## CE 213 WATER QUALITY & POLLUTION

#### L17, 18, 19 - Module D. Water Quality and Management

Dr. Anubha Goel

FB 308, anubha@iitk.ac.in, x 7027

Schedule : LEC: Tu Th 5:00-6:30;

# Module D

- Water quality assessment
  - parameters and permissible levels, Hydrologic Cycle, Sources of water pollution
- Pollution indicators
  - physical, chemical, and biological.
  - Description of physical parameters: alkalinity, hardness, DO, BOD, COD.
- Drinking water
  - sources and characteristics, standards, impurities and their sources.
  - Change in water quality downstream of a flowing river
- Water Management -
  - Water Availability and Use.

**Presentation Topic -**

#### Status of water availability in India AND Efforts made by international and national agencies to mitigate water scarcity

#### **Water Quality Parameters**

- *Water quality* is *determined* by assessing three classes of attributes: physical, chemical, and biological.
- There are *standards* of *water quality* set for each of these three classes of attributes.

#### Physical Parameters of Water Quality assessment

- Colour
- Odour
- Turbidity
- Temperature
- Conductivity

#### Chemical Parameters for Water Quality assessment

pН Acidity Alkalinity Hardness Solids Harmful Chemicals Chlorides **Sulphates** Iron **Nitrates Heavy Metals** Pesticides

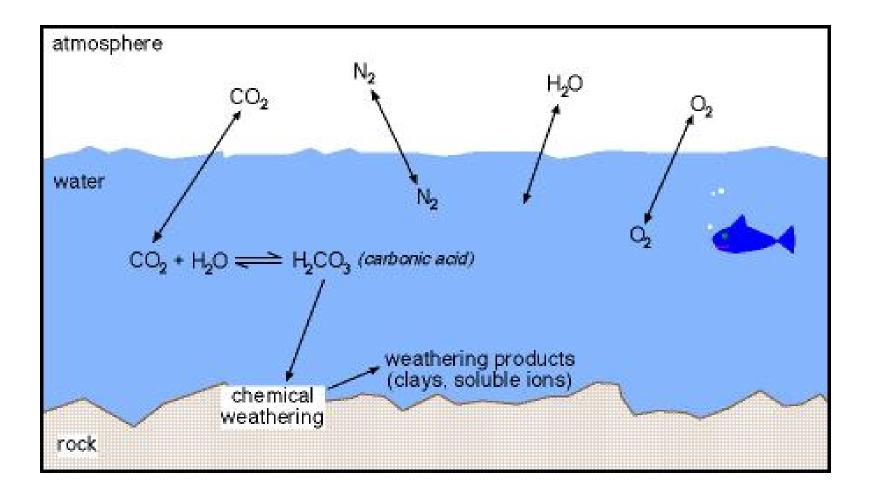
## Alkalinity

- Capacity to neutralize acid
- Presence of carbonates, bi-carbonates and hydroxide compounds of Ca, Mg, Na and K

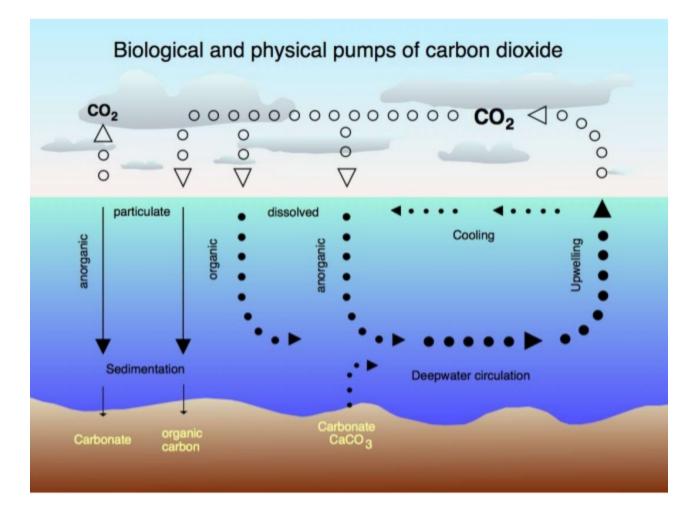
# Alkalinity

- Alkalinity measures the **buffering capacity** of the water against changes in pH.
- Water that has **a high alkalinity** can accept large doses of acids **or** bases without altering the pH significantly.
- Waters with **low alkalinity**, such as rainwater or distilled water, can experience a drop in the pH with only a minor addition of an acid or base.

