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Chapter 1

Introduction to Matrices

1.1 Motivation

Recall that at some stage, we have solved a linear system of 3 equations in 3 unknowns. But,

for clarity, let us start with a few linear systems of 2 equations in 2 unknowns.

Example 1.1.1. 1. Consider the linear system
2 by =7
Tty (1.1.1)
2z + 4y <= 6.

The two linear systems represent a pair of non-parallel lines in R?. Note that z = 1,y = 1
is the unique solution of the given system as (1, 1) is the point of intersection of the two

given lines 2x + by = 7 and 2x + 4y = 6. But, we also see that

o[-l

which corresponds to the solution of
2 7 2 5y =7

T R (1.1.2)
2 6 2z +4y =6.

7 2
Equation (1.1.2) also implies that we can write the vector [6] as sum of the vectors [2]

)
4

5
and L] . So, even though we were looking at the point of intersection of two lines, an

interpretation of the solution gives information about vectors in R2.

2. Consider the linear system
r+5y+4z =11
r+6y—Tz =1 (1.1.3)
20 4+ 11y — 3z =12.

Here, we have three planes in R? and an easy observation implies that the third equation

is the sum of the first two equations. Hence, the line of intersection of the first two planes

7
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is contained in the third plane. Hence, this system has infinite number of solutions given
by
x =61—-59,y = —10 4+ 11k, z = k with k arbitrary real number.

For example, verify that for £ = 1, we get x = 2,y = 1 and z = 1 as a possible solution.

Also,
1 5 4 11 1 5 4
12+ 6| -1+ |-7|-1=|1|=|1|-61+ |6 -(—10)+ |=T7]| -0,
2 11 -3 12 2 11 -3
where the second part corresponds to k = 0 as a possible solution. Thus, we again see that
11 1 9 4
the vector | 1 | is a sum of the three vectors |1|, | 6 | and | —7| (which are associated
12 2 11 -3

with the unknowns z, y and z, respectively) after multiplying by certain scalars which

itself appear as solutions of the linear system.

Before going to the next example, also note that the numbers —59, 11 and 1, which appear

as coefficients of k£ in the solution satisfies

1 5 4 0
1 -(=59)+ 6| -11+ |-7|-1=|0].
2 11 -3 0

3. As a last example, consider the linear system

r+by+4z =11
r+6y—T2z =1 (1.1.4)
2z + 11y — 3z =13.
Here, we see that if we add the first two equations and subtract it with the third equation

then we are left with 0z + Oy + 0z = 1, which has no solution. That is, the above system

has no solution. I leave it to the readers to verify that there does not exist any x,y and

z such that
1 5 4 11
o2+ |6 | y+ |-T|-2=]1
2 11 -3 13

Remark 1.1.2. So, what we see above is “each of the linear systems gives us certain ‘relation-
ships’ between vectors which are ‘associated’ with the unknowns”. These relationships will lead
to the study of certain objects when we study “vector spaces”. They are as follows:

1. The first idea of ‘relationship’ that helps us to write a vector in terms of other vectors will
7
lead us to the study of ‘linear combination’ of vectors. So, 6 is a ‘linear combination’
11 1 5 4

2 5
of [2] and L] Similarly, | 1| is a ‘linear combination’ of |1|, | 6 | and |—7]|.
12 2 11 -3
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2. Further, it also leads to the study of ‘linear span’ of a set. A positive answer leads to the

vector being an element of the ‘linear span; and a negative answer to ‘NOT an element of

1 5 4 11
the linear span’. For example, for S = 11,161, |=7| p, the vector | 1 | belongs to
2 11 -3 12
11
the ‘linear span’ of S, whereas, | 1 | does NOT belong to the ‘linear span’ of S.
13
3. The idea of a unique solution leads us to the statement that the corresponding vectors are
‘linearly independent’. For example, the set , g C R? is ‘linearly independent’.
1 5 4
Whereas, the set 11,161, |7 C R3 is NOT ‘linearly independent’ as
2 11 -3
1 5 4 0
1 -(=59)+ |6 -11+ |-7| -1=|0].
2 11 -3 0

1.2 Definition of a Matrix

Definition 1.2.1. A rectangular array of numbers is called a matrix.

