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Abstract

This thesis involves the study of four problems in the area of nonlinear vibrations, using the

asymptotic method of multiple scales (MMS). Accordingly, it consists of four sequentially

arranged parts.

In the first part of this thesis we study some nonlinear dynamics related to the

amplitude control of a lightly damped, resonantly forced, harmonic oscillator. The slow

flow equations governing the evolution of amplitude and phase of the controlled system are

derived using the MMS. Upon choice of a suitable control law, the dynamics is represented

by three coupled, nonlinear ordinary differential equations involving a scalar free parameter.

Preliminary study of this system using the bifurcation analysis package MATCONT reveals

the presence of Hopf bifurcations, pitchfork bifurcations, and limit cycles which seem to

approach a homoclinic orbit.

However, close approach to homoclinic orbit is not attained using MATCONT due to

an inherent limitation of time domain-based continuation algorithms. To continue the limit

cycles closer to the homoclinic point, a new algorithm is proposed. The proposed algorithm

works in phase space with an ordered set of points on the limit cycle, along with spline

interpolation. The algorithm incorporates variable stretching of arclength based on local

curvature, through the use of an auxiliary index-based variable. Several numerical exam-

ples are presented showing favorable comparisons with MATCONT near saddle homoclinic

points. The algorithm is also formulated with infinitesimal parameter increments resulting
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in ordinary differential equations, which gives some advantages like the ability to handle

fold points of periodic solution branches upon suitable re-parametrization. Extensions to

higher dimensions are outlined as well.

With the new algorithm, we revisit the amplitude control system and continue

the limit cycles much closer to the homoclinic point. We also provide some independent

semi-analytical estimates of the homoclinic point, and mention an atypical property of the

homoclinic orbit.

In the second part of this thesis we analytically study the classical van der Pol

oscillator, but with an added fractional damping term. We use the MMS near the Hopf

bifurcation point. Systems with O(1) fractional terms, such as the one studied here, have

hitherto been largely treated numerically after suitable approximations of the fractional

order operator in the frequency domain. Analytical progress has been restricted to systems

with small fractional terms. Here, the fractional term is approximated by a recently pro-

posed Galerkin-based discretization scheme resulting in a set of ODEs. These ODEs are

then treated by the MMS, at parameter values close to the Hopf bifurcation. The resulting

slow flow provides good approximations to the full numerical solutions. The system is also

studied under weak resonant forcing. Quasiperiodicity, weak phase locking, and entrain-

ment are observed. An interesting observation in this work is that although the Galerkin

approximation nominally leaves several long time scales in the dynamics, useful MMS ap-

proximations of the fractional damping term are nevertheless obtained for relatively large

deviations from the nominal bifurcation point.

In the third part of this thesis, we study a well known tool vibration model in the

large delay regime using the MMS. Systems with small delayed terms have been studied

extensively as perturbations of harmonic oscillators. Systems with O(1) delayed terms,

but near Hopf points, have also been studied by the method of multiple scales. However,

studies on systems with large delays are few in number. By “large” we mean here that the

delay is much larger than the time scale of typical cutting tool oscillations. The MMS upto
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second order, recently developed for such large-delay systems, is applied. The second order

analysis is shown to be more accurate than first order. Numerical integration of the MMS

slow flow is much faster than for the original equation, yet shows excellent accuracy. A

key point is that although certain parameters are treated as small (or, reciprocally, large),

the analysis is not restricted to infinitesimal distances from the Hopf bifurcation. In the

present analysis, infinite dimensional dynamics is retained in the slow flow, while the more

usual center manifold reduction gives a planar phase space. Lower-dimensional dynamical

features, such as Hopf bifurcations and families of periodic solutions, are also captured

by the MMS. The strong sensitivity of the slow modulation dynamics to small changes in

parameter values, peculiar to such systems with large delays, is seen clearly.

In the last part of this thesis, we study the weakly nonlinear whirl of an asymmet-

ric, overhung rotor near its gravity critical speed using a well known two-degree of freedom

model. Gravity critical speeds of rotors have hitherto been studied using linear analysis,

and ascribed to rotor stiffness asymmetry. Here we present a weakly nonlinear study of

this phenomenon. Nonlinearities arise from finite displacements, and the rotor’s static lat-

eral deflection under gravity is taken as small. Assuming small asymmetry and damping,

slow flow equations for modulations of whirl amplitudes are developed using the MMS.

Inertia asymmetry appears only at second order. More interestingly, even without stiff-

ness asymmetry, the gravity-induced resonance survives through geometric nonlinearities.

The gravity resonant forcing does not influence the resonant mode at leading order, unlike

typical resonant oscillations. Nevertheless, the usual phenomena of resonances, namely

saddle-node bifurcations, jump phenomena and hysteresis, are all observed. An unantic-

ipated periodic solution branch is found. In the three dimensional space of two modal

coefficients and a detuning parameter, the full set of periodic solutions is found to be an

imperfect version of three mutually intersecting curves: a straight line, a parabola, and an

ellipse.

To summarize, the first and fourth problems, while involving routine MMS, involve

new applications with rich dynamics. The second problem demonstrated a semi-analytical
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approach via the MMS to study a fractional order system. Finally, the third problem stud-

ied a known application in a hitherto less-explored parameter regime through an atypical

MMS procedure. In this way, a variety of problems that showcase the utility of the MMS

have been studied in this thesis.
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Chapter 1

Overview and main contributions of

the thesis

This thesis deals with the study of four problems in the area of nonlinear vibrations.

The theme common to these problems is that they are all amenable to analysis using the

asymptotic method of multiple scales [1]. The actual applications of the MMS to these

problems, while not fundamentally novel, are not always quite routine.

In this chapter we begin with a brief introduction to this classical method of multiple

scales (MMS). We then briefly mention the nature of the problems studied in this thesis

using this method, and highlight our main contributions.

1.1 Method of Multiple Scales (MMS)

1.1.1 Motivation

The method of multiple scales is a classical singular perturbation method used to study

systems involving distinct phenomena operating at disparate length/time scales. There are

several excellent textbooks devoted to the development and application of this method to

various physical systems. In what follows we explain, using some common examples, the

domain of applicability of the method.

1
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Nature and engineering are abundant with phenomena involving disparate time

and/or length scales. A limited sample includes slow damping of vibrations of a simple

pendulum oscillating in quiescent air, beating (slow amplitude modulation) of two weakly-

coupled oscillators, boundary layer phenomena of fluids, and slowly evolving damage in

a machine component. In all of these phenomena, there are at least two mechanisms

which operate on distinctly disparate time/length scales. For example, in the case of

the weakly damped simple pendulum, the pendulum executes many complete cycles of

oscillation before its amplitude diminishes to, say, half of its initial value. Thus there

is a fast time scale in which the system oscillates and a slow time scale in which the

amplitude decays. In the case of accumulating damage in a machine component, it may

tolerate many loading cycles before it fractures. There is some underlying defect which

slowly evolves during the service of the component and leads to failure. In the case of flow

of fluids over solid boundaries, there is a very small region adjoining the solid boundary

where the fluid moves slowly and viscous forces predominate. Outside this thin region, the

flow is predominantly inviscid. This is an example of a case with disparate length scales.

In this thesis, we restrict ourselves to the case of phenomena with disparate time

scales, which is more relevant to the study of vibrations. By treating one of these scales

as fast, we create a hierarchy of time scales on which the various processes operate. Once

this identification of disparate time scales is made, the physical problem can be treated

asymptotically using a well established multiple scales procedure.

1.1.2 Literature review

There exists an extensive literature on the method of multiple scales and the related method

of averaging. The literature includes several popular textbooks, review articles, and papers

describing the application of MMS to various systems. We shall review some of them here.

According to Nayfeh [1], there exist at least two versions of the method of multi-

ple scales. One goes by the name of many-variable expansion, also called the derivative-

expansion procedure. In this thesis, we adopt this first version. The second version goes

by the name of two-variable expansion procedure [2]. In Chapter 6 of [1], the author be-

gins with the development of these two versions in their basic forms and applies them to

study several problems ranging from the simplest case of the harmonic oscillator with weak
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linear damping to systems as complicated as a weakly nonlinear partial differential equa-

tion modeling wave-wave interaction. Subsequently, the author presents generalizations of

these two versions to deal with more complicated situations such as systems with variable

coefficients.

The book by Nayfeh and Mook [3] addresses several problems arising in weakly

nonlinear vibrations through the MMS. The range of applications studied there include

free, forced, self-excited and parametrically excited vibrations of single and multi-degree of

freedom systems, and continuous systems. Extensive references to the relevant literature

are provided.

Application of the MMS to structural mechanics has been addressed in the book

by Pai and Nayfeh [4]. Starting from one dimensional systems such as strings and cables,

the book provides a thorough study of beams, membranes, plates, shells and composite

structures. An extensive list of references has also been provided.

The book by Kevorkian and Cole [2] is more mathematically oriented. The class of

problems studied there include boundary layer flow of viscous fluids, nonlinear oscillations

of single and multi degree of freedom systems, passage through resonance problems, and

some problems in shallow water waves and gas dynamics modeled by weakly nonlinear

partial differential equations.

In addition to the abovementioned textbooks and many more (see, for e.g., [5, 6, 7]),

there are several review articles on the general method itself as well as its application to

several problems. We discuss them briefly here.

In a recent review article, Cartmell [8] discusses the origins, strengths, weaknesses,

and the range of applicability of the method of multiple scales in the context of weakly

nonlinear oscillators. The article examines various practical aspects of the method such

as the role of term-ordering, non-dimensionalization and time scaling, series truncation,

inclusion and exclusion of higher order nonlinearities, and typical problems in handling

secular terms. The article also provides an extensive list of references.

In a critique [9], Nayfeh addresses the inconsistencies [10, 11] in the application of

the MMS to higher orders and treatment of the resulting slow flow. These issues were

also discussed in [8]. Similar studies for periodic motions of delayed systems can be found
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in [12]. Review articles on application of the MMS to specific areas of vibrations, such

as modal interactions [13], machining dynamics [14] and many more, are available in the

literature.

Apart from these text books, review articles and critiques, there are several re-

search papers showcasing the application of the MMS to the study of various vibration

related problems. An incomplete list includes problems related to wheel shimmy [15, 16],

rotordynamics [17, 18], delayed systems [14, 19, 20], fractional order systems [21], strongly

nonlinear oscillations [22, 23] and hysteretic systems [24]. Approximate realizations of the

asymptotic calculation are discussed in [23, 25].

With the above brief introduction to the MMS, we now proceed to outline the

problems studied in this thesis using this method.

1.2 Problems studied in this thesis

In what follows, we briefly present the nature of the four problems studied in this thesis.

Each of these problems involves the application of the MMS at varying levels of sophis-

tication. While some involve a straightforward application of the method to study the

resulting dynamics, some others involve atypical steps in either the preparation of the

system to apply the MMS or in the MMS procedure itself.

Amplitude control of a resonantly forced, weakly damped, har-

monic oscillator

This study spans Chapters 2 through 4.

In this problem, we study some nonlinear dynamics related to the amplitude control

of a weakly damped, harmonic oscillator subjected to weak control forcing. It is more

usual to study the dynamics of the oscillator subjected to a given forcing. Here, however,

we are interested in the dynamics of the system subjected to a suitably chosen control law

to achieve a desired amplitude envelope.
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The slow flow equations governing the evolution of the amplitude and phase of the

oscillator are derived using a routine application of the MMS. Subsequently, a control law

based on the speed-gradient algorithm [26, 27] is adopted. With this choice of control

forcing, the dynamics is represented by a system of three coupled, nonlinear ordinary

differential equations. The resulting system involves a non-analytic nonlinearity and a

scalar free parameter. A preliminary numerical study of this system, aided by the time

domain-based bifurcation package MATCONT [28, 29], reveals Hopf bifurcations, pitchfork

bifurcations, and the presence of three limit cycles which seem to approach a homoclinic

point upon variation of the control parameter. The presence of the non-analytic nonlinearity

makes this homoclinic point atypical. A semi-analytical estimate of this atypical homoclinic

parameter value is obtained. The initial MATCONT simulations could not get quite close

to this estimated homoclinic point.

To approach the homoclinic points more closely, we present a new phase space-

based algorithm for continuation of limit cycles using splines. The proposed algorithm

works in phase space with an ordered set of points on the limit cycle, along with spline

interpolation. The algorithm is applied to several popular systems involving homoclinic

orbits with favorable results.

MMS via discretization of a fractionally damped van der Pol os-

cillator

In this second problem, the system of interest is still a single degree of freedom oscillator,

but with self-excitation and fractional order damping. The presence of fractional damping

introduces infinite dimensionality and makes the study interesting. This study is presented

in Chapter 5.

Here, we use the MMS to analytically study the classical van der Pol oscillator with

an added fractional order damping term, near the Hopf bifurcation point. Systems with

O(1) fractional terms, such as this problem, have hitherto been largely treated numerically,

after suitable approximations of the fractional order operator in the frequency domain. Here

we take a semi-analytical route to study this system. We first approximate the fractional

order term using a recently proposed Galerkin scheme [30] resulting in a set of ODEs.

Subsequently, we restrict attention close to a Hopf bifurcation and study the near-Hopf
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dynamics using the MMS on the system of ODEs. The resulting MMS slow flow provides

good approximations to the full numerical solutions. We also study the system under

weak resonant forcing. The usual phenomena of quasiperiodicity, weak phase locking, and

entrainment are all observed. An interesting observation in this work is that although the

Galerkin approximation nominally leaves several long time scales in the dynamics, useful

approximations are nevertheless obtained by the asymptotic method of multiple scales even

for reasonably large departures from the Hopf bifurcation value.

Infinite dimensional slow modulation of cutting tool vibrations

This problem too is concerned with a single degree of freedom oscillator, but with infinite

dimensional dynamics introduced through the presence of time delays. This study consists

of Chapter 6.

Here we apply the MMS upto second order, as developed in [31], to a well known

model of regenerative cutting vibrations in the large delay regime. While O(1) delays in

machine tool vibrations have been extensively studied, here we are interested in large de-

lays. By “large” we mean the delay is much larger than the time scale of typical cutting

tool oscillations. Our second order analysis is found to be more accurate than the first order

analysis. Unlike usual studies based on center manifold reductions, our MMS analysis is

not restricted to near-Hopf situations and hence helpful to study a much wider parameter

regime. The advantage of the present analysis is that infinite dimensional dynamics is

retained in the slow flow, while the more usual center manifold reduction gives a planar

phase space. Lower-dimensional dynamical features, such as Hopf bifurcations and families

of periodic solutions, are also captured by the MMS. The large delay introduces sensitive

dependence on small changes in parameters, which are well captured by the MMS approx-

imations. Overall, a new and useful characterization of the nonlinear dynamics is obtained

for a hitherto less-explored parameter regime.
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Nonlinear secondary whirl of an overhung rotor

In this problem, as opposed to the first three problems, we study a two degree of freedom

model [32] for a slightly asymmetric, horizontal, perfectly balanced, overhung rotor near

its gravity critical speed. This study spans Chapters 7 through 9. We mention here that

this work on overhung rotor also appears in [33].

We study an idealized asymmetric nonlinear overhung rotor model of [32], spinning

close to its gravity critical speed. Nonlinearities arise from finite displacements, and the

rotor’s static lateral deflection under gravity is taken as small. Assuming small asymmetry

and damping, slow modulations of whirl amplitudes are studied using the MMS. Inertia

asymmetry has a second order effect on the gravity resonance. More interestingly, nonlin-

earities sustain the gravity resonance phenomenon even for a symmetric rotor. The resonant

forcing from gravity has to be retained at leading order unlike usual studies on weakly non-

linear oscillations where the resonant forcing is taken to be weak. The usual phenomena

of resonances, namely saddle-node bifurcations, jump phenomena and hysteresis, are all

observed. An unanticipated periodic solution branch is found. In the three dimensional

space of two modal coefficients and a detuning parameter, the full set of periodic solutions

is found to be an imperfect version of three mutually intersecting curves: a straight line, a

parabola, and an ellipse.

At the end of these four independent studies, we finally present some conclusions

and pointers to future work in Chapter 10.



Chapter 2

Amplitude control of a resonantly

forced, lightly damped, harmonic

oscillator

In this chapter, we start the first part of this thesis namely the amplitude control of a

resonantly forced, lightly damped, harmonic oscillator. More usually, studies are conducted

for a given forcing. Here, however, we are interested in the dynamics of the system subjected

to a suitably chosen control law to obtain a desired slowly varying amplitude envelope.

Routine application of the MMS yields the slow flow equations for the amplitude and phase

of the oscillator. The control forcing is then chosen based on the well known speed-gradient

algorithm [26, 27]. The resulting dynamics is represented by a system of three coupled

nonlinear ordinary differential equations. Preliminary numerical study of this system, aided

by the bifurcation analysis package MATCONT, is presented which reveals among other

things the interesting situation of three limit cycles apparently approaching homoclinic

orbits. We also highlight the limitations of such packages in continuing limit cycles close

to homoclinic points.

We mention that the discrete algorithm developed in connection with this problem

appears in [34].

We now begin with a description of the system.

8
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2.1 System

Our system (see Fig. 2.1) is a lightly damped harmonic oscillator with a frequency close to

1. The oscillator is subjected to weak resonant forcing as f(t) = u(t) sin (t), where u(t) is

a small and slowly varying function of time. The response is expected to be of the form

A sin (t+ φ), where the amplitude A and the phase φ are expected to be slowly varying

functions of time. Now, we wish to choose the control input u(t) such that the amplitude

of the response follows a given amplitude envelope. To that end, we first derive the slow

U

M

K

C

Figure 2.1: Simple harmonic oscillator.

flow equations of the system using the method of multiple scales.

2.2 Slow flow via the method of multiple scales

Consider the oscillator of Fig. 2.1. The governing equation of motion, after suitable scaling,

is

ẍ+ ǫ c ẋ+ (1 + ǫ∆)x = ǫ U(ǫt) sin (t), (2.1)

where 0 < ǫ ≪ 1, c is the damping coefficient, U is a slowly varying forcing function, and

∆ represents the detuning from resonance. We derive the first order slow flow equations

governing the evolution of the amplitude and the phase of the response using the MMS.

The application of the MMS for this system is routine [1, 2, 3]. However, as we shall see,

the resulting dynamics is interesting.
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We begin by defining multiple time scales: T0 = t, T1 = ǫt, T2 = ǫ2t, · · · . The

solution is then assumed as a new function X of the multiple time scales as

x(t) = X(T0, T1, T2, · · · ) . (2.2)

The representation of the solution as in Eq. 2.2 is intuitively appealing and explicitly asserts

that the solution is dependent on several independent time scales over which the various

physical mechanisms act. For our case, the time scale T0 = t is associated with the normal

oscillations at a frequency close to unity, and the slow time scale T1 = ǫt is associated with

longer durations over which the forcing and damping act to produce significant changes in

the response. With this definition of time scales, we write U(ǫt) = U(T1) in Eq. 2.1.

The derivatives are treated according to

d

dt
=

∂

∂T0

+ ǫ
∂

∂T1

+ ǫ2
∂

∂T2

+ · · · . (2.3)

Henceforth for this system, we will conduct a first order analysis only. In addition, the

solution itself is expanded in a power series in ǫ as

X(T0, T1) = X0(T0, T1) + ǫX1(T0, T1) + · · · . (2.4)

Here it is assumed that X0 and X1 are O(1) quantities.

Substituting Eq. 2.4 in Eq. 2.1 and using Eq. 2.3, at O(1) we have

∂2X0

∂2T 2
0

+X0 = 0 , (2.5)

where, for simplicity of notation, we have suppressed the dependencies of X0 on the inde-

pendent variables.

The solution of Eq. 2.5 is

X0(T0, T1) = A(T1) sin (T0 + φ(T1)) , (2.6)

where A and φ are the amplitude and phase of the oscillations respectively. Note that since

Eq. 2.5 is a partial differential equation in T0, its solution contains arbitrary functions of

the independent variables other than T0. Thus in Eq. 2.6, we have taken the amplitude A

and phase φ as functions of T1.
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Substituting Eq. 2.6 in Eq. 2.1, we get at O(ǫ):

∂2X1

∂2T 2
0

+X1 =

(

−U + A∆ cos (φ) − cA sin (φ) − 2
dφ

dT1

A cos (φ) − 2
dA

dT1

sin (φ)

)

sin (T0) +

(

cA cos (φ) + A∆ sin (φ) − 2
dφ

dT1

A sin (φ) + 2
dA

dT1

cos (φ)

)

cos (T0) . (2.7)

Now the right hand side of Eq. 2.7 contains resonant forcing. To ensure that we get a

bounded solution for X1 consistent with the assumptions of Eq. 2.4, we set the coefficients

of these harmonic forcing terms to zero. This step is popularly known as removal of secular

terms.

Thus setting the coefficients of cos (T0) and sin (T0) to zero and solving the resulting

set of linear algebraic equations, we arrive at the slow flow

dA

dT1

= −cA
2

− U sin (φ)

2
, (2.8)

dφ

dT1

=
∆

2
− U cos (φ)

2A
. (2.9)

Equations 2.8 and 2.9 govern the slow evolution of amplitude and phase of the response.

For a given U , it is straightforward to determine the response by integrating Eqs. 2.8 and

2.9 (numerically if necessary).

Here, however, we are interested in determining the control input U that is required

to asymptotically track a specified time profile, Â, of the amplitude. To that end, we adopt

the control law:
dU

dT1

=
K (A− Â) sinφ

2
, (2.10)

where K is a user-specified control gain. The above control law is based on the well-known

speed-gradient algorithm [26, 27]. Note that our aim here is not to critique the control law,

but to investigate the resulting dynamics.

On scaling time as τ =
T1

2
and denoting τ -derivatives using overdots, Eqs. 2.8 and

2.10 become

Ȧ = −cA− U sinφ , (2.11)

φ̇ = ∆ − U cosφ

A
, (2.12)

U̇ = K sinφ(A− Â) . (2.13)
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Rewriting Eqs. 2.11 through 2.13 in Cartesian coordinates using x = A cosφ (note

that this x is different from that of Eqs. 2.1 and 2.2), y = A sinφ and z = U , and (arbitrary

choices) setting Â = 3, c = 1 and ∆ = 3, we have

ẋ = −x− 3 y , (2.14)

ẏ = 3x− y − z , (2.15)

ż = K y

(

1 − 3
√

x2 + y2

)

. (2.16)

2.3 Study of Eqs. 2.14 through 2.16

From now on, we focus on the study of Eqs. 2.14 through 2.16. The system has a non-

analytic nonlinearity, and the origin is not a fixed point. The system involves a single, scalar

parameter K. We will focus on the periodic solutions of this system and their continuation

with respect to the system parameter K.

Periodic orbits

Equations 2.14 through 2.16 possess two equilibria at

( −9√
10
,

3√
10
,
−30√

10

)

and
(

9√
10
,
−3√
10
,

30√
10

)

for any K. At K = 25, there is a subcritical Hopf bifurcation and two

small, unstable limit cycles are born around these two equilibria.

For a range of K < 25, these two unstable limit cycles exist near these equilibria.

There also exists a large (i.e., distinct from the two small ones born about equilibrium

points), stable limit cycle for these K values. For K > 25, the large limit cycle exists but

the small ones do not. As K decreases from 25, these limit cycles evolve. In particular, the

two small limit cycles grow in size and approach the large limit cycle. A plot of these large

and small limit cycles at K = 17.14 is provided in Figs. 2.2 and 2.3. A 3D plot is provided

in Fig. 2.2, and we plot the X − Y projection of the 3D plot in Fig. 2.3. There is at least

one symmetry-breaking pitchfork bifurcation of the large limit cycle (at K ≈ 15.15), with

subsequent bifurcations of the resulting limit cycles as well, but we do not report on them

here and focus on the numerical continuation of the primary solution branch.
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Figure 2.2: Left: 3-D plot of large and small limit cycles of Eqs. 2.14 through 2.16 for

K = 17.14.

We initially performed continuation of these limit cycles using the popular bifurca-

tion analysis package MATCONT [28, 29], before developing our continuation algorithm.

In MATCONT simulations, the small orbit could be continued upto K = 13.8740, while

the large orbit could be continued upto K = 13.9326. Continuation subsequently became

difficult due to the highly unstable nature of these limit cycles. It is possible that some com-

bination of skill and determination may coax MATCONT, which allows choice of some free

parameters, to go somewhat closer. In this context, we document some of our experiences

with MATCONT in Tables 2.1 and 2.2.

The small and large limit cycles, from MATCONT simulations, at K = 13.9412 are

shown in Fig. 2.4. It is clear from Fig. 2.4 that asK decreases, the large and the small orbits

approach each other, and we expect that at some critical value ofK these three cycles merge

with each other at a homoclinic point and disappear. Due to the non-analytic nonlinearity

and hence the lack of a genuine equilibrium at the origin, an estimate of this homoclinic

parameter value cannot be obtained using standard methods [35, 36, 37, 38, 39, 40]. A

semi-analytical estimate of the same will be provided in Chapter 4.

For now, it appears from our results that a time-domain collocation based software
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Figure 2.3: X − Y projection of large and small limit cycles of Eqs. 2.14 through 2.16 for

K = 17.14.

NTST NCOL min. max. Tol. min. K

step size step size attained

40 4 1e− 5 0.1 1e− 8 13.9412

30 4 1e− 5 0.1 1e− 6 13.9465

20 4 1e− 5 0.1 1e− 6 13.9408

60 4 1e− 12 0.1 1e− 6 13.9326

100 4 1e− 12 0.1 1e− 8 13.9549

200 6 1e− 5 0.1 1e− 8 13.9775

Table 2.1: MATCONT results for continuation of large, symmetric orbit of Eqs. 2.14

through 2.16. In this and all tables that follow, “Tol.” refers to the error tolerance setting

used in MATCONT.

such as MATCONT, though generally versatile and powerful, is presently unable to get

very close to this homoclinic point in a reliable fashion: increasing the number of subin-
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NTST NCOL min. max. Tol. min. K

step size step size attained

20 4 1e− 5 0.1 1e− 6 13.8740

30 4 1e− 5 0.1 1e− 6 14.2471

40 4 1e− 5 0.1 1e− 6 14.3225

60 4 1e− 5 0.1 1e− 6 14.3294

100 4 1e− 5 0.1 1e− 6 14.3247

200 4 1e− 5 0.1 1e− 6 14.3226

200 6 1e− 8 0.2 1e− 8 14.3299

60 7 1e− 5 0.1 1e− 8 14.2763

Table 2.2: MATCONT results for continuation of small, asymmetric orbit of Eqs. 2.14

through 2.16.

tervals “NTST” and the number of collocation points “NCOL” therein does not produce

monotonically closer approach to the homoclinic point.

In the next section, we discuss the possible reasons for the failure of MATCONT

and a possible remedy to the situation.

2.4 Need for a better continuation algorithm

In bifurcation analysis packages like MATCONT, limit cycles are computed by solving a

boundary value problem in the time domain [41, 42]. The limit cycle, which is a periodic

solution in the time domain, is sought as a solution of a boundary value problem with peri-

odic conditions at the end points of the unknown time period interval. The solution of this

boundary value problem is then determined by a collocation method. While this strategy

to compute limit cycles is versatile and successful in most cases, it may be troublesome in

cases of limit cycles approaching homoclinic orbits.

For a limit cycle approaching a homoclinic orbit, a large fraction of the total time
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Figure 2.4: MATCONT plots of large and small orbits of Eqs. 2.14 through 2.16 for K =

13.9412. Top: 3-D plot. Bottom: limit cycle projected onto X − Y plane.
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period of the solution is spent in traversing a short length of the trajectory in phase space

near the fixed point, while the rest of the length of the trajectory is traversed in a much

smaller fraction of the total time period. Thus the near-homoclinic orbits in phase space

represent near-discontinuous solutions in the time domain, and hence time domain-based

methods, such as in MATCONT, have to tackle a discontinuity while approximating these

near-homoclinic limit cycles. On the other hand, in phase space such near-homoclinic orbits

represent kink-like situations which are easier to handle than the discontinuities in time

domain. Also, the arclength of the limit cycle remains finite as the limit cycle becomes

near-homoclinic, while the time period of the limit cycle grows unbounded, leading to

numerical difficulties.

Thus, phase space-based algorithms may perform better in continuation of limit

cycles close to homoclinic orbits. We present one such algorithm in the next chapter and

explain the similarities and differences between our algorithm and other contemporary

phase space-based algorithms [43, 44, 45].

With the newly developed algorithm, we will revisit Eqs. 2.14 through 2.16 in Chap-

ter 4 and obtain much closer approaches to the homoclinic point than that attained by

MATCONT.



Chapter 3

A new phase space-based limit cycle

continuation algorithm

Motivated by the need to continue the limit cycles of the system studied in Chapter 2 close

to the homoclinic point, here we develop a new phase space-based algorithm for continua-

tion of limit cycles in autonomous systems involving a scalar free parameter. The algorithm

is first presented in a three dimensional setting. Subsequently, the procedure to compute

auxiliary quantities such as time period and Floquet multipliers of the limit cycle are out-

lined. We apply the proposed algorithm to continue limit cycles in several popular systems,

with favorable results. We then reformulate our algorithm using infinitesimal parameter

increments to obtain ordinary differential equations (ODEs). This ODE formulation en-

ables us to exploit the advantages offered by commercial ODE solvers, such as adaptive

step-sizing capabilities and the ease of data storage provided. The ODE formulation, upon

suitable reparametrization, is also shown to continue limit cycle solution branches past fold

points, which is a useful feature in bifurcation analyses. Finally, we outline the extension

of the proposed algorithm to dimensions greater than three.

We now begin with a brief introduction to our algorithm as well as a survey of the

relevant literature.

18
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3.1 Introduction

Systems of ODEs often exhibit limit cycles in certain parameter regimes. As parameters

are varied, these limit cycles can undergo a variety of bifurcations (see, e.g., [46, 47, 48]).

Among these, the creation of homoclinic connections is to some extent a motivation for

this work. We present here a method for numerical continuation of limit cycles wherein we

work directly in the phase space and drop explicit consideration of the underlying time.

The method seems to have advantages over the usual time-based strategies when the limit

cycle approaches a saddle homoclinic point. Compared to other approaches to continuation

of limit cycles using geometrical ideas in phase space where the limit cycle is viewed as a

curve (a geometrical object), here we represent the limit cycle using a simpler geometrical

object, namely a finite, ordered set of discrete points in phase space.

There presently exist powerful and versatile software packages that perform, among

other things, continuation of limit cycles in parameter space; these include LOCBIF [49],

AUTO [50], and MATCONT [28, 29]. Specifically for continuation of limit cycles, these

packages retain the independent variable (time), rescale it to unit length (using the as yet

unknown time period of the cycle), and use some form of either shooting or collocation

[41, 42, 51, 52, 53].

One problem with explicitly retaining the time is that as the limit cycle approaches

a hyperbolic fixed point, the flow slows down. Consequently, all the variation within the

limit cycle gets compressed into a small proportion of the overall time interval, leading to

numerically troublesome near-discontinuous trajectories.

Continuation of limit cycles in phase space, parametrized by arclength, has also

been developed (see, e.g., [43, 44, 45]). In this approach, the limit cycle is viewed as a

geometric object, namely a closed curve, and the natural parametrization of arclength is

adopted. Subsequently, solution and continuation proceeds with the usual collocation based

methods.