- In natural waters much of the alkalinity is provided by the carbonate/ bicarbonate buffering system.
- Alkalinity is determined by measuring the amount of acid needed to lower the pH in a water sample to a specific endpoint; the results are usually reported in standardized units as milligrams CaCO<sub>3</sub> per liter.
- Carbon dioxide dissolves in water to form carbonic acid , which dissociates and is in equilibrium with bicarbonate and carbonate ions.


#### $CO_2$ (gas) $\longleftrightarrow$ $CO_2$ (dissolved)

 $CO_2(dissolved) + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^-$ 


#### $HCO_3^- \longleftrightarrow 2H^+ + CO_3^{2-}$

• **Buffering mechanism**: If an acid is added to the water, the hydrogen ion concentration is increased, and this combines with both the carbonate and bicarbonate ions, driving the equilibrium to the left, releasing carbon dioxide into the atmosphere.

# Carbonate cycle in water



# Biological and Physical pumps of CO2



## Hardness

- Capacity of water for reducing and destroying the lather of soap
- It is total concentration of calcium and magnesium ions
- Types
  - Temporary Bicarbonates of Calcium and Magnesium
  - Permanent Sulphates , chlorides and nitrates of calcium and magnesium
- Impact
  - Causes encrustations in water supply structures

# Total Hardness

- **Total Hardness**: total concentration of metal ions expressed in terms of mg/L of equivalent CaCO<sub>3.</sub>
- Primary ions are Ca<sup>2+</sup> and Mg<sup>2+</sup>.

- also iron and manganese.

• Total Hardness approximates total alkalinity.

### Alkalinity vs. Hardness

Possibility of 3 cases

- Alkalinity = Hardness
  - Ca and Mg salts are present
- Alkalinity > Hardness
  - presence of basic salts, Na, K along with Ca and Mg
- Alkalinity < Hardness –</li>
  neutral salts of Ca & Mg present

#### **Common problems**

| Visible effects             | Reasons         |
|-----------------------------|-----------------|
| water turns black, smell    | Waste water     |
| Acidic taste                | Low pH          |
| Alkaline taste              | High pH         |
| Boiled Rice hard and yellow | High Alkalinity |
| White deposits on boiling   | Hardness        |

| Visible effects                                                                                        | Reason             |
|--------------------------------------------------------------------------------------------------------|--------------------|
| Iron taste, change in color after exposure<br>to atmosphere, change in colour of<br>clothes & utensils | Iron               |
| Oily appearance on top of water body                                                                   |                    |
| Soap not lathering                                                                                     | hardness           |
| Brownish black streaks on teeth                                                                        | Fluride            |
| Growth of Algae                                                                                        | Nitrate, phosphate |
| Fish kills                                                                                             | Low pH, less DO    |
| Salty taste                                                                                            | chloride           |

## **Indicators of water pollution**

- 1. Physicochemical
  - DO, BOD, COD
    - Measurement methods
  - Nitrogenous BOD,
  - Limitations of BOD test
- 2. Bacterial
  - coliforms, fecal coliforms

#### **Dissolved Oxygen**

- Oxygen, although poorly soluble in water, is fundamental to aquatic life.
- Without free dissolved oxygen, streams and lakes become uninhabitable to aerobic organisms, including fish and most invertebrates.
- Dissolved oxygen is inversely proportional to temperature, and the maximum amount of oxygen that can be dissolved in water at 0°C is 14.6 mg/L.
- The amount of oxygen dissolved in water is usually measured with the *Winkler* test.