The horizontal arrays of a matrix are called its rows and the vertical arrays are called its
columns. A matrix A having m rows and n columns is said to be a matrix of size/ order

m X n and can be represented in either of the following forms:

ail a2 - A1n ail ai2 o ain
a1 aza - a2n a1 a2 e a2n

A= | | or A= ,
_aml am2 - amn_ Gml Om2 - Gmn

where a;; is the entry at the intersection of the i*h row and jth column. One writes A € M, ,,(F)

to mean that A is an m x n matrix with entries from the set I, or in short A = [a;;] or A = (a;).
We write Afi,:] to denote the i-th row of A, A[:, j] to denote the j-th column of A and a;; or
(A)i; or Ali, j], for the (7, j)-th entry of A.

1 3+i 7 7

4 5 6-5i 6 — b5i
ase = 5. Sometimes commas are inserted to differentiate between entries of a row vector. Thus,

For example, if A = then A[l,:] =[1 3+i 7], A[;,3] = and

A[l,:] may also be written as [1, 341, 7]. A matrix having only one column is called a column
vector and a matrix with only one row is called a row vector. All our vectors will be column
vectors and will be represented by bold letters. A matrix of size 1 x 1 is also called a scalar

and is treated as such and hence we may or may not put it under brackets.
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Definition 1.2.2. Two matrices A = [a;;], B = [bi;] € M, »,(C) are said to be equal if a;; = by,
foreachi=1,2,...,mand j =1,2,...,n.

In other words, two matrices are said to be equal if they have the same order and their

corresponding entries are equal.

Example 1.2.3. 1. Consider a system of linear equations 2z 4+ by = 7 and 3z 4 2y = 6.

2 5|7 2 5
Then, we identify it with the matrix A = 516l Here, Al:,1] = [3] and A[:, 2] = [2]
are associated with the variables/ unknowns x and y, respectively.
0 0
0 0 01 o .
2. A = 0 0 ,B = 0 0 Then, A # B as ajo # bio. Similarly, if C = [0 0| then
0 0

A # C as they are of different sizes.

1.2.1 Special Matrices

Definition 1.2.4. Let A = [a;;] be an m x n matrix with a;; € F.

1. Then A is called a zero-matrix, denoted 0 (order is mostly clear from the context), if

| | 0 0 0 0 0
a;; = 0 for all ¢ and j. For example, 0252 = [0 0] and Oz = [O 0 0]‘

2. Then A is called a square matrix if m =n and is denoted by A € M, (F).
3. Let A € M, (F).

(a) Then, the entries aji,ags,. .., ay, are called the diagonal entries of A. They consti-

tute the principal diagonal of A.

(b) Then, A is said to be a diagonal matrix, , denoted diag(ai1,...,ann), if a;; =0

for i # j. For example, the zero matrix 0,, and [O 1] are diagonal matrices.

(¢) Then, A = diag(1l,...,1) is called the identity matrix, denoted I,,, or in short I.

L o 100
For example, Ir = [O 1] and I3= 10 1 0.
0 01
(d) If A= al, for some « € F, then A is called a scalar matrix.
(e) Then, A is said to be an upper triangular matrix if a;; = 0 for i > j.
(f) Then, A is said to be a lower triangular matrix if a;; = 0 for i < j.
(g) Then, A is said to be triangular if it is an upper or a lower triangular matrix.
01 4 0 00
For example, [0 3 —1| is upper triangular, |1 0 0] is lower triangular and the
0 0 —2 01 1

matrices 0, I are upper as well as lower triangular matrices.
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4. An m x n matrix A = [a;;] is said to have an upper triangular form if a;; = 0 for all

ail a2 - Qip 0 01
0 ag - a 010 12 0 01
1 > j. For example, the matrices | ) .n , and
: o : 0 0 2 00011
0 0 - ap, 0 00

have upper triangular forms.

5. For 1 < ¢ < n, define e; = I,,[:,], a matrix of order n x 1. Then the column matrices
ei,...,e, are called the standard unit vectors or the standard basis of M,, ;(C) or
C™. The dependence of n is omitted as it is understood from the context. For example,

1
if e; € C? then, e = [(1)] and if e; € C3 then e; = [0].
0

1.3 Matrix Operations

As a first operation, we define ‘transpose’ and/or ‘conjugate transpose’ of a matrix. This allows
us to interchange the ideas related with the rows of a matrix with the columns of a matrix and

vice-versa. It’s use also helps us in looking at geometrical ideas that are useful in applications.

