (ϕij,kσij),k − ϕij,kσij,k.

In the right hand side above,

ϕij,kσij,k = ∇ϕ · ∇σ,

while ∫
Ω
(ϕij,kσij),k dA =

∫
∂Ω
ϕij,kσijnk ds.
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Recalling Eq. 2.11 and the related discussion, symmetry of σ means σij = κ(s)titj for

some scalar κ(s), and so ∫
∂Ω
ϕij,kσijnk ds = 0,

proving Eq. 2.14.



Appendix D

Proof that complex conjugates of

eigenvalues/eigenfunctions are

themselves

eigenvalues/eigenfunctions

Let (λ,ϕ) be a complex eigenvalue-eigenfunction pair, with µ the corresponding Lagrange

multiplier. Let λ = λr + ιλι, ϕ = ϕr + ιϕι and µ = µr + ιµι, where the quantities

λr, λι,ϕr,ϕι,µr,µι are real, and ι represents the imaginary number. Substituting these

expressions in the first of Eqs. 2.12 (with σ = ϕ), we get

−∆ϕr − ι∆ϕι +∇sµr + ι∇sµι = (λr + ιλι) (ϕr + ιϕι)

= λrϕr − λιϕι + ι (λrϕι + λιϕr) .

Equating the real and the imaginary parts in the above equation, we obtain

−∆ϕr +∇sµr = λrϕr − λιϕι,

−∆ϕι +∇sµι = λrϕι + λιϕr.
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Now, let us consider the quantity −∆ϕ̄ + ∇sµ̄, where overbar represents complex conju-

gate. Using the above equation, we get

−∆ϕ̄+∇sµ̄ = −∆ϕr + ι∆ϕι +∇sµr − ι∇sµι

= −∆ϕr +∇sµr + ι (∆ϕι −∇sµι)

= λrϕr − λιϕι − ι (λrϕι + λιϕr)

= (λr − ιλι) (ϕr − ιϕι)

= λ̄ ϕ̄.

Similarly, ϕ̄ satisfies the other three equations in Eq. 2.12.

Thus, (λ̄, ϕ̄) is an eigenvalue-eigenfunction pair, with µ̄ the corresponding Lagrange mul-

tiplier.



Appendix E

Proof that the eigenfunctions form

a basis for S

Assume that the span of the infinitely many eigenfunctions is a subspace S∞ which is a

proper subspace of S. It is not clear what the dimension of its orthogonal complement

S∞⊥ is.

If the dimension is 2 or more, then it contains infinitely many elements of unit norm,

and the arguments used in the first part of Section 2.4 can be applied and the same

contradiction is obtained.

If the dimension of S∞⊥ is 1, then we have a unique (up to a scalar multiple) τ which lies

in S∞⊥. Normalizing that τ , we find that we cannot take variations of it while keeping it

inside S∞⊥. This precludes variational equations, and a different argument is easier.

The eigenfunctions {ϕk} along with τ form a basis for S. The issue is solely whether τ ,

too, is an eigenfunction.

Let us now consider a different extremization problem, namely: find a σ in S that extrem-

izes
1

2

∫
Ω
∇σ · ∇σ dA subject to the condition

∫
Ω
σ · τ dA = 1. We make no assumptions

about how the extremizing σ might be related to the eigenfunctions {ϕk}.

We approach this new problem in two ways: (i) using the calculus of variations, and (ii)

directly.

178



Proof that the eigenfunctions form a basis for S 179

Using the calculus of variations, we obtain:

−∆σ +∇sµ = λτ and divσ = 0 in Ω,

σn = 0 and ∇nσ · (t⊗ t) = 0 on ∂Ω.
(E.1)

Using a direct approach, we can assume a solution of the form

σ = a0τ +

∞∑
k=1

akϕk.

The above representation contains the solution because by assumption we have a basis.

Directly substituting into
1

2

∫
Ω
∇σ · ∇σ dA

and using orthogonality, we find that we are extremizing

1

2

(
a20

∫
Ω
∇τ · ∇τ dA+

∞∑
k=1

a2kλk

)
,

subject to the constraint ∫
Ω
σ · τ dA = a0 = 1.