#### **Biochemical Oxygen Demand**......[1/10]

- Amount of oxygen required by bacteria and other microorganisms in **stabilizing decomposable organic matter**.
- A very low oxygen demand indicates either
  - clean water OR
  - the presence of a toxic or nondegradable pollutant.

#### The 5-day BOD test ......[2/10]

The 5-day BOD test (BOD5) begins by placing water or effluent samples into **two standard** 60- or 300-mL BOD bottles.

One sample is analysed immediately to measure the initial **dissolved oxygen** concentration in the effluent, often using a Winkler titration.

The second BOD bottle is sealed and stored at 20°C in the dark.

(The samples are stored in the dark to avoid **photosynthetic oxygen generation**.)



- After 5 days the amount of dissolved oxygen remaining in the sample is measured.
- The difference between the initial and ending oxygen concentrations is the BOD5.

 $[BOD] = [DO]_{Final} - [DO]_{initial}$ 

• **Test limitations** : One problem with the BOD test is that it takes **5** days to run.

## Ultimate BOD (UBOD) ......[4/10]

- The ultimate biochemical oxygen demand ([UBOD]) is a parameter that quantifies the oxygen required for the total biochemical degradation of organic matter by aquatic microorganisms.
- APPLICATION: [UBOD] and the rate of oxygen consumption are frequently used in mathematical models to predict the impact of an effluent on receiving bodies such as lakes and rivers.

#### Sample Calculations for BOD

 $BOD_{T} = BOD_{u} (1 - e^{-KT})$ 

Where, BOD<sub>u</sub> is ultimate BOD

$$K_{T} = K_{20} (1.047^{Temp. - 20})$$

Question :

The  $BOD_5$  of a waste water is determined to be 150mg/l at  $20^{\circ}C$ . The K value is known to be 0.23 per day. What would be the  $BOD_8$  be if the test were run at  $15^{\circ}C$ ?

# **Kinetics for Streeter-Phelps Model**

#### Deoxygenation

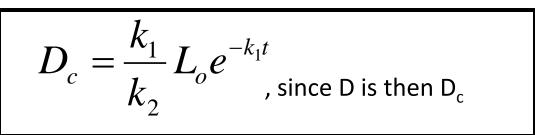
= BOD remaining at any time

dL/dt = Rate of deoxygenation equivalent to rate of BOD removal

 $dL/dt = -k_1L$  for a first order reaction

k<sub>1</sub> = deoxygenation constant, f'n of waste type and temp.

$$-\frac{d[L]}{dt} = kL \qquad \int_{C_0}^C \frac{dL}{L} = -k \int_0^t dt$$
$$\ln \frac{L}{L_0} = -kt \quad or \quad \frac{L}{L_0} = e^{-kt} \quad -> L = L_0 e^{-kt}$$


# Integration and substitution

The last differential equation can be integrated to:

$$D = \frac{k_1 L_o}{k_2 - k_1} (e^{-k_1 t} - e^{-k_2 t}) + D_o e^{-k_2 t}$$

It can be observed that the minimum value,  $D_c$  is achieved when dD/dt = 0:

$$\frac{dD}{dt} = k_1 L_o e^{-k_1 t} - k_2 D = 0$$



Substituting this last equation in the first, when  $D = D_c$  and solving for  $t = t_c$ :

$$t_{c} = \frac{1}{k_{2} - k_{1}} \ln \left\{ \frac{k_{2}}{k_{1}} \left[ 1 - \frac{D_{o}(k_{2} - k_{1})}{k_{1}L_{o}} \right] \right\}$$

#### What is the difference between BOD, COD or TOC? Why do I have to measure them?

- Almost all wastewater treatment plants are required to measure one of these three items as a measure of the pollution value in the water.
- COD should always measure higher than TOC and then BOD.
- COD or Chemical Oxygen Demand is the total measurement of all chemicals in the water that can be oxidized.
- TOC or Total Organic Carbon is the measurement of organic carbons.
- BOD- Biochemical Oxygen Demand is supposed to measure the amount of food (or organic carbons) that bacteria can oxidize.

