CE213A

Problem Set II

1. Calculate the equilibrium constant of the reaction: $H_2O \stackrel{\rightarrow}{\leftarrow} H^+ + OH^-$

Species	$(\Delta G_f^o)_{ m i}$ kcal/mole	$R = Universal$ gas constant = $1.9872 \times 10^{-3} \text{ Kcal/}^{\circ} \text{K/mole}$
H^+ H_2O OH^-	-0.00 -56.69 -37.595	$T = 298^{\circ}K$

2. Determine the solubility product for CaCO₃: $CaCO_3(s) \stackrel{\rightarrow}{\leftarrow} Ca^{2+} + CO_3^{2-}$

Species	$\left(\Delta G_f^o ight)_{ m i}$ kcal/mole	$R = Universal$ gas constant = 1.9872 x 10 ⁻³ Kcal/ $^{\circ}$ K/mole
CO_3^{2-} Ca^{2+}	-126.22	$T = 298^{\circ}K$
Ca^{2+}	-132.18	
$CaCO_3(s)$	-269.78	

3. Calculate the equilibrium constant of the reaction: $NH_3(aq) + H_2O \stackrel{\rightarrow}{\leftarrow} NH_4^+ + OH^-$

Species	$(\Delta G_f^o)_{ m i}$ kcal/mole	$R = Universal$ gas constant = 1.9872 x 10 ⁻³ Kcal/ $^{\circ}$ K/mole
$NH_3(aq)$	-6.37	$T = 298^{\circ}K$
$N\!H_4^{^+}$	-19.00	
H_2O	-56.69	
OH^-	-37.595	

4. Determine the Henry's Law constant for oxygen:

Species	$\left(\Delta G_f^o ight)_{ m i}$ kcal/mole	R = Universal gas constant = 1.9872 x 10 ⁻³ Kcal/°K/mole T = 298°K
$O_2(aq)$ $O_2(g)$	-3.93 0.00	I = 298 K

5. Calculate the equilibrium constant of the reaction: $Fe^{3+}(aq) + 3H_2O \stackrel{\rightarrow}{\leftarrow} Fe(OH)_3(s) + 3H^+$

Species	$\left(\Delta G_f^o ight)_{ m i}$ kcal/mole	$R = Universal$ gas constant = 1.9872 x 10 ⁻³ Kcal/ $^{\circ}$ K/mole
Fe^{3+} $Fe(OH)_3(s)$ H_2O H^+	-2.52 -166.00 -56.69 0.00	$T = 298^{\circ}K$
$Fe(OH)_3(s)$	-166.00	
H_2O	-56.69	
$H^{^+}$	0.00	