Here, we align with [43] in viewing the limit cycle as a geometric object, but com-

putationally work with a finite, ordered set of discrete points in phase space as opposed

to a curve; and we put forward equations governing the evolution of these points in phase

space as a parameter is varied. The independent variable in our approach is an artifi-
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cial continuous variable which takes on consecutive integral values at successive discrete

points representing the limit cycle. This index-based variable implies an underlying vari-

able stretching of the arclength coordinate, but requires no explicit knowledge thereof; it

gives us flexibility in setting up equations for continuation of limit cycles as a parameter is

varied, as will be seen below.

Thus, we differ from the explicit time-based approaches in reducing discontinuities to

corners as saddle homoclinic points are approached; and we differ from the arclength-based

approaches [43, 44, 45] in both our implicit rescaling and conceptually finite dimensional

strategy. In our numerical examples below, we will focus on continuation close to saddle

homoclinic points, and compare results from our algorithm with a popular time-domain

based approach, which (in contrast with, say, [43]) is both readily available in the form of

functional software and serves as a benchmark.

The algorithm developed and demonstrated in this preliminary work is limited to

autonomous systems; is presently unable to address issues involving higher codimension

bifurcations [54, 55, 56, 40]. Our algorithm is most useful in the (possibly unanticipated)

approach to a saddle homoclinic bifurcation1; and may eventually serve as an extra option

for an analyst using a package such as mentioned above.

In what follows we will describe the proposed algorithm in some detail, and then

consider some numerical examples. For these problems, our algorithm does very well.

Comparisons with MATCONT are favorable.

We emphasize that wherever we compare our results with MATCONT below, we

focus on but one feature of MATCONT; and our intention is to compare our phase space-

based approach with the time-based collocation methods popularly employed in several

commercial packages, of which MATCONT is just one example. We mention that hence-

forth in this chapter and elsewhere in this thesis, wherever we refer to homoclinic points,

we mean saddle homoclinic points with all leading eigenvalues being real.

1Near a saddle-focus with leading complex eigenvalues infinitely many fold points exist along the cycle

branch [57], and hence our algorithm fails near such points.
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3.2 Algorithm

Our algorithm takes several points in phase space that lie on the limit cycle for a given

parameter value; and then for a nearby parameter value seeks nearby points in phase space,

subject to conditions discussed below, to approximate the limit cycle. All interpolation

between points is done using splines in phase space; the index i of each point along the

curve is treated as a discrete value of a continuous underlying variable also called i, which

is the independent variable in the splines. There is no preferred directionality along the

limit cycle, and stability of the limit cycle is irrelevant.

Consider a system of parameterized ODEs

Ẋ = F (X,λ), (3.1)

where X is the state vector and λ is a scalar free parameter. For simplicity, we first consider

the case when X is 2- or 3- dimensional. Extension to higher dimensions is presented in

section 3.8.

We assume that we have a starting limit cycle solution, for some λ, obtained by any

method. We choose n points on the limit cycle in phase space as shown schematically in

Fig. 3.1. The position vectors of the points are X1, X2, . . . , Xn. Let the parameter be varied

from λ to λ+ ∆λ. The corresponding increments of the position vectors, ∆X1, . . . ,∆Xn,

are to be determined. Our strategy, as is usual, is to construct a vector g(y), where y and g

are m-dimensional (for suitable m), and numerically seek a solution to the vector equation

g(y) = 0. The construction of g(y) is described below.

Consider the discrete indices I = {1, 2, 3, . . . , n} labeling the points {X1+∆X1, . . . , Xn+

∆Xn}. We approximate the limit cycle by treating i as a continuous variable, which takes

values between 1 and n + 1; and by interpolating the individual components of Xi us-

ing cubic splines. In the spline fit we use periodic end conditions: this is possible, e.g.,

through a built-in function in MATLAB, after augmenting the list of points by one (setting

Xn+1 = X1).

We need to determine n vector increments for n points. This amounts to 3n scalar

unknowns in a 3D setting, for which we need 3n scalar equations (the 2D case is easier).

In phase-space based approaches (see, for example, [58]) where the limit cycle is viewed as
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Figure 3.1: A schematic of the limit cycle and increments in position vectors.

a closed curve, the flow field (F (X,λ)) at each point is constrained to be along the local

tangent to the limit cycle. In a 3-dimensional setting, this constraint yields 2 conditions at

each point, while the remaining condition is provided by enforcement of the parametrized

differential equation along the tangential direction.

The equations we will formulate below have some similarities with the above ap-

proach in that we too explicitly enforce the flow to be parallel to the local tangent to the

limit cycle at n points. However, we do not explicitly parametrize the limit cycle in the

tangential direction, and use other conditions as will be explained below.

We now proceed to set forth 3n equations governing the increments of the position

vectors of the points.

1. The first of these 3n equations is special, in that it incorporates a phase condition (see,

for example, [59]) to ensure uniqueness. Here, we incorporate the classical Poincaré

phase condition. Note that there are other, perhaps numerically more convenient,

phase conditions employed elsewhere (see, for example, [38]). We let ∆X1 be normal

to the flow field direction at X1. This is achieved by

〈∆X1, F (X1, λ)〉 = 0, (3.2)
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where 〈., .〉 is the Euclidean inner product. A similarly motivated phase condition

that involves an integral or average leads to greater computational complexity that

is avoided here.

2. Let ∆Si be the change in length of the ith segment of the limit cycle. More precisely,

∆Si = ‖(Xi+1 + ∆Xi+1) − (Xi + ∆Xi)‖ − ‖Xi+1 −Xi‖,

where i = 1, 2, . . . , n, and ‖.‖ is the Euclidean norm.

Further, let κ denote the curvature at the midpoint of a segment. That is (see [60]),

κi =
‖X ′

i+1/2 ×X ′′

i+1/2‖
‖X ′

i+1/2‖3
,

where the derivatives required above are evaluated using the spline interpolant (Mat-

lab returns the required polynomial coefficients). Note that the primes here, as well as

in our formulation that follows, denote derivatives with respect to the index variable

i. We then adopt the n− 1 dimensionless scalar equations

∆Si (κ̄+ κi) = ∆Si+1 (κ̄+ κi+1), i = 1, 2, . . . , n− 1. (3.3)

where κ̄ is the mean curvature over all i.

The above condition is somewhat arbitrary, but may be motivated as follows. First,

we wish to have some control over the evolving distribution of points on the periodic

orbit; and plan to achieve this by imposing conditions either on arclength or changes

thereof. Second, we wish to write dimensionless equations; and so curvature is used

to introduce another length scale in addition to arclength. Note that in the proposed

condition (Eq. 3.3), ∆Si can be positive or negative; but the sign must be the same

for all i. When the overall length of the periodic orbit in phase space increases (or

decreases), each ∆Si will be positive (respectively, negative). However, the change in

length will be smaller in places where the curvature is higher, forcing the points to

spread out in portions of relatively low curvature.

We try to elaborate more here. We recall that our approach here is to represent the

limit cycle (which is a closed curve) by a finite set of points and put forth conditions

governing the positions of these points. Firstly, we have to ensure that the points do

sit on the new limit cycle corresponding to the new parameter value. This is assured

by the tangent constraints that will be explianed soon below. After positioning the
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points on the limit cycle, we still have the freedom to distribute the points along the

limit cycle. Here, an analogy of the limit cycle to a rigid wire and the points to be

beads along the wire may be helpful. We exploit this freedom to pack these points

more closely in regions where the limit cycle has greater curvature. This will help

us capture sharp regions of the limit cycle well. We anticipate such sharp regions in

near-homoclinic orbits. Note also that freedom in this context is just another name

for indeterminacy in that these conditions, or any other suitable arbitrary condition

governing the distribution of points, fix the positions of the points on the limit cycle.

The n− 1 added conditions incorporated through Eq. 3.3 thus serve two purposes:

(a) Remove indeterminacy, and

(b) Control the relative spreading out of points, keeping arclength changes small in

regions of high curvature and large in regions of low curvature.

The presence of mean curvature κ̄ in Eq. 3.3 plays a stabilizing role by avoiding

excessive stretching of segments with low curvature. It may be possible in future

work to develop more sophisticated criteria which increase the density of points in

regions of high curvature, but we have avoided this issue here for simplicity.

We now have n equations, and need 2n more.

3. The actual flow should be directed along the limit cycle, and this will give us 2n

equations. Note that this is equivalent to Eq. 2 of [58].

Derivatives of interpolants tend to be least accurate at interpolation points. Accord-

ingly, taking derivatives of X + ∆X (from the spline interpolant), we will require

that

X ′

i+1/2 + ∆X ′

i+1/2

and

F (Xi+1/2 + ∆Xi+1/2, λ+ ∆λ)

are parallel.

Specifically, letting2

−→
Ai = (Xi+1/2 + ∆Xi+1/2)

′ = X ′

i+1/2 + ∆X ′

i+1/2,

2The interpolant of the sum is the sum of the interpolants.
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and letting
−→
Bi =

F (Xi+1/2 + ∆Xi+1/2, λ+ ∆λ)

‖F (Xi+1/2 + ∆Xi+1/2, λ+ ∆λ)‖ ,

we form the cross-product of
−→
Ai and

−→
Bi as

−→
Ci =

−→
Ai ×

−→
Bi.

We wish to enforce
−→
Ci = 0.

In three dimensions3, we use the principal normal along the known limit cycle [60],

−→
Pi =

X ′

i+1/2 × (X ′′

i+1/2 ×X ′

i+1/2)

‖X ′

i+1/2‖4
,

and the binormal
−→
Qi =

X ′

i+1/2

‖X ′

i+1/2‖
×

−→
Pi

‖−→Pi‖
,

where X ′

i+1/2 is understood to be a vector in 3D. Then we write two scalar equations

for each interval:
〈

−→
Ci ,

−→
Pi

‖−→Pi‖

〉

= 0, i = 1, . . . , n, (3.4)

and

〈−→Ci ,
−→
Qi〉 = 0, i = 1, . . . , n. (3.5)

Equations (3.4) and (3.5), evaluated for each segment, together provide 2n scalar

equations, bringing the total to the required 3n.

The above equations, given Xi, λ and ∆λ, are to be solved iteratively for the un-

known increments ∆Xi, i = 1, . . . , n. This completes the continuation strategy. After

finding the limit cycle, we can estimate the time period of the limit cycle solution using

numerical integration. Floquet multipliers can also be estimated. These procedures will be

described here below. As indicated earlier, however, the strength of the method seems to

lie in approaching homoclinic points.

3In two dimensions,
−→
Ci has only one nontrivial component, Ai1Bi2 −Ai2Bi1, which we set to zero. This

gives n equations, one for each interval; and we have all the equations we need.
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3.2.1 Time period computation

The time period computation proceeds by adding up the times taken for a phase point to

traverse each of the individual segments of the computed limit cycle curve. That is,

T =
n−1
∑

i=1

∫ Xi+1

Xi

ds

V
+

∫ X1

Xn

ds

V
,

where each path-dependent integral is evaluated along the (spline-interpolated) limit cycle,

and V is the variable speed of the phase point along the limit cycle (i.e, the magnitude

of the vector field). Rewriting the above in terms of the index-based variable used in our

work,

T =
n−1
∑

i=1

∫ j=i+1

j=i

‖X ′‖ dj
‖F (X,λ)‖ +

∫ j=n+1

j=n

‖X ′‖ dj
‖F (X,λ)‖ ,

where j ∈ [i, i+1] is a continuous variable of integration and Xn+1 = X1 by periodicity. We

have evaluated the above integrals using the elementary midpoint rule, because hundreds

of points on the limit cycle are available.

3.2.2 Floquet multiplier computation

Consider the variational equation associated with the limit cycle solution x(t) of Eq. 3.1

ẏ =
∂F (X,λ)

∂X

∣

∣

∣

∣

X=x(t)

y. (3.6)

We wish to compute the monodromy matrix associated with Eq. 3.6 using the spline-

interpolated limit cycle points. To that end, we rewrite Eq. 3.6 in terms of the index-based

variable j as

y′ = J y,

where the Jacobian

J =
‖X ′‖

‖F (X(j), λ)‖
∂F (X(j), λ)

∂X

∣

∣

∣

∣

X=x(j)

,

primes denote derivatives with respect to j, and X is taken as a function of j. Let Ji

denote the Jacobian at Xi+1/2 evaluated using the spline-interpolant. For a sufficiently

refined mesh (i.e., when many points are used on the limit cycle), the constant Ji can be
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used in place of the variable J over the interval [i, i + 1]. We then have, over the interval

[i, i+ 1], the approximate solution

y(i+ 1) = eJi y(i).

Then

y(T ) = y(n+ 1) =
(

eJn . . . eJ1
)

y(1),

and the desired Floquet multipliers are the eigenvalues of

M = eJn . . . eJ1 .

3.3 Numerical examples

We now apply the above developed algorithm to four popular examples. Of these, three

involve approach to homoclinic points and one is a more routine example. In all these

cases, the algorithm is shown to perform as good or better than MATCONT.

3.3.1 The Lorenz system

We next consider the well-known Lorenz system with popular parameter values,

ẋ = 10 (y − x), (3.7)

ẏ = ρ x − y − z x, (3.8)

ż = x y − 8 z/3. (3.9)

Of particular interest here is the homoclinic bifurcation at ρ ≈ 13.9265 [61, 62].

Tight estimates of the homoclinic parameter value are obtained in the literature

[63, 64]. Here we are interested in applying our algorithm to continue the relevant limit

cycle(s) as close to the homoclinic point as possible. In MATCONT, we could proceed upto

about ρ = 13.9820. Using our algorithm with 500 points starting at ρ = 15, we reached

ρ = 13.92678. In other words, our algorithm got closer by two orders of magnitude (again,

more determined or expert use of MATCONT may reduce this difference; but see Table

3.1). Some relevant results are plotted in Figs. 3.2 through 3.3.
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Figure 3.2: Limit cycle solutions (there are two cycles plotted) of Eqs. 3.7 through 3.9 from

our algorithm for ρ = 13.92678.

NTST NCOL min. max. Tol. min. ρ

step size step size attained

20 4 1e− 5 0.1 1e− 6 14.025229

50 4 1e− 5 0.1 1e− 6 14.088939

20 4 1e− 12 0.01 1e− 8 14.028721

30 4 1e− 12 0.01 1e− 8 14.021818

60 4 1e− 12 0.01 1e− 8 14.085116

20 4 1e− 12 0.01 1e− 6 14.028467

20 4 1e− 12 0.1 1e− 8 13.982035

50 4 1e− 12 0.1 1e− 8 14.124387

Table 3.1: MATCONT results for limit cycle of Eqs. 3.7 through 3.9.

3.3.2 Chua’s circuit

We next consider the Chua’s circuit [65] equations

ẋ = α (y − x3/16 + x/6), (3.10)

ẏ = x − y + z, (3.11)

ż = − β y. (3.12)
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Figure 3.3: 2-D view of limit cycle of Eqs. 3.7 through 3.9 obtained from our algorithm for

ρ = 13.92678. Top: X − Y projection. Bottom: X − Z projection.

The system has three fixed points, at (0, 0, 0),

(

√

8

3
, 0,−

√

8

3

)

and

(

−
√

8

3
, 0,

√

8

3

)

.

In [65], the system was studied for β = 14, β = 1.4 and β = 0.5.
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For β = 0.5, a homoclinic bifurcation is reported at α = 0.576 in [65]; unfortunately,

no more significant digits are reported. For this same value, β = 0.5, we numerically

continued the limit cycles using MATCONT and our algorithm.

NTST NCOL min. max. Tol. min. α

step size step size attained

20 4 1e− 12 0.005 1e− 8 0.58101094

50 4 1e− 12 0.005 1e− 8 0.58333874

60 4 1e− 12 0.005 1e− 8 0.58452656

20 4 1e− 5 0.1 1e− 6 0.58246042

30 4 1e− 5 0.1 1e− 6 0.58329184

50 4 1e− 5 0.1 1e− 6 0.58301373

Table 3.2: MATCONT results for limit cycle of Eqs. 3.10 through 3.12.

In MATCONT, we continued the unstable limit cycle starting from α = 0.62132034

and could reach α = 0.58101094 (see Table 3.2).

With our algorithm, we started with a 400-point limit cycle at α = 0.615 and reached

α = 0.57656854. The limit cycles obtained at α = 0.57656854 are presented in Figs. 3.4

through 3.5. In this problem, we reached the homoclinic point accurate upto about half of

the last significant digit reported in [65], while MATCONT stopped at a distance of about

0.005.

3.3.3 Examples where MATCONT does as well or better

3.3.3.1 A 2-D example from Strogatz

We study the following system from [66]:

ẋ = y, (3.13)

ẏ = −µ y + x− x2 + x y. (3.14)
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Figure 3.4: Limit cycle solution of Eqs. 3.10 through 3.12 from our algorithm for α =

0.57656854.

The above system has two equilibria (0, 0) and (1, 0). As µ decreases from above

unity, at µ = 1 a stable limit cycle is born around (1, 0) in a supercritical Hopf bifurcation;

this limit cycle grows and becomes a homoclinic orbit at µ ≈ 0.8645 (these 4 significant

digits are reported in [66]).

We started our algorithm with a limit cycle for µ = 0.95 obtained by a shooting

method, and used 500 points. We managed, with some manual intervention in parameter

step choices, to proceed upto µ ≈ 0.864547. Results are shown in Fig. 3.6 (top), where

our final solution as well as several intermediate limit cycles are plotted. The time period

computed from our algorithm is plotted in Fig. 3.6 (bottom). For this problem, MATCONT

went to 0.864545 (perhaps better, but not by much).
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Figure 3.5: 2-D view of limit cycle of Eqs. 3.10 through 3.12 obtained from our algorithm

for α = 0.57656854. Top: X − Y projection. Bottom: X − Z projection.

3.3.3.2 The van der Pol oscillator

We now apply our algorithm to the van der Pol oscillator

ẋ = y, (3.15)

ẏ = −µ y(x2 − 1) − x. (3.16)
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Figure 3.6: Top: limit cycles of Eqs. 3.13 and 3.14 obtained from our algorithm from

µ = 0.95 to µ = 0.864547. Bottom: plot of time period of limit cycle of Eqs. 3.13 and 3.14

as a function of µ computed from our algorithm.

We will perform continuation for large µ. Here, no homoclinic points are involved. For

this example, our algorithm needed a large number of points on the limit cycle to progress
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to high values of µ (e.g., with 2000 points we went to 21.23), while MATCONT proceeded

to above 40 after some trial and error with simulation parameter choices (see Table 3.3),

which indicates that the maximum attained with our level of expertise with MATCONT is

partly a matter of persistence and luck). Thus, MATCONT surely has its strengths; and

our algorithm seems to have its primary advantage in continuing limit cycles very close to

homoclinic points. A plot of the limit cycle obtained from our algorithm at µ ≈ 21.23 is

shown in Fig. 3.7(top).

NTST NCOL min. max. Tol. max. µ

step size step size attained

20 4 1e− 5 0.1 1e− 6 7.745

20 4 1e− 12 0.1 1e− 6 9.079

40 4 1e− 5 0.1 1e− 6 2.983

40 4 1e− 12 0.01 1e− 6 3.808

60 4 1e− 5 0.1 1e− 6 12.42

60 2 1e− 5 0.1 1e− 6 9.846

40 4 1e− 9 0.1 1e− 8 11.54

100 4 1e− 12 0.01 1e− 8 41.12

Table 3.3: MATCONT results for limit cycle of Eqs. 3.15 and 3.16.

We believe that MATCONT does better with the van der Pol oscillator because,

for large µ, there is essentially a pair of discontinuities in the solution when viewed as a

function of time; in contrast, for this system with large µ, in phase space the limit cycle

curve stretches out without bound in the y direction, causing the finite number of points

used (500, 1000 or 2000, as the case may be) to eventually be insufficient. There are also

some oscillations, limited to a few points as is typical of spline interpolation, observed in

the van der Pol limit cycle for large µ (see Fig. 3.7).
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Figure 3.7: Top: limit cycle of Eqs. 3.15 and 3.16 obtained from our algorithm for µ = 21.23.

Bottom: zoomed portion of limit cycle showing the oscillatory behavior in the transition

regions.

3.4 Convergence: some numerical results

In this section, we define two easily computed error measures and use them to empirically

demonstrate the convergence of our results with increasing n.
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Consider an n-point approximation of the limit cycle obtained from our algorithm

for some particular parameter value. At each point on the limit cycle (see Fig. 3.8), let θ

be the angle between the unit tangent vector obtained from the spline interpolant and that

from the flow. Since our algorithm enforces parallelism between the unit tangent vectors

only at the midpoint of each segment (in i-coordinates), the angle θ does not vanish at all

points. At any point of the limit cycle we take 1 − cos θ as the “angle-error” due to the

approximation. Note that this quantity vanishes pointwise in the limit as the length of

the largest interval in phase space goes to zero with n → ∞; and that for small angular

deviations 1 − cos θ ≈ θ2

2
, thus representing squared angular deviation.

X
k

Xk+1

X
k+2

Xk+3

P
q

actual flow directions

matches at midpoint 

midpoint

interpolant

midpoint 

X
k+1/2

Figure 3.8: Schematic showing deviation of flow from the tangent to the interpolant at a

typical point P.

We can sum up the angle-errors at each point of the limit cycle to obtain a global

angle-error measure, E(n), for the n-point limit cycle approximation. More precisely we

have

E(n) =

∮

(1 − cos θ)ds, (3.17)

where ds is the elemental arclength (in phase space) and the integral is evaluated over the
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Figure 3.9: Top: convergence results based on angle error measure of Eq. 3.18 for the limit

cycle of Eqs. 3.15 and 3.16 at µ = 5. Bottom: results for µ = 10.0049. The dots are

computed points; the interpolation is for easier visibility only.
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limit cycle. In practice, we evaluate Eq. 3.17 as

E(n) =

∫ i=n+1

i=1

(1 − cos θ)‖X ′‖ di, (3.18)

where

cos θ =

〈

X ′

‖X ′‖ ,
F (X,λ)

‖F (X,λ)‖

〉

.

As the number of points increases, we expect this error to decrease asymptotically

to zero as the tangent vector from the spline interpolant and that from the flow align with

each other everywhere on the limit cycle.

We now present convergence results based on the global angle-error measure for the

van der Pol oscillator of Eqs. 3.15 and 3.16. We obtained approximations to the limit cycle

at µ = 5 and µ = 10.0049 using n = 20, 40, 80, . . . , 640 points. For each n, we compute the

total angle error given by Eq. 3.18. The results are plotted in Fig. 3.9. Convergence, though

strongly indicated, does not follow a clear power law, probably because of the adaptive

redistribution of points along the limit cycle based on our curvature-based criterion of Eq.

3.3.

As another indicator of convergence of our approximations with increasing number

of mesh points, we compute the arclength of the limit cycle for each n as

S(n) =

∫ i=n+1

i=1

‖X ′‖ di. (3.19)

We expect that as n → ∞, the arclength computed from the spline interpolant converges

to the exact arclength of the limit cycle.

We compute the arclengths for the limit cycles of Eqs. 3.15 and 3.16 at µ = 5 and

µ = 10.0049 for n = 20, 40, 80, . . . , 640 points. For plotting purposes, we take the arclength

of the 640 point mesh as “exact” and deem the difference between this “exact” value and

the arclength at any smaller n as the “arclength error” at that particular n. Results are

shown in Fig. 3.10, which again indicates convergence, but not according to some simple

power law, presumably for the reason mentioned above.
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Figure 3.10: Top: arc length error plots for the limit cycle of Eqs. 3.15 and 3.16 at µ = 5.

Bottom: results for µ = 10.0049. The dots are computed points; the interpolation is for

easier visibility only.
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3.5 Shortcomings of the finite parameter increment

approach

Thus far, we have presented a new phase space-based algorithm to continue limit cycles.

We have demonstrated the usefulness of our algorithm through several examples. The

performance of our algorithm, however, can be improved on the following counts:

1. The continuation strategy of section 3.2 involved finite parameter increments. This

discrete strategy yields algebraic governing equations for the increments of the points

on the limit cycle. In this strategy, there is arbitrariness in the choice of parameter

increments, and thus we do not have fine control on our approach to homoclinic points.

This problem could be remedied by reformulating our algorithm with infinitesimal

parameter increments, thereby obtaining ODEs instead of algebraic equations. ODEs

enable us to exploit the capabilities of powerful numerical integration solvers, such

as adaptive step sizing, to approach homoclinic points more closely.

2. The existing continuation strategy also has the obvious disadvantage of being un-

able to pass fold points. This is illustrated in Fig. 3.11, where the solution branch

folds back. Thus for an incremented parameter past the fold point, the algorithm

l1l2

no solution

fold point

Figure 3.11: A schematic showing failure of the parameter increment strategy in continuing

past a fold point.

would fail to find a solution. This could be remedied by the well known arclength

reparametrization technique [68].
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3. Also, our algorithm is currently applicable to dimensions not greater than three.

Extension of the algorithm to higher dimensions is straightforward and would improve

the versatility of the algorithm.

We address the above three improvements in the forthcoming sections of this chapter.

3.6 Our algorithm: ODE formulation

The finite parameter increment continuation strategy, presented earlier in this chapter, is

known in the literature as natural parameter continuation [51]. Here we reformulate our

algorithm by considering infinitesimal parameter increments thereby transitioning from

algebraic equations to ODEs. Such ODE-based approaches, known in the literature as

parametric differentiation techniques ([67, 68]), are sometimes used as tangent predictors for

subsequent Newton-Raphson correction iterations [68]; for simplicity, we do not undertake

such subsequent corrections in this study.

The ODE formulation of this chapter has been presented in [69]

We start our ODE formulation with the phase condition of Eq. 3.2, which for an

infinitesimal parameter increment, becomes
〈

dX1(λ)

dλ
, F (X1(λ), λ)

〉

= 0. (3.20)

The curvature-based constraint of Eq. 3.3, in the infinitesimal parameter increment

limit, becomes

dSi

dλ
(κ̄+ κi) =

dSi+1

dλ
(κ̄+ κi+1), i = 1, 2, . . . , n− 1, (3.21)

where the derivatives are given more explicitly as

dSi

dλ
=

〈

(Xi(λ) −Xi+1(λ)),
(

dXi(λ)
dλ

− dXi+1(λ)
dλ

)〉

‖Xi+1(λ) −Xi(λ)‖ .

Note that since our curvature computations are based on the limit cycle for the current

parameter value, there are no derivatives of curvatures (with respect to λ) involved in our

equations.
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We now have n equations.

To obtain 2n more equations, we now consider Eqs. 3.4 and 3.5. Consider the i-th

segment of the limit cycle for a parameter value λ. Let the tangent vector computed from

the spline interpolant at the midpoint be X ′

i+1/2(λ), and let the unit vector from the flow

be
−→
N (Xi+1/2(λ), λ) =

F (Xi+1/2, λ)

‖F (Xi+1/2, λ)‖ . At an incremented parameter value λ + ∆λ, these

equations read as

〈

(

X ′

i+1/2(λ+ ∆λ) ×−→
N (Xi+1/2(λ+ ∆λ), λ+ ∆λ)

)

,

−→
Pi

‖−→Pi‖

〉

= 0, i = 1, . . . , n, (3.22)

and

〈(

X ′

i+1/2(λ+ ∆λ) ×−→
N (Xi+1/2(λ+ ∆λ), λ+ ∆λ)

)

,
−→
Qi

〉

= 0, i = 1, . . . , n, (3.23)

where

−→
Pi

‖−→Pi‖
and

−→
Qi are the principal normal and binormal vectors respectively at the

midpoint of the segment.

We expand the left hand sides of the above equations upto first order infinitesimals

in λ. In particular, for Eq. (3.22), after suppressing dependencies on independent variables,

we have
〈

X ′

i+1/2 ×
(

∂
−→
N

∂X

dXi+1/2

dλ

)

,

−→
Pi

‖−→Pi‖

〉

+

〈

X ′

i+1/2 ×
∂
−→
N

∂λ
,

−→
Pi

‖−→Pi‖

〉

+

〈

dX ′

i+1/2

dλ
×−→
N ,

−→
Pi

‖−→Pi‖

〉

= 0, i = 1, . . . , n,

(3.24)

where all quantities are evaluated at (Xi+1/2, λ).

In the above equation, we need to express quantities such as
dXi+1/2

dλ
and

dX ′

i+1/2

dλ

in terms of our primary dependent variables Xi and their derivatives
dXi

dλ
. To that end, we
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proceed as follows. Since the cubic spline interpolant is a linear function of Xi, we have
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(3.25)

where for the 3 dimensional case with n points the size of the constant matrices R and S

is 3n × 3n. Thus we have
dY1/2

dλ
= R

dY

dλ
,

dY ′

1/2

dλ
= S

dY

dλ
. Utilizing the above relations

in Eqs. 3.24 and repeating the procedure for n segments we obtain n equations. Similar

computations using Eq. (3.23) yield n more equations.

The final set of ODEs, after some re-arrangement, can be compactly written as

P (Y (λ), λ)
dY

dλ
= Q(Y (λ), λ) , (3.26)

where Y is as defined in Eq. (3.25), P is a 3n × 3n matrix and Q is a n × 1 vector. We

could write the above equation as
dY

dλ
= P−1Q, (3.27)

which represents the continuous version of our discrete formulation of section 3.2. Numerical

integration of Eq. (3.27) will fail at a fold point where P becomes singular. In the literature,

several alternate approaches such as arclength continuation have been reported [51, 68].

We adopt the arclength approach here, wherein we consider Y as well as the para-

meter λ as functions of the arclength, s, along the branch, whence Eq. (3.26) becomes

P (Y (s), λ(s))
dY

ds
−Q(Y (s), λ(s))

dλ

ds
= 0. (3.28)

We have 3n equations for 3n + 1 unknowns namely,
dY

ds
and

dλ

ds
. Hence we add an

additional condition [51] as
〈

M0,
dY

ds

〉

+N0
dλ

ds
> 0, (3.29)

where

[

M0

N0

]

denotes the unit tangent vector computed at the previous integration step.

For sufficiently small integration step size, this condition preserves the orientation of the
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continuation branch [51]. We finally normalize the arclength derivatives as follows:

〈

dY

ds
,
dY

ds

〉

+

(

dλ

ds

)2

= 1. (3.30)

The intention is to solve Eqs. 3.28 and 3.30, subject to the inequality (3.29). In practice,

this is done by replacing the “ > 0” in Eq. (3.29) with “ = 1” and solving it along with

Eq. (3.28), with subsequent scalar normalization of the solution to satisfy Eq. (3.30). We

adopt the above strategy so as to avoid solving the nonlinear system of equations Eqs.

3.28 and 3.30. Also, as stated earlier, inclusion of Eq. 3.29 preserves the orientation of the

continuation branch [51].

3.7 Application of ODE formulation: a fold bifurca-

tion

We now present an example involving a fold bifurcation showcasing the capabilities of the

above described formulation.

We consider the equations for Chua’s circuit as presented in [65]

ẋ = α (y − x3/16 + x/6), (3.31)

ẏ = x − y + z, (3.32)

ż = − β y, (3.33)

for β = 1.4.