1.3.1 Transpose and Conjugate Transpose of Matrices
Definition 1.3.1. Let A = [a;;] € M, »(C). Then
1. the transpose of A, denoted AT, is.an n x m matrix with (AT)Z-j = aj;, for all 7, 5.

2. the conjugate transpose of A, denoted A*, is an n x m matrix with (4%);; = @;; (the

complex-conjugate of aj;), for all 4, j.

1 0
4+i 1-1i

1
4—-i 1+i

1 441
0 1-1i

IfA= then AT = ] and A* = . Note that A* # AT,

Note that if x = is a column vector then x! = [1 2} and x* are row vectors.

Theorem 1.3.2. For any matriz A, (A*)* = A and (AT)T = A.

Proof. Let A = [a;j], A" = [bjj] and (A*)* = [¢;;]. Clearly, the order of A and (A*)* is the
same. Also, by definition ¢;; = bj; = @;; = a;j for all 4, j. .

1.3.2 Sum and Scalar Multiplication of Matrices

Definition 1.3.3. Let A = [a;;], B = [bi;] € M, »(C) and k € C.
1. . Then the sum of A and B, denoted A + B, is defined to be the matrix C' = [¢;;] €
Mmm((C) with ¢;; = a;; + b for all 7, j.
2. Then, the product of k € C with A, denoted kA, equals kA = [ka;;] = [a;jk] = Ak.
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1 4 5 1 —4 6
Example 1.3.4. If A = , B= then
01 2 1 1 7
2 0 11 5 20 25
A+ B = and 5A = .
1 9 0 5 10

Theorem 1.3.5. Let A, B,C € M,;,, ,(C) and let k, £ € C. Then

1. A+ B=B+ A (commutativity).

2. (A+B)+C=A+(B+C) (associativity).

3. k(tA) = (k0)A.

4. (k+0)A=kA+LA.
Proof. (1). Let A = [a;;] and B = [b;;]. Then by definition

A+ B = laig] + [big] = [aij + bis] = [bij + aij] = [bij] + [ai;] = B+ A

as complex numbers commute. The other parts are left for the reader. n
Definition 1.3.6. Let A € M, ,,(C). Then

1. the matrix 0,,x, satisfying A+ 0 =0+ A = A is called the additive identity.

2. the matrix B with A+ B = 0 is called the additive inverse of A, denoted —A = (—1)A.
EXERCISE 1.3.7. 1. Find non zero, non-identity matrices A satisfying

(a) A* = A (such matrices are called Hermitian matrices).

(b) A* = —A (such matrices are called skew-Hermitian matrices).
2. Suppose A = [a;j], B = [bij] € My, n(C).
(a) If A4+ B =0 then show that B = (—1)A = [—aj].
(b) If A+ B = A then show that B = 0.
3. Let A € M,(C). Then there exists matrices B and C such that A = B+C, where BT = B

(Symmetric matriz) and CT = —C' (skew-symmetric matriz).

1+i -1
4. Let A= | 2 3| and B =

i

2 3 -1
1 1—-i 2

] . Compute A+ B* and B + A*.

5. Write the 3 x 3 matrices A = [a;;] satisfying
(a) a;j =1 if i # j and 2 otherwise.
(b) aij =11if |i—j| <1 andO0 otherwise.
(¢) a;j=1+3].
(d) a;j =29,
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1.3.3 Multiplication of Matrices

We now come to the most important operation between matrices, called the matrix multipli-

cation. We define it as follows.

Definition 1.3.8. Let A = [a;j] € M, ,(C) and B = [b;;] € M, ,(C). Then, the product of A
and B, denoted AB, is a matrix C' = [¢;;] € M, »(C) such that for 1 <i<m, 1 <j<r

blj
. . b; &
Cij = A[Z, :]B[:,j] = [a,-l, A, . .- ,am} . = ailblj + aigbgj + -+ ambnj = Z aikbkj.
: k=1
| b ]

Thus, AB is defined if and only if the number of columns of A = the number of rows of
B. The way matrix product is defined seems quite complicated. Most of you have already seen
it. But, we will find other ways (3 more ways) to understand this matrix multiplication. These

will be quite useful at different stages in our study. So, we need to spend enough time on it.