In the above, the λk’s are the eigenvalues already found. The minimizer is obvious: a0 = 1,

and ak = 0 for k = 1, 2, 3, · · · . It follows that the extremizing σ is exactly τ . Therefore,

σ = τ must also satisfy Eqs. E.1, obtained using the calculus of variations. We conclude

that τ is an eigenfunction after all.



Appendix F

Eigenfunctions ϕ form an

orthogonal basis to S in the H1

norm

The H1 inner product between stress fields σ1 and σ2 is defined as

(σ1,σ2)H1 =

∫
Ω
σ1 · σ2 dA+

∫
Ω
∇σ1 · ∇σ2 dA. (F.1)

Since the mappings

σ → divσ in Ω

and

σ → σn on ∂Ω

are continuous in the H1 norm [43], S is a complete space when equipped with the H1

inner product (and the corresponding norm). Our claim is that the eigenfunctions ϕi form

an orthogonal basis of S in the H1 norm as well.

Orthogonality in H1 of any two eigenfunctions ϕp and ϕq follows from Eq. 2.16.

Let us assume that there is an element σ in S such that

(σ,ϕi)H1 = 0 ∀ i.
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Upon using Eqs. F.1 and 2.14, we obtain

(σ,ϕi)H1 =

∫
Ω
σ · ϕi dA+

∫
Ω
∇σ · ∇ϕi dA = (1 + λi)

∫
Ω
σ · ϕi dA = 0 ∀ i.

Since λi are positive, we conclude that∫
Ω
σ · ϕi dA = 0 ∀ i.

However, ϕi form a basis of S in the L2 norm, and we conclude that σ = 0. Hence, ϕi

form an orthogonal basis of S in the H1 norm.



Appendix G

Proof that Eq. 5.23 is an inner

product and Eq. 5.24 is a norm

We first show that (·, ·)w is an inner product. For any σ1,σ2,σ3 ∈ S and α1, α2 ∈ R,

(α1σ1 + α2σ2,σ3)w =

∫
Ω
w2 (α1σ1 + α2σ2) · σ3 dA

= α1

∫
Ω
w2 σ1 · σ3 dA+ α2

∫
Ω
w2 σ2 · σ3 dA = α1(σ1,σ3)w + α2(σ2,σ3)w,

(σ1,σ2)w =

∫
Ω
w2 σ1 · σ2 dA =

∫
Ω
w2 σ2 · σ1 dA = (σ2,σ1)w,

(σ1,σ1)w =

∫
Ω
w2 σ1 · σ1 dA ≥ 0 with equality if and only if σ1 = 0.

In the third equation above, we have used the assumption that w2 > 0 everywhere in Ω,

so that w2 σ1 · σ1 is positive everywhere for non-zero σ1.

182



Proof that Eq. 5.23 is an inner product and Eq. 5.20 is a norm 183

The operation ∥·∥w is a norm because

∥σ1∥w =

(∫
Ω
w2 σ1 · σ1 dA

) 1
2

≥ 0 with equality if and only if σ1 = 0,

∥ασ1∥w =

(∫
Ω
w2 ασ1 · ασ1 dA

) 1
2

= α

(∫
Ω
w2 σ1 · σ1 dA

) 1
2

= α ∥σ1∥w ,

∥σ1 + σ2∥w =

{∫
Ω
w2 (σ1 + σ2) · (σ1 + σ2) dA

} 1
2

=

{∫
Ω
w2 σ1 · σ1 +

∫
Ω
w2 σ2 · σ2 + 2

∫
Ω
w2 σ1 · σ2 dA

} 1
2

=

{
∥σ1∥2w + ∥σ2∥2w + 2

∫
Ω

√
w2 σ1 ·

√
w2 σ2 dA

} 1
2

≤

{
∥σ1∥2w + ∥σ2∥2w + 2

(∫
Ω

√
w2 σ1 ·

√
w2 σ1 dA

) 1
2
(∫

Ω

√
w2 σ2 ·

√
w2 σ2 dA

) 1
2

} 1
2

=
{
∥σ1∥2w + ∥σ2∥2w + 2 ∥σ1∥w ∥σ2∥w

} 1
2
= ∥σ1∥w + ∥σ2∥w .

Note that in the third equation above, the inequality follows from the Cauchy-Schwarz

inequality.
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