In [65] it is reported that for β = 1.4 a pair of unstable limit cycles are born around

the two equilibria

(

√

8

3
, 0,−

√

8

3

)

and

(

−
√

8

3
, 0,

√

8

3

)

in a sub-critical Hopf bifurcation

at α = 1.423 (our more accurate estimate below is 1.424). On decreasing α, these limit

cycles merge with two co-existing stable limit cycles at α = 1.418 (our estimate: 1.4177) in

a fold bifurcation. On following the solution branch beyond the fold point, with increasing

α, these two stable limit cycles approach each other and finally merge into a single limit

cycle at α = 1.431 in a homoclinic bifurcation.
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We start with a 400-point unstable limit cycle at α = 1.4240 and continue it past

the fold point upto near homoclinic orbit. The fold point according to our approach is at

α = 1.4177 and the final value of α reached by us is 1.4316. We compute the time period of

the limit cycle solutions along the branch and plot them in Fig. 3.12. The plot reveals the

fold point at α ≈ 1.418 as well as the unlimited growth of time period near the homoclinic

point at α ≈ 1.431. We also plot the stable and unstable orbits at different values of α in

Fig. 3.13.
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Figure 3.12: A plot of time period of the limit cycle solutions of Eqs. 3.31 through 3.33 for

β = 1.4 revealing the fold bifurcation at α ≈ 1.4177.

3.8 Our algorithm: extension to higher dimensions

In section 3.2, we have presented our algorithm in a three dimensional setting. However,

the algorithm can be easily extended to dimensions greater than three as will be shown
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Figure 3.13: X−Y plot of the unstable orbit at α = 1.4230 which undergoes fold bifurcation

and grows into a near-homoclinic stable orbit at α = 1.4316. Also plotted is this near-

homoclinic orbit at α = 1.4316.

below.

Consider Ẋ = F (X,λ), with X now being p-dimensional and p > 3. Let this system

possess a limit cycle solution in p-dimensional space. We wish to continue this limit cycle

by varying λ.

We have n points in our limit cycle approximation and hence we need p n equations.

Of these, n equations are obtained from the phase condition and curvature-stretch condi-

tions exactly similar to Eqs. 3.2 through 3.3. In higher dimensions, the first generalized

curvature is obtained using the following formula [70, 71]

κi =
〈e′1, e2〉
‖X ′

i+1/2‖
,
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where primes denote derivatives with respect to the parametrizing index variable and

e1 =
X ′

i+1/2

‖X ′

i+1/2‖
,

e2 =
(X ′′

i+1/2 − 〈X ′′

i+1/2, e1〉 e1)
‖X ′′

i+1/2 − 〈X ′′

i+1/2, e1〉 e1‖
.

The remaining (p− 1)n equations are obtained by requiring that the actual flow be

directed along the limit cycle (see [58] for similar conditions).

Specifically, for the i-th segment, we find a set of p−1 vectors, say {v1, v2, . . . , vp−1}
which are mutually orthogonal as well as orthogonal to the flow direction

F (Xi+1/2 + ∆Xi+1/2, λ+ ∆λ)

‖F (Xi+1/2 + ∆Xi+1/2, λ+ ∆λ)‖ .

In MATLAB, such a set {v1, v2, . . . , vp−1} can be easily obtained (numerically) by the null

command in each Newton-Raphson iteration.

We also compute the tangent vector from our spline interpolant as

−→
Ai = (Xi+1/2 + ∆Xi+1/2)

′ = X ′

i+1/2 + ∆X ′

i+1/2.

For the i-th segment we obtain p− 1 equations by enforcing that
−→
Ai be orthogonal to the

set {v1, v2, . . . , vp−1}. More precisely, we require that

〈−→Ai, vj〉 = 0, j = 1, 2, . . . , p− 1.

Repeating the procedure for the n segments we obtain the required (p− 1)n equations.

We now study a 4-dimensional system using our algorithm and compare our re-

sults with MATCONT. Consider the following system of two weakly coupled van der Pol

oscillators studied by [72]

p̈+ p+ ǫ ṗ (p2 − 1) + ǫ α (p− r) = 0, (3.34)

r̈ + (1 + ǫ∆) r + ǫ ṙ (r2 − 1) − ǫ α (p− r) = 0, (3.35)

where 0 < ǫ≪ 1, ∆ represents detuning and α denotes the strength of coupling. As shown

in [72], for a certain range of α and ∆, strongly phase-locked (periodic) limit cycle solutions

exist for the above system.
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Rewriting the above system in state space form we have

ṗ = q, (3.36)

q̇ = −p− ǫ q (p2 − 1) − ǫ α (p− r), (3.37)

ṙ = s, (3.38)

ṡ = −(1 + ǫ∆) r − ǫ s (r2 − 1) + ǫ α (p− r). (3.39)

We used ǫ = 0.01 and ∆ = 1 in our simulations. We started with a 300-point

limit cycle approximation at α = 1.01 and continued the strongly phase-locked limit cycle

solution for increasing values of α. The results from our algorithm are plotted along with

those from MATCONT for α = 4.27 in Fig. 3.14 and 3.15. Agreement is good. This

demonstrates the use of our algorithm in continuing limit cycles in dimensions more than

three.
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Figure 3.14: Limit cycle of Eqs. 3.36 through 3.39 for α = 4.27: projection onto p− q − r

space.
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Figure 3.15: Limit cycle of Eqs. 3.36 through 3.39 for α = 4.27: projection onto q − r − s

space.

3.9 Closing remarks

We have presented an algorithm for continuation of limit cycles occuring in parameterized

systems of autonomous ODEs. The algorithm approximates the limit cycle using a number

of points in phase space, and interpolates between them using an artificial index-based

variable and cubic splines. The approach seems useful, in particular, close to homoclinic

points. The algorithm is initially presented in a 3D setting, with a finite parameter in-

crement continuation strategy. Subsequently, we have reformulated the algorithm using

infinitesimal parameter increments yielding ODEs. This reformulation is applied to situa-

tions involving fold bifurcations. Finally, extension of the algorithm to higher dimensions

is outlined (only in the discrete form, so far).

The algorithm in its present form is unable to detect higher co-dimension singular-

ities along branches of limit cycles, which can be handled by packages like MATCONT.
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Also, the algorithm is currently unable to address homoclinic orbits involving saddle-foci

and the associated spiral orbits.

Future work may alleviate some of these apparent shortcomings. In particular,

other interpolation schemes might be used in place of splines; and Eq. 3.3, which is the

most flexible part of the algorithm, might be replaced with something that is found to be

better.

Despite the said shortcomings, in our view, the algorithm already offers one extra

alternative to an analyst, and could be added to the suite of algorithms already incorporated

into packages like MATCONT.

Recall that the development of the algorithm was motivated by the need to continue

the limit cycles close to the homoclinic point of the amplitude control problem of Chapter

2. With the new algorithm in place, we revisit the amplitude control problem of Chapter

2 in Chapter 4.



Chapter 4

Return to amplitude control: Results

In Chapter 2, we started the study related to the amplitude control of a lightly damped,

resonantly forced oscillator. In the course of this study, we faced the need for continuing

limit cycles close to a homoclinic point. Motivated by this need, we developed and presented

a new phase space-based algorithm in Chapter 3. The algorithm was applied to several

problems. Encouraged by its success, in this chapter we apply the algorithm to the system

studied in Chapter 2.

4.1 Amplitude control problem of Chapter 2

Recall that the system studied in Chapter 2 was

ẋ = −x− 3 y , (4.1)

ẏ = 3x− y − z , (4.2)

ż = K y

(

1 − 3
√

x2 + y2

)

. (4.3)

In Chapter 2, we had continued the large and small limit cycles of the above system using

MATCONT. Based on the plots of these orbits in Fig. 2.4, we hypothesized that these

large and small limit cycles will approach each other and get destroyed in a homoclinic

bifurcation. However, we do not yet know the critical value of K at which the homoclinic

bifurcation occurs. If the origin had been a genuine equilibrium point of the above system,

51
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an estimate of the homoclinic point could have been obtained by standard methods (see,

for e.g., [35, 36, 37, 38, 39, 40]). Here, however, the origin is not an equilibrium point. In

such an atypical situation, what is this critical value of K at which the limit cycles merge

and disappear?

4.2 Semi-analytical estimate of homoclinic point

In order to gain better understanding of the near-origin dynamics of Eqs. 4.1 through 4.3,

we first consider the regularized system

ẋ = −x− 3 y (4.4)

ẏ = 3x− y − z (4.5)

ż = K y

(

1 − 3
√

α+ x2 + y2

)

, (4.6)

where 0 < α≪ 1.

With α > 0, the system has an equilibrium at the origin. The other two equilibria

referred to in section 2.3 persist near their α = 0 locations. For α = 1e−5, we find the three

equilibria at (0, 0, 0), (2.846,−.9487, 9.487) and (−2.846, .9487,−9.487). The eigenvalues,

for K = 14, at the origin are

λ1 = −1.0007, λ2 = −115.65, λ3 = 114.65,

and the corresponding eigenvectors are

V1 =









.99955e− 2

.22617e− 5

.29986e− 1









,

V2 =









−.17205e− 3

−.65750e− 2

−.75432









,

V3 =









−.17140e− 3

.66072e− 2

−.76462









.
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The origin is a saddle with V1 and V2 being the stable eigenvectors and V3 being the unstable

eigenvector.

As α is decreased further (numerical results not presented here), we observe that

the z component of the approach direction vector V1 becomes three times the x component.

This observation will be utilized later when we present results from our algorithm. We also

observe that λ2 and λ3 become large, approximately equal in magnitude, and opposite in

sign; and that V2 and V3 become closer to parallel, while their z components become much

larger than their y components, which in turn become much larger than their x components.

With these observations we revisit Eqs. 4.1 through 4.3, and seek a power series

solution which leaves the origin at t = 0, given by

x(t) =
N
∑

m=3

am t
m , (4.7)

y(t) =
N
∑

m=2

bm t
m , (4.8)

z(t) =
N
∑

m=1

ci t
m . (4.9)

We substitute Eqs. 4.7 through 4.9 in Eqs. 4.1 through 4.3 and solve for the unknown

coefficients ai, bi and ci to obtain

x(t) = −3K t3/2 + 3K t4/4 + . . . (4.10)

y(t) = 3K t2/2 − K t3/2 + (−9K/8 − K2/8) t4 + . . . (4.11)

z(t) = −3K t+ (K2/2 +K/2) t3 − K (1 +K) t4/8 + . . . (4.12)

For a chosen value of K, we first compute the initial conditions x, y, z for numerical

integration by evaluating Eqs. 4.10 through 4.12 at t = 0.002. We then integrate Eqs.

4.1 through 4.3 with these initial conditions and error tolerances of 1e− 13 in MATLAB’s

function “ode45”. We plot the norm of the numerical solution,
√

x(t)2 + y(t)2 + z(t)2, for

various K values, against time in Fig. 4.1. For K close to the homoclinic point value,

the computed solution returns close to the origin. As depicted in Fig. 4.1, we find K =

13.82786 is a good estimate of the homoclinic point (the last digit may be unreliable). For

K = 13.827, in contrast, the trajectory goes more quickly to one of the two fixed points.
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Figure 4.1: Return to the homoclinic point. For K = 13.82786, the closest approach to the

origin is acceptably small.

We repeated the above numerical experiments by evaluating Eqs. 4.10 through 4.12

at t = 0.001 instead of 0.002. Here too, we found K ≈ 13.82786, with the last digit

probably unreliable.

Having obtained an estimate of the homoclinic parameter value, we proceed to

continue the limit cycles using the algorithm of Chapter 3.

4.3 Results from our algorithm

We now perform limit cycle continuation of the small and large orbits using our algorithm

and demonstrate its efficacy in coming close to the above determined homoclinic point. We

first present results based on the finite parameter increment strategy. Later on, we will

present results based on the ODE formulation. For the small orbit, we started with a limit

cycle solution at K = 16. We had 500 points in our starting limit cycle. We successfully

continued the small, asymmetric limit cycle upto K = 13.83356. For comparison, we plot
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Figure 4.2: Comparison of limit cycles of Eqs. 4.1 through 4.3 for K = 13.8740 obtained

from our algorithm and MATCONT. Top: X − Y projection. Bottom: X − Z projection.
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the two small limit cycles obtained using our algorithm at K = 13.8740, along with those

from MATCONT, in Fig. 4.2. We have plotted fewer than 500 points for visual clarity.

Agreement is good. Note, however, that our terminal value of 13.83356 differs from the

limiting value of 13.82786 by 0.0055; in contrast, MATCONT’s terminal value of 13.8740

differs by about 0.041, which is about 7 times larger.

For the large orbit, we started with a limit cycle at K = 15.5. There were 600

points in the starting solution. We were able to proceed till K ≈ 13.83140. This value of

K differs from the limiting value by about 0.0035. In contrast, MATCONT’s termination

at 13.9326 differs from the limiting value by about 0.105, which is about 30 times larger.

For completeness, we plot the small and large limit cycles obtained using our algo-

rithm for K = 13.8335 in Fig. 4.3. The large limit cycle is now visually indistinguishable

from the two small ones, both being quite close to homoclinic.

We also plot the projection of the two small limit cycles onto the X-Z plane in Fig.

4.4. Also plotted is the z = 3x line near the origin; the limit cycle proceeds almost along

this line along one segment of the loop; this numerical/graphical observation is related to

the components of the eigenvector V1 as explained in section 4.2.

The time periods for the small and large orbits computed from our algorithm, as

described in Chapter 3, are plotted in Fig. 4.5, along with the same quantities estimated

by MATCONT. The largest Floquet multiplier for the two orbits from our algorithm, as

described in Chapter 3, are plotted along with results from MATCONT in Fig. 4.6. Agree-

ment is good. The computation of the other two multipliers had visible difficulties, both

with our algorithm and MATCONT. For example, one Floquet multiplier is theoretically

equal to unity for any limit cycle (i.e., for all K); the corresponding numerical values ob-

tained from our algorithm and MATCONT are plotted side by side in Fig. 4.7, and show

spurious oscillations. However, since it is well known that accurate computation of Floquet

multipliers of disparate magnitudes is difficult [41], we do not investigate these Floquet

multipliers further.
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Figure 4.3: The large and small orbits of Eqs. 4.1 through 4.3 from our algorithm for

K = 13.8335; the plots are visually indistinguishable. Top: 3-D. Bottom: X−Y projection.
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Figure 4.4: X −Z projection of the large and small orbits of Eqs. 4.1 through 4.3 from our

algorithm for K = 13.8335 revealing the asymptotic approach directions.

4.3.1 Further comments on implementation

The increments in K (here, the increments were negative) were decided adaptively based

on the number of Newton-Raphson iterations needed for the previous parameter increment.

If the number of iterations exceeded a threshold (we have used several choices like 5, 7,

10, etc.), the parameter increment was reduced to 70% of the previous value. To reduce

the number of function evaluations, a modified Newton-Raphson method was used in some

cases (the Jacobian matrix calculated during the first iteration was used unchanged in

subsequent iterations). However, the iteration termination criterion was held constant at

1e− 9, and so these procedural tricks have no influence on the reported final results.

Apart from the 500 point-mesh for the small limit cycle, for which we present results

here, we also tried 50, 100, 300 and 800 points: in all cases, we reached comparableK values.

With more points, the accuracy of indirectly computed quantities such as time period was

higher.
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Figure 4.5: Time period of large and small limit cycles of Eqs. 4.1 through 4.3 computed

from our algorithm along with those from MATCONT.

Overall, performance of the algorithm was robust.

Note that the above strategy for deciding the step size is avoided with the ODE

formulation of section 3.6.

4.3.2 Results from ODE formulation

We also applied the ODE formulation of section 3.6 in continuing the limit cycles of Eqs.

4.1 through 4.3. We could continue the small, asymmetric limit cycle upto K = 13.8281,

which is much closer to the estimated homoclinic point K ≈ 13.8278 than the best results

of section 4.3. The large, symmetric limit cycle could be continued till K = 13.8282, which

is also very good. The number of mesh points and other details remain the same as in

section 4.3.
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Figure 4.6: Largest Floquet multiplier of limit cycles of Eqs. 4.1 through 4.3 from our

algorithm and MATCONT. Top: large, symmetric orbit. Bottom: small, asymmetric

orbit.
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Figure 4.7: Top: Floquet multiplier along the small orbit of Eqs. 4.1 through 4.3 from our

algorithm. Bottom: Floquet multiplier along the small orbit from MATCONT.
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4.4 Closing remarks

We conclude the study of the first problem of this thesis with a few closing remarks. In this

problem, we studied some nonlinear dynamics related to the amplitude control of a lightly

damped, resonantly forced, harmonic oscillator. In the course of this study, we encountered

an interesting computational problem of continuing limit cycles close to homoclinic points.

To that end, we developed a new phase space-based algorithm for limit cycle continuation.

The algorithm seems to be particularly useful for continuing limit cycles near homoclinic

points. Later, we revisited the amplitude control problem and successfully applied the

proposed algorithm to continue the limit cycles of our system of interest quite close to the

semi-analytically estimated homoclinic point.

We now move on to the second problem studied in this thesis in the next chapter.



Chapter 5

MMS via discretization of a

fractionally damped van der Pol

oscillator

In this chapter, we present the second problem studied in this thesis.

Here, we study the classical van der Pol oscillator with an added fractional damping

term. The system is near Hopf bifurcation. The presence of fractional damping introduces

infinite dimensionality and makes the study interesting. Systems with O(1) fractional

terms, such as the one studied in this work, have hitherto been largely treated numerically,

after suitable approximations of the fractional order operator in the frequency domain.

Analytical progress has been restricted to systems with small fractional terms. In this work,

the fractional term is approximated by a recently proposed Galerkin-based discretization

scheme [30] resulting in a set of ODEs. A distinguishing feature of this scheme is that,

while most existing methods to treat fractional order systems provide approximations to

specific solutions of the original system for specified initial conditions, the discretization

scheme used here approximates the original system itself by providing another system of

ODEs, whose solutions approximate those of the original system. These ODEs are then

amenable to usual treatment by the method of multiple scales, provided only that we are

close to the bifurcation point. The resulting slow flow provides good approximations to the

full numerical solutions, as will be demonstrated in this chapter.
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5.1 Introduction

In this work, we adopt the Riemann-Liouville definition definition of the fractional deriva-

tive with x(0) = 0 [30, 73], which is

Dα[x(t)] =
1

Γ(1 − α)

∫ t

0

ẋ(τ)

(t− τ)α
dτ . (5.1)

Fractional order derivatives arise in the modeling of chemical [74, 75], biological

[76], economic [77] and engineering systems. Engineering applications include viscoelastic

damping models [78, 79, 80, 81] and fractional order controllers [82, 83] (see also [84, 85]).

The nonlinear dynamics literature contains studies of the fractional order counterparts

of the traditional Duffing oscillator [86], Mathieu equation [87], van der Pol oscillator

[88, 89, 90, 91], coupled oscillators [92, 93], Chua’s circuit [94] and other systems. In most

of these studies, the fractional order operator is approximated in the frequency domain

[95, 96, 97, 98] to yield a system of ODEs in the time domain, and the resulting approxi-

mate system is studied using simulations, phase portraits, Poincaré maps and bifurcation

diagrams. Analytical treatment of transient dynamics of nonlinear systems with O(1) frac-

tional derivative terms has not been attempted. In this work, we make a semi-analytical

contribution in this direction.

We study the dynamics of a fractional van der Pol oscillator (fractional order deriv-

atives will be discussed further below) of the form

ẍ+ β Dα[x(t)] + µ ẋ (x2 − 1) + x = 0 , (5.2)

with parameters β and µ not individually small; for β sufficiently large with µ fixed, the

origin is stable, while for µ sufficiently large with β fixed, the origin is unstable and a

stable limit cycle exists. We will consider β and µ values that are near the Hopf bifurcation

curve. We will also study the case of light resonant forcing. A key point here is that

our approach is semi-analytical, with an initial numerical discretization of the fractional

derivative operator, followed by analytical treatment using the MMS.

Unlike other studies of fractional van der Pol oscillators (see, e.g., [88, 90, 91])

which discretize the fractional order operator using frequency domain ideas, we utilize a

recently proposed Galerkin projection-based discretization scheme [30]. This scheme has
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been shown to provide useful numerical approximations for several fractional order systems

[99, 100, 101], and is simple to use provided 3 matrices have been computed (we provide

these matrices for α = 1/2 and α = 1/3 in appendices B and C respectively). A distin-

guishing feature of this scheme, as mentioned above, is that the Galerkin scheme provides

an approximation to the original system itself by providing another dynamic system. Sub-

sequent analysis could in principle proceed using any useful method: we use the MMS. Note

that this approach of approximating an infinite dimensional system by a finite dimensional

one through Galerkin projections is often done in the case of partial differential equations

modeling several physical systems (see, for e.g., [4]). However, use of such an approach to

subsequently analytically study fractional order systems is new.

Note that our system of Eq. 5.2, as well as our approach to approximate the frac-

tional derivative, differ from [91], wherein the highest derivative is of fractional order; our

system is also different from [89] wherein the damping is purely fractional; finally note

that, after discretization using a scheme known to be accurate, our subsequent treatment

is analytical (MMS).

We emphasize that the method of averaging and the MMS have both been applied,

without numerical discretization, to fractional order ODEs [21, 102, 103, 104, 105, 106] and

PDEs [107] where the fractional damping term was small. In contrast, we study the system

near a Hopf bifurcation, but at a point where the fractional derivative term is not small.

Direct MMS treatment of the fractional derivative operator in such cases has not been done

anywhere so far to the best of our knowledge, and is not attempted here, either. Even the

MMS treatment of an approximating system, such as we do here, is a new contribution to

the study of fractionally damped systems.

We proceed by using the Galerkin scheme [30] to approximate the fractional order

operator. The approximation scheme of [30] yields two n×n matrices Aα, Bα and an n×1

matrix cα (see appendices B and C), which depend on the order of the fractional term α

as denoted by the subscripts, as well as a user-specified frequency range.

The solution of the original Eq. 5.2 is approximated by the solution of the following

coupled system of ODEs.

ẍ+
β

Γ(1 + α)Γ(1 − α)
cT

αa + µ ẋ (x2 − 1) + x = 0 , (5.3)

Aαȧ + Bαa = cαẋ , (5.4)
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where the superscript T denotes matrix transpose. The initial conditions for Eqs. 5.3 and

5.4 are taken as a(0) = 0, and x(0) = 0 by assumption (for simplicity only: nonzero initial

conditions can be accommodated using the Caputo derivative [108]).

5.2 The unforced system

We consider the van der Pol oscillator

ẍ+ β Dα[x(t)] + µ ẋ (x2 − 1) + x = 0 . (5.5)

We consider the case of α = 1
2

in detail below, and briefly present results for the case of

α = 1
3

later. Thus,

ẍ+ β D
1

2 [x(t)] + µ ẋ (x2 − 1) + x = 0 . (5.6)

5.2.1 Hopf bifurcation point

For β = 0, we have the usual van der Pol oscillator for which the trivial solution x(t) ≡ 0

loses stability through a Hopf bifurcation at µ = 0. For µ < 0, the origin is stable. For

µ > 0, the origin is unstable and surrounded by a stable limit cycle.

For β > 0, the presence of fractional damping stabilizes the origin and postpones

the onset of Hopf bifurcation. At the Hopf point, we anticipate harmonic solutions of a

particular frequency. We explicitly seek the possibility of such a solution by substituting

x = ei ωt, for a constant ω, in Eq. 5.6. We get (using Eq. 5.1)
(

−ω2 + β erf(
√
iωt)

√
iω − iµω + 1

)

eiωt = 0 , (5.7)

where erf(.) is the error function. Now, eiωt 6= 0. Thus for a periodic solution we require

−ω2 + β erf(
√
iωt)

√
iω − iµω + 1 = 0 , (5.8)

For a harmonic solution1, we let t → ∞ in the above equation, noting erf(
√
iωt) → 1.

Thus, we obtain the Hopf bifurcation equation as

−ω2 + β
√
iω − iµω + 1 = 0 . (5.9)

1Methods like harmonic balance on fractional system involve similar steps and arrive at similar results

(see Eq. 12 of [109]). See also Eq. 15 of [21], and also Eq. 15 of[105]
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Note that Eq. 5.9 is not the characteristic equation of the linearization of Eq. 5.6 in the

sense that the general solution of Eq. 5.6 is not of the form est, as would be in the case

of ordinary differential equations yielding the complete set of complementary solutions.

However, a Hopf bifurcation point is, nevertheless, determined by Eq. 5.9.

Separating real and imaginary parts of Eq. 5.9 gives

−ω2 + 1 +
β
√
ω√
2

= 0 , (5.10)

β
√
ω√
2

− µω = 0 . (5.11)

Eliminating ω between Eqs. 5.10 and 5.11 and simplifying, we obtain

β =

√

µ3 + µ2
√

µ2 + 4 . (5.12)

Equation 5.12 marks the locus of Hopf bifurcation points in the β−µ plane. For 0 < µ≪ 1,

Eq. 5.12 becomes

β ≈
√

2µ , (5.13)

The small-µ limit result of Eq. 5.13 could also be obtained by the method of averaging,

following [103] by treating β and µ as small after linearizing Eq. 5.6. Thus, setting µ = ǫ µ̄

and β̄ = ǫ β̄, where 0 < ǫ ≪ 1, the slow flow governing the evolution of amplitude R is

found to be (details not presented)

dR

dt
= ǫR

(

µ̄

2
− β̄

2
√

2

)

,

Setting the coefficient of R in the right hand side of the slow flow to zero, we verify Eq.

5.13.

5.2.2 Conversion to ODEs

We now proceed with the Galerkin approximation of the fractional derivative of Eq. 5.6

using Eqs. 5.3 and 5.4. For α = 1
2
, these equations yield

ẍ+
2

π
β cT

1/2a + µ ẋ (x2 − 1) + x = 0 , (5.14)

A1/2ȧ + B1/2a = c1/2ẋ . (5.15)
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The matrices A1/2, B1/2 and c1/2 (for2 n = 15) are provided in appendix B. Henceforth,

in this chapter we drop the dependencies of the matrices on α and simply write A, B and

c, while they actually refer to A1/2, B1/2 and c1/2.

Rewriting Eqs. 5.14 and 5.15 in state space form, we have

ẋ = Mx + N , (5.16)

where the state vector x =















x

ẋ

a















, the 17 × 17 matrix M =









0 1 0T

−1 µ − 2
π
β cT

0 A−1 c −A−1B









,

the vector N =















0

−µ ẋ x2

0















, the boldface 0 is a 15×1 null vector, and 0 is just the scalar

zero.

Linearization of Eq. 5.16 yields ẋ = Mx , which yields the eigenvalue problem

|M − λI| = 0 , (5.17)

where I is the identity matrix. Substituting λ = i ω in the above equation and separating

real and imaginary parts yields two long equations in β, µ and ω (not given here). These

equations are numerically solved for µ and ω over a range of β, and the resulting solutions

are plotted along with Eq. 5.12 as well as the small-µ approximation of Eq. 5.13 in Fig.

5.1. It is clear that Eqs. 5.12 and 5.17 give overlapping results in Fig. 5.1. We separately

plot the difference in µ, as predicted by Eq. 5.12 and by the Galerkin method, in Fig. 5.2.

The agreement seen in Fig. 5.1 and implied by 5.2 suggests the correctness of Eq. 5.12 as

well as the accuracy of the Galerkin approximation (Eqs. 5.14 and 5.15).

In Fig. 5.1, the region below the curve represents stable parameter values, while the

region above the curve represents unstable points. For a fixed β, as we increase µ, the

system undergoes a Hopf bifurcation as the curve is crossed. Subsequently the origin is

unstable and the near-Hopf point dynamics is governed by nonlinearities. In what follows

we analyze Eqs. 5.14 and 5.15, using the MMS, for a fixed value of β; and for µ near the

corresponding Hopf bifurcation point.

2The approximation could be refined by taking larger n, but we do not do that here.
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Figure 5.1: Locus of Hopf bifurcation points obtained from Eqs. 5.12 and 5.17, along with

the small-µ approximation of Eq. 5.13. Excellent agreement is seen between predictions of

Eqs. 5.12 and 5.17.

5.3 MMS analysis

From this point onwards, we are using the MMS to examine the system of Eqs. 5.14 and

5.15. The fractional derivative has been discretized accurately and is no longer dealt with

in a direct manner.

We fix β = 1. The Hopf point3 is (µ̄, β) = (0.60856, 1) (from Eq. 5.17). The

purely imaginary eigenvalues of M at the Hopf bifurcation point are λ = ± 1.3494i. Apart

from these imaginary eigenvalues, there are 15 other eigenvalues which are all negative. A

numerical examination of these eigenvalues raises an interesting but peripheral question,

which we will discuss in appendix E. We now proceed with the MMS analysis.

3All results in this chapter are reported with five displayed significant digits, although we have performed

our calculations with 40 digits of precision in the package MAPLE.
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Figure 5.2: A plot of the difference in µ as computed from Eqs. 5.12 and 5.17.

5.3.1 Scaling

To facilitate the application of the MMS, we introduce detuning near µ̄ and adopt the

following new scaling variables

µ = µ̄(1 + ǫ), x =
√
ǫy

where 0 < ǫ≪ 1, where y =















y

ẏ

b















. Here µ̄ and y are O(1) quantities.

Substitution of the above in Eq. 5.16 and simplifying, we get

ẏ = Py + ǫQ1 + O(ǫ2) , (5.18)

where P =









0 1 0T

−1 µ̄ − 2
π
cT

0 A−1 c −A−1B









, and Q1 =















0

−µ̄ ẏ y2 + µ̄ ẏ

0















. Note that P is just



Chapter 5. MMS via discretization of a fractionally damped van der Pol oscillator 71

the matrix M (Eq. 5.16) evaluated at the Hopf point (µ̄, β) = (0.60856, 1). We now proceed

with the application of the MMS to Eq. 5.18.

5.3.2 MMS

We introduce fast and slow time scales T0 = t and T1 = ǫt respectively, and write

y = y0(T0, T1) + ǫy1(T0, T1) + · · · . (5.19)

Substitution of Eq. 5.19 in Eq. 5.18, we obtain at O(1):

∂y0

∂T0

= Py0 . (5.20)

Note that the system Eq. 5.20 is at Hopf bifurcation. We take the solution of Eq. 5.20 as

y0(T0, T1) = (r(T1) + is(T1))u e
iωT0 + (r(T1) − is(T1)) ū e

−iωT0 , (5.21)

where the real-valued functions r(T1) and s(T1) are to be determined from calculations

at subsequent orders; ω = 1.3494 (from the purely imaginary eigenvalue of P); u is the

right eigenvector of P corresponding to the eigenvalue λ = 1.3494 i, and ū is the complex

conjugate of u. Decaying components along all other eigenvectors of P are dropped from

the solution of Eq. 5.20. As discussed in a different context in [20], dropping the decaying

exponentials gives us the dynamics on the center manifold.

In Eq. 5.21, we have normalized the eigenvector such that the first element of u

is unity. This is done because the first component of the state vector is the dynamical

quantity of primary interest to us. Our slow flow equations below will correspond to this

particular normalization.

Proceeding to the next order, at O(ǫ) we have

∂y1

∂T0

− Py1 = −∂y0

∂T1

+ Q1(y0) . (5.22)

Substituting the leading order solution Eq. 5.21 in the right hand side of Eq. 5.22 we obtain

∂y1

∂T0

− Py1 = v(T1)e
iω T0 + v̄(T1)e

−iω T0 + w(T1)e
3iω T0 + w̄(T1)e

−3iω T0 , (5.23)
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where overbars denote complex conjugates, and where v and w involve complicated ex-

pressions (not presented) in terms of r, s, and their partial derivatives with respect to

T1.

