
An Elementary Continuation Technique

Anindya Chatterjee

September 9, 2002

1 Introduction

Let us begin with the di�erential equation

�x+ c _x+ x+ ax
3 + bx

5 = F sin!t ; (1)

which we study using harmonic balance. Here, F , a, b and c are parameters, assumed known.

Assuming x = A sin!t+B cos!t, and applying harmonic balance, we obtain the two equations

�A!
2 +

5

8
bA

5 +
3

4
aA

3 +A+
5

4
bA

3
B

2 +
5

8
bAB

4 +
3

4
aAB

2
� cB! � F = 0 ; (2)

3

4
aB

3 +
5

8
bB

5
�B!

2 + cA! +
3

4
aA

2
B +

5

4
bA

2
B

3 +
5

8
bA

4
B +B = 0 : (3)

The above equations are hard to solve in general, but for ! = 0 we �nd that a solution (and the one of interest)

is given by B = 0 and F = A+ 3

4
aA

3 + 5

8
bA

5. The latter equation can be solved for A in terms of F , or vice

versa.

Given ! 6= 0, we can hope to solve Eqs. 2 and 3 numerically, such as by the Newton-Raphson method.

Slowly incrementing ! one step at a time, and in each case using the last solution obtained as an initial guess

for the present one, we can �nd several solutions for several values of !. The method runs into trouble if the

solution turns around: incrementing ! beyond the turning point, we �nd no more solutions.

A simple way around this problem is as follows (arc-length based continuation). We de�ne the vector

x =

�
A

B

�

and write Eqs. 2 and 3 abstractly as

f(x; !) = 0 :

In the above, the scalar quantity ! appears as a parameter. As ! is varied, the roots of the above equation

trace out a curve in x-space.

Now we extend the vector x and write

y =

8<
:

A

B

!

9=
; :

We also introduce a vector y1 and a reasonably small \arc-length" s, whose meaning and purpose will be clear

shortly. Now, to Eqs. 2 and 3, we add on a third equation,

ky1 � yk � s = 0 : (4)

Now there are three equations (Eqs. 2, 3 and 4) for three unknowns (the three elements of y). We can solve

these using the Newton-Raphson method. At each stage, starting with a \previous" solution y1, we �nd a

new solution y2. Then we set y1 equal to the newly obtained y2, and repeat the process.

For greater robustness, we can supply two previous values y0 and y1. The advantage is that we can then

use the linearly extrapolated 2y1 � y0 as a useful initial guess for the Newton-Raphson method.

2 Some Matlab routines, and what they do

Here I provide for you some Matlab routines that I have written. You could copy these, or write your own, I

don't particularly care which.

1



2.1 temp�le

Here, in the typewriter font, is a �le that takes a global paremeter called �, which for our speci�c case is

identi�ed with !. It evaluates the left hand sides of Eqs. 3 and 4. If, for the value of ! set globally through

�, the choice of A and B is correct, then this function will return zero.

function z = tempfile(y)

global mu

omega=mu;

%parameters

c=0.1;

a=1.75; b=0.3;

F=0.5;

A=y(1); B=y(2);

z=[-A*omega^2+5/8*b*A^5+3/4*a*A^3-F+A+5/4*b*A^3*B^2+5/8*b*A*B^4+3/4*a*A*B^2-c*B*omega;

3/4*a*B^3+5/8*b*B^5-B*omega^2+c*A*omega+3/4*a*A^2*B+5/4*b*A^2*B^3+5/8*b*A^4*B+B];

2.2 branch follow

This �le takes in initial data (the points y0 and y1 alluded to earlier, but split up as �0, �1, x0, x1) as well

as a �le name (\fname"), and computes a series of solution points. It calls another routine called \newton",

which will in turn call \branch aux" { these are supplied in subsequent subsections.

function x=branch_follow(fname,nsteps,mu0,mu1,x0,x1)

% The aim of this program is to follow solution branches to systems of nonlinear

% equations with one free parameter.

% You start with a file fname. This file uses a global parameter (called mu).

% Once mu is defined, given x, this file returns f(x). Note: x is n-dimensional.

% In the space of x, there is a one-parameter family (or curve) of solutions

% parameterized by mu. Two nearby points on this curve (mu0,x0) and (mu1,x1) are

% initially specified (found manually with trial and error). Our aim is to generate

% a sequence of points (mu2,x2), (mu3,x3) etc. The distance between each point

% and the next one is to be kept fixed as we move along the curve. Some auxiliary

% files will be needed, and called as appropriate.

global mu tracking_file_name xc arc

tracking_file_name=fname;

x0=[mu0;x0];

xc=[mu1;x1]; % extended x, increasing the number of equations by 1.

x=[x0,xc];

arc=norm(x0-xc);

k=1;

c=1;

while (k<nsteps)*c

xg=2*xc-x0; % extrapolate

[xx,c]=newton('branch_aux',xg);

if c

k=k+1

x0=xc;

xc=xx;

x=[x,xx];

end

end

2



2.3 newton

function [x,c]=newton(fun,x,showx)

% numerically estimates derivatives and implements Newton's method

% attempts to solve nonlinear equations

n=length(x);

epsil=(1e-5*max(1,norm(x)));

pert=eye(n)*epsil;

iter=0;

nmax=60;

c=1;

ee=feval(fun,x);

while (norm(ee)*max(1,norm(x))>1e-10)*(iter<nmax)

iter=iter+1;

for k=1:n

D(:,k)=(feval(fun,x+pert(:,k))-ee)/epsil;

end

x=x-(D\ee);

if nargin == 3

disp(x)

end

ee=feval(fun,x);

end

disp(iter), disp('iterations, that took')

if (iter == nmax)+(abs(x)==inf)

c=0;

disp('did not converge')

end

2.4 branch aux

function y=branch_aux(x)

global mu tracking_file_name xc arc

mu=x(1);

x=x(2:end);

y=feval(tracking_file_name,x);

y=[norm([mu;x]-xc)-arc;y];

3 Working with Matlab

In the Matlab environment, I �rst type \diary some�lename.txt". Then whatever I type in afterwards, as well

as whatever Matlab gives me, goes into a �le of that name. My diary �le, demonstrating the continuation

technique, appears below. The �rst few lines are inputs that I typed at the \>>" prompt. Notice that several

3



commands can be typed into Matlab on the same line. At the end of it all, I also have an eps �le called

\conti.eps" { the �gure is provided in the next section.

global mu

format compact

mu0=0; mu1=0.02;

mu=mu0; x0=newton('tempfile',[1;0]);

(some Matlab output removed from here)

mu=mu1; x1=newton('tempfile',x0);

(some Matlab output removed from here)

X=branch_follow('tempfile',650,mu0,mu1,x0,x1);

(what follows is Matlab output)

2

iterations, that took

k =

2

2

iterations, that took

k =

3

2

iterations, that took

k =

4

2

iterations, that took

k =

5

2

(some Matlab output removed from here; k goes all the way up to 650)

k =

647

2

iterations, that took

k =

648

2

iterations, that took

k =

649

2

iterations, that took

k =

650

(Matlab output ends here; input commands follow)

plot(X(1,:),sqrt(X(2,:).^2+X(3,:).^2));

xlabel('\omega','fontsize',18), ylabel('Amplitude','fontsize',18)

axis([0,5,0,2])

print -deps conti.eps

diary off

4



4 Results

The results obtained (amplitude versus forcing frequency) for F = 0:5, a = 1:75, b = 0:3 and c = 0:1 are

shown in the �gure.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ω

A
m

pl
itu

de

Figure 1: Amplitude versus forcing frequency.

5


