CE213A ## Problem Set II 1. Calculate the equilibrium constant of the reaction: $H_2O \stackrel{\rightarrow}{\leftarrow} H^+ + OH^-$ | Species | $(\Delta G_f^o)_{ m i}$ kcal/mole | $R = Universal$ gas constant = $1.9872 \times 10^{-3} \text{ Kcal/}^{\circ} \text{K/mole}$ | |---------------------|-----------------------------------|--| | H^+ H_2O OH^- | -0.00
-56.69
-37.595 | $T = 298^{\circ}K$ | 2. Determine the solubility product for CaCO₃: $CaCO_3(s) \stackrel{\rightarrow}{\leftarrow} Ca^{2+} + CO_3^{2-}$ | Species | $\left(\Delta G_f^o ight)_{ m i}$ kcal/mole | $R = Universal$ gas constant = 1.9872 x 10 ⁻³ Kcal/ $^{\circ}$ K/mole | |-----------------------|---|--| | CO_3^{2-} Ca^{2+} | -126.22 | $T = 298^{\circ}K$ | | Ca^{2+} | -132.18 | | | $CaCO_3(s)$ | -269.78 | | 3. Calculate the equilibrium constant of the reaction: $NH_3(aq) + H_2O \stackrel{\rightarrow}{\leftarrow} NH_4^+ + OH^-$ | Species | $(\Delta G_f^o)_{ m i}$ kcal/mole | $R = Universal$ gas constant = 1.9872 x 10 ⁻³ Kcal/ $^{\circ}$ K/mole | |---------------|-----------------------------------|--| | $NH_3(aq)$ | -6.37 | $T = 298^{\circ}K$ | | $N\!H_4^{^+}$ | -19.00 | | | H_2O | -56.69 | | | OH^- | -37.595 | | 4. Determine the Henry's Law constant for oxygen: | Species | $\left(\Delta G_f^o ight)_{ m i}$ kcal/mole | R = Universal gas constant = 1.9872 x 10 ⁻³ Kcal/°K/mole
T = 298°K | |--------------------|---|--| | $O_2(aq)$ $O_2(g)$ | -3.93
0.00 | I = 298 K | 5. Calculate the equilibrium constant of the reaction: $Fe^{3+}(aq) + 3H_2O \stackrel{\rightarrow}{\leftarrow} Fe(OH)_3(s) + 3H^+$ | Species | $\left(\Delta G_f^o ight)_{ m i}$ kcal/mole | $R = Universal$ gas constant = 1.9872 x 10 ⁻³ Kcal/ $^{\circ}$ K/mole | |--------------------------------------|---|--| | Fe^{3+} $Fe(OH)_3(s)$ H_2O H^+ | -2.52
-166.00
-56.69
0.00 | $T = 298^{\circ}K$ | | $Fe(OH)_3(s)$ | -166.00 | | | H_2O | -56.69 | | | $H^{^+}$ | 0.00 | |