In Eq. 5.23, we encounter forcing in resonance with the eigenvalues ± iω. To elim-

inate secular terms, we must ensure that v is orthogonal to the left eigenvector of P cor-

responding to the eigenvalue iω [110], with the corresponding condition for v̄ being then

automatically satisfied. Thus, the solvability conditions may be written compactly as

vTg = 0 , (5.24)

where g is the left eigenvector of P corresponding to the eigenvalue iω. We have normalized

g such that its first element is unity, though it is not essential here. Separating real and

imaginary parts of Eq. 5.24 yields, after some elementary manipulations, the slow flow

equations:

∂r

∂T1

= 0.33748 r + 0.042409 s− 0.33748 r3 − 0.042409 r2 s− 0.33748 r s2 − 0.042409 s3 ,

(5.25)

∂s

∂T1

= −0.042409 r + 0.33748 s+ 0.042409 r3 − 0.33748 r2 s+ 0.042409 r s2 − 0.33748 s3 ,

(5.26)

where we have dropped dependencies of r and s on T1 for brevity.

5.3.3 Numerical results

We now present some numerical results to demonstrate the utility of the slow flow equations.

We choose ǫ = 0.01 and we take y(0) =
{

0 1 0
}T

which, for ǫ = 0.01, corresponds to

x(0) =
{

0 0.1 0
}T

. The initial conditions on r and s are then determined from Eq.

5.21 as r(0) + i s(0) =
gT y(0)

gT u
= −0.051642 − 0.41096i.

With the above initial conditions, Eqs. 5.25 and 5.26 are integrated to obtain the

evolution of r and s. The final solution is computed as

x(t) = 2
√
ǫRe

(

(r(T1) + is(T1))u e
iωt
)

, (5.27)
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where Re(.) represents the real part of the quantity in the parenthesis. Also for direct

comparison, Eqs. 5.14 and 5.15 were integrated with the initial conditions x(0), using

β = 1 and µ = µ̄(1 + ǫ) = 0.61464 (compare with µ̄ = 0.60856).

The first component of the solution vector x(t), from direct integration, is plotted

along with the amplitude of the MMS approximations in Fig. 5.3. A portion of the complete

solution x(t) computed from the MMS approximations is plotted along with that from direct

numerical integration in Fig. 5.4. The agreement is good to plotting accuracy.
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MMS solution

Figure 5.3: Plots of solutions obtained by direct numerical integration of Eqs. 5.14 and

5.15 and amplitudes from the MMS slow flow Eqs. 5.25 and 5.26. Parameters and initial

conditions: ǫ = 0.01, β = 1, µ = 0.61464, µ̄ = 0.60856; ẋ(0) = 0.1, all other state variables

have zero initial conditions; r(0) and s(0) taken as explained in main text. Plot shows

solution settling down to a limit cycle oscillation.

In another simulation, we took ǫ = 0.01 and x(0) =
{

0 0.5 0
}T

. The results,

in Figs. 5.5 and 5.6, show good agreement.

In another example, we took a somewhat larger value of the parameter as ǫ = 0.06,

with x(0) =
{

0 0.2 0
}T

. The results in Fig. 5.7 show good agreement.
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Figure 5.4: A portion of the solution of Fig. 5.3; also plotted is the full solution from the

MMS slow flow. Agreement of the MMS solution with full numerics is good.

5.3.4 Results for α = 1
3

In the previous section, we have demonstrated the application of the MMS on a fractional

van der Pol oscillator taking α = 1
2
. However, the method is general and can be used for

any α. Only the matrices A, B and c change; these are provided in appendix C. Here we

briefly present the results for the following equation:

ẍ+ β D
1

3 [x(t)] + µ ẋ (x2 − 1) + x = 0 . (5.28)

We take β = 1.2 and the Hopf bifurcation parameters (from the Galerkin approximation)

are (µ̄, β) = (0.46229, 1.2). Proceeding as before, the final slow flow equations are:

∂r

∂T1

= 0.25090 r + 0.028488 s− 0.25090 r3 − 0.028488 r2 s− 0.25090 r s2 − 0.028488 s3 ,

(5.29)

∂s

∂T1

= −0.028488 r + 0.25090 s+ 0.028488 r3 − 0.25090 r2 s+ 0.028488 r s2 − 0.25090 s3 .

(5.30)
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Figure 5.5: Plots of solutions obtained by direct numerical integration of Eqs. 5.14 and 5.15

and the MMS slow flow Eqs. 5.25 and 5.26. Parameters and initial conditions: ǫ = 0.01,

β = 1, µ = 0.61464, µ̄ = 0.60856; ẋ(0) = 0.5, all other state variables have zero initial

conditions; r(0) and s(0) taken as explained in main text. Plot shows solution settling

down to a limit cycle oscillation.

In a simulation, we took ǫ = 0.03 and x(0) =
{

0 0.05 0
}T

, with 0 being the 15 × 1

null vector. The results are plotted in Fig. 5.8 and 5.9, showing good agreement.
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Figure 5.6: A portion of the solution of Fig. 5.5; also plotted is the full solution from

the MMS slow flow. Agreement of the MMS solution with full numerics is good (visually

indistinguishable).
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Figure 5.7: Plot of solutions obtained by direct numerical integration of Eqs. 5.14 and 5.15

and the amplitude of the solution from the MMS slow flow Eqs. 5.25 and 5.26. Parameters

and initial conditions: ǫ = 0.06, β = 1, µ = 0.64507, µ̄ = 0.60856; ẋ(0) = 0.2, all other

state variables have zero initial conditions; r(0) and s(0) taken as explained in main text.

Plot shows solution settling down to a limit cycle oscillation.
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Figure 5.8: Solutions from direct numerical integration and Eqs. 5.29 and 5.30. Here:

ǫ = 0.03, β = 1.2, µ = 0.47616, µ̄ = 0.46229; ẋ(0) = 0.05, x(0) = 0, and a(0) = 0; r(0) and

s(0) taken as explained in main text. Agreement is excellent.
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Figure 5.9: A portion of the solution of Fig. 5.8; also plotted is the full solution from the

MMS slow flow. Agreement is good.
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5.4 Dynamics under resonant forcing

5.4.1 Scaling and the MMS

We now add resonant forcing to the system studied earlier. We consider

ẍ+
2

π
β cTa + µ ẋ (x2 − 1) + x = F cos(Ω t), (5.31)

Aȧ + Ba = cẋ . (5.32)

As before we set β = 1. The system undergoes Hopf bifurcation at µ̄ = 0.60856. The

corresponding bifurcating eigenvalue is ±iω0 = 1.3494 i. Scaling time as τ = Ω t, Eqs. 5.31

and 5.32 become

x′′ +
2

πΩ2
cTa +

µ

Ω
x′ (x2 − 1) +

x

Ω2
=

F

Ω2
cos(τ), (5.33)

Aa′ +
1

Ω
Ba = cx′ , (5.34)

where primes denote differentiation with respect to scaled time. Corresponding to the

scaled time, we redefine the state vector as x =















x

x′

a















.

For small departures of µ from µ̄, we expect the limit cycle frequency to be close to

ω0 = 1.3494, and we want to force the system resonantly. With the above observations, we

introduce the following new scaling variables:

x =
√
ǫy , µ = µ̄(1 + ǫ) ,Ω = ω0(1 + ǫ∆) , F = ǫ

√
ǫH ,

where 0 < ǫ≪ 1, y =















y

y′

b















, ω0 = 1.3494, and µ̄, y, ω0, H and ∆ are O(1).

With the above scaling, Eq. 5.33 becomes

y′′ +
2

π ω2
0

cTb − µ̄

ω0

y′ +
y

ω2
0

=

ǫ

(

4 ∆ cTb

ω2
0 π

+
2 ∆ y

ω2
0

− µ̄ y′ y2

ω0

− µ̄∆ y′

ω0

+
µ̄ y′

ω0

+
H cos τ

ω2
0

)

.

(5.35)
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Also, Eq. 5.34 becomes

Ab′ +
1

ω0

Bb = cy′ + ǫ
∆

ω0

Bb . (5.36)

Rewriting Eqs. 5.35 and 5.36 in state space form we get

y′ = Ry + ǫS1 + O(ǫ2) , (5.37)

where

R =









0 1 0T

− 1
ω2

0

µ̄
ω0

− 2
π ω2

0

cT

0 A−1 c − 1
ω0

A−1B









,

and

S1 =















0
4∆ c

T
b

ω2
0

π
+ 2∆ y

ω2
0

− µ̄ y′ y2

ω0
− µ̄ ∆ y′

ω0
+ µ̄ y′

ω0
+ H cos τ

ω2
0

∆
ω0

A−1Bb















,

The eigenvalues of the matrix R are listed in appendix D, where we will discuss an inter-

esting time scale related issue for this system. Here, the key point is that two eigenvalues

are ±i since we are now using scaled time τ for our derivatives; and all other eigenvalues

are real and negative.

MMS for Eq. 5.37 proceeds in the same way as before except that now the time

scales are T0 = τ , T1 = ǫ τ etc. The leading order solution is taken as

y0(T0, T1) = (r(T1) + is(T1))u1 e
iT0 + (r(T1) − is(T1)) ū1 e

−iT0 , (5.38)

where u1 is the right eigenvector of the matrix R corresponding to the eigenvalue i, nor-

malized such that its first element is unity; and ū1 is the complex conjugate of u1.

Proceeding as before, the slow flow governing the evolution of r and s are

∂r

∂T1

= −0.019135H + 0.25009 r + 0.031427 s+ ∆ s− 0.25009 r3 − 0.031427 r2 s−

0.25009 r s2 − 0.031427 s3 ,

(5.39)

∂s

∂T1

= −0.15227H − 0.031427 r + 0.25009 s− ∆ r + 0.031427 r3 − 0.25009 r2 s+

0.031427 r s2 − 0.25009 s3 .

(5.40)
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5.4.2 Numerical results

For the van der Pol oscillator forced near resonance, at a given level of detuning, for smaller

forcing magnitudes, quasiperiodic behavior is expected. Increased forcing magnitude is

expected to entrain the oscillator to the forcing frequency.

We demonstrate these behaviors through numerical simulations below. For ǫ = 0.01,

we fixed the detuning at ∆ = 0.5 and the forcing magnitude H = 1. Thus µ = µ̄(1 +

ǫ) = 0.61464 and F = ǫ
√
ǫH = 0.001. Equations 5.33 and 5.34 are integrated for these

parameter values and zero initial conditions. Also, the slow flow equations Eqs. 5.39 and

5.40 are integrated for these parameter values and the final solution is obtained as explained

earlier. The full solution from numerical integration along with the amplitude from the

MMS approximation is plotted in Fig. 5.10. A zoomed portion thereof is plotted in Fig.

5.11. The agreement between the MMS results and direct numerical treatment is good.

It is clear that for this particular forcing magnitude, the system exhibits quasiperiodic

behavior. Next, keeping all other parameters fixed at their earlier values, we increase

the forcing magnitude to H = 5. The results are plotted in Figs. 5.12 and 5.13, and show

entrainment. In both cases, the MMS gives a good approximation.

5.4.3 Phase drift, weak phase locking, and entrainment

From the results presented in Figs. 5.10 through 5.13, it is seen that the behavior of the

forced, fractionally damped van der Pol oscillator is qualitatively similar to the ordinary

forced van der Pol oscillator. In particular, it is seen that for a fixed detuning (with increase

in forcing magnitude), the oscillator transitions gradually from phase drift to weak phase

locking to entrainment . These results are well established for the usual forced van der Pol

oscillator [3, 111, 112, 5].

For completeness, we briefly present some numerical results illustrating this tran-

sition. Our treatment of the slow flow closely follows [112]. Of the many standard texts

dealing with the forced van der Pol oscillator, we compare our treatment with that in [111].

Both [112] and [111] derive similar slow flow equations. Subsequently, [111] deals with polar

coordinates and derives expressions for curves in the parameter plane demarcating regions

of phase drift and entrainment. The treatment in [112] is more graphical and insightful
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Figure 5.10: Plots of solutions obtained by direct numerical integration of Eqs. 5.33 and

5.34 and the amplitude from the MMS slow flow Eqs. 5.39 and 5.40. Parameters and initial

conditions: ǫ = 0.01, β = 1, µ = 0.61464, µ̄ = 0.60856, ∆ = 0.5, Ω = 1.3562, ω0 = 1.3494,

H = 1, F = 0.001; Zero initial conditions on all state variables; r(0) and s(0) taken as

explained in main text. Plot shows quasiperiodic motion.

and, through a series of phase portraits, illustrates the transition from phase drift through

weak phase locking to entrainment.

Recall that the MMS solution upto leading order is

x = 2 (r(T1)φ− s(T1)ψ) cosT0 − 2 (r(T1)ψ + s(T1)φ) sinT0 , (5.41)

where φ and ψ are the real and imaginary parts of the first component of the eigenvector

u1 of Eq. 5.38.

We now introduce the following new set of variables

ρ = 2 (r(T1)φ− s(T1)ψ) , σ = −2 (r(T1)ψ + s(T1)φ) .

In particular, because of the way we have normalized the eigenvector (see section 5.3) φ = 1
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Figure 5.11: A portion of the solution of Fig. 5.10; also plotted is the full solution from the

MMS slow flow. Agreement of the MMS solution with full numerics is good.

and ψ = 0, giving

ρ = 2 r(T1) , σ = −2 s(T1) .

Regardless of our normalization, Eq. 5.41 becomes

x = ρ cosT0 + σ sinT0 , (5.42)

and Eqs. 5.39 and 5.40 become

∂ρ

∂T1

= −0.038270H + 0.25009 ρ− 0.031427σ − ∆σ − 0.062524 ρ3 + 0.0078569 ρ2 σ−

0.062524 ρ σ2 + 0.0078569σ3 ,

(5.43)

∂σ

∂T1

= 0.30455H + 0.031427 ρ+ 0.25009σ + ∆ ρ− 0.0078569 ρ3 − 0.062524 ρ2 σ−

0.0078569 ρ σ2 − 0.062524σ3 .

(5.44)

Fixed points of Eqs. 5.43 and 5.44 result in periodic solutions of x according to Eq. 5.42,

while periodic solutions of Eqs. 5.43 and 5.44 (closed curves in ρ−σ phase plane), represent

phase-changing, quasiperiodic solutions of x according to Eq. 5.42.
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Figure 5.12: Plots of solutions obtained by direct numerical integration of Eqs. 5.33 and

5.34 and the amplitude of the MMS slow flow Eqs. 5.39 and 5.40. Parameters and initial

conditions: ǫ = 0.01, β = 1, µ = 0.61464, µ̄ = 0.60856, ∆ = 0.5, Ω = 1.3562, ω0 = 1.3494,

H = 5, F = 0.005; Zero initial conditions on all state variables; r(0) and s(0) taken as

explained in main text. Plot shows entrainment.
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Figure 5.13: A portion of the solution of Fig. 5.12; also plotted is the full solution from the

MMS slow flow. Agreement of the MMS solution with full numerics is good.
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Figure 5.14: Sequence of phase portraits of Eqs. 5.43 and 5.44 for fixed ∆ and increasing H;

First and second plots: limit cycle encircling origin denotes stable, phase-drifting solution.

Third plot: critical limit cycle passing through the origin denoting transition from phase

drifting to weak phase locking.
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Figure 5.15: Continuation of the phase portraits of Fig. 5.14. First plot: limit cycle not

encircling the origin representing weak phase-locking. Second plot: entrained solution

represented by the stable focus. Third plot: entrained solution represented by the stable

node.
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We now consider a series of phase portraits in the ρ − σ plane, for a fixed value of

∆ = 1 and steadily increasing forcing magnitude H. Note that the ρ − σ plane is more

commonly known as the van der Pol plane [5]. For H = 1, there is an unstable fixed point

near the origin surrounded by a stable limit cycle that encircles the origin. Thus the steady

state behavior, represented by the limit cycle, is a phase-drifting quasiperiodic solution. As

we increase H further, the limit cycle shrinks in size and simultaneously drifts away from

the origin. For H as high as 3.5 the limit cycle still encircles the origin (see second plot

of Fig. 5.14), thus implying a continuously drifting phase situation. These situations are

plotted in the first two phase portraits of Fig. 5.14.

At H ≈ 3.8787 (see third plot of Fig. 5.14), the limit cycle passes through the

origin. This value of H marks the transition of the steady state from a phase-drifting case

to a weakly phase-locked case. For still greater H, the limit cycle no more encloses the

origin. However for a range of H above this critical value of 3.8787, the weakly phase locked

solution persists while the limit cycle gradually diminishes in size in the ρ−σ plane (see first

plot in Fig. 5.15). For sufficiently large H the limit cycle shrinks to a point and disappears,

leaving a stable fixed point which represents the phase-locked or entrained solution. The

second and third plots in Fig. 5.15 represent this situation of entrainment. In the second

plot of Fig. 5.15, the fixed point is a stable focus, while in the third plot, which represents

a higher H than the second plot, the fixed point is a stable node.

5.5 Closing remarks

In this chapter, we have studied the free and forced vibrations of the classical van der Pol

oscillator with an added fractional order damping term. The fractional term is approxi-

mated by a set of ODEs through a recently presented Galerkin-based discretization scheme.

The Galerkin approach offers easy amenability to analytical treatment of the approximated

system. The resulting ODEs of our approximation have been studied using the MMS near

Hopf bifurcations. Good agreements with numerics have been obtained.

Since the Galerkin scheme has been shown [30, 99, 100, 101] to be useful in solving a

variety of fractional order equations, future work may involve analytically studying systems

such as van der Pol oscillators whose highest derivative is of fractional order, fractional
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Lorenz system, fractional Chua’s circuit etc. Such systems have hitherto been studied

largely numerically.
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Chapter 6

Infinite dimensional slow modulation

of cutting tool vibrations

Starting with the study of a resonantly forced oscillator in Chapter 2, we moved on to

the study of a fractionally damped, van der Pol oscillator in Chapter 5. Although the

fractional damping added infinite dimensionality to the system, the fractional damping

term was approximated by a Galerkin scheme resulting in a finite set of ODEs. We also

restricted our attention to a point close to Hopf bifurcation. Thus the final MMS slow flow

was finite dimensional. In contrast, the study to be presented in this chapter involves a

slow flow which is itself infinite dimensional. This study will constitute the third part of

the thesis. The problem studied in this chapter concerns the dynamics of a time-delayed

model for machine tool vibrations.

In particular, we apply the method of multiple scales (MMS) to a well known model

of regenerative cutting vibrations in the large delay regime. By “large” we mean the delay

is much larger than the time scale of typical cutting tool oscillations. In the literature,

oscillators with small delayed terms have been treated conveniently as slight perturbations

of the harmonic oscillator [113, 114, 115]. In these cases, one needs to solve an ODE at each

order. Oscillators with O(1) delayed terms, but near Hopf bifurcation point, have again

been treated by the MMS and center manifold reductions (see, for e. g., [20]). In this case,

one needs to solve a linear Delay Differential Equation (DDE) at a Hopf point, at each order.

However, studies on oscillators with large delay are few in number [31, 116, 117, 118, 119].

This chapter presents one such study. The MMS upto second order, recently developed

91
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for such large-delay systems [31], is applied here to study tool dynamics in the large delay

regime.

We mention that the work presented in this chapter has been largely presented in

[120].

6.1 Introduction

Delayed dynamics arises in models of diverse phenomena [116, 121, 122, 123, 124, 125, 126]

including metal cutting [127, 128, 129, 130]. Delays appear in cutting dynamics because

tool vibrations leave behind a wavy cut surface that affects cutting forces on the next pass;

this phenomenon (see Fig. 6.1) is called the regenerative effect [127].
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Figure 6.1: Typical turning operation. Left: overall view. Right: zoomed view indicating

wavy surfaces and SDOF model.

The literature on machine tool vibrations is large (see, e.g., [130], [131, 132, 133,

134, 135, 136, 137, 138, 139, 140, 141, 142, 143]). Our interest here is in studying new

aspects of a well-known model for vibrations during turning operations.

In particular, we study the regime of light cuts on objects of large diameter (necessi-

tating slower spindle speeds, because for maintaining the same cutting speed, doubling the

diameter requires halving the spindle speed), such that the time of one revolution is large,

and the cutting force is small. The tool dynamics thus involves a large delay compared to

the time scale of tool oscillations (see, e.g., discussion in [31]).

To emphasize and also clarify the above point, we note that “large” or “small” are
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meaningful only in comparison with some other quantity. For example, if the tool vibration

frequency is 400 Hz, while the workpiece rotation speed is 1200 RPM (i.e., 20 Hz), then

the delay is large for our purposes (20 cycles of oscillation) although for many technological

issues not related to this analysis, a speed of 1200 RPM may not be considered low.

A consequence of the large delay is that the slow modulation dynamics of the tool

vibration is itself governed, within the method of multiple scales (MMS) approximation,

by a delay differential equation where the delay is O(1) (numerical integration is thereby

speeded up dramatically).

Usual treatments of the model we consider here involve center manifold reductions

that treat the distance from bifurcation as small, and all other parameters (including the

delay) as O(1), leading usually to a 2D slow flow. The reader is referred to [144] for

a comparative study of the application of method of multiple scales vis-à-vis the center

manifold reduction approach in analyzing delayed systems near Hopf bifurcations.

The crucial distinction between such near-Hopf bifurcation analysis and ours is that

we are in a sense further away from the bifurcation point so that we can better resolve the

effects of disparate sizes of other parameters (e.g., smallness of chip width versus largeness

of time delay). The key dynamic phenomena we can capture using this approach lie in the

infinite dimensional nature of the slow modulation of tool vibrations, something that is not

captured by center manifold reductions or other analyses based on infinitesimal distance

from bifurcation with other physical parameters held fixed.

Our analysis uses the MMS, specialized for this problem, as developed in [31]; as

discussed there, application of the method to second order involves some technical issues,

which occur here as well. We mention that the MMS had been applied upto first order

to equations with large delay in [116], though the focus there was on periodic and quasi-

periodic solutions. Similar studies on two other problems were performed in [117], where

transient dynamics was also studied. Here, we develop the slow flow upto second order,

and numerically examine some transient dynamics as well, to demonstrate the validity of

the infinite dimensional slow modulation dynamics predicted by the second order MMS.

In the context of the present study involving phenomena of disparate time scales, we

note that [145] and [146] study machine tool vibration chatter control using high-frequency

excitations. While both our study and theirs involve disparate time scales, our model
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focuses on the regime where the tool vibration frequency is much larger than the spindle

spin speed resulting in large delays, while in their models the tool vibration frequency

is much smaller than the high frequency control excitations. Moreover, while our study

involves a DDE with a large delay, theirs involve ODEs because the regenerative effect is

dropped. However, in a broader context, these papers are examples of the many different

approaches adopted for studying the technologically important problem of metal cutting

dynamics.

6.2 Single degree of freedom model

We briefly discuss the derivation of the well known tool vibration model that we study here.

A more detailed presentation can be found in [131]. Consider a typical turning operation as

shown in Fig. 6.1. Let the nominal chip thickness corresponding to steady-state cutting be

f0 and let x(t) be the displacement from the nominal thickness position. The instantaneous

chip thickness is f = f0 + x(t) − x
(

t− 2 π
Ω

)

, where Ω is the angular velocity of the work

piece. Dynamic equilibrium of the tool gives

ẍ+ 2ζ ωn ẋ+ ω2
n x = − 1

m
∆Fx,

where ωn =
√

k
m

is the tool natural frequency, ζ is the damping ratio, m is the mass of

the tool, and ∆Fx is the additional chip force. We have (expanding Taylor’s power law,

see [131]), ∆Fx = Fx(f) − Fx(f0) ≈ K w
(

3
4
f

−1

4

0 ∆ f − 3
32
f

−5

4

0 ∆ f 2 + 5
128

f
−9

4

0 ∆ f 3
)

, where

∆ f = f−f0 is the additional chip thickness, K is a constant and w is the chip width. Upon

substitution of the above in tool vibration equation and suitable non-dimensionalization

(see [131]) we have

ẍ+ 2 ζ ẋ+ (1 + p) x− p x(t− µ) =
3 p

10

{

(x− x(t− µ))2 − (x− x(t− µ))3
}

, (6.1)

where x is the non-dimensional tool displacement from the mean position (corresponding

to nominal chip thickness), p is a non-dimensional bifurcation parameter proportional to

chip width, and µ =
2πωn

Ω
is the non-dimensional delay. We are interested in large µ, as

mentioned above.

We mention that a more general model than Eq. 6.1 (including structural as well

as cutting force nonlinearities) was originally proposed in [132] and has been extensively
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studied in several papers (e.g., [130, 133, 134, 135]). Stépán [136] discusses a number of

models which include additional damping terms, distributed delays, etc. Multi-degree of

freedom models (e.g., [137, 138, 139]), and stochastic models (e.g., [140, 141]) have also

been studied.

In this work, however, we focus on the non-trivial dynamics created by a large delay

in Eq. 6.1; and we will use the second order MMS, as developed in [31], for our study.

6.2.1 Stability chart

Linear analysis of Eq. 6.1 gives stability charts demarcating stable and unstable parameter

regimes (here p and Ω
ωn

), for any ζ held fixed. Such a chart is shown in Fig. 6.2 (see

[131, 133, 142]). On the stability boundary, the equilibrium at zero undergoes a sub-
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Figure 6.2: Stability chart for linearized version of Eq. 6.1 with ζ = 0.03.

critical Hopf bifurcation [131, 133, 142]. Adjacent lobes meet at double Hopf points [143].

Stability is ensured for all cutting speeds below the threshold chip width pmin.
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6.2.2 Dimensionality

Several authors have analytically studied Hopf bifurcations of delayed systems. Lindstedt’s

method, which ignores transient dynamics, is used in [147, 148]. Center manifold reduc-

tions, used in [131, 141, 142, 149], project the infinite dimensional system onto a plane and

study the dynamics thereon. Direct MMS by-passing center manifold reduction was used

in [20], and also used near a double Hopf point of the present model in [143]. A comparison

of the MMS and center manifold approaches near Hopf bifurcations in delayed systems is

presented in [144].

Dynamics on the center manifold (whether explicitly obtained as such or not) is

simple due to lower dimensionality. Near-origin solutions are limited to monotonic growth

or decay (perhaps approaching limit cycles) when the center manifold is planar; somewhat

more complicated dynamics is possible on 4-dimensional center manifolds near double Hopf

points. The center manifold approach is, however, confined close to Hopf points. In con-

trast, we consider a large delay regime where the slow modulation dynamics is in principle

infinite dimensional even under the MMS approximation.

6.2.3 Large delay regime

As discussed earlier, large delays correspond to low values of
Ω

ωn

in Fig. 6.2. In the large

delay regime in Fig. 6.2 (low Ω
ωn

), the stability lobes get narrower and crowd together

closely. This makes the dynamics sensitive to small changes in parameters like chip width

p and spindle speed Ω, motivating our study of Eq. 6.1 for large values of
2πωn

Ω
.

We start by scaling various terms in Eq. 6.1. It is observed in the “large delay”

regime of Fig. 6.2 that the chip width p, damping ζ and the non-dimensional speed
Ω

ωn

are

of the same order of smallness. Hence, we scale parameters as:

Ω

ωn

= ǫ, 2 ζ = ǫ α, p = ǫ β, (6.2)

where 0 < ǫ≪ 1, and α and β are O(1) quantities. We also write

λ = −3β

10
. (6.3)
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Note that λ is not an independent physical parameter, but retaining it independently is

convenient, e.g., in removing nonlinear terms by artificially setting it to zero if needed.

Thus, Eq. 6.1 becomes

ẍ+ x+ ǫ
{

α ẋ+ β (x− x(t− µ)) + λ (x− x(t− µ))2 − λ (x− x(t− µ))3
}

= 0, (6.4)

where µ =
τ

ǫ
=

2π

ǫ
is the non-dimensional large delay. Note that in the development of

the MMS the delay τ is a free parameter and hence has been retained symbolically below,

although τ = 2π is fixed for our problem.

6.3 Multiple scales for large delay

Second order MMS for oscillators with large delay was developed in [31], which we follow.

We introduce multiple time scales: T0 = t, T1 = ǫ t, T2 = ǫ2 t. We then assume x(t) =

X(T0, T1, T2), where

X(T0, T1, T2) = X0(T0, T1, T2) + ǫX1(T0, T1, T2) + ǫ2X2(T0, T1, T2) + ... (6.5)

in which the Xi are to be determined. We substitute Eq. 6.5 in Eq. 6.4 and expand in

powers of ǫ. During this expansion procedure, the delay terms are treated as explained in

[31]. In particular, the large delay term
τ

ǫ
is labeled as τ1 and treated independent of ǫ in

the expansions, as explained and justified there.

At leading order we have

∂2

∂T0
2X0(T0, T1, T2) +X0(T0, T1, T2) = 0, (6.6)

whose solution is X0 = A(T1, T2) sin(T0 + φ(T1, T2)). We now adopt the following notation

for brevity.

A ≡ A(T1, T2), φ ≡ φ(T1, T2), (6.7)

Aτ ≡ A(T1 − τ, T2), A2 τ ≡ A(T1 − 2 τ, T2), (6.8)

φτ ≡ φ(T1 − τ, T2), φ2 τ ≡ φ(T1 − 2 τ, T2), (6.9)

A1 ≡
∂ A

∂T1

, A11 ≡
∂2A

∂T 2
1

, A2 ≡
∂ A

∂T2

, (6.10)

φ1 ≡
∂ φ

∂T1

, φ11 ≡
∂2 φ

∂T 2
1

, φ2 ≡
∂ φ

∂T2

. (6.11)
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Substituting the above in the O(ǫ) equation and eliminating secular terms yields

the first order slow flow. Following [31], we replace τ1 in the equations by the quantity

z(τ, ǫ) = 2π
( τ

2π ǫ
mod 1

)

.

Note that z is periodic in 1
ǫ
. The first order slow flow is

A1 = −1

2
αA+

3

8
λAτ

3 sin(ψ) − 1

2
β Aτ sin(ψ) − 3

8
λAAτ

2 sin(2ψ) +

3

8
λA2Aτ sin(ψ) (6.12)

φ1 = −3λAτ
2

4
− β Aτ cos(ψ)

2A
+

9λAAτ cos(ψ)

8
− 3λAτ

2 cos(2ψ)

8
− 3λA2

8
+

β

2
+

3λAτ
3 cos(ψ)

8A
, (6.13)

where ψ = φ+ z − φτ ; and λ = −3β

10
as mentioned earlier.

We see that the slow flow itself is a delay differential equation; however the orig-

inal delay was τ/ǫ, and now the delay is merely τ , numerically easier to handle for the

same required accuracy level. The slow modulation dynamics remains infinite dimensional.

Moreover, sensitive dependence on the small parameter ǫ is retained in the leading order

slow flow through z, something not encountered in routine applications of the MMS.

We now proceed to second order which, we will see, is needed to capture the qual-

itative dynamics correctly. At second order, we encounter retarded functional partial dif-

ferential equations, as explained in [31]; however, as also explained there, the difficulty can

be side-stepped at second order, and we do the same here. The second order expressions

are long and are given in the appendix A(they were retained in all numerical solutions

presented here). The final slow flow is given below:

A
′

= A1 + ǫA2, (6.14)

φ
′

= φ1 + ǫ φ2, (6.15)

where the primes denote derivative with respect to slow time ǫ t, A1 and φ1 are given in

the first order slow flow equations Eqs. 6.12 and 6.13, and A2 and φ2 are second order

corrections. It is interesting to note that for the second order slow flow, the delay is 2τ as

opposed to τ for the first order slow flow.
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6.4 Results: MMS vs. Numerics

We now present some numerical results for Eq. 6.4 and compare the predictions from the

slow flow yielded by the MMS.