http://www.environmentalleverage.com/BOD%20vs%20COD.htm

## **BOD Components** ......[6/10] **CBOD, NBOD**

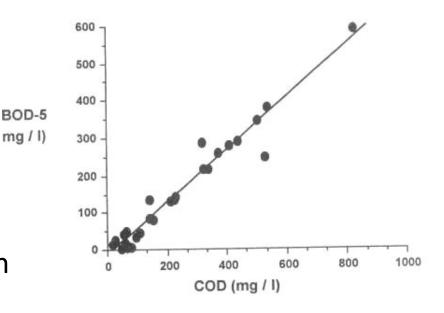
#### Total Biological Oxygen Demand Components

|             |                      |                                 | В | OD Observed with V | arious De | cay Rates            | (mg/L)              |
|-------------|----------------------|---------------------------------|---|--------------------|-----------|----------------------|---------------------|
|             | Carbonaceous<br>CBOD | NBOD<br>Total Kjeldahl Nitrogen |   | BOD = 10 (1-BOD    | Ultimate  | )(e <sup>-k</sup> ∙⊺ | ime)                |
|             |                      |                                 |   |                    | Deca      | y Rate, k (c         | lay <sup>-1</sup> ) |
| Particulate | Particulate          | Organic                         |   |                    | 0.05      | 0.10                 | 0.10                |
| (VSS)       | CBOD                 | Nitrogen                        |   | 0-Day              | 0.0       | 0.0                  | 0.0                 |
|             |                      |                                 |   | 5-Day              | 2.2       | 3.9                  | 5.3                 |
|             |                      |                                 |   | 10-Day             | 3.9       | 6.3                  | 7.8                 |
| Dissolved   | Soluble              | Ammonia                         |   | 15-Day             | 5.3       | 7.8                  | 8.9                 |
| (Filtered   | CBOD                 | Nitrogen                        |   | 20-Day             | 6.3       | 8.6                  | 9.5                 |
| Sample)     |                      |                                 |   | 25-Day             | 7.1       | 9.2                  | 9.8                 |
|             |                      |                                 |   | 30-Day             | 7.8       | 9.5                  | 9.9                 |

|                  | -      | _        |
|------------------|--------|----------|
|                  |        | _        |
| OD = 10 (1 - BOD | ) (a-k | · Time \ |

| 0 ( | 1–BOD <sub>Ultimate</sub> | ) ( | е <sup>-к</sup> * | lime) |  |
|-----|---------------------------|-----|-------------------|-------|--|
|-----|---------------------------|-----|-------------------|-------|--|

|                                            | Decay Rate, k (day <sup>-1</sup> ) |      |      |
|--------------------------------------------|------------------------------------|------|------|
|                                            | 0.05                               | 0.10 | 0.10 |
| 0-Day                                      | 0.0                                | 0.0  | 0.0  |
| 5-Day                                      | 2.2                                | 3.9  | 5.3  |
| 10-Day                                     | 3.9                                | 6.3  | 7.8  |
| 15-Day                                     | 5.3                                | 7.8  | 8.9  |
| 20-Day                                     | 6.3                                | 8.6  | 9.5  |
| 25-Day                                     | 7.1                                | 9.2  | 9.8  |
| 30-Day                                     | 7.8                                | 9.5  | 9.9  |
| Ultimate                                   | 10.0                               | 10.0 | 10.0 |
| BOD <sub>Ultimate</sub> /BOD <sub>5</sub>  | 4.5                                | 2.5  | 1.9  |
| BOD <sub>Ultimate</sub> /BOD <sub>10</sub> | 2.6                                | 1.6  | 1.3  |


#### **Chemical Oxygen Demand**

It measures the amount of oxygen required to chemically oxidize organic compounds in water.

#### Why Measure COD?

• COD is used as a **general indicator of water qualit**y and is an integral part of all water quality management programs.