1 -1

304 5
Example 1.3.9. Let A= 1|2 0| and B= 20 1].
0 1
1. Entry-wise Method: (AB);; =1-3+ (—1)-(—1) =3+ 1 = 4. Similarly, compute the
4 4 4
rest and verify that AB=| 6 8 10].

-1 0 1

2. Row Method: Note that A[l,:] is a 1 x 2 matrix and B is a 2 x 3 matrix and hence

A[l,:]B is a 1 x 3 matrix. So, matrix multiplication is defined. Thus,

AlLiB =1 —1}!_31 3 ﬂzl-[:a 45|+ (-1-[-1 0 1) =1 4 4
B =2 0] -_31 g ﬂ—z-[g 4 5/+0- -1 0 1] =[6 8 10]
A8 = o 1] __31 ;L ﬂzo-[s 4 5| +1 -1 0 1] =[-1 0 1].
AL, ] AL, ] A[l,:B 4 4 4
Hence, if A= | A[2,:]| then AB = [A[2,:]|B= |A]2,:]B| = |6 8 10].
A[S,:]_ A3, ] A[3,:]B -1 0 1

3. Column Method: Note that A is a 3 X 2 matrix and B[:, 1] is a 2 X 1 matrix and hence
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A(B[:,1]) is a 3 x 1 matrix. So, matrix multiplication is defined. Thus,

1 1] - 1 1 4
ABRI =2 0| =2l 34 0] —1=]6
1|t 0 1 1
. . L - ]
AB2=2 0| 1= |2/ 4+ 0] 0=
O L
1 1] = 1] 1] [ 4
A-BLA =2 0[] =25+ 0] 1= 10
0 = 1
Thus, if B = |B[..1] B[.2] B[.3]| then
_ 4 4 4
AB=A[B[1 B2 B3| =|A-Bl1 A BL2 A-BL3|=|6 8 10
) -1 0 1
. . Bl1,]
4. Matrix Method: We also have if A = [A[:,l] A[:,Q}} and B = B2, then A, 1]

is a 3 x 1 matrix and BJ[1,:] is a 1 x 3 -matrix. Thus, the matrix product A[:,1] B[1,:] is
defined and is a 3 x 3 matrix. Hence,

1 1
AR 1B + AR 2)BR = [2{[3 4 5]+ |0 |[-1 0 1
0 1
(3 4 5 1 0 -1 4 4 4
=16 8 10/+|0 0 o|=]|6 8 10|
00 0| |-10 1 10 1

Remark 1.3.10. Let A € M, ,(C) and B € M, ,(C). Then the product AB is defined and

observe the following:

1. AB corresponds to operating (combining certain multiples of rows) on the rows of B. This

is called the row method for calculating the matriz product. Here,

(AB)i,:] = Ali,:]|B =anB[l,:] + -+ ainB[n,:], for 1 <i<m.

2. AB also corresponds to operating (combining certain multiples of columns) on the columns

of A. This is called the column method for calculating the matriz product. Here,

(AB)[:,j] = AB[:, j] = A[;, 1]by; + - - + A[, n]bnj, for 1 <j <p.
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All,:]
. Write A = and B = |B[:;,1] --- B[:,p]] then
Alm, 3]
[ A[1L,:B[:, 1] A[l,:]B[:,2] A[L,:]B[:,p |
B — A[2,:]B[:, 1] A[2,:']B[:,2] A[2,:]B[;, p]
| Alm,:]B[:, 1] A[m,:|B[:, 2] Alm,:|B[:,pl |
BI[1,:]
. Write A = [A[:,l] -« Al:yn]| and B = . Then
Bln,:]

AB = A[;,1]B[1,:] + A[;,2]B[2,:] + - - - + A[:,n] B[n,].

. If m # p then the product BA is NOT defined.

1
. Let m = p. Here BA and AB can still be different. For example, if A = |2| and B =
3
-1 2 3
[—1 2 3} then AB = |—-2 4 6| whereas BA=—14+4+9=12. As matrices, they
-3 6 9

look quite different but it will be shown during the study of eigenvalues and eigenvectors

that they have similar structure.