6.4.1 First vs. Second order

We first examine stability charts for the linearized MMS equations (λ = 0 in Eq. 6.4), for

first and second order, and compare with results of Fig. 6.2 in Fig. 6.3 below.

We first describe the procedure to obtain stability chart from the slow flow. We first

consider the first order case. We start with Eqs. 6.12 and 6.13. We artificially set λ = 0 to

obtain the linear system and then look for periodic solutions by requiring

A1 = 0, Aτ = A, (6.16)

φ1 =

(

ω − 1

ǫ

)

, (6.17)

ψ =
ωτ

ǫ
. (6.18)

where ω is the angular frequency of the periodic solution (in the T0 time scale). Note

that, by definition, the angular frequency ω is the total time derivative of the phase of the

solution. Thus

ω =
d

dt
(T0 + φ(T1, T2)) .

Using the definition of the various time scales in the above expression and remembering

that φ1 ≡ ∂ φ
∂T1

, we get

ω = 1 + ǫφ1 ,

whence we get Eq. 6.17.

Now from Eq. 6.15 upto O(ǫ) we get

φ
′

= φ1

which for the periodic solution case becomes (using Eq. 6.17 and subsequent integration),

φ =

(

ω − 1

ǫ

)

T1 + ν
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with ν being an arbitrary constant. Thus

φτ =

(

ω − 1

ǫ

)

(T1 − τ) + ν

and therefore ψ = φ+ z − φτ becomes (remembering that z = τ
ǫ
)

ψ =
ωτ

ǫ
.

Thus using Eqs. 6.16 through 6.18, Eqs. 6.12 and 6.13 become respectively (using

Eq. 6.2)

p sin(ψ) + 2ζ = 0, (6.19)

ω − 1 =
p

2
(1 − cos(ψ)) . (6.20)

Note that physical damping ζ is fixed at a particular value (here 0.03) and the delay

parameter τ = 2π for our analysis.

Solving for ψ and p from the above equations and using Eq. 6.18, we get

p =

(

(ω − 1)2 + ζ2

ω − 1

)

, (6.21)

ǫ =





ω τ

2mπ + arcsin
(

−2 ζ (ω−1)
(ω−1)2+ζ2

)



 , (6.22)

where m is a positive integer.

We now have expressions for the stability boundary curves in the p− ǫ plane para-

meterized by ω. Each value of m in Eq. 6.22 gives rise to one of the lobes observed in Fig.

6.3. Each lobe is truncated at the points of intersection with adjacent lobes. The points of

intersection are determined using a Newton-Raphson technique.

For the second order case, we have the quantity

γ = φ+ 2 z − φ2 τ ,

which, under the requirements of a periodic solution at the stability boundary, becomes

γ = 2ψ =
2ω τ

ǫ
.
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The above derivation follows exactly the same steps as those leading to Eq. 6.18.

Following a similar, but algebraically slightly more involved, procedure as for the

first order, we can arrive at the stability boundary curves parameterized by ω.

The stability charts obtained from the first and second order slow flow as described

above are plotted together with that of Fig. 6.2 in Fig. 6.3.
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Figure 6.3: Comparison of stability charts generated by first and second order slow flow

(damping parameter ζ = 0.03).

The stability boundaries from second order MMS are significantly more accurate

than those from first order analysis. The average distance between the stability boundaries

predicted from the two orders (first and second) is comparable to the range of variations

in the stability boundary itself.

We choose a parameter set (point P in Fig. 6.3) and compare the results of the direct

numerical solution with the first and second order MMS in Fig. 6.4. All further numerical

results in this chapter use the second order MMS.
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Figure 6.4: Numerical solution of original DDE Eq. 6.4 and numerical solution of first

and second order slow flow equations. Parameter values used: ζ = 0.03, ǫ = 0.01485,

p = 0.0625, τ = 2π. Corresponding scaled parameters: α = 4.0404, β = 4.2087. Initial

conditions used: x(t) = 0.1 sin t, ẋ(t) = 0.1 cos(t) for t ∈ [− τ
ǫ
, 0] and A(η) = 0.1 and

φ(η) = 0 for η ∈ [−2 τ, 0].

6.4.2 Sensitivity to ǫ

As stated earlier, the results are sensitive to changes in ǫ, hence parameter values. For

example, consider the zoomed stability chart for ζ = 0.03 shown in Fig. 6.5. We choose

two points R and Q for our study, as shown in the figure. Point R lies in unstable regime,

whereas point Q lies in the stable regime. For these points we integrate Eq. 6.4 numerically

using MATLAB’s DDE23 routine. The slow flow equations are also integrated using the

same (DDE23) routine. Results are shown in Fig. 6.6, and the agreement is close enough

to be visually near-indistinguishable. In particular, though the change in ǫ is small, the

qualitative dynamics is different in the two cases. Finally, the non-monotonic variation in

the amplitude is something beyond, at least, a 2-dimensional center manifold reduction.
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Figure 6.5: Stability chart with parameter choices R and Q in unstable and stable regimes

respectively (damping parameter used was ζ = 0.03).

The computational advantage of the MMS slow flow lies in that the full simulation

of Eq. 6.4 took 11 minutes while the MMS slow flow was integrated in 13 seconds on the

same computer for the same specified error tolerance (10−7).

6.4.3 Other initial function choices

For another point in stable regime, we used a sinusoid with linearly decreasing amplitude

as initial function and compared the results with that of slow flow equations in Fig. 6.7.

The match is excellent (visually near-indistinguishable). Although the solution is decaying

on average, decay is not monotonic as it would be on a center manifold.

Since the bifurcation is sub-critical (e.g., [131]), larger initial conditions lead to

growth here, even though other, smaller, initial conditions lead to decay. These growing

and decaying solutions coexist, which is common for nonlinear systems. To see this, for

the same parameter values, we use an initial function somewhat larger than before (see



Chapter 6. Infinite dimensional slow modulation of cutting tool vibrations 104

−500 0 500 1000 1500
−2

0

2

4

 t

x
(t

)

Direct numerical solution
Method of multiple scales

−500 0 500 1000 1500
−4

−2

0

2

4

6

t

x
(t

)

Direct numerical solution
Method of multiple scales

Figure 6.6: Top: Numerical solution of original DDE Eq. 6.4 and numerical solution of

slow flow Eqs. 6.14 and 6.15 corresponding to point Q of Fig. 6.5. Parameter values for

point Q: ζ = 0.03, ǫ = 0.0223, p = 0.063, τ = 2π. Corresponding scaled parameters:

α = 2.6906, β = 2.8251. Initial conditions: x(t) = sin(t), ẋ(t) = cos(t) for t ∈ [− τ
ǫ
, 0] and

A(η) = 1 and φ(η) = 0 for η ∈ [−2 τ, 0]. Bottom: same as Top, except that we consider

point R instead of Q, with ǫ = 0.022 instead of 0.0223. Corresponding scaled parameters:

α = 2.7273, β = 2.8636.

Fig. 6.8). The match is good for moderate amplitudes, though poorer where the nonlinear

terms are no longer comparable to the linear term, something implicitly assumed in the

MMS expansion.

As pointed out earlier, our analysis is applicable to a wider range of chip width p

values as compared to a center manifold calculation which is based on infinitesimal closeness

to the Hopf bifurcation value of p∗ (say). We choose a value of p which is far removed from

the critical value and compare the slow flow results with direct numerical solution of Eq.

6.4 in Fig. 6.9. The match is good (to the extent of being visually near-indistinguishable),

as expected, even for p values distant from the bifurcation value p∗ with p− p∗ = O(p∗).
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Figure 6.7: Numerical solution of original DDE Eq. 6.4 and numerical solution of slow

flow Eqs. 6.14 and 6.15. Parameter values used: ζ = 0.03, ǫ = 0.0223, p = 0.0612,

τ = 2π. Corresponding scaled parameters: α = 2.6906, β = 2.7444. Initial conditions used:

x(t) = (0.001 − 0.001 t) sin t, ẋ(t) = (0.001 − 0.001 t) cos(t) − 0.001 sin(t) for t ∈ [− τ
ǫ
, 0]

and A(η) = 0.001 − 0.001 η
ǫ

and φ(η) = 0 for η ∈ [−2 τ, 0].

6.4.4 Other results

The MMS can also elucidate local features of the bifurcation, such as variation of the

limit cycle amplitude with chip width p. In Fig. 6.10, we plot the limit cycle amplitude

for ǫ = 0.0452 for Eq. 6.4 (using DDE BIFTOOL [150]). Also plotted is the limit cycle

amplitude obtained from the MMS with fixed ǫ using arclength-based continuation. The

match is good overall. The Hopf bifurcation, from the second order MMS, is at a slightly

larger p than for the original DDE, consistent with the small mismatch in Fig. 6.3.

In some prior studies of tool vibration models [134, 135, 117, 151], secondary bi-

furcations leading to quasi-periodic and chaotic solutions were reported for models with

significant structural nonlinearities (e.g., cubic restoring forces). In other work, it has been
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Figure 6.8: Numerical solution of original DDE Eq. 6.4 and numerical solution of slow

flow Eqs. 6.14 and 6.15. Parameter values: ζ = 0.03, ǫ = 0.0223, p = 0.0612, τ = 2π.

Corresponding scaled parameters: α = 2.6906, β = 2.7444. Initial conditions: x(t) =

(0.001 − 0.01 t) sin t, ẋ(t) = (0.001 − 0.01 t) cos(t) − 0.01 sin(t) for t ∈ [− τ
ǫ
, 0] and A(η) =

0.001− 0.01 η
ǫ

and φ(η) = 0 for η ∈ [−2 τ, 0]. The key point is that at t = 0, the amplitude

is small; but the large delay allows earlier and larger values to play a role, showing that

the amplitude modulation dynamics does involve delays, unlike in a 2-dimensional center

manifold calculation.

pointed out that loss of contact between tool and workpiece (self-interrupted cutting) may

provide a nonlinear effect stronger than structural nonlinearity [152]. The present model,

lacking structural nonlinearities, does not exhibit such secondary bifurcations; however, a

user must keep in mind that large-amplitude solutions predicted by this model are inaccu-

rate beyond the point of contact loss.
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Figure 6.9: Numerical solution of original DDE Eq. 6.4 and numerical solution of slow flow

Eqs. 6.14 and 6.15. Parameter values used: ζ = 0.03, ǫ = 0.01485, p = 0.02, τ = 2π.

Corresponding scaled parameters: α = 4.0404, β = 1.3468. Initial conditions used: x(t) =

0.1 sin(t), ẋ(t) = 0.1 cos(t) for t ∈ [− τ
ǫ
, 0] and A(η) = 0.1 and φ(η) = 0 for η ∈ [−2 τ, 0].
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Figure 6.10: Comparison of limit cycle amplitude as a function of chip width, based on

direct continuation study of Eq. 6.4 and second order slow flow. Parameters used were

ǫ = 0.0452 and ζ = 0.03.
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6.5 Closing remarks

We conclude the study of the third problem of this thesis with some closing remarks.

The aim of this work was twofold. The first was to demonstrate that there is a

reasonable parameter regime for a well studied cutting model where the recently developed

second order MMS with large delays could be used fruitfully. The second was to use this

MMS to capture and exhibit dynamics that is outside the scope of the more popularly used

center manifold reduction near the stability boundaries; in particular, our analysis holds at

small but non-infinitesimal distances from the stability boundary, where the dynamics has

visible higher dimensional behavior than captured by center manifold reductions. A few

aspects of the MMS results are worth emphasizing again because of their relative novelty

in such settings. First, the slow flow remains strongly sensitive to ǫ and contains an O(1)

delay (as opposed to the original large delay). Second, the second order MMS, while more

accurate than first order MMS, has a delay that is double that in the first order case. Third,

the slow flow can in principle be used for possibly similar systems to study phenomena well

beyond the center manifold reduction, such as bifurcating quasiperiodic oscillations in the

modulation dynamics (see [117]), though such phenomena were not observed in the specific

system studied here.

In closing, we mention one caveat relevant to the MMS. The original system has

many fast-decaying solutions very different from the slowly-modulated solutions assumed

by the MMS. In numerical comparisons, therefore, initial conditions chosen must reasonably

fit the “slowly modulated” description, as in the examples above. This issue is discussed

in [31], and in a related context in appendix A of [103].

In this study, we have treated the MMS slow flow largely numerically. Future work

may involve more detailed analytical examination of the infinite dimensional slow flow.

Another interesting question that could be addressed in future is the determination of the

basin of attraction of the origin, in a parameter regime where the origin is known to be

stable. The infinite dimensionality of the slow flow makes this question difficult. However,

this question might be of practical relevance as it would enable us to determine operating

conditions such that excessive tool vibrations are avoided.

Finally, apart from this tool delay application, the analysis procedure could be
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applied in future to other engineering applications with large delays.

Acknowledgements

I thank Pankaj Wahi for the detailed discussions that he had with me which gave direction

to this work. He is a co-author on [120].



Chapter 7

Nonlinear secondary whirl of an

overhung rotor

Thus far in this thesis, we have only studied single degree of freedom systems, albeit with

increasing complexity. Now, we move on to study a two degree of freedom system. Here

we study the nonlinear whirling of a well-known [32] two-degree of freedom model of an

overhung rotor spinning close to its gravity critical speed.

This last problem spans Chapters 7 through 9. In the present chapter, we explain

the significance of this study, present a brief review of the literature, derive the equations

of motion of the system, and set up expressions for the gravity critical speed. Subsequent

chapters will present the MMS analysis of the equations of motion derived here.

7.1 Introduction and literature review

Rotors are important components in several engineering applications, and rotor dynamics

constitutes an independent field of study. Rotor instabilities and whirl include a range of

phenomena too diverse to discuss here in detail.

In particular asymmetric rotors exhibit interesting phenomena such as unstable

speed ranges between critical speeds (e.g., [153, 154, 155, 156]), gravity critical speeds

111
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([157, 158, 159]), and nonlinearity-induced additional resonances (e.g., [160, 161, 162, 163,

164, 165]). In addition, stator asymmetry can create new instabilities while modifying

ones existing due to rotor asymmetry (e.g., [166, 167, 168, 169]). An excellent overview of

nonlinear phenomena in rotordynamics is provided in [170].

Here, we focus on gravity-induced resonances in perfectly balanced overhung rotors,

sometimes called Stodola-Green rotors [171]. Gravity-induced resonances occur in slightly

asymmetric rotors at about half of the mean flexural critical speed [153]. The relevant

literature primarily identifies these gravity critical speeds ([157, 167, 172]), with subsequent

linear analyses under various idealizations: Jeffcot rotor models on rigid bearings [157, 171,

173, 174], Jeffcot rotors on flexible pedestals [175], Euler-Bernoulli beam models [176, 177]

and three dimensional (3D) finite element (FE) models [178]. Experimental results on

horizontal cantilever shafts were reported, e.g., by [179], and on a simply supported shaft

with a centrally-mounted wheel were reported by [180].

Studies of nonlinear behavior near gravity critical speeds of overhung rotors are,

somewhat surprisingly, absent from the literature. Two exceptions are [161], [181], but they

study shafts supported at both ends. [161] studied internal resonances in an asymmetric

shaft with a centrally mounted disc near both the primary and gravity critical speeds;

bearing clearances introduced nonlinearities. [181] studied the 1 : −1 internal resonance

(between forward and backward whirl modes) in a simply supported, slender, asymmetric

shaft near both the primary as well as secondary critical speeds; note that the resonance

effectively presupposes small gyroscopic effects. In contrast, we study an overhung rotor

with significant gyroscopic effects and non-infinitesimal deflections. We use the method of

multiple scales (see [110]) and references therein) up to second order, with some problem-

specific adaptation, while [161, 181] use the method of averaging up to first order.

In this work, we study the idealized overhung rotor model of [32]. In that work, linear

equations were written, gravity was ignored, and a linear stability analysis pointed out, e.g.,

the unstable gap between primary whirl speeds. Here, we write nonlinear equations for

finite displacements. Linearization yields the correct gravity critical speed. Subsequently,

for spin near the gravity critical speed, we use the method of multiple scales (MMS) for

a detailed study. We remark that the model studied here, if fabricated exactly, might

have low practical utility (in addition to nonlinear effects we will ignore here). Overhung

rotors where the end-loaded shaft passes through a bearing are far more common. However,
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models for such rotors would require at least two more degrees of freedom, and so we have

focussed here on the simplest possible overhung rotor model from the literature.

7.2 System description

Figure 7.1: Schematic of overhung rotor model of [32].

The rotor model of [32] is shown in Fig. 7.1. Let XY Z represent the inertial co-

ordinate system, with unit vectors i, j and k. Gravity acts along −j as shown. The

horizontal input shaft spins at a constant rate Ω about k, and in turn spins the nominally-

horizontal, overhung output shaft through a massless universal joint made of two yokes and

a cross-piece with center O, as shown. The output shaft is rigid, and massless but for the

disc of mass M at its end. The disc, the output shaft and yoke A are collectively called

“the rotor,” and its length is L.

The rotor has two rotational degrees of freedom. Let unit vectors a and b be defined

as shown in Fig. 7.1. Let θ̄a and θ̄b be the rotations about a and b. These rotations are

resisted by torsion springs of stiffnesses Ka and Kb respectively. We assume Ka ≥ Kb.
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Weak torsional dashpots in parallel with the torsion springs provide energy dissipation.

For kinetic energy calculations we will use the rotor’s moment of inertia matrix about

point O. Let the principal axes of that matrix be ξ-η-ζ with Iξ, Iη being the diametral, and

Iζ being the polar, moments of inertia respectively. For an asymmetric rotor, Iξ 6= Iη. We

assume Iξ ≥ Iη. When θ̄a = θ̄b = 0, the inertia axes ξ-η make an angle φ with the stiffness

axes a-b (see figure).

7.3 Equations of motion

Linearized equations of motion derived by Lagrange’s method utilizing body-fixed axes

(ξηζ) were presented in [32]. Here, our derivation of the nonlinear equations of motion

begins with lab-fixed coordinates XY Z, and our representation of rotation matrices mimics

that in [182]. In particular, we will make repeated use of an axis-angle formula as described

below.

We choose and hold a single set of coordinate axes (XY Z) fixed, so that vectors are

equivalent to their matrices of components. Now, on rotating any rigid body through an

angle ψ about a unit vector n, any vector r embedded in the body is transformed (rotated)

to the vector r′ given by r′ = R(n, ψ)r, where

R(n, ψ) = cosψ I + (1 − cosψ)nnt + sinψ S(n),

where in turn the t-superscript denotes matrix transpose and S(n) is the skew-symmetric

cross-product matrix.1 More explicitly,

S(n) =









0 −n3 n2

n3 0 −n1

−n2 n1 0









,

and n1, n2 and n3 are the components of n in the fixed inertial axes we use for the entire

calculation (n is called the axial vector of S(n) above). To avoid possible confusion, we em-

phasize that our formula differs from that describing transformation of vector components

in the case where the body is held fixed while coordinate axes are rotated. All rotations

1
S(n)u = n × u for all n and u.
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of all bodies will be viewed as successive rotations of the above form; angular velocities

of bodies will be extracted from time derivatives of rotation matrices; moment of inertia

matrix calculations will also use these same rotation matrices; and when the system kinetic

and potential energies are known, it remains to model the dissipation and then Lagrange’s

equations can be written routinely. We explain these details here below.

We now proceed to obtain an expression for the kinetic energy. Note that point O

is fixed in inertial space at all times. It is also fixed in the rotor. We use the angles θ̄a and

θ̄b, as described above, as generalized coordinates. In the reference configuration, the a-b

axes are coincident with our inertial X-Y axes, i.e., in the reference configuration, a = i

and b = j.

The rotor’s orientation at any arbitrary time t is described using a 3-2-1 Euler angle

sequence. First, the rotor is rotated (by the input shaft) about Z through an angle Ω t.

Then the rotor is rotated through an angle θ̄b about the Z-rotated b axis. Finally, the

rotor is rotated through an angle θ̄a about the first Z-rotated and then b-rotated a axis.

The individual matrices for the above three rotations are, respectively,

R1 = R(k,Ω t),

R2 = R(R1j, θ̄b),

R3 = R(R2 R1i, θ̄a),

which we have computed symbolically using MAPLE. The final rotation matrix is

Rnet = R3 R2 R1.

The angular velocity of the rotor is then the axial vector of the skew-symmetric matrix

Ṙnet R
t
net, where the overdot denotes a time derivative. The angular velocity components

are found, using MAPLE, to be2

ω =















ωX

ωY

ωZ















=















˙̄θa cos (Ω t) cos θ̄b − ˙̄θb sin (Ω t)
˙̄θb cos (Ω t) + ˙̄θa sin (Ω t) cos θ̄b

Ω − ˙̄θa sin θ̄b















.

The moment of inertia tensor of the rotor about O expressed in the body-fixed principal

2The angular velocity components along body-fixed principal axes were separately computed as a check,

and agreed with those reported in Eq. 5 of [32]. However, we will uniformly use the XY Z axes only.
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axes is

Iξηζ =









Iξ 0 0

0 Iη 0

0 0 Iζ









.

Thus, the moment of inertia matrix about the inertial axes is given by3

IXY Z = Rnet Rφ Iξηζ Rt
φ Rt

net,

where

Rφ = R(k,−φ) =









cosφ sinφ 0

− sinφ cosφ 0

0 0 1









.

Finally, the kinetic energy is given by (detailed expression not reproduced here)

T =
1

2
ωt IXY Z ω. (7.1)

The potential energy arises from the torsion springs and gravity and is given by

V =
1

2
Ka θ̄

2
a +

1

2
Kb θ̄

2
b +MgL (Rnetk) · j (7.2)

=
1

2
Ka θ̄

2
a +

1

2
Kb θ̄

2
b +MgL sin (Ω t) cos θ̄a sin θ̄b −

MgL cos (Ω t) sin θ̄a, (7.3)

where Rnet is the net rotation matrix and g is the acceleration due to gravity.

We now turn to dissipation, which we model through viscous, torsional damping at

the pivots in the universal joint. The generalized dissipation forces for θ̄a and θ̄b, denoted

by Fa and Fb are respectively

Fa = −c ˙̄θa , Fb = −c ˙̄θb ,

where c is a common coefficient.

3Note again that our rotation matrices correspond to rotated bodies with axes held fixed. This puts

the transposed multiplying matrices on the right hand side, instead of on the left hand side as occurs for

formulas based on rotated coordinate systems.
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Finally, the Lagrangian is L = T − V, and Lagrange’s equations are

d

dt

(

∂L
∂ ˙̄θa

)

−
(

∂L
∂θ̄a

)

= −c ˙̄θa , (7.4)

d

dt

(

∂L
∂ ˙̄θb

)

−
(

∂L
∂θ̄b

)

= −c ˙̄θb . (7.5)

The full expressions, obtained using the symbolic algebra package MAPLE, are long and

not reproduced here.

7.4 Linearization

We introduce the following symbols for ease of presentation:

Im =

(

Iξ + Iη
2

)

, Id =

(

Iξ − Iη
2

)

, Km =

(

Ka +Kb

2

)

, Kd =

(

Ka −Kb

2

)

.

Thus, Im represents the mean diametral mass moment of inertia, while Id represents inertia

asymmetry; and Km represents the mean stiffness, while Kd represents stiffness asymmetry.

Using the above, linearization of Eqs. 7.4 and 7.5 yields

A ¨̄Θ + (B + E) ˙̄Θ + CΘ̄ = F, (7.6)

where Θ̄ =

{

θ̄a

θ̄b

}

, F =

{

M gL cos (Ω t)

−M gL sin (Ω t)

}

, and the coefficient matrices

A =

[

Im + Id cos 2φ −Id sin 2φ

−Id sin 2φ Im − Id cos 2φ

]

, B = Ω (Iζ − 2Im)

[

0 1

−1 0

]

,

C =

[

Ω2 (Iζ − Im + IdC2φ) +Km +Kd −Ω2 Id S2φ

−Ω2 Id S2φ Ω2 (Iζ − Im − IdC2φ) +Km −Kd

]

,

where C2φ and S2φ denote cos 2φ and sin 2φ, respectively; and E is simply c times the

2× 2 identity matrix. Note that A is the inertia matrix, B adds gyroscopic terms, E adds

damping, and C is an effective stiffness matrix. However, if we ignore gravity and seek

synchronous whirl solutions, then we must use det(C) = 0, showing that some gyroscopic

effects are included in C as well.
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That C includes some gyroscopic terms is not well understood by all, and confuses

some readers; a few lines of further explanation are therefore provided here. The equations

of motion for the overhung rotor are written using co-ordinates measured in a rotating

frame (θa and θb). At the synchronous critical speed, the rotor appears stationary in the

rotating frame. This amounts to setting the derivatives of all order of θa and θb to zero.

Thus we are left with CΘ̄ = 0. For a non-trivial Θ̄, we require det(C) = 0. This gives

the correct expression for the synchronous whirl speed. However, we know that for the

overhung rotor, the synchronous whirl speed is significantly influenced by the gyroscopic

forces. Thus an accurate determination of the critical speed using det(C) = 0, implies that

the matrix C, although apparently representing the stiffness matrix, effectively includes

the gyroscopic effects. For continuum rotors (bottles, funnels etc.), the form and nature of

gyroscopic terms are not obvious from the equations of equilibrium of a continuum point.

Accurate determination of critical speeds of such rotors involves identification of terms at

the continuum level which cause the macroscopically manifested gyroscopic effects. This

problem of determination of critical speeds of continuum rotors is addressed in more detail

in [183].

Moving on, following [32], we introduce

ǫi =
Id
Im
, ǫs =

Kd

Km

, J =
Iζ
Im
, τ = Ω t, σ =

Ω
√

Km/Im
,

where ǫi and ǫs are non-dimensional inertia and stiffness asymmetries, respectively, J rep-

resents the source of gyroscopic effects if any, τ is non-dimensional time and σ is non-

dimensional spin speed. Note that 0 ≤ ǫi < 1, 0 ≤ ǫs < 1, 0 < J < 2 and 0 ≤ φ ≤ π
2
. At

the extremes, which we avoid, J = 0 for a point mass at the shaft tip, while J = 2 for a

centrally-pivoted zero-thickness disc (i.e., L = 0).

Substituting the above definitions in Eq. 7.6 and simplifying, we have

ĀΘ̄
′′

+ (B̄ + Ē)Θ̄
′

+ C̄Θ̄ = F̄, (7.7)

where primes denote derivatives with respect to τ ,

Ā =

[

1 + ǫi cos 2φ −ǫi sin 2φ

−ǫi sin 2φ 1 − ǫi cos 2φ

]

, B̄ = (J − 2)

[

0 1

−1 0

]

,

C̄ =

[

J − 1 + ǫi cos 2φ+ (1 + ǫs)/σ
2 −ǫi sin 2φ

−ǫi sin 2φ J − 1 − ǫi cos 2φ+ (1 − ǫs)/σ
2

]

,
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Ē =
c

σ
√
Km Im

[

1 0

0 1

]

, and F̄ =
M gL

Kmσ2

{

cos τ

− sin τ

}

.

7.5 Undamped gravity critical speed

We initially ignore the damping and consider the homogeneous equation

ĀΘ̄
′′

+ B̄Θ̄
′

+ C̄Θ̄ = 0 . (7.8)

The characteristic equation of Eq. 7.8 is of the form αλ4 − 2β λ2 + γ = 0, where the α, β

and γ we obtain (we have checked) match [32]. Synchronous whirl corresponds to λ = 0.

However, here we are interested in gravity critical speeds. According to [167] and [172], for

an asymmetric two degree of freedom rotor, there are four natural frequencies for each spin

speed. At the gravity critical speed, one of these frequencies vanishes, whence constant

gravity can excite the corresponding mode. That same condition corresponds to λ = 1 in

our treatment because our generalized coordinates are defined in a rotating system. Setting

λ = 1 in the above characteristic equation and solving for Ω, we obtain

Ωgc =

√

Km

Im

√

1 − ǫ2s
4 − 2J

. (7.9)

If stiffness asymmetry and J are both small, Ωgc ≈ 1
2

√

Km

Im
, as has been noted by many

others. Also, inertia asymmetry and the angle φ have no effect on the gravity critical speed

(as stated by [153]). In our nonlinear analysis, however, inertia asymmetry will have a

weak (second order) effect.

7.6 Closing remarks

In this starting chapter on the study of gravity critical speeds of rotors, we have presented

the equations of motion of an asymmetric, overhung rotor in the presence of gravity. Sub-

sequently, we have linearized the equations of motion and derived the expression for the

gravity critical speed through an eigenvalue analysis. In the next chapter, we will conduct

an MMS analysis assuming operation close to the gravity critical speed and considering

small nonlinearities, weak asymmetries and small damping.



Chapter 8

MMS slow flow: Analysis of primary

resonant solutions

In this chapter we conduct a second order MMS analysis on the equations of motion of

the overhung rotor derived in the previous chapter, after suitable scaling. We will treat

the asymmetries as small and include nonlinearities arising from large displacements. The

second order slow flow is shown to provide good approximations. We shall subsequently

analyze the first order slow flow and study the role of various parameters such as inertia

and stiffness asymmetry as well as the gyroscopic effects in the gravity resonance phenom-

ena. We shall also comment on the persistence of weak resonances even in the absence of

asymmetries.

We first begin with the MMS procedure.

8.1 Method of multiple scales

We first identify the small parameter to be used in the subsequent MMS expansions. Recall

that in the right hand side of Eq. 7.7, the expression for the forcing term, F̄, contained

the parameter
M gL

Km

, which represents the static angular deflection of the rotor under self-

weight, which is typically small; we will use this parameter in our multiple scales expansion.

Now, Lagrange’s Eqs. 7.4 and 7.5 involve trigonometric terms. We will expand them in

120



Chapter 8. MMS slow flow: Analysis of primary resonant solutions 121

power series (upto fifth power). To deem the asymmetries and damping as small, and also

to stay close to the gravity critical speed, we further define

√
ν =

M gL

Km

, θ̄a =
√
ν θa , θ̄b =

√
ν θb, ǫi = ν δ,

ǫs = ν κ, c = ν µ
√

Km Im, σ =
1√

4 − 2J
+ ν∆ ,

where 0 < ν ≪ 1; where θa, θb, κ, δ, µ and ∆ are O(1) quantities; and where ∆ represents

detuning or deviation from the leading order expression for gravity critical speed. Note

that asymmetries, as well as damping, have been taken to be one order smaller than the

static deflection of the rotor.

A consequence of such scaling is that, unlike typical near-resonance analyses of

weakly nonlinear oscillators (see pp. 163-173 of [3]), the forcing from gravity will appear

at leading order itself in the analysis below. Technically, this is possible without blowup

of terms because the resonant forcing does not directly excite the corresponding resonant

mode in this two d.o.f. system. Physically and intuitively, the near axisymmetric nature

of the rotor diminishes the magnitude of the response, thus allowing the rotor to tolerate

relatively larger forcing.