Additionally, COD is often used to <sup>mg/I</sup> estimate BOD as a **strong correlation** exists between COD and BOD, however COD is a much faster, more accurate test.



# What is the relationship between the COD and BOD values in Waste water?

 COD or Chemical Oxygen Demand is the total measurement of all chemicals (organics & in-organics) in the water / waste water;

BOD is a measure of, the amount of oxygen required for the bacteria to degrade the organic components present in water / waste water.

 The ratio of BOD/COD : COD is higher than BOD; maximum of up to 4 times in medium scale industries; but it varies based on the industrial process and nature of the raw materials used;

# Water Quality

#### Water Quality Assessment

- Parameters
- Standards for drinking water in India
- Water Pollution Indicators
  - Physicochemical, Bacterial

To be covered

- Changing water quality of a river Ganga in UP
- Sources of drinking water
  - Surface vs. Groundwater
- Drinking water standards
- Drinking vs. potable vs. waste water

#### First hand experience of water quality assessment

- 1 : Preliminary Examination of Water. Taste, Odor, Colour
- 2 : Common Chemical methods for Examination of Water .
- 2.A pH
- 2.B Turbidity.
- 2.C Conductivity.
- 2.D Alkalinity.
- 2.E Sulfate determination.

#### 3 : Examination of Water: Solids, Sulfate & Hardness .

- 3.A TS, TSS, TDS.
- 3.B Sulfate.
- 3.C Hardness.

#### 4, 5 : Examination of Water:

COD & Chloride . DO & BOD.

6: Water Disinfection:

Free & Combined Residual Chlorine .

#### 7 : Examination of Water :

Nitrogen, Phosphorus & Fluoride.

#### 8 : Microbiological Testing of Water.

8.A Multiple Tube Fermentation Test (MPN)8.B Heterotrophic Plate Count Method .

## Potable (Drinking) water vs. Wastewater

- Potable water is water which is **fit for consumption** by humans and other animals. It is also called drinking water, in a reference to its intended use.
  - Water may be naturally potable, as is the case with pristine springs, or it may need to be treated in order to be safe.
  - In either instance, the safety of water is assessed with tests which look for potentially harmful contaminants.
- Wastewater is water containing wastes from residential, commercial, and industrial processes.
  - Municipal wastewater contains sewage, gray water (e.g., water from sinks and showers), and sometimes industrial wastewater. Large industries, such as refineries, also generate wastewater.
  - Wastewater requires treatment to remove pollutants prior to discharge.

#### Water characteristics

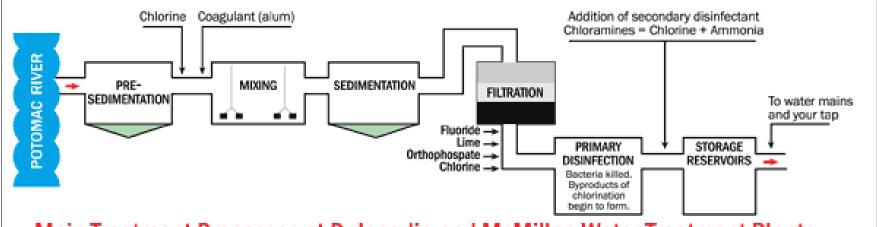
| Characteristic       | Surface Water | Ground Water |
|----------------------|---------------|--------------|
| Turbidity            | high          | low          |
| Dissolved minerals   | low-moderate  | high         |
| Biological content   | high          | low          |
| Temporal variability | very high     | low          |

#### Water Uses and related parameters of concern

| Use                           | Typical quality parameters                                |
|-------------------------------|-----------------------------------------------------------|
| Public Water Supply           | Turbidity, TDS, inorganic and organic compounds, microbes |
| Water contact recreation      | Turbidity, bacteria, toxic compounds                      |
| Fish propagation and wildlife | DO, chlorinated organic compounds                         |
| Industrial water supply       | Suspended and dissolved constituents                      |
| Agricultural water supply     | Sodium, TDS                                               |
| Shellfish harvesting          | DO, bacteria                                              |