Expanding for small
√
ν and then dividing through by

√
ν, and on replacing primes

by overdots to better match the convention for time derivatives (understanding that over-

dots now signify τ -derivatives), we finally have

PΘ̈ + QΘ̇ + RΘ = f + νµDΘ̇ + ν(N1 + N2) + ν2N3 . (8.1)

where Θ =

{

θa

θb

}

, f = (4 − 2J)

{

cos τ

− sin τ

}

, and the coefficient matrices

P =

[

1 0

0 1

]

, Q = (J − 2)

[

0 1

−1 0

]

,

R =

[

3 − J 0

0 3 − J

]

, and D = −
√

4 − 2J

[

1 0

0 1

]

.

The term N1 = {N11, N12}t contains harmonic forcing terms and terms linear in the gener-

alized coordinates and their derivatives; these terms, though linear, represent small effects

(as denoted by the ν premultiplier). The term N2 = {N21, N22}t contains cubic nonlineari-

ties (such as θ3
a and θ̇bθ

2
a), as well as quadratically nonlinear parametric forcing terms (such
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as θaθb sin τ and θ2
a cos τ). Finally, the term N3 = {N31, N32}t contains a combination of

forcing, linear and nonlinear terms upto fifth order. Detailed expressions for these terms

are provided in appendix F. materials.

We now proceed to apply the method of multiple scales (MMS) to Eq. 8.1, and

begin with a first order analysis.

We first rewrite the equations in state space form as

Ẋ = MX + G(τ) + νH(X, τ) + ν2W(X, τ) , (8.2)

where the state vector X =























θa

θ̇a

θb

θ̇b























,

M =













0 1 0 0

J − 3 0 0 2 − J

0 0 0 1

0 J − 2 J − 3 0













, G(τ) = (4 − 2J)























0

cos τ

0

− sin τ























,

and H and W incorporate asymmetry, detuning, damping and nonlinearities.

We introduce multiple time scales: T0 = τ , T1 = ντ , T2 = ν2τ, · · · and write

X = X0(T0, T1, T2, · · · ) + νX1(T0, T1, T2, · · · ) + ν2X2(T0, T1, T2, · · · ) + · · · . (8.3)

Substituting Eq. 8.3 in Eq. 8.2 and taking time derivatives as is usual for the MMS,

we have at O(1):

∂X0

∂T0

= MX0 + (2 − J)























0

1

0

i























ei T0 + (2 − J)























0

1

0

−i























e−i T0 , (8.4)

where G(τ) has been written using complex exponential notation.

Now the eigenvalues of M are: i,−i, i(J − 3),−i(J − 3), with J 6= 2. Thus, the

harmonic forcing could potentially excite unbounded responses along eigenvectors corre-

sponding to the eigenvalues ± i. It turns out that it does not. This issue is a key aspect of



Chapter 8. MMS slow flow: Analysis of primary resonant solutions 123

the present analysis. In view of its importance here, we pause to consider a general system

ẋ = Ax + ueλt.

If λ is not an eigenvalue of A, then there is a solution of the form x = beλt, found easily by

solving (A−λ I)b = −u, where I is the identity matrix and A−λ I is not singular because

λ is not an eigenvalue. In contrast, if λ is in fact an eigenvalue of A, then the coefficient

matrix is singular and there is in general no bounded solution for b. In the special case

where u lies in the column space of A − λ I, or equivalently, when u is orthogonal to the

left null vector of A − λ I, then there are bounded but nonunique solutions for b. The

nonuniqueness consists of an arbitrary scalar multiple of the right null vector of A − λ I.

In our MMS analysis, the situation is the last one, with bounded but nonunique solutions

at first order.

Thus, the solution for X0 is bounded and nonunique. Intuitively, since the gravity

resonance is mainly due to asymmetries which are absent at this order, we expect no

unbounded solutions here. The lack of immediately unbounded solutions resembles, for

example, the dynamics of a straight rod excited torsionally at a bending natural frequency.

In this way, our system differs from usual resonantly forced, weakly nonlinear oscillators

where no primary-resonance forcing can be sustained at leading order.

Proceeding with our analysis, the solution of Eq. 8.4 contains a complementary

solution and a particular integral. The particular integral, as discussed above, is non-

unique. Moreover, the non-unique portion can be absorbed into the complementary solution

involving the eigenvalues ± i. Thus the solution of Eq. 8.4 is

X0(T0, T1, T2) = (c1(T1, T2) + ic2(T1, T2))























1

i

−i
1























ei T0 +























1

i

0

0























ei T0 +

(c1(T1, T2) − ic2(T1, T2))























1

−i
i

1























e−i T0 +























1

−i
0

0























e−i T0 . (8.5)

We have not included the contribution of the eigenvalue i(J − 3) in the complemen-

tary solution as it is neither resonantly forced (since J 6= 2), nor involved in any internal
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resonances (as we have verified; details not presented here), and hence will be eventually

damped out. The real-valued functions c1(T1, T2) and c2(T1, T2) are to be determined from

calculations at subsequent orders.

Proceeding to the next order, at O(ν) we have

∂X1

∂T0

− MX1 = −∂X0

∂T1

+ H(X0, T0). (8.6)

Substituting Eq. 8.5 in the right hand side of Eq. 8.6, we have

∂X1

∂T0

− MX1 = U(T1, T2)e
i T0 + Ū(T1, T2)e

−i T0 + V(T1, T2)e
3i T0 + V̄(T1, T2)e

−3i T0 , (8.7)

where overbars denote complex conjugates, and where U and V involve complicated ex-

pressions (not presented) in terms of c1, c2, their partial derivatives with respect to T1,

along with system parameters.

In Eq. 8.7, as before, we encounter forcing in resonance with the eigenvalues ± i.

To eliminate secular terms, we must ensure (as discussed above) that U is orthogonal to

the left eigenvector of M corresponding to the eigenvalue i (see also, e.g., [110]), with

a corresponding condition for Ū being then identically satisfied. Thus, the solvability

conditions may be written compactly as

Ut(T1, T2)























−i
1

J−3

1
i

J−3























= 0. (8.8)

Separating the real and imaginary parts of Eq. 8.8, we obtain after elementary manipula-

tions the slow flow equations (dependencies on T1 and T2 suppressed for simplicity)

∂c1
∂T1

=
1

2J − 8

(

16 c2 + 24 c32 + 24 c2c1 + 8
√

4 − 2 J∆ J c2 − 13 J c2 + 24 c21c2−

22 J c21c2 − 24 J c2c1 − 16
√

4 − 2 J∆ c2 + 2
√

4 − 2 Jµ c1+√
4 − 2 Jµ− 22 J c32

)

, (8.9)
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∂c2
∂T1

=
1

2J − 8

(

−6 − 4κ+ 5 J + 12 J c22 − 24 c22c1 + 23 J c1 + 36 J c21 + 22 J c22c1+

8
√

4 − 2 J∆ − 36 c21 − 12 c22 − 24 c31 + 22 J c31 − 24 c1 + 2κ J+

16
√

4 − 2 J∆ c1 − 4
√

4 − 2 J∆ J + 2
√

4 − 2 Jµ c2−
8
√

4 − 2 J∆ J c1

)

. (8.10)

The above equations govern, upto first order, the evolution of whirling solution amplitudes.

We mention here that we have in fact proceeded to the next order (after solving Eq. 8.7)

and obtained expressions for
∂c1
∂T2

and
∂c2
∂T2

. The second order slow flow contains the inertia

asymmetry parameter which is absent at first order; and provide better approximations

than the first order. Details are presented in appendix G.

8.2 Initial results

The fixed points of the slow flow equations (Eqs. 8.9 and 8.10, if working with first order)

represent periodic solutions of Eq. 8.2. These slow flow equations will, by and large, be

treated numerically below. Note that numerical treatment of the slow flow is much faster

than direct numerical treatment of the original Eq. 8.2. We will use only the first order

slow flow for the most part, because it suffices for the qualitative dynamics we examine;

for some parameter values, however, second order equations do give greater accuracy, as

we will illustrate below.

Before a detailed study of the slow flow, some preliminary numerical results are

plotted in Fig. 8.1. From the fixed points of the first order slow flow, Eqs. 8.9 and 8.10,

the amplitudes of θa and θb are found from Eq. 8.5 as

θa = 2
√

(c1 + 1)2 + c22, θb = 2
√

c21 + c22 . (8.11)

The slow flow is also linearized about each fixed point, and eigenvalues of the linearized

system are used to determine stability (as depicted in the figure). Equilibrium solution

branches are numerically computed using an arclength-based branch following scheme (see,

e.g, [184]), as ∆ is varied in parameter space. Saddle-node bifurcations, jump phenomena,

and hysteresis, familiar in nonlinear resonances, are all observed. The plot for θa appears to

self-intersect in this view, but the underlying 3D curve (θa − θb −∆) does not self-intersect

(see plot for θb).



Chapter 8. MMS slow flow: Analysis of primary resonant solutions 126

4 2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

stable
unstable

a
 a

m
p

lit
u

d
e

θ

∆
− − 4 2 0 2 4 6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

stable
unstable

b
 a

m
p

lit
u

d
e

θ

∆

(a) (b)

−−

Figure 8.1: Multiple periodic solutions, both stable and unstable, can co-exist. Transitions

from stable to unstable portions occur at points where tangents are vertical (at ∆ ≈ 2.53

and ∆ ≈ 1.65). Parameters: κ = 7, µ = 3 and J = 0.5.

We present in Fig. 8.2 below a phase portrait for the first order slow flow, for ∆ = 2,

κ = 7, µ = 3 and J = 0.5, wherein three periodic solutions co-exist. The phase portrait

shows one saddle and two stable foci, representing the one unstable and two stable periodic

solutions respectively.

We now proceed to a more detailed investigation.

8.2.1 First vs. second order

To compare the first and second order slow flows, we consider two sets of parameter values.

In each case, periodic solutions are computed in three ways: (a) by direct treatment of Eq.

8.21, (b) from the first order slow flow, Eqs. 8.9 and 8.10, and (c) from the second order

slow flow (long equations, not presented here). Results are plotted in Fig. 8.3. For the first

case (corresponding to plots (a) and (b) of the figure), first and second orders are both of

acceptable accuracy; while for the second case (corresponding to plots (c) and (d)), first

1Periodic solutions of Eq. 8.2, or even the full equations Eqs. 7.4 and 7.5 (which we have done as well,

but do not report here because they lead to no visible difference), are found iteratively through shooting

methods and a numerical implementation of the Newton-Raphson method.
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Figure 8.2: Phase portrait exhibiting multiple periodic solutions. Parameters: ∆ = 2,

κ = 7, µ = 3 and J = 0.5.

order has somewhat poor accuracy. In both cases, second order results are indistinguishable

from full numerics within plotting accuracy. Henceforth, however, for computational ease

and due to our primary interest in qualitative aspects of the dynamics, we will use the first

order slow flow alone.

8.2.2 Some other observations

We summarize some other observations regarding the primary resonant solutions here.

Inertia asymmetry (δ) has no role in determination of gravity critical speed (see Eq.

7.9) and only a weak influence on amplitudes of resonant solutions [153], in that it drops

out of the first order slow flow, Eqs. 8.9 and 8.10. However it does appear at second order.
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Figure 8.3: Comparison of first order and second order slow. (a) and (b): Parameters are

ν = 0.002, κ = 5, δ = 2, µ = 2, φ = π
5

and J = 0.7; (c) and (d): Parameters are ν = 0.003,

κ = 10, δ = 2, µ = 1, φ = π
5

and J = 0.7.

Gyroscopic effects, represented by J , have a significant role in the gravity induced

resonant dynamics. Exploratory numerical results presented below suggest that, for light

damping, decreasing J eventually raises the maximum amplitudes. Indirect analytical

investigation of this issue, among others, is presented in Chapter 9, and constitutes one

of the main contributions of this work. For a complementary view of the influence of the

gyroscopic effect, through J , on the resonant amplitudes, we consider fixed points of the

first order slow flow Eqs. 8.9 and 8.10, for three cases with J = 0.3, J = 0.6 and J = 0.8.

Other parameters are held constant at κ = 10 and µ = 2. Results are plotted in Fig. 8.4,

and indicate that lower values of J < 1 leads to larger maximum amplitudes.



Chapter 8. MMS slow flow: Analysis of primary resonant solutions 129

5 0 5 10 15
0

1

2

3

4

5

6

7

8

9

J=0.3
J=0.6
J=0.8

−

a
 a

m
p
lit

u
d
e

θ

∆

0 5 10 15
0

2

4

6

8

10 J=0.3
J=0.6
J=0.8

b
 a

m
p
lit

u
d
e

θ

∆

(a) (b)

Figure 8.4: Effect of gyroscopic action on resonant solution amplitudes. Parameters: κ = 10

and µ = 2.

Geometric nonlinearities, even in the absence of stiffness asymmetry, allow a some-

what weaker gravity-induced resonant response. The effect is attenuated by damping, and

is in any case weaker than that of stiffness asymmetry.

Gravity induced secondary whirl is strong in the presence of stiffness asymmetry,

and linear analyses demonstrating the former rely on the latter. However, with geometrical

nonlinearities included, relatively weaker resonant effects exist even for a symmetric rotor,

as we show next.

Mathematically, these weaker resonances exist because the potential energy expres-

sion Eq. 7.3 contains trigonometric nonlinearities which, during shaft rotation, give rise

to higher order parametric forcing terms in Eq. 8.2 even for a symmetric shaft (κ = 0).

However, these resonant responses are heavily attenuated by larger damping.

To demonstrate, we numerically examine the case of δ = 0 and κ = 0, along with

J = 0.4, µ = 0.3 (a small value), and φ = π
4
. We use both Eq. 8.2 for ν = 0.0008 (but

with the ν2 terms dropped), as well the first order slow flow. The near-identical results

obtained from the two sets of equations are plotted in (a) and (b) of Fig. 8.5, where a

significant whirl amplitude is observed. Upon increasing the damping to µ = 2, however,
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Figure 8.5: Weaker resonances for a symmetric rotor and their subsequent annihilation

under increased damping. (a) and (b) - low damping with parameters ν = 0.0008, δ = 0,

κ = 0, µ = 0.3, φ = π
4

and J = 0.4. (c) and (d) - increased damping with parameters

ν = 0.0008, δ = 0, κ = 0, µ = 2, φ = π
4

and J = 0.4.

while keeping other parameters fixed, the response is attenuated as shown in (c) and (d)

of Fig. 8.5.
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8.3 Closing remarks

We conclude the MMS analysis of the primary resonant solutions of the overhung rotor.

In this chapter, we have used the MMS to derive the slow flow equations upto second

order governing the gravity-induced whirl of the weakly asymmetric, weakly nonlinear,

overhung rotor. The first order MMS slow flow verified the known unimportance of inertia

asymmetry in gravity resonances; the second order slow flow, however, demonstrated a

weak but nonzero role of the same. The role of gyroscopic effects on maximum resonant

amplitudes was illustrated. Weakly resonant effects were found even in the absence of

asymmetry, something that linear analyses do not capture.

All through this chapter, we have focused on the primary resonant solutions revealed

by the slow flow. However, apart from this primary solution branch, the MMS slow flow

also reveals other periodic solution branches. In the next chapter, we present a detailed

numerical and analytical investigation of the bifurcation structure of the MMS slow flow

to get a unified picture of the complete solution set.



Chapter 9

MMS slow flow: Analysis of auxiliary

periodic solutions

In this chapter, we continue our study of the MMS slow flow of the rotor model of [32]

developed in Chapters 7 and 8. In those chapters, we had focused on the primary resonant

solutions yielded by the MMS slow flow. Apart from these solutions, we have observed the

existence of another branch of nonlinearity-induced periodic solutions. In this chapter, we

numerically and analytically investigate these auxiliary solutions. We also establish the

bifurcation structure of the complete periodic solution set.

9.1 Other periodic solution branches

To motivate this section, let us consider the parameter values: ν = 0.001, J = 0.6, F = 1,

µ = 0.1, δ = 0, φ = π
3

and κ = 1. Numerical results for this parameter set from the first

order slow flow Eqs. 8.9 and 8.10 are plotted in Fig. 9.1. In Fig. 9.1, in addition to the usual

stable-unstable-stable primary branches A-B-C, we see additional stable-unstable branches

D-E. As a check, we have also computed these additional periodic solutions from the full

nonlinear Eqs. 7.4 and 7.5 (i.e., with no series truncation at all, and incorporating ν, δ and

φ as above) and plotted some of those using circles (o) in the same figure. Agreement is

good enough that for subsequent studies, only the MMS first order slow flow is used.

132
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A representative phase portrait at ∆ = 2.5, showing five co-existing solutions in-

cluding three stable ones, is given in Fig. 9.2. It is clear that the primary stable solutions

(marked 1 and 5) are foci in the portrait, while the primary unstable solution, marked 2,

is a saddle. The secondary stable solution, marked 4, is also a focus while the secondary

unstable solution, marked 3, is a saddle. The secondary focus possesses a significant basin

of attraction, and the rotor could quite possibly settle on to that motion.
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Figure 9.1: Additional periodic solution branches. Parameters: ν = 0.001, δ = 0, κ = 1,

µ = 0.1, φ = π
3

and J = 0.6.

For higher damping, these additional solution branches recede from the primary

branch. For sufficiently large damping, five coexisting periodic solutions are no longer

possible. For the parameters considered above, viz., J = 0.6, µ = 0.1 and κ = 1, we plot

the various solution branches in the c1 − c2 −∆ space in Fig. 9.3. Marked in the figure, as

heavy black dots numbered 1 to 5, are five co-existing solutions at ∆ = 2.5.

For larger damping, five coexisting periodic solutions are eventually impossible. This

is seen in Fig. 9.4, which shows the primary and additional solution branches for µ = 0.4.

All other parameters are the same as for Fig. 9.3.

Conversely, for lower damping, we expect the additional solution branch to exist

for values of ∆ even closer to zero. To check this, we consider µ = 0.00001 with all other

parameters being the same as in Fig. 9.1. The resulting solution branches, this time in

c1 − c2 − ∆ space, are plotted in Fig. 9.5. For ease of identification, the various branches
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Figure 9.2: Phase portrait illustrating co-existence of 5 periodic solutions. Parameters:

κ = 1, µ = 0.1, ∆ = 2.5 and J = 0.6.

in Fig. 9.5 have been given the same labels as in Fig. 9.1.
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The rest of this chapter is essentially aimed at understanding Fig. 9.5. In the figure,

for large negative values of ∆, we only have the solution branch A. For increasing ∆, A

merges with branch B in a saddle node bifurcation (see zoomed view of the boxed portion, in

Fig. 9.6, right). Following branch B, ∆ now decreases until B merges with stable branch C

in another saddle node bifurcation. Subsequently, ∆ increases indefinitely along C. On the

remaining branches shown, which form another single curve, starting along the additional

stable branch D for large positive ∆, we encounter a saddle node bifurcation where D

merges with unstable branch E (see zoomed view of the boxed portion, in Fig. 9.6, left).

Continuing along E, ∆ increases indefinitely.
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Figure 9.6: Zoomed portions of Fig. 9.5 near bifurcation points. Left: zoomed-in view near

junction of branches D and E (left box in Fig. 9.5). Right: zoomed-in view near junction

of branches A, B and E (right box in Fig. 9.5).

In Fig. 9.5, it seems that branches E and B are broken halves of an ellipse. We

anticipate that with damping µ = 0, these branches do form an ellipse. To verify this, we

generate the solution branches for µ = 0 and plot them in Fig. 9.7. In Fig. 9.7, we have

used κ = 0 as well (but see the discussion later, following Eq. 9.5). All other parameters

remain the same as for Fig. 9.1.

In Fig. 9.7, the stable branch A remains intact for large negative ∆. However, branch

A now loses stability via a subcritical pitchfork bifurcation1 and continues as branch G. At

1Note that, for µ = 0, if (c1, c2) is a fixed point of Eqs. 8.9 and 8.10, then so is (c1,−c2). Nonzero
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Figure 9.7: Bifurcation diagram for zero damping case. Parameters: κ = 0, µ = 0 and

J = 0.6. Left: overall picture. Right: zoomed portion of the overall picture showing
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the pitchfork point, two unstable branches, B and F, which now form a perfect ellipse (as

will be demonstrated analytically later), meet branch A.

More interestingly, for large positive ∆, both branches C and D are stable. These

branches meet, and also intersect the unstable branches B and F in what appears to be

a pitchfork bifurcation. However, this suggests that either branch C or branch D must

change stability prior to the pitchfork point, and this is indeed what happens. It is branch

D which loses stability via yet another saddle-node bifurcation, changing to unstable branch

E. Branch E, after a short distance, gains stability via a pitchfork bifurcation, meeting F

and B. Post the pitchfork point, stable branch C emerges. These issues are more clearly

seen in the zoomed plot on the right. Representative plots of whirl orbits corresponding to

these branches are provided here below.

To graphically depict some whirl orbits, we choose several points as shown in Fig.

9.8. The periodic solutions corresponding to these points are found using the first order

solution (see Eq. 8.5). We assume ν = 0.001. Using θ̄ =
√
ν θ, the physical angles are

determined. Subsequently, using the rotation matrices, the coordinates of the center of

the disc in the XY Z system are determined (wherein, again, we use length l = 1). The

damping breaks this symmetry, and breaks the pitchfork.
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resulting trace of the whirl orbit on the X − Y plane is plotted for each of the chosen

periodic solutions in Fig. 9.9. It is interesting to see that though each orbit is close to

circular, there is a large range in amplitudes. It may be noted that not all these solutions

are at the same spin speed, because ∆ varies from solution to solution. Both ∆, as well as

the choice of branch, determine the observed amplitude.
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Figure 9.8: Chosen periodic solutions on various branches. Parameters: κ = 0, µ = 0 and

J = 0.6.

Finally, note that the branch A is separated from the pitchfork point, and does not

intersect the ellipse in that region. This gap exists due to the nonzero forcing present in

the system, and corresponds to the finite width near the base of a resonance peak for any

oscillator forced near resonance; that width goes to zero as the damping goes to zero and

the forcing amplitude goes to zero as well. So also, here, if we let damping and gravity go

to zero, then the vertical part of A will merge with C (and both will shift sideways to merge

with the ∆-axis, representing the trivial or zero solution). Simultaneously, the curved part

of A, along with branches D, E and G, will make a perfect parabola (as we will demonstrate

indirectly below) in the c1-∆ plane, also passing through the origin. Finally, the ellipse will
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Figure 9.9: XY trace of whirl orbit of disc center corresponding to points P, Q, R, S, T,

U, V and W of Fig. 9.8.

become indeterminate and turn into a paraboloid. In this sense, zero damping and small

but nonzero gravity may be seen as leading to an imperfect version of three intersecting

curves: a straight line, a parabola and an ellipse. Demonstration of the above features

requires retaining a gravity forcing parameter F throughout the formulation, leading to

longer expressions which we have avoided here (but verified separately). In this work, we

have taken gravity as given, and used F = 1 after scaling in terms of the small parameter

ν.
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9.2 Analysis for zero damping

We now analytically consider the undamped case, using the first order slow flow Eqs. 8.9

and 8.10, whose fixed points were plotted for some choice of parameter values in Fig. 9.7.

Our aim is to analytically establish the picture described above: that of an imperfect version

of three mutually intersecting curves, viz., a straight line, a parabola and an ellipse.

9.2.1 Straight line and parabola (c2 = 0)

We begin by setting µ = 0 in the right hand sides of Eqs. 8.9 and 8.10 and then setting

them to zero, obtaining

c2
2J − 8

(

16 + 24 c22 + 24 c1 + 8
√

4 − 2 J∆ J − 13 J + 24 c21 − 22 J c22−

22 J c21 − 24 J c1 − 16
√

4 − 2 J∆
)

= 0,
(9.1)

1

2J − 8

(

−6 − 4κ+ 5 J + 12 J c22 − 24 c22c1 + 23 J c1 + 36 J c21 + 22 J c22c1+

8
√

4 − 2 J∆ − 36 c21 − 12 c22 − 24 c31 + 22 J c31 − 24 c1 + 2κ J+

16
√

4 − 2 J∆ c1 − 4
√

4 − 2 J∆ J − 8
√

4 − 2 J∆ J c1

)

= 0.

(9.2)

Since Eq. 9.1 is identically satisfied for c2 = 0, Eq. 9.2 with c2 = 0 gives a relation

between c1 and ∆ which describes curves in the c1-∆ plane:

∆ =
−36 c1

2 − 6 + 22 Jc1
3 − 24 c1

3 + 23 Jc1 + 36 Jc1
2 − 4κ− 24 c1 + 2κ J + 5 J

4
√

4 − 2 J (J − 2) (2 c1 + 1)
. (9.3)

Equation 9.3 describes the curves D, E, A, G and C of Fig. 9.7. In Eq. 9.3, at c1 = −1
2

there is an asymptote parallel to the ∆ axis, giving the straight line portions of Fig. 9.7.

Next, for large c1, we replace 2c1 + 1 in the denominator with 2c1, and in the numerator

retain only terms cubic in c1. This gives the parabola

∆ =
1

8

(22 J − 24)c1
2

√
4 − 2 J (−2 + J)

. (9.4)

As explained above, in the absence of gravity, we would have exactly a straight line and a

parabola.
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In Eq. 9.4, the coefficient of c21 changes sign as J crosses 12/11, which is within the

parameter range of interest (0 < J < 2). In Figs. 9.5 and 9.7, we had used J = 0.6 < 12/11.

For J > 12/11, the parabola bends in the opposite direction, as we will illustrate at the

end of this section.

9.2.2 Ellipse (c2 6= 0)

We now turn to the elliptical portion (branches B and F of Fig. 9.7). Here, c2 6= 0.

Accordingly, we consider the expressions within parenthesis in Eqs. 9.1 and 9.2. Eliminating

∆, we find

4 J2 c21 + 4 J2 c22 + 8 J (2 − J) c1 − 8κ J (2 − J) + 8 J − 6 J2 = 0 . (9.5)

The quadratic terms have identical positive coefficients, showing that it is in fact a circle

(in the projection on to the ∆ = 0 plane). Note that κ here adjusts the size of the circle.

With a little algebra, it can be shown that the radius of the circle remains positive for all

0 < J < 2 and κ ≥ 0 (as per our initial assumptions). Thus, the circle remains intact for

all parameter values of interest. With some further algebra, c22 can be eliminated between

Eqs. 9.1 and 9.2, giving a linear relationship between ∆ and c1, showing that nonzero-c2

solutions lie on some plane. Finally, projecting the above circle, of Eq. 9.5, along the ∆

direction onto that plane gives exactly an ellipse (no approximation).

9.2.3 Other results

9.2.3.1 Maximum amplitudes

We can estimate the maximum amplitudes of the primary resonant solutions in the zero

damping limit. The results will hold approximately for small damping. In the zero damping

case, c2 = 0 for any ∆ on the primary resonant solution branch. Thus the corresponding

solution amplitude become (see Eq. 8.11)

θa = 2 |c1 + 1| , θb = 2 |c1| . (9.6)

Maximum amplitude on the primary branch A (see Fig. 9.7), as a function of ∆, is attained

at the pitchfork point where the ellipse meets the branch A. The maximum amplitude point
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can thus be determined by setting c2 = 0 in Eq. 9.5 and solving for c1. We obtain two

values for c1 namely

c1 =

(

1 − 2

J

)

± 1

2 J

√

(√
10J − 12√

10

)2

+
8

5
+ 8κJ(2 − J) (9.7)
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Figure 9.10: Influence of J on maximum amplitudes of θa and θb, on the primary branch,

for zero-damping, and various values of κ. Values plotted should be multiplied by
√
ν to

obtain actual values.

The first term in the right hand side of Eq. 9.7 is always negative for all permissible

values of J . The radical is always clearly real for all 0 ≤ J ≤ 2 and κ ≥ 0. Now, it is

straightforward to decide from Eq. 9.6 that the maximum amplitude for θb is obtained for

the choice

c1 =

(

1 − 2

J

)

− 1

2 J

√

(√
10J − 12√

10

)2

+
8

5
+ 8κJ(2 − J).

However, for the θa case, the choice of c1 for the maximum amplitude will depend on J .

For J < 1, it can be shown that the maximum occurs for

c1 =

(

1 − 2

J

)

− 1

2 J

√

(√
10J − 12√

10

)2

+
8

5
+ 8κJ(2 − J) ,

while for J > 1, the maximum occurs for

c1 =

(

1 − 2

J

)

+
1

2 J

√

(√
10J − 12√

10

)2

+
8

5
+ 8κJ(2 − J) .
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The maximum amplitude of θa and θb as a function of J for various fixed values of κ are

plotted in Fig. 9.10 (note that the large values shown are scaled quantities, and actual

amplitudes may be reasonable for small ν). It is seen from the figure that for a fixed J , the

effect of increasing κ is to increase the maximum amplitudes. The role of J , however, is

slightly more complicated. However, decreasing J eventually leads to increasing amplitudes.

9.2.3.2 Some results for J > 12/11

We close this section with some final numerical results for J > 12/11, so that the change

in the bending direction of the parabola described above may be seen. We take J = 1.25 >

12/11, in the zero damping limit. Results are plotted in Fig. 9.11. In addition to the change

in the parabola’s bending direction, there is also movement of the saddle-node bifurcation

point between branches D and E (see Fig. 9.7, right). As J approaches 12/11 from below,

this bifurcation point moves off to the far left side, taking large positive c1 values; as J

crosses 12/11, this bifurcation point reappears on the far right, i.e., at large negative c1.

Further increases in J bring the saddle-node bifurcation point once again to the vicinity

of the pitchfork bifurcation. The stability of major portions of the parabolic branch, as

depicted in the figures, reflects this movement of the saddle-node point.
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9.3 Closing remarks

With this chapter, we conclude our presentation of the fourth problem studied in this thesis.

In this chapter, we have presented a detailed analytical and numerical investigation

of the additional branch of periodic solutions based on first order slow flow. We have

also established the bifurcation structure of the complete set of periodic solutions. In the

three dimensional space of two modal coefficients and a detuning parameter, the full set of

periodic solutions is found to be an imperfect version of three mutually intersecting curves:

a straight line, a parabola, and an ellipse.

Before closing, we note that in the last problem of this thesis spanning Chapters 7

through 9, we have studied the simplest two degree of freedom system model of an overhung

rotor. Future work in this direction may involve the next simplest nonlinear overhung rotor

model, where the slender rotor portion is modeled as a beam. Such a model must include

at least one more degree of freedom in each plane of bending, bringing in significant new

complications.
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Chapter 10

Conclusions and future work

The study of the four problems of this thesis is now complete. Conclusions specific to these

problems have been presented as appropriate at the ends of the preceding chapters.

In this chapter, we present some general concluding remarks about the range of

problems studied in this thesis and the versatility of the MMS in tackling these problems.

The Method of Multiple Scales is a very classical, asymptotic method as suggested

by the number of textbooks dealing with the method as well as the huge volume of pub-

lished papers that use the method. The textbooks on this subject, however, present a

potentially misleading picture to the inexperienced reader, suggesting that the range of

problems amenable to this method has been fully explored. The problems studied in this

thesis serve to illustrate the contrary.

Although the procedural aspects of the method are clear for a vast majority of

problems, there are still a variety of interesting applications where the method cannot be

applied in a straightforward manner. Some of the relevant issues include dimensionality,

scaling and ordering of terms.

Textbooks usually teach us the procedure to apply the MMS to toy problems and

known systems. In such situations, the starting system for the MMS analysis, namely an

unperturbed system along with small perturbing terms, is available or readily deducible.