## Water Quality Standards and Guidelines

#### Why do we have water-quality standards and guidelines?


- Standards and guidelines are established to protect water for designated uses such as drinking, recreation, agricultural irrigation, or protection and maintenance of aquatic life.
- Standards for **drinking-water quality** ensure that public drinkingwater supplies are as safe as possible.

| Who sets these standards and guidelines? |                 |  |  |  |
|------------------------------------------|-----------------|--|--|--|
| International: WHO, FAO                  |                 |  |  |  |
| <u>Country specific</u>                  |                 |  |  |  |
| India:                                   | CPCB, ICMR, BIS |  |  |  |
| USA:                                     | EPA             |  |  |  |

In India, the design of water supply systems has been done using certain standards. Currently the standard being used is BIS 1172: 1993, reaffirmed in 1998.

# Municipal Drinking Water Treatment

- A combination selected from the following processes is used worldwide:
- Pre-chlorination for algae control and arresting biological growth
- Aeration along with pre-chlorination for removal of dissolved iron and manganese
- **Coagulation** for flocculation or slow-sand filtration
- Coagulant aids, also known as polyelectrolytes to improve coagulation and for thicker floc formation
- Sedimentation for solids separation that is removal of suspended solids trapped in the floc
- Filtration to remove particles from water
- **Disinfection** for killing bacteria viruses and other pathogens.



#### Main Treatment Processes at Dalecarlia and McMillan Water Treatment Plants

Pre-Sedimentation -Allows large particles in untreated water to settle out naturally. Mixing - "Coagulants" are added to the water to cause small particles to stick together when the water is mixed, making larger, heavier particles. Sedimentation -Allows the newly formed larger particles to settle out naturally. Filtration - Removes smaller particles by trapping them in sand filters. Primary Disinfection - with Chlorine/Chloramines (after 11-1-2000). Other chemicals added include: Lime to adjust the pH (the water's acidity) to prevent corrosion. Fluoride at low levels to protect teeth (as recom-

mended by the American Dental association)

#### Water Parameter and Treatment Method......[1/4]

| Constituent          | Chemical Formula                                                                                                                                      | Difficulties Caused                                                                                                                                                                    | Means of Treatment                                                                                                                         |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Turbidity            | non-expressed in<br>analysis as units                                                                                                                 |                                                                                                                                                                                        | coagulation, settling, and<br>filtration                                                                                                   |
| Hardness             | calcium and<br>magnesium salts,<br>expressed as CaCO <sub>3</sub>                                                                                     | equipment, boilers, pipe lines, etc.; forms curds with soap, interferes with dyeing,                                                                                                   | softening; demineralization;<br>internal boiler water<br>treatment; surface active<br>agents                                               |
|                      | bicarbonate(HCO <sub>3</sub> -),<br>carbonate (CO <sub>3</sub> <sup>2-</sup> ), and<br>hydroxide(OH <sup>-</sup> ),<br>expressed as CaCO <sub>3</sub> | foam and carryover of solids with steam;<br>embrittlement of boiler steel; bicarbonate<br>and carbonate produce CO <sub>2</sub> in steam, a<br>source of corrosion in condensate lines | lime and lime-soda<br>softening; acid treatment;<br>hydrogen zeolite softening;<br>demineralization<br>dealkalization by anion<br>exchange |
| Free Mineral<br>Acid | $H_2SO_4$ , HCI. etc.,<br>expressed as CaCO <sub>3</sub>                                                                                              | corrosion                                                                                                                                                                              | neutralization with alkalies                                                                                                               |
| Carbon<br>Dioxide    | CO <sub>2</sub>                                                                                                                                       | corrosion in water lines, particularly steam and condensate lines                                                                                                                      | aeration, deaeration,<br>neutralization with alkalies                                                                                      |

#### Water Parameter and Treatment Method......[2/4]

| Constituent | Chemical<br>Formula | Difficulties Caused                                                                                                                                                                    | Means of Treatment                                                                            |
|-------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Sulfate     |                     |                                                                                                                                                                                        | Demineralization, reverse<br>osmosis, electrodialysis,<br>evaporation                         |
| Chloride    | - CL-               | adds to solids content and increases corrosive character of water                                                                                                                      | demineralization, reverse<br>osmosis, electrodialysis,<br>evaporation                         |
| Nitrate     | NO <sub>3</sub> -   | adds to solids content, but is not usually significant<br>industrially: high concentrations cause<br>methemoglobinemia in infants; useful for control<br>of boiler metal embrittlement | demineralization, reverse<br>osmosis, electrodialysis,<br>evaporation                         |
| Fluoride    | F⁻                  | control of dental decay: not usually significant                                                                                                                                       | adsorption with magnesium<br>hydroxide, calcium phosphate, or<br>bone black; alum coagulation |
| Sodium      | Na <sup>+</sup>     | adds to solids content of water: when combined<br>with OH <sup>-</sup> , causes corrosion in boilers under certain<br>conditions                                                       | demineralization, reverse<br>osmosis, electrodialysis,<br>evaporation                         |

| Constituent      | Chemical<br>Formula                                     | Difficulties Caused                                                                                                                                  | Means of Treatment                                                                                                                                                                |
|------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Silica           | SiO <sub>2</sub>                                        | scale in boilers and cooling water systems;<br>insoluble turbine blade deposits due to silica<br>vaporization                                        | hot and warm process removal by<br>magnesium salts; adsorption by<br>highly basic anion exchange resins, in<br>conjunction with demineralization,<br>reverse osmosis, evaporation |
| Iron             | Fe <sup>2+</sup> (ferrous)<br>Fe <sup>3+</sup> (ferric) | discolors water on precipitation; source of<br>deposits in water lines, boilers. etc.;<br>interferes with dyeing, tanning,<br>papermaking, etc.      | aeration; coagulation and filtration;<br>lime softening; cation exchange;<br>contact filtration; surface active<br>agents for iron retention                                      |
| Manganese        | Mn <sup>2+</sup>                                        | same as iron                                                                                                                                         | same as iron                                                                                                                                                                      |
| Aluminum         | Al <sup>3+</sup>                                        | usually present as a result of floc carryover<br>from clarifier; can cause deposits in cooling<br>systems and contribute to complex boiler<br>scales | improved clarifier and filter operation                                                                                                                                           |
| Oxygen           | 02                                                      | corrosion of water lines, heat exchange equipment, boilers, return lines, etc.                                                                       | deaeration; sodium sulfite; corrosion<br>inhibitors                                                                                                                               |
| Hydrogen Sulfide | H <sub>2</sub> S                                        | cause of "rotten egg" odor; corrosion                                                                                                                | aeration; chlorination; highly basic<br>anion exchange                                                                                                                            |
| Ammonia          | NH <sub>3</sub>                                         | corrosion of copper and zinc alloys by formation of complex soluble ion                                                                              | cation exchange with hydrogen zeolite; chlorination; deaeration                                                                                                                   |

#### Water Parameter and Treatment Method......[4/4]

| Constituent      | Chemical<br>Formula | Difficulties Caused                                                                                                                               | Means of Treatment                                                                                                               |
|------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Dissolved Solids | none                | of process interference and as a cause of                                                                                                         | lime softening and cation exchange<br>by hydrogen zeolite;<br>demineralization, reverse osmosis,<br>electrodialysis, evaporation |
| Suspended Solids | none                | refers to the measure of undissolved<br>matter, determined gravimetrically;<br>deposits in heat exchange equipment,<br>boilers, water lines, etc. | subsidence; filtration,<br>usually preceded by<br>coagulation and settling                                                       |
| Total Solids     | none                | refers to the sum of dissolved and<br>suspended solids, determined<br>gravimetrically                                                             | see "Dissolved Solids" and<br>"Suspended Solids"                                                                                 |