However, when we are faced with a situation of applying the method to a new physical

problem, several decisions have to be taken before the system is at the starting point of
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application of the method. The major decisions involved might include identification of

the small parameter, suitable scaling, ordering of terms, etc. A lot of these decisions are

problem-specific. The study on rotors presented in this thesis illustrates many of these

issues. A relevant discussion of these issues is also presented in [8].

Also, the MMS procedure is well developed for ODEs. Due to this reason, as well

due to interest in lower dimensional dynamics, one often performs suitable lower dimen-

sional projections on a given infinite dimensional system and then applies the MMS on

the lower dimensional system. Although this procedure is quite well known for several

problems, there do exist applications where it is not straightforward to perform the dimen-

sion reduction. The study of the fractional van der Pol oscillator is a case in point. The

semi-analytical approach developed therein demonstrated the way to use the MMS on such

infinite dimensional systems.

Even after casting the problem in the standard form, the procedure of MMS may

be unclear for certain problems. For example, in the third problem of this thesis, studying

tool vibrations, the perturbing terms contained large delays. Here, the development of the

second order slow flow has novel aspects [31].

Finally, with fast computers, asymptotic methods such as the MMS may seem ob-

solete. Nevertheless, the MMS remains useful at least for two reasons:

1. Numerical integration of the MMS slow flow proceeds much faster than that of the

full equations. Hence parameter studies can be conducted more extensively. The

study of the large delay system in this thesis is a typical illustration of the ease of

numerical integration provided by the MMS slow flow.

2. The MMS slow flow can be treated analytically in many cases. This gives us valuable

insights into the physics of the problem in hand, and also serves as a check on the

numerical results. The study on rotors serves to illustrate the usefulness of such

analytical investigations.

We close by remarking that there still exists a wide variety of problems of engineering

interest to be explored and understood with the aid of this classical method.



Appendix A

Second order slow flow expressions of

Eq. 6.4

Amplitude slow flow

For brevity, we write γ ≡ φ+ 2 z − φ2 τ . Then,

A2 = −1

8
β2A2 τ sin(γ) +

3

8
λAτ

2β A2 τ sin(γ) +
3

128
λ2AAτA2 τ

3 sin(−3 γ + ψ)+

3

32
β λA2 τ

3 sin(γ) − 3

8
αλAAτ

2 − 3

16
αλA3 +

27

128
λ2AAτ

3A2 τ sin(γ + ψ)−
27

128
λ2A2Aτ

2A2 τ sin(2ψ − γ) − 9

256
λ2A2AτA2 τ

2 sin(ψ + 2 γ)+

9

256
λ2A2Aτ

2A2 τ sin(γ + 2ψ) +
3

8
λAAτ

2β sin(2ψ) − 15

32
λA2Aτ sin(ψ)β−

3

16
λAAτ

2 cos(2ψ)α− 3

16
β sin(ψ)λAτA2 τ

2 +
9

32
λ2AAτ

2A2 τ
2 sin(−2 γ + 2ψ)−

9

32
λ2AAτ

3A2 τ sin(ψ − γ) +
3

32
β λAτA2 τ

2 sin(ψ − 2 γ) − 9

32
λ2AAτ

2 sin(2ψ)A2 τ
2−

9

32
λ2AAτA2 τ

3 sin(ψ − γ) − 27

128
λ2A2AτA2 τ

2 sin(ψ − 2 γ)+

9

64
λ2AAτ

3A2 τ sin(3ψ − γ) +
9

16
λA2Aτ cos(ψ)α− 9

128
λ2AAτ

2A2 τ
2 sin(2 γ)+

27

64
λ2A2AτA2 τ

2 sin(ψ) − 27

64
λ2A2Aτ

2A2 τ sin(γ) +
9

64
λ2AAτA2 τ

3 sin(γ + ψ)+

3

64
λ2A2Aτ

3 sin(3ψ) +
1

4
β2Aτ sin(ψ) +

99

256
λ2A2Aτ

3 sin(ψ)+
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3

8
λAAτβ A2 τ sin(ψ − γ) +

15

128
λ2Aτ

5 sin(ψ) +
1

3
λ2Aτ

2A2 τ sin(γ)+

1

6
λ2AAτA2 τ sin(γ + ψ) +

3

256
λ2A2A2 τ

3 sin(3 γ) − 3

8
β λAτ

3 sin(ψ)+

9

32
λA2β A2 τ sin(γ) +

9

128
λ2Aτ

2A2 τ
3 sin(2ψ − γ) − 1

12
λ2AA2 τ

2 sin(2 γ)−
1

2
λ2Aτ

2A sin(2ψ) − 45

256
λ2Aτ

4A2 τ sin(γ) − 15

64
λ2Aτ

4A sin(2ψ)+

1

2
λ2Aτ

2A2 τ sin(2ψ − γ) +
5

12
λ2A2Aτ sin(ψ) − 1

12
λ2AτA2 τ

2 sin(ψ − 2 γ)−
3

256
λ2Aτ

2A2 τ
3 sin(−3 γ + 2ψ) +

15

256
λ2A4Aτ sin(ψ) − 9

64
λ2Aτ

2A2 τ
3 sin(γ)−

27

128
λ2A2A2 τ

3 sin(γ) − 1

2
λ2AτA2 τ

2 sin(ψ) − 15

128
λ2Aτ

2A3 sin(2ψ)+

9

64
λ2Aτ

3 sin(ψ)A2 τ
2 − 9

128
λ2Aτ

3A2 τ
2 sin(3ψ − 2 γ) +

3

16
λAτ

3 cos(ψ)α−
27

256
λ2Aτ

3A2 τ
2 sin(ψ − 2 γ) − 3

16
λAAτβ A2 τ sin(γ + ψ).
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Phase slow flow

Using γ as above,

φ2 = − 1

768A
(−459λ2A2Aτ

3 cos(ψ) + 384λ2AAτ
2 cos(2ψ) − 64λ2AτA2 τ

2 cos(ψ − 2 γ)+

64λ2AA2 τ
2 cos(2 γ) − 36λ2A2Aτ

3 cos(3ψ) + 54λ2A2A2 τ
3 cos(γ) + 180λ2AAτ

4 cos(2ψ)+

180λ2A3Aτ
2 cos(2ψ) − 9λ2A2A2 τ

3 cos(3 γ) − 225λ2A4Aτ cos(ψ) + 288λAτ
3 cos(ψ)β−

81λ2Aτ
3A2 τ

2 cos(ψ − 2 γ) + 135λ2Aτ
4A2 τ cos(γ) + 54λ2Aτ

3A2 τ
2 cos(3ψ − 2 γ)−

9λ2Aτ
2A2 τ

3 cos(−3 γ + 2ψ) − 108λ2Aτ
3 cos(ψ)A2 τ

2 − 192β2Aτ cos(ψ)−

72β λA2 τ
3 cos(γ) + 45λ2A5 + 320λ2A3 + 96α2A− 384λ2AA2 τ

2+

384λ2Aτ cos(ψ)A2 τ
2 + 108λ2Aτ

2A2 τ
3 cos(γ) + 144λAτ

3 sin(ψ)α−

λ2Aτ
2A2 τ

3 cos(2ψ − γ) + 96β2A2 τ cos(γ) + 108λ2A2Aτ
2A2 τ cos(γ)−

108λ2AAτA2 τ
3 cos(γ + ψ) − 162λ2AAτ

3A2 τ cos(γ + ψ) − 90λ2Aτ
5 cos(ψ)−

27λ2A2Aτ
2A2 τ cos(γ + 2ψ) + 54λ2A2Aτ

2A2 τ cos(2ψ − γ)−

54λ2A2AτA2 τ
2 cos(ψ − 2 γ) + 54λ2AAτ

2A2 τ
2 cos(2 γ) − 288λAAτ

2β cos(2ψ)−

108λ2AAτ
3A2 τ cos(3ψ − γ) + 27λ2A2AτA2 τ

2 cos(ψ + 2 γ) − 144λAAτ
2 sin(2ψ)α−

108λ2A2 cos(ψ)AτA2 τ
2 + 216λ2AAτ

2 cos(2ψ)A2 τ
2 + 768 cos(ψ − γ)λ2AAτA2 τ−

72λA2β A2 τ cos(γ) + 18λ2AAτA2 τ
3 cos(−3 γ + ψ) + 144λA2 sin(ψ)αAτ−

128λ2AAτA2 τ cos(γ + ψ) + 504λA2Aτ cos(ψ)β + 144β cos(ψ)λAτA2 τ
2+

144λAAτβ A2 τ cos(γ + ψ) + 72β λAτA2 τ
2 cos(ψ − 2 γ) − 144β A3λ−

960λ2A2Aτ cos(ψ) − 288λAAτ
2β + 270λ2A3Aτ

2 + 256λ2AAτ
2 + 135λ2AAτ

4+

96β2A− 384λ2Aτ
2A2 τ cos(2ψ − γ) − 256λ2Aτ

2A2 τ cos(γ) − 288λAτ
2β A2 τ cos(γ)).
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System matrices A, B and c for α = 1
2

of section 5.2.2

A =
[

A1 A2

]

,

where the sub-matrices A1 and A2 are given by

A1 =







































































0.53332 0.13333 0 0 0 0 0 0

0.13333 0.60601 0.16785 0 0 0 0 0

0 0.16785 1.1134 0.34091 0 0 0 0

0 0 0.34091 2.2586 0.69253 0 0 0

0 0 0 0.69253 4.5653 1.4079 0 0

0 0 0 0 1.4079 9.1036 2.8694 0

0 0 0 0 0 2.8694 17.433 5.8635

0 0 0 0 0 0 5.8635 31.714

0 0 0 0 0 0 0 11.758

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0







































































× 10−2 .
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A2 =







































































0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

11.758 0 0 0 0 0 0

60.798 22.788 0 0 0 0 0

22.788 126.73 44.709 0 0 0 0

0 44.709 263.64 89.701 0 0 0

0 0 89.701 539.84 181.58 0 0

0 0 0 181.58 1098.7 368.47 0

0 0 0 0 368.47 2232.6 748.19

0 0 0 0 0 748.19 5986.5







































































× 10−2 .
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B =
[

B1 B2 B3

]

,

where the sub-matrices B1, B2 and B3 are given by

B1 =







































































0.76185e− 7 0.57142e− 7 0 0 0

0.57142e− 7 0.82838e− 6 0.41270e− 6 0 0

0 0.41270e− 6 0.66872e− 5 0.34569e− 5 0

0 0 0.34569e− 5 0.55913e− 4 0.28950e− 4

0 0 0 0.28950e− 4 0.46481e− 3

0 0 0 0 0.24225e− 3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0







































































,
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B2 =







































































0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0.24225e− 3 0 0 0 0

0.37802e− 2 0.20199e− 2 0 0 0

0.20199e− 2 0.28740e− 1 0.16575e− 1 0 0

0 0.16575e− 1 0.19719 0.12953 0

0 0 0.12953 1.3903 0.97759

0 0 0 0.97759 11.068

0 0 0 0 7.6940

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0







































































.

B3 =







































































0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

7.6940 0 0 0 0

92.149 63.128 0 0 0

63.128 771.56 525.92 0 0

0 525.92 6463.0 4399.5 0

0 4399.5 54139 36842 0

0 0 0 36842 0.11883e7







































































.
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c =







































































0.66665e− 2

0.90719e− 2

0.16222e− 1

0.32921e− 1

0.66658e− 1

0.13381

0.26166

0.49335

0.95344

1.9422

3.9805

8.1112

26.488

33.493

134.02






































































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System matrices A, B and c for α = 1
3

of section 5.3.4

A =
[

A1 A2

]

,

where the sub-matrices A1 and A2 are given by

A1 =







































































2.9838 0.49732 0 0 0 0 0 0

0.49732 1.8259 0.45093 0 0 0 0 0

0 0.45093 2.6016 0.72323 0 0 0 0

0 0 0.72323 4.1678 1.1603 0 0 0

0 0 0 1.1603 6.6553 1.8634 0 0

0 0 0 0 1.8634 10.498 3.0031 0

0 0 0 0 0 3.0031 15.972 4.8685

0 0 0 0 0 0 4.8685 23.279

0 0 0 0 0 0 0 7.7851

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0







































































× 10−2 .
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A2 =







































































0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

7.7851 0 0 0 0 0 0

35.924 12.033 0 0 0 0 0

12.033 59.934 18.732 0 0 0 0

0 18.732 99.000 29.720 0 0 0

0 0 29.720 160.33 47.525 0 0

0 0 0 47.525 257.78 76.162 0

0 0 0 0 76.162 413.67 122.12

0 0 0 0 0 122.12 675.85







































































× 10−2 .
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B =
[

B1 B2 B3

]

,

where the sub-matrices B1, B2 and B3 are given by

B1 =







































































0.29840e− 6 0.19890e− 6 0 0 0

0.19890e− 6 0.23939e− 5 0.10928e− 5 0 0

0 0.10928e− 5 0.15157e− 4 0.72285e− 5 0

0 0 0.72285e− 5 0.10009e− 3 0.47806e− 4

0 0 0 0.47806e− 4 0.65734e− 3

0 0 0 0 0.31599e− 3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0







































































,
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B2 =







































































0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0.31599e− 3 0 0 0 0

0.42296e− 2 0.20832e− 2 0 0 0

0.20832e− 2 0.25558e− 1 0.13557e− 1 0 0

0 0.13557e− 1 0.14058 0.84424e− 1 0

0 0 0.84424e− 1 0.79767 0.50780

0 0 0 0.50780 5.0766

0 0 0 0 3.1701

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0







































































.

B3 =







































































0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3.1701 0 0 0 0

33.533 20.568 0 0 0

20.568 222.01 135.35 0 0

0 135.35 1469.0 894.20 0

0 0 894.20 9717.6 5913.0

0 0 0 5913.0 71572







































































.
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c =







































































0.34811e− 1

0.27742e− 1

0.37757e− 1

0.60513e− 1

0.96970e− 1

0.15365

0.23843

0.35932

0.55743

0.90700

1.4745

2.3757

3.8147

6.1195

11.442









































































Appendix D

Eigenvalues of matrix R of section 5.4

S.no. Eigenvalues

1 −15152

2 −1823.7

3 −436.38

4 −105.97

5 −25.911

6 −6.4124

7 −1.5669

8 −0.38985

9 −0.10726

10 −0.028716

11 −0.0073348

12 −0.0018231

13 −0.00010295

14 −0.00044621

15 −0.000010250

16 i

17 −i
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Appendix E

Eigenvalues of M of section 5.3, and

validity of the MMS

In this appendix we consider an important, but peripheral, question related to the second

problem of the thesis, studied in Chapter 5.

In our van der Pol oscillator with fractional damping in Chapter 5, we observed

that the MMS slow flow gives useful approximations to direct numerical simulations for

relatively large deviations from the Hopf bifurcation, i.e., for relatively large values of ǫ (see,

for e.g., Fig. 5.7). Now, because it is an asymptotic method, good MMS approximations

are guaranteed only for sufficiently small values of the small parameter ǫ. In this light, the

success of MMS, as seen in the results of Chapter 5, deserve some explanation which we

attempt to provide here.

The fractional order operator has a continuous spectrum. Accordingly, its Galerkin

approximation also introduces several long time scales represented by the small eigenvalues

of the matrix M of Chapter 5. A list of the eigenvalues of M (see Eq. 5.17), for the case

of α = 1/2, at the Hopf point (µ̄, β) = (0.60856, 1) is provided in Table E.1. We notice

from Table E.1 that apart from the purely imaginary eigenvalues, we have 15 eigenvalues

which are progressively decreasing in magnitude. These 15 eigenvalues arise from the

internal degrees of freedom represented by Eq. 5.15. For an increased order of Galerkin

approximation, as reflected in the sizes of the matrices A, B and c, we will get a similar

hierarchy of eigenvalues starting from large negative ones to very small negative ones (close

162



Appendix E. Eigenvalues of M of section 5.3, and validity of the MMS 163

Table E.1: List of eigenvalues of M at the Hopf point (µ̄, β) = (0.60856, 1)

S.no. Eigenvalues

1 −20446

2 −2461.0

3 −588.86

4 −143.00

5 −34.965

6 −8.6531

7 −2.1144

8 −0.52607

9 −0.14473

10 −0.038750

11 −0.0098978

12 −0.0024601

13 −0.00060213

14 −0.00013892

15 −0.000013831

16 1.3494 i

17 −1.3494 i

to zero). The large negative eigenvalues represent very short time scales and affect the

dynamics in the initial instants, whereas the very small eigenvalues may, perhaps, influence

the dynamics at longer time scales. Now, for a fixed choice of matrices A, B and c, the

minimum eigenvalue is a small, but technically O(1) quantity. Thus, for a given choice

of approximation matrices, we could choose ǫ sufficiently small (much smaller than the

smallest eigenvalue) in our numerical simulations to obtain good MMS approximations.

However, in the simulations of Chapter 5, we obtained good results for relatively large

values of the parameter ǫ. For example, in our simulations related to Fig. 5.3 we had used

ǫ = 0.01, while the smallest eigenvalue, as seen from Table E.1, is about 700 times smaller.

A rigorous explanation of this observation may involve a deeper study of the properties of

the fractional order operator. We avoid such a study in this work. However, in what follows,
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we give an informal, numerical explanation for the success of our MMS approximations.

Numerical justification of validity of the MMS

We consider the van der Pol oscillator with fractional damping studied in Chapter 5:

ẍ+
2

π
cTa + µ ẋ (x2 − 1) + x = 0 , (E.1)

Aȧ + Ba = cẋ . (E.2)

In Eq. E.1, x represents the primary dynamic quantity of interest; and a, whose dynamics

is governed by Eq. E.2, represent internal degrees of freedom. These internal degrees

of freedom are indirectly excited by the main dynamics. The response of these internal

variables feeds back to the main system. This feedback is represented by the term 2
π
cTa

of Eq. E.1, and constitutes the source of energy dissipation.

Now, the number of internal or hidden variables is equal to the size of the matrices

A, B and c. We expect these internal variables to be excited to varied levels and in turn

influence the main dynamics to varied extents.

To see this more explicitly, we introduce modal coordinates for the a-system and thus

have a = Ez, where E is the modal matrix whose columns comprise unit norm eigenvectors

of −A−1B, and z is the vector of modal coordinates. The eigenvalues of −A−1B are listed

in Table E.2. It is clear from Table E.2 that these eigenvalues are only slightly different

from the first 15 eigenvalues of Table E.1. The successive columns of E are the unit norm

eigenvectors of the corresponding eigenvalues in the sequence as presented in Table E.2.

Rewriting Eqs. E.1 and E.2 in terms of modal coordinates of a-subsystem, we get

ẍ+
2

π
cTEz + µ ẋ (x2 − 1) + x = 0 , (E.3)

ż = −E−1A−1BEz + E−1A−1cẋ . (E.4)

In Eq. E.4, E−1A−1c represents the typical modal forcing vector. For the choice of
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Table E.2: List of eigenvalues of −A−1B

S.no. Eigenvalues

1 −20446

2 −2461.0

3 −588.88

4 −143.04

5 −35.039

6 −8.7900

7 −2.3906

8 −0.62843

9 −0.16698

10 −0.042151

11 −0.010344

12 −0.0025153

13 −0.00060882

14 −0.00013975

15 −0.000013897

matrices in this paper, this forcing vector is

E−1A−1c =







































































−2.3016

−1.3680

1.3514

−1.3552

−1.3669

−1.3934

−1.4191

−1.4024

−1.3641

−1.3457

−1.3404

1.3378

−1.1977

−1.3130

−1.3281







































































(E.5)
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As seen from Eq. E.5, the forcing is of a similar magnitude for all degrees of freedom,

and is O(1); hence, the nominal modal response is also expected to be O(1) (could be

smaller).

Now, we compute the contribution of each of these modes to the fed-back component,

represented cTEz, on the main system. We have

(cTE)T =







































































−118.99

−26.805

12.718

−6.2274

−3.0261

−1.4479

−0.70176

−0.36982

−0.20301

−0.10612

−0.053282

0.026399

−0.0062187

−0.0071270

−0.013160







































































. (E.6)

Thus we see that the contribution of the various modes to the fed-back component, causing

dissipation, is progressively decreasing and becomes quite small for the small eigenvalues

which could potentially influence the dynamics on large time scales. Thus the presence

of very small eigenvalues do not influence the dynamics as much as the large eigenvalues.

The large eigenvalues are anyway active over short time scales only and do not affect the

dynamics on the long time scales over which we seek the MMS approximations.

We have thus presented a numerical justification for the MMS procedure imple-

mented in this paper. However, our arguments are not rigorous and a satisfactory treatment

of these issues is left for future work.



Appendix F

O(ν) and O(ν2) terms of Eq. 8.1

N11 = 4
√

4 − 2 J∆ cos(τ)J − 8
√

4 − 2 J∆ cos(τ) + 2 δ J cos(−2φ+ τ)−

4 δ cos(−2φ+ τ) + δ θ̇b J cos(2φ) + δ Jθ̇a sin(2φ) − 2 δ θ̇a sin(2φ)−

4
√

4 − 2 J∆ θa J + δ θb J sin(2φ) + 2κ θa J+

8
√

4 − 2 J∆ θa − 2 δ θb sin(2φ) − 2 δ θ̇b cos(2φ) + 2 δ θa cos(2φ)−

δ Jθa cos(2φ) − 4κ θa.

N12 = −4 δ sin(−2φ+ τ) + 2 δ J sin(−2φ+ τ) + 8
√

4 − 2 J∆ sin(τ)−

4
√

4 − 2 J∆ sin(τ)J − 4
√

4 − 2 J∆ θb J + δ Jθa sin(2φ) + δ θb J cos(2φ)+

4κ θb − δ θ̇b J sin(2φ) + δ Jθ̇a cos(2φ) − 2κ θb J + 8
√

4 − 2 J∆ θb−

2 δ θa sin(2φ) − 2 δ θb cos(2φ) − 2 δ θ̇a cos(2φ)+

2 δ θ̇b sin(2φ).

N21 = −2 cos(τ)θa
2 + 4 θb sin(τ)θa − 2 θb sin(τ)θa J + cos(τ)θa

2J +
1

2
θ̇b Jθb

2−

θb
2θ̇b + 2 θ̇b Jθa

2 + θ̇2
bJθa − 2 θ̇b θa

2 +
2

3
Jθa

3 + Jθa θb
2 − θ̇2

bθa −
2

3
θa

3−

θa θb
2.

N22 = −2 θa
2 sin(τ) − 2 θa

2 sin(τ)J2 + 5 θa
2 sin(τ)J − θb

2 sin(τ)J + 2 θb
2 sin(τ)−

2

3
θb

3 − 2 θ̇b Jθa θ̇a + 2 θ̇b θa θ̇a −
1

2
Jθ̇a θb

2 − θa
2J2θ̇a + θ̇a θb

2 + 5 Jθb θa
2−

θa
2J2θb + Jθ̇a θa

2 − 4 θa
2θb +

2

3
Jθb

3.
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N31 = −1

3
Jθa θb

4 − δ θb
2 cos(2φ+ τ) + δ θb

2 cos(2φ− τ) + δ θa
2 cos(2φ− τ)−

1

12
cos(τ)θa

4J + 48 ∆2θa J + δ2Jθa + θb
2θ̇b θa

2 − θ̇b Jδ
2 − 12 ∆2θa J

2−
2

3
θ̇2

bJθa
3 − 2

3
θb

3 sin(τ)θa −
4

3
δ θb

3 sin(2φ) + 4 ∆µ θ̇a + 12 ∆2 cos(τ)J2−

2 δ2 cos(τ)J − 48 ∆2 cos(τ)J − 2

3
θ̇b Jθa

4 − 2

3
θb sin(τ)θa

3 + δ θa
2 cos(2φ+ τ)

+
4

3
δ θa

3 cos(2φ) − 2

3
Jθa

3θb
2 − 4

√
4 − 2 J∆ δ J cos(2φ− τ)+

8
√

4 − 2 J∆ δ cos(2φ− τ) − θa
2J2θb δ sin(2φ) − 2 δ θ̇b θb θa sin(2φ)−

2 δ θ̇b Jθa θ̇a sin(2φ) +
1

2
Jθa

2δ θ̇a sin(2φ) − 1

2
δ Jθ̇a θb

2 sin(2φ)−
1

2
δ θ̇b Jθb

2 cos(2φ) − 2 δ θ̇b Jθa
2 cos(2φ) − θa

2J2θ̇a δ sin(2φ)−

θ̇2
bδ Jθa cos(2φ) + δ θ̇a θb

2 sin(2φ) − 5

2
δ θa

2J cos(2φ+ τ)+

4
√

4 − 2 J∆ θb sin(τ)θa J +
9

2
δ θb Jθa

2 sin(2φ) − 4
√

4 − 2 J∆ δ θb J sin(2φ)

− 2 δ θb κ J sin(2φ) + 48 ∆2 cos(τ) + 4
√

4 − 2 J∆ δ θa J cos(2φ)−

8
√

4 − 2 J∆ δ θa cos(2φ) + δ θb θa J sin(2φ+ τ) + δ J2θa
2 cos(2φ+ τ)+

2 θ̇2
bδ θa cos(2φ) + δ θ̇a θa

2 sin(2φ) + 4 δ θ̇b θa
2 cos(2φ) − θ̇b Jθb

2θa
2+

δ θb
2θ̇b cos(2φ) − 1

24
θ̇b Jθb

4 − 2 δ κ θa J cos(2φ) − 2
√

4 − 2 J∆ cos(τ)θa
2J−

8
√

4 − 2 J∆ θb sin(τ)θa + 2 δ θ̇b θa θ̇a sin(2φ) − δ θb θa J sin(2φ− τ)−

δ Jθa θb
2 cos(2φ) + 8

√
4 − 2 J∆ δ θb sin(2φ) − 4

√
4 − 2 J∆κ θa J+

3

2
δ θa

2J cos(2φ− τ) +
1

3
θb sin(τ)θa

3J +
1

3
θb

3 sin(τ)θa J+

4
√

4 − 2 J∆ cos(τ)θa
2 +

1

2
δ θb

2J cos(2φ+ τ) − 2 δ θb θa sin(2φ+ τ)−
1

2
δ θb

2J cos(2φ− τ) +
2

15
θa

5 +
√

4 − 2 Jδ µ θ̇a cos(2φ)−
√

4 − 2 Jδ µ θ̇b sin(2φ) + 8
√

4 − 2 J∆κ θa + 4 δ θb κ sin(2φ)+

2

3
δ Jθb

3 sin(2φ) − 3 δ θb θa
2 sin(2φ) + 2 δ θa θb

2 cos(2φ)+

2 δ θb θa sin(2φ− τ) − δ J2θa
2 cos(2φ− τ) − 2 ∆µ θ̇a J − 2

3
δ Jθa

3 cos(2φ)+

4 δ κ θa cos(2φ) +
1

6
cos(τ)θa

4 − 48 ∆2θa +
2

3
θa

3θb
2 − 2 δ2θa +

1

3
θa θb

4−
2

15
Jθa

5 +
2

3
θ̇2

bθa
3 +

2

3
θ̇b θa

4 +
1

12
θb

4θ̇b + 2 δ2θ̇b + 4 δ2 cos(τ).
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N32 = −5

3
θa

4J2θ̇a +
2

3
θ̇b θa

3θ̇a + 4 ∆µ θ̇b + θb
2 sin(τ)θa

2 +
61

12
θa

4 sin(τ)J+

δ θb
2 sin(−2φ+ τ) + δ2Jθb −

17

3
θa

4J2θb + 2/3 Jθb
3θa

2 + 48 ∆2θb J+

4 θa
2κ θb + δ2Jθ̇a +

1

12
θb

4 sin(τ)J − 4

3
δ θa

3 sin(2φ)+

8
√

4 − 2 J∆ δ sin(−2φ+ τ) − 4
√

4 − 2 J∆ δ J sin(−2φ+ τ)+

δ Jθa θb
2 sin(2φ) − δ θb θa J cos(−2φ+ τ) − 4

√
4 − 2 J∆ δ θa J sin(2φ)+

8
√

4 − 2 J∆ δ θa sin(2φ) + δ θb θa J cos(2φ+ τ)+

4
√

4 − 2 J∆ θa
2 sin(τ)J2 − θa

2J2δ sin(2φ+ τ) + δ θ̇ θb
2 cos(2φ)−

δ θ̇2
aθa sin(2φ) − 2 δ θ̇a θa

2 cos(2φ) − θ̇2
bδ θa sin(2φ) − 1

2
δ θb

2J sin(2φ+ τ)+

2

3
δ Jθb

3 cos(2φ) − δ J2θa
3 sin(2φ) − 6 θa

2κ θb J − 8
√

4 − 2 J∆κ θb+

4 δ θb κ cos(2φ) +
5

2
δ Jθa

2 sin(2φ+ τ) + 8
√

4 − 2 J∆ δ θb cos(2φ)−

2 θa
2J2θb δ cos(2φ) +

2

15
θb

5 − 48 ∆2θb + 7 δ θb Jθa
2 cos(2φ)−

12
√

4 − 2 J∆ θa
2θb J + 4

√
4 − 2 J∆κ θb J + 4

√
4 − 2 J∆ θa

2 sin(τ)−

3 θa
2J2δ sin(−2φ+ τ) − 1

2
δ θb

2J sin(−2φ+ τ) + θb
2 sin(τ)θa

2J2−

δ θa
2 sin(−2φ+ τ) + 2 δ κ θa J sin(2φ) + 4

√
4 − 2 J∆ θa

2θb J
2−

2 δ θb κ J cos(2φ) − 4
√

4 − 2 J∆ θb
2 sin(τ) − 5

2
θb

2 sin(τ)θa
2J−

4 δ κ θa sin(2φ) + 2 δ θb θa cos(−2φ+ τ) − 2 δ θb θa cos(2φ+ τ)−
√

4 − 2 Jδ µ θ̇a sin(2φ) −
√

4 − 2 Jδ µ θ̇b cos(2φ) +
1

2
θa

2J2θ̇a θb
2−

8

3
θ̇b Jθa

3θ̇a + 2 θ̇b θa
3J2θ̇a −

1

12
θ̇a θb

4 − δ θb
2θ̇b sin(2φ) − 1

6
θb

4 sin(τ)+

19

6
δ Jθa

3 sin(2φ) − 2 δ θb θa
2 cos(2φ) + 8

√
4 − 2 J∆ θa

2θb + 2 θa
2κ θb J

2−

3 δ θa θb
2 sin(2φ) − δ θ̇b θa

2 sin(2φ) −
√

4 − 2 Jθa
2µ θ̇b −

1

2
Jθ̇a θb

2θa
2−

2

15
Jθb

5 − 2 δ2θb −
8

3
θa

4θb −
1

2
δ θ̇b Jθa

2 sin(2φ) − 2 θa
2J2θ̇a δ cos(2φ)+

3 Jθa
2δ θ̇a cos(2φ) +

√
4 − 2 Jθa

2µ θ̇b J + θ̇2
bδ Jθa sin(2φ)+

δ θ̇b J
2θa

2 sin(2φ) +
1

2
δ θ̇b Jθb

2 sin(2φ) + 2 δ θ̇a θb θa sin(2φ)−
1

2
δ Jθ̇a θb

2 cos(2φ) − 2 δ θ̇b Jθa θ̇a cos(2φ) − 4
√

4 − 2 J∆ δ θb J cos(2φ)−
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10
√

4 − 2 J∆ θa
2 sin(τ)J + 2

√
4 − 2 J∆ θb

2 sin(τ)J+

13

2
δ Jθa

2 sin(−2φ+ τ) + 48 ∆2 sin(τ)J + 2 δ2 sin(τ)J − 12 ∆2 sin(τ)J2−

12 ∆2θb J
2 +

1

24
Jθ̇a θb

4 + 2 θa
4 sin(τ)J3 + θa

4J3θ̇a + θa
4J3θb +

2

3
Jθ̇a θa

4−

4 δ2 sin(τ) − 2 δ2θ̇a + δ θb
2 sin(2φ+ τ) − δ θa

2 sin(2φ+ τ) − 19

3
θa

4 sin(τ)J2+

22

3
Jθb θa

4 − 48 ∆2 sin(τ) − 2

3
θa

2J2θb
3 − 4

3
δ θb

3 cos(2φ) − 5

6
θa

4 sin(τ)−

2 ∆µ θ̇b J.



Appendix G

Second order MMS on Eq. 8.2

In Chapter 8, we developed the MMS slow flow for the study of the overhung rotor model

near its gravity critical speed. We have actually proceeded to derive the slow flow equations

upto second order in this thesis. In this appendix, we present the derivation of the second

order slow flow equations for Eq. 8.2.

Let us first quickly recall the first order calculation. We have

∂X0

∂T0

= MX0 + (2 − J)























0

1

0

i























ei T0 + (2 − J)























0

1

0

−i























e−i T0 , (G.1)

where the matrix M is given in Chapter 8, and has eigenvalues i,−i, i(J − 3),−i(J − 3).

Further, at O(ν) we have

∂X1

∂T0

− MX1 = −∂X0

∂T1

+ H(X0, T0), (G.2)

where H is the same as in Eq. 8.2. After substitution of the assumed solution (see Eq. 8.5)

at the first order, Eq. G.2 becomes

∂X1

∂T0

− MX1 = U(T1, T2)e
i T0 + Ū(T1, T2)e

−i T0 + V(T1, T2)e
3i T0 + V̄(T1, T2)e

−3i T0 , (G.3)
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and the solvability conditions (explained in Chapter 8) yield the first order slow flow:

∂c1
∂T1

=
1

2J − 8

(

16 c2 + 24 c32 + 24 c2c1 + 8
√

4 − 2 J∆ J c2 − 13 J c2 + 24 c21c2−

22 J c21c2 − 24 J c2c1 − 16
√

4 − 2 J∆ c2 + 2
√

4 − 2 Jµ c1+√
4 − 2 Jµ

)

, (G.4)

∂c2
∂T1

=
1

2J − 8

(

−6 − 4κ+ 5 J + 12 J c22 − 24 c22c1 + 23 J c1 + 36 J c21 + 22 J c22c1

+8
√

4 − 2 J∆ − 36 c21 − 12 c22 − 24 c31 + 22 J c31 − 24 c1 + 2κ J

16
√

4 − 2 J∆ c1 − 4
√

4 − 2 J∆ J + 2
√

4 − 2 Jµ c2−
8
√

4 − 2 J∆ J c1

)

. (G.5)

To proceed to second order, we need to solve Eq. G.3 subject to the solvability

conditions of Eqs. G.4 and G.5. To that end, substitution of Eqs. G.4 and G.5 into the

right hand side of Eq. G.3 eliminates the secular-terms-causing portions of Uei T0 . Other,

non-secular but resonant, terms remain. Thus Eq. G.3 takes the form

∂X1

∂T0

−MX1 = U1(T1, T2)e
i T0 +Ū1(T1, T2)e

−i T0 +V(T1, T2)e
3i T0 + V̄(T1, T2)e

−3i T0 , (G.6)

where resonant forcing from the right hand side has now been eliminated by incorporating

the first order slow flow. It may be emphasized, for those readers not familiar with the

multidimensional version of the MMS, that in multidimensional cases U1 can indeed be

nonzero without causing secular terms.

Thus Eq. G.6, like Eq. G.1, is resonantly forced yet has bounded responses. As

before, the particular solution has a non-unique portion which can be absorbed into the

complementary solution. Here, we will drop the complementary part and retain only a

particular solution of the form

X1 = u(T1, T2)e
i T0 + ū(T1, T2)e

−i T0 + v(T1, T2)e
3i T0 + v̄(T1, T2)e

−3i T0 . (G.7)

To that end, substituting the above into Eq. G.6, the unknown vectors u(T1, T2) and

v(T1, T2) are solved for. The solution for u contains an arbitrary component along the

right eigenvector corresponding to eigenvalue i; and here we simply take that arbitrary

component to be zero (for justification see, e.g., page 53 of [3], page 121 of [185], and the

discussion in [31]).
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At O(ν2), we have long equations of the form

∂X2

∂T0

− MX2 = −∂X0

∂T2

− ∂X1

∂T1

+
∂H(X0, T0)

∂X0

X1 + W(X0, T0), (G.8)

where W is the same as in Eq. 8.2. The above equation, after using Eq. G.4, G.5 and G.7,

becomes

∂X2

∂T0

− MX2 = U2(T1, T2)e
i T0 + Ū2(T1, T2)e

−i T0 +

V2(T1, T2)e
3i T0 + V̄2(T1, T2)e

−3i T0 +

Z(T1, T2)e
5i T0 + Z̄(T1, T2)e

−5i T0 . (G.9)

In Eq. G.9, we have resonant forcing from U2(T1, T2)e
i T0 . Eliminating secular terms

as before, we get equations of the form

∂c1
∂T2

=
n1

d1

,

∂c2
∂T2

=
n2

d2

.
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The full expressions for the right sand sides above are:

n1 = 141312µ∆ J2c1 − 19200 J6c2
3c1 − 14688 J4c1

√
4 − 2 Jµ+

24
√

4 − 2 Jµκ J5 + 129024 J4c1
2
√

4 − 2 J∆ c2 − 506880 J3c1 c2
√

4 − 2 J∆+

984 J5c1 c2
2
√

4 − 2 Jµ+ 96 δ J5c1
2 sin(2φ) − 27648 J5c1

2
√

4 − 2 J∆ c2−

10656 J4c1 c2
2
√

4 − 2 Jµ+ 72528 J3c1
2
√

4 − 2 Jµ+ 24576 c1
3c2−

578560 J2c1
4c2 − 6912µ2c2 J − 2061312 J2c1

3c2 + 662016 Jc1
2c2+

220032 J4c1 c2
√

4 − 2 J∆ + 167648 J5c1
2c2

3 − 279552 J3c1
2
√

4 − 2 J∆ c2−

5568µ2c2 J
3 + 568320 ∆2J3c2 + 285696 J2c2

3
√

4 − 2 J∆+

1536
√

4 − 2 J∆ J6c2 − 10752 δ J2c1 sin(2φ) + 1435520 J3c2
3c1

2−

73728 ∆µJc1 + 54816 J3c1
√

4 − 2 Jµ+ 132096µ∆ J2−

110592 Jc2
3
√

4 − 2 J∆ + 48384 Jc1
2
√

4 − 2 Jµ+ 156672 c1 c2 κ J+

260352κ c2
3J3 + 184320κ Jc2

3 − 372880 J4c1
4c2 + 142336 Jc2 c1

4−

158976 J2c2 κ+ 111936 J5c2
3 − 362496κ J2c2

3 + 717760 J3c1
4c2−

39168κ2J3c2 + 83824 J5c1
4c2 + 96κ2J6c2 − 110592 c1

2c2
√

4 − 2 J∆ J+

23040
√

4 − 2 Jµ Jc1
3 + 2112 J6c1

2
√

4 − 2 J∆ c2 − 282624
√

4 − 2 J∆ J3c2+

381440 Jc1 c2 + 86016 δ J2c1
2c2 cos(2φ) − 1152

√
4 − 2 Jµκ J−

2197632 J2c1
2c2 + 622592 Jc2 c1

3 − 1728κ2J5c2 + 70656 ∆2J5c2+

622592 Jc2
3c1 + 34560 Jc2

2
√

4 − 2 Jµ− 2061312 J2c2
3c1 + 69120 c2 κ J+

40320 Jc1
√

4 − 2 Jµ− 110592 δ Jc1 c2 cos(2φ) − 81600 J2c1
√

4 − 2 Jµ+

184320κ Jc2 c1
2 − 101088 J2c1

2
√

4 − 2 Jµ− 1224320 J2c2 c1−

156672
√

4 − 2 J∆ Jc2 + 2340224 J3c2 c1
3 + 2526720 J3c2 c1

2−

30768 J2
√

4 − 2 Jµ+ 24576 c2
3c1 + 339456 J2

√
4 − 2 J∆ c2 + 32196 J5c2−

337152 J2c1 c2 κ− 6556 J6c1
4c2 + 63744 Jc2 − 362496κ J2c2 c1

2−

21504 δ J2c1
2 sin(2φ) + 288 δ J5c2

2 sin(2φ) + 48 δ J5c1 sin(2φ)+

23040 Jc1 c2
2
√

4 − 2 Jµ− 73728 δ Jc1
2c2 cos(2φ) + 548352 J2c1 c2

√
4 − 2 J∆−

21552 J6c1
2c2 − 52992 δ J3c2 c1 cos(2φ) + 2340224 J3c2

3c1 + 123648 J3c2 κ+

260352κ c2 c1
2J3 + 1381376 J3c2 c1 + 285696 J2c1

2
√

4 − 2 J∆ c2+

24576 c2
3c1

2 − 578560 J2c2
5 + 18432 c2

3 − 372880 J4c2
5 + 717760 J3c2

5−
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576 δ J5c2 c1 cos(2φ) − 61344 J2c2
2
√

4 − 2 Jµ+ 253440 J3c2 c1 κ+

9216 δ Jc1 sin(2φ) − 240
√

4 − 2 Jµκ J4 + 36336 J3c2
2
√

4 − 2 Jµ+

53760 δ J2c2 cos(2φ) + 83824 J5c2
5 − 11732 J6c2 c1−

221184
√

4 − 2 J∆ Jc1 c2 − 336 J6c2 κ+ 1848 J5c1
2
√

4 − 2 Jµ+

984
√

4 − 2 Jµ J5c1
3 + 2112 J6c2

3
√

4 − 2 J∆ + 342 J5
√

4 − 2 Jµ−

44544 J5c1 c2
√

4 − 2 J∆ + 3264 J6c1 c2
√

4 − 2 J∆ − 384 δ J5c2
3 cos(2φ)+

142336 Jc2
5 + 35808 J3c1 c2

2
√

4 − 2 Jµ− 64512 δ J2c2
2 sin(2φ) + 336 ∆µJ6−

768 J6c1
2κ c2 − 19200 J6c1

3c2 + 10368µ2c2 J
2 + 86016 δ J2c2

3 cos(2φ)+

4416 δ J3c1 sin(2φ) − 1153536 J4c1
3c2 − 41856 J4c2 κ+ 17856 J

√
4 − 2 Jµ+

250400 J5c1
3c2 + 250400 J5c2

3c1 − 10656
√

4 − 2 Jµ J4c1
3 + 6240 J5c2 κ−

86016 J4c1
2κ c2 + 13248 J5c1

2κ c2 − 46080 δ Jc2 cos(2φ) + 39552 ∆µJ4c1−

7104 ∆µJ5c1 − 5280 ∆µJ5 − 35328 δ J3c1
2c2 cos(2φ) + 3072 c2−

84288 J4c1 c2 κ− 21696
√

4 − 2 J∆ J5c2 + 129024 J4c2
3
√

4 − 2 J∆ − 73728 ∆µJ−

27648 J5c2
3
√

4 − 2 J∆ − 36864κ2Jc2 − 494784 J4c2
3 − 1262688 J4c1

2c2+

277632 J5c1
2c2 + 940800 J3c2

3 + 61440κ2J2c2 − 4248 J4
√

4 − 2 Jµ+

17808 J3
√

4 − 2 Jµ− 47616
√

4 − 2 Jµ J2c1
3 + 35808

√
4 − 2 Jµ J3c1

3−

267264 ∆2J4c2 − 685424 J4c2 c1 + 150704 J5c2 c1 − 106752 ∆µJ3c1−

1157120 J2c1
2c2

3 − 279552 J3c2
3
√

4 − 2 J∆ + 294912 ∆2Jc2+

480 ∆µJ6c1 + 129024 δ J2c2 c1 cos(2φ) − 92544 ∆µJ3+

18432 δ Jc1
2 sin(2φ) + 6144 δ J4c2

3 cos(2φ) − 8856 J6c2
3 + 18432 c1

2c2−

144444 J4c2 + 1248µ2c2 J
4 − 745760 J4c1

2c2
3 − 638976 ∆2J2c2+

285072 J3c2 − 13112 J6c1
2c2

3 + 13248 J5c2
3κ− 768 δ J4c1 sin(2φ)−

86016 J4c2
3κ+ 6144 c2 c1 − 241152 J2c2 − 736896 J2c2

3 − 96µ2c2 J
5+

164352 Jc2
3 + 11904κ2J4c2 + 576 ∆2J7c2 + 284672 Jc2

3c1
2 − 9984 ∆2J6c2−

384 δ J5c1
2c2 cos(2φ) − 6556 J6c2

5 − 2529 J6c2 − 768 J6c2
3κ+ 12288 c2 c1

4+

31680µ∆ J4 + 576
√

4 − 2 Jµκ J3 − 47616 J2c1 c2
2
√

4 − 2 Jµ+

113280 J4
√

4 − 2 J∆ c2 − 8976 J4c2
2
√

4 − 2 Jµ− 672 J6c1 c2 κ+

1272 J5c1
√

4 − 2 Jµ+ 12480 J5c1 c2 κ− 20592 J4c1
2
√

4 − 2 Jµ− 1153536 J4c2
3c1+
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192
√

4 − 2 Jµκ J2 + 744 J5c2
2
√

4 − 2 Jµ+ 12288 c2
5 + 3840 δ J4c2 cos(2φ)−

4608 δ J4c2
2 sin(2φ) − 73728 δ Jc2

3 cos(2φ) + 55296 δ Jc2
2 sin(2φ)+

6144 δ J4c1
2c2 cos(2φ) − 22080 δ J3c2 cos(2φ) − 240 δ J5c2 cos(2φ)+

8832 δ J3c1
2 sin(2φ) + 26496 δ J3c2

2 sin(2φ) + 9216 δ J4c2 c1 cos(2φ)−

35328 δ J3c2
3 cos(2φ) − 1536 δ J4c1

2 sin(2φ) ,

and

d1 = −36864 J + 52224 J2 + 7488 J4 − 28416 J3 − 960 J5 + 48 J6 .
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n2 = 10752 δ J2c2 sin(2φ) − 48 δ J5c2 sin(2φ) + 48576 δ J3c1 cos(2φ)+

8001 J6c1 + 3652224 J2c1
3 + 35328 δ J3c2

2c1 cos(2φ) + 32712 J6c1
3+

163104 J2 − 83824 J5c1
5 + 79488 δ J3c1

2 cos(2φ) + 8832 δ J3 cos(2φ)−

30720 c1
4 − 717760 J3c1

5 + 288 δ J5c2
2 cos(2φ) + 165888 δ Jc1

2 cos(2φ)+

768 J6c1
3κ− 142336 Jc1

5 + 43008 δ J2c1 c2 sin(2φ) + 2740160 J2c1
2−

83824 J5c2
4c1 + 745760 J4c1

3c2
2 − 184320κ c1

3J − 65320 J5c2
2+

24864 J4κ− 155648 Jc2
4 + 22934 J6c1

2 − 6144 c2
4 − 6144 δ J4c1

3 cos(2φ)+

18432 δ J cos(2φ) − 284672 Jc1
3c2

2 + 362496κ c1
3J2 − 307288 J5c1

4+

1970688 J4c1
3 + 8064µ2J + 36864κ2J − 12288 c1 c2

4 − 147456 ∆2J+

308824 J4c2
2 − 199936 Jc2

2 − 1435520 J3c1
3c2

2 + 49344 J2κ− 542048 J3c2
4+

4992µ2J3 − 2882272 J3c1
4 − 426048 J5c1

3 + 1416672 J4c1
4 − 299816 J5c1

2−

10560µ2J2 − 11904κ2J4 − 294912 ∆2Jc1 + 39168κ2J3 + 6556 J6c2
4c1+

638976 ∆2J2c1 + 23568 J6c1
4 + 133632 ∆2J4 + 3072 c1 − 142336 Jc1 c2

4−

945920 Jc1
2 − 10368µ2c1 J

2 + 6912µ2c1 J + 86016 J4c1
3κ+ 492288 J2c2

4−

1248µ2c1 J
4 − 18432 c1 c2

2 − 105396 J5c1 − 96κ2J6 + 319488 ∆2J2+

498588 J4c1 + 267264 ∆2J4c1 + 4992 ∆2J6 − 1178112 Jc1
3 − 55200 J3κ+

604480 J2c2
2 − 56888 J5c2

4 + 35328 δ J3c1
3 cos(2φ) + 1728κ2J5−

11904κ2J4c1 − 284160 ∆2J3 − 21504 δ J2 cos(2φ) + 101376 δ Jc1 cos(2φ)−

24576 c1
3c2

2 − 4041984 J3c1
3 + 1728κ2J5c1 + 372880 J4c2

4c1−

70656 ∆2J5c1 + 263136 J4c2
4 + 1157120 J2c1

3c2
2 + 528 δ J5c1 cos(2φ)−

1536 δ J4 cos(2φ) + 6556 J6c1
5 − 576 ∆2J7c1 + 1028736 J2c1 + 4954 J6c2

2+

578560 J2c1
5 − 307776 J4c1

2
√

4 − 2 J∆ − 4512
√

4 − 2 J∆ J6c1
2+

1104 J5c2 c1
√

4 − 2 Jµ− 18432 c1
3 + 456 J5

√
4 − 2 Jµ c2 − 2926400 J3c1

2−

12288 c1
5 − 366336 Jc1 + 1400168 J4c1

2 − 9216 Jκ+ 13112 J6c1
3c2

2−

1008µ2J4 + 2553600 J2c1
4 − 680448 Jc1 c2

2 + 1392 c1
2κ J6 − 778240 Jc1

4−

167648 J5c1
3c2

2 − 717760 J3c2
4c1 − 36864 c2

2c1
2 − 1064784 J3c1+

27648 c2
2
√

4 − 2 J∆ J5c1 + 42432
√

4 − 2 J∆ J5c1−

129024 c2
2
√

4 − 2 J∆ J4c1 + 1536
√

4 − 2 J∆κ J5 + 17280
√

4 − 2 J∆ J5c2
2+
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508416
√

4 − 2 J∆ J3c1 + 27648
√

4 − 2 J∆κ J − 4800 J4
√

4 − 2 Jµ c2−

3072
√

4 − 2 J∆ J6c1 − 87744 J4c2
2
√

4 − 2 J∆ − 2112 c2
2
√

4 − 2 J∆ J6c1−

118272 δ J2c1 cos(2φ) + 718848
√

4 − 2 J∆ J3c1
2 + 29952

√
4 − 2 J∆κ J3+

61824
√

4 − 2 J∆ J5c1
2 + 3045888 J2c1

2c2
2 + 2191488 J2c2

2c1−

166272 J2
√

4 − 2 J∆ + 23040 Jc2
3
√

4 − 2 Jµ+ 470400 J2c1
2κ+

141312µ∆ J2c2 − 216576 c1
2κ J + 72µ2J5 − 3424320 J3c1

2c2
2−

258048 J3c1 κ− 367872 J3c1
2κ− 2456064 J3c1 c2

2 + 362496κ J2c1 c2
2−

260352κ J3c1 c2
2 − 285696 J2c1

3
√

4 − 2 J∆ + 295680 J2c1 κ−

46080
√

4 − 2 J∆κ J2 + 110592 c2
2
√

4 − 2 J∆ Jc1 − 285696 J2c2
2
√

4 − 2 J∆ c1−

246528 J2c2
2
√

4 − 2 J∆ − 114432 J3c2
2κ− 59904 c2

2κ J+

110592 c1
3
√

4 − 2 J∆ J − 115200 c1 κ J − 184320κ Jc1 c2
2 − 9216 δ Jc2 sin(2φ)−

39744 J2c1 c2
√

4 − 2 Jµ− 15936 J2c2
√

4 − 2 Jµ− 96
√

4 − 2 J∆κ J6+

984 J5c1
2
√

4 − 2 Jµ c2 − 1248
√

4 − 2 J∆ J6c2
2 + 35808 J3c1

2
√

4 − 2 Jµ c2+

211968
√

4 − 2 J∆ J3c2
2 − 64512 δ J2c2

2 cos(2φ) − 47616 J2c1
2
√

4 − 2 Jµ c2−

10656 J4c1
2
√

4 − 2 Jµ c2 − 11616 J4c2 c1
√

4 − 2 Jµ+ 36192 J3c2 c1
√

4 − 2 Jµ−

213888 J4
√

4 − 2 J∆ c1 − 9600
√

4 − 2 J∆κ J4 + 14880 J3
√

4 − 2 Jµ c2−

106752 ∆µJ3c2 + 768 J6c2
2κ c1 + 1200 c1 κ J

6 + 720 c2
2κ J6 + 27936 J6c2

2c1
2−

2112 c1
3
√

4 − 2 J∆ J6 + 20016 J6c1 c2
2 − 47616 J2c2

3
√

4 − 2 Jµ+

137280
√

4 − 2 J∆ J3 + 96 δ J5 cos(2φ) − 744
√

4 − 2 J∆ J6+

331776
√

4 − 2 J∆ Jc1
2 + 248832

√
4 − 2 J∆ Jc1 + 110592

√
4 − 2 J∆ Jc2

2−

36864 δ Jc2 c1 sin(2φ) + 133248 J2c2
2κ+ 480 ∆µJ6c2 + 984 J5c2

3
√

4 − 2 Jµ−

794880 J2c1
2
√

4 − 2 J∆ + 13824 Jc2 c1
√

4 − 2 Jµ− 576000 J2
√

4 − 2 J∆ c1+

5760 J
√

4 − 2 Jµ c2 + 23040 Jc1
2
√

4 − 2 Jµ c2 − 73728 ∆µJc2−

129024 J4c1
3
√

4 − 2 J∆ − 364176 J5c2
2c1

2 + 78336
√

4 − 2 J∆ J−

933888 Jc2
2c1

2 + 578560 J2c2
4c1 + 27648 c1

3
√

4 − 2 J∆ J5 + 100992 c1 κ J
4−

260352 J5c1 c2
2 − 22176 c1

2κ J5 − 10656 J4c2
3
√

4 − 2 Jµ+ 10512
√

4 − 2 J∆ J5−

9696 c2
2κ J5 + 1202784 J4c2

2c1 − 18144 c1 κ J
5 + 132192 J4c1

2κ−

7104 ∆µJ5c2 − 13248 J5c2
2κ c1 + 86016 J4c2

2κ c1 − 54912 J4
√

4 − 2 J∆+
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1679808 J4c1
2c2

2 + 39552µ∆ J4c2 + 279552 c1
3
√

4 − 2 J∆ J3+

35808 J3c2
3
√

4 − 2 Jµ+ 47904 c2
2κ J4 − 86016 δ J2c2

2c1 cos(2φ)+

864 δ J5c1
2 cos(2φ) + 372880 J4c1

5 − 15170 J5 + 73596 J4 − 4920 J5κ+

384 δ J5c2
2c1 cos(2φ) + 96µ2c1 J

5 + 5568µ2c1 J
3 − 96κ2J6c1+

73728 δ Jc1
3 cos(2φ) − 288 ∆2J7 + 36864κ2Jc1 − 61440κ2J2 − 260352κ c1

3J3+

9984 ∆2J6c1 − 162680 J3 + 1131 J6 + 4368 J6c2
4 − 193536 δ J2c1

2 cos(2φ)−

35328 ∆2J5 + 3072 c1
2 − 61440κ2J2c1 − 649984 J3c2

2 − 13248 J5c1
3κ−

568320 ∆2c1 J
3 + 348 J6κ+ 39168κ2J3c1 − 58496 J+

279552 c2
2
√

4 − 2 J∆ J3c1 − 86016 δ J2c1
3 cos(2φ) + 26496 δ J3c2

2 cos(2φ)−

4608 δ J4c2
2 cos(2φ) − 6144 δ J4c2

2c1 cos(2φ) − 13824 δ J4c1
2 cos(2φ)−

4416 δ J3c2 sin(2φ) − 192 δ J5c1 c2 sin(2φ) + 768 δ J4c2 sin(2φ) − 3072 c2
2−

8448 δ J4c1 cos(2φ) + 3072 δ J4c1 c2 sin(2φ) − 17664 δ J3c2 c1 sin(2φ)+

384 δ J5c1
3 cos(2φ) + 55296 δ Jc2

2 cos(2φ) + 73728 δ Jc2
2c1 cos(2φ) ,

and

d2 = −36864 J + 52224 J2 + 7488 J4 − 28416 J3 − 960 J5 + 48 J6 .
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[156] Yamamoto, T., Ōta, H. and Kōno, K. On the unstable vibrations of a shaft with un-

symmetrical stiffness carrying an unsymmmetrical rotor. Transactions of the ASME,

Journal of Applied Mechanics, 35(2), 313-321 (1968).

[157] Genta, G. Dynamics of Rotating Systems. Springer, New York, 2005.

[158] Den Hartog, J. P. Mechanical Vibrations. Fourth edition, McGraw-Hill, New York,

1956.

[159] Rao, J. S. Rotor Dynamics. New Age International Publishers, New Delhi, 1983.

[160] Yamamoto, T., Ishida, Y., Ikeda, T. and Yamamoto, M. Nonlinear forced oscilla-

tions of a rotating shaft carrying an unsymmetrical rotor at the major critical speed.

Bulletin of the Japanese Society of Mechanical Engineers, 25(210), 1969-1976 (1982).

[161] Ishida, Y., Liu, J., Inoue, T. and Suzuki, A. Vibrations of an asymmetrical shaft

with gravity and nonlinear spring characteristics (isolated resonances and internal

resonances). ASME Journal of Vibration and Acoustics, 130, 041004-1 to 041004-8

(2008).

[162] Yamamoto, T., Ishida, Y., Ikeda, T. and Yamada, M. Subharmonic and summed-and-

differential harmonic oscillations of an unsymmetrical rotor. Bulletin of the Japanese

Society of Mechanical Engineers, 24(187), 192-199 (1981).

[163] Yamamoto, T., Ishida, Y. and Ikeda, T. Vibrations of a rotating shaft with rotating

nonlinear restoring forces at the major critical speed. Bulletin of the Japanese Society

of Mechanical Engineers, 27(230), 1728-1736 (1984).

[164] Ishida, Y., Ikeda, T., Yamamoto, T. and Hiei, M. Effects of nonlinear spring charac-

teristics on the dynamic unstable region of an unsymmetrical rotor. Bulletin of the

Japanese Society of Mechanical Engineers, 29(247), 200-207 (1986).

[165] Ikeda, T., Ishida, Y., Yamamoto, T. and Suzuki, T. Nonlinear forced oscillations

of an unsymmetrical shaft and unsymmetrical rotor with quartic nonlinearity (Vari-

ations of resonance curves of subharmonic and ultra-subharmonic oscillations and



References 195

the occurence of unstable vibrations). JSME International Journal, 31(3), 530-538

(1988).

[166] Foote, W. R., Poritsky, H. and Slade, J. J. Jr. Critical speeds of a rotor with unequal

shaft flexibilities, mounted in bearings of unequal flexibility - I. Transactions of the

ASME, Journal of Applied Mechanics, 10(2), A77-A84 (1943).

[167] Brosens, P. J. and Crandall, S. H. Whirling of unsymmetrical rotors. Transactions

of the ASME, Journal of Applied Mechanics, 28(3), 355-362 (1961).

[168] Iwatsubo, T., Tomita, A. and Kawai, R. Vibrations of asymmetric rotors supported

by asymmetric bearings. Ingenieur-Archiv, 42, 416-432 (1973).

[169] Messal, E. E. and Bonthron, R. J. Subharmonic rotor instability due to elastic

asymmetry. Transactions of the ASME, Journal of Engineering for Industry, 94(1),

185-192 (1972).

[170] Ishida, Y. Nonlinear vibrations and chaos in rotordynamics. JSME International

Series C - Dynamics, Control, Robotics, Design and Manufacturing, 37(2), 237-245

(1994).

[171] Childs, D. Turbomachinery rotordynamics: Phenomena, modeling and analysis.

Wiley-Interscience, New York, 1993.

[172] Coleman, R. P. and Feingold, A. M. Theory of self-excited mechanical oscillations of

helicopter rotors with hinged blades. NACA report 1351, chapters 2 and 3, Langley

Field, VA, 1958.

[173] Taylor, H. D. Critical-speed behavior of unsymmetrical shafts. Transactions of the

ASME, Journal of Applied Mechanics, 7(2), A71-A79 (1940).

[174] Rajalingham, C., Bhat, R. B. and Xistris, G. D. Influence of external damping on

the stability and response of a horizontal rotor with anisotropic bending stiffness.

Tribology Transactions, 36(3), 393-398 (1993).

[175] Kondo, Y. and Kimura, H. Study on the vibration of an asymmetrically elastic

rotating shaft - some considerations on the phase response and whirling. Memoirs of

Shonan Institute of Technology, 25(1), 29-39 (1991).



References 196

[176] Bishop, R. E. D. and Parkinson, A. G. Second order vibration of flexible shafts.

Philosophical Transactions of the Royal Society of London, Series A, 259, 1-31

(1965).

[177] Sakata, M., Endo, M. and Kishimoto, K. Secondary critical speed of flexible rotors

with inertia slots. Journal of Sound and Vibration, 87(1), 61-70 (1983).

[178] Rao, J. S. and Sreenivas, R. Dynamics of asymmetric rotors using solid models.

Proceedings of the International Gas Turbine Congress 2003, Tokyo, November 2-7,

2003.

[179] Hull, E. H. Shaft whirling as influenced by stiffness asymmetry. Transactions of the

ASME, Journal of Engineering for Industry, Series B, 83(2), 219-226 (1961).

[180] Bishop, R. E. D. and Mahalingam, S. Some experiments in the vibration of a rotating

shaft. Proceedings of the Royal Society of London, Series A, 292, 537-561 (1965).

[181] Nagasaka, I., Ishida, Y. and Liu, J. Forced oscillations of a continuous asymmetri-

cal rotor with geometrical nonlinearity (major critical speed and secondary critical

speed). ASME Journal of Vibration and Acoustics, 130, 031012-1 to 031012-7 (2008).

[182] Basu-Mandal, P., Chatterjee, A. and Papadopoulos, J. M. Hands-free circular mo-

tions of a benchmark bicycle. Proceedings of the Royal Society of London, Series A,

463(2084), 1983-2003 (2007).

[183] Mahadevan, P., Jog, C. S. and Chatterjee, A. Modal projections for synchronous rotor

whirl. Proceedings of the Royal Society of London, Series A, 464(2095), 1739-1760

(2008).

[184] Nandakumar, K. and Chatterjee, A. Resonance, parameter estimation, and modal

interactions in a strongly nonlinear benchtop oscillator. Nonlinear Dynamics, 40,

149-167 (2005).

[185] Hinch, E. J. Perturbation methods. Cambridge University Press, 1991.