. If m = n = p, then the orders of AB and BA are same. FEven then AB may NOT equal

1

BA. For example, if A = and B =

2 2
whereas
-2 — 2]

1 1
then AB =
11

BA =

0
ol Thus, AB # BA and hence

(A+B)? =A%+ AB+ BA+ B> # A? + B2 + 24B.

1

2 3 3
Whereas if C = L 9 then BC' = CB =

=3A# A= CA. Note that cancella-

tion laws don’t hold.

Definition 1.3.11. T'wo square matrices A and B are said to commute if AB = BA.

Theorem 1.3.12. Let A € M, ,(C), B € M, ,(C) and C € M, 4(C).

1. Then (AB)C = A(BC), i.e., the matriz multiplication is associative.

2. For any k € C, (kA)B = k(AB) = A(kB).
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3. Then A(B + C) = AB + AC, i.e., multiplication distributes over addition.

4. If A€ M,,(C) then Al, = I,A = A.

n

P
Proof. (1).  Verify that (BC)y; = > brecej and (AB)y = Y aibre. Therefore,
=1

k=1
n o p
(A(BC'))Z-j = Zam (BC), Zazk Zbu% Zaik(bkécéj)
= k=1 =1¢=1
n p p n T
= azkbké Cpj = Z Zaikzbké)céj = Z(AB) Cej = ((AB)C)”
k=1 (=1 =1 k=1 =1

Using a similar argument, the next part follows. The other parts are left for the reader. =
EXERCISE 1.3.13. 1. Let A € M,,(C) and e1,...,e, € M, 1(C) (see Definition 5). Then
(a) Aey = A[:,1],..., Ae, = A[:,n].
(b) el A=efA=A[l,],...,elA=e A= Aln,:].

2. Let Ly, Ly € M,,(C) be lower triangular matrices. If D € M,,(C) is a diagonal matrixz then

(a) LiLy is a lower triangular matriz.

(b) DLy and L1 D are lower triangular matrices.

The same holds for upper triangular matrices.
3. Let A € My, ,(C) and B € M, ,(C).

(a) Prove that (AB)* = B*A*.

(b) If A[1,:] = OT then (AB)[L,:] = 07.

(c) If B[:,1] = 0 then (AB)[;,1] = 0.

(d) If Ali,:] = Alj,:] for some i and j then (AB)[i,:] = (AB)[j,:].
(e) If Bl:,i| = Bl:, j]| for some i and j then (AB)[:,i] = (AB)[:, j].

4. Construct matrices A and B that satisfy the following statements.

(a) The product AB is defined but BA is not defined.

(b) The products AB and BA are defined but they have different orders.

(¢) The products AB and BA are defined, they have the same order but AB # BA.
(d) Construct a 2 x 2 matriz satisfying A? = A.

S 011
(e) Let A= 01 and B= [0 0 1|. Guess a formula for A™ and B" and prove it?
00 0 00
- 111 111
(f) Let A = é ) ,B=10 1 1| andC = |1 1 1|. Isittrue that A>—2A+1 =07
- - 0 01 1 11
What is B® —3B* +3B — 1? Is C* = 3C?
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5. Let A€ My, »n(C). If Ax =0 for all x € M, 1(C) then A =0, the zero matriz.

6. Let A, B € M, ,(C). If Ax = Bx, for all x € M, 1(C) then prove that A = B.

I n
n n
7. Letx= | |,y= 11| €Mu1(C). Theny*x = > yim;, x*x = Y |z;|%,
i=1 i=1
Tn, Yn
S - -
_ _ _ |901\ Tix2 - T1Tp
Ty TY2 o Tl _ 5 _
. ) ; . Y L R
xy" = : : and xx* =
B R Eon o

8. Let A be an upper triangular matriz. If A*A = AA* then prove that A is a diagonal

matriz. The same holds for lower triangular matrix.

9. Let A be a 3 x 3 upper triangular matrixz with diagonal entries a,b,c. Then
(A —al3)(A—0bl3)(A—cl3) =0.

Note that (A — al3)[:,1] = 0. So, if A[:,1] =0 then B[1,:] doesn’t play any role in AB.

10. Let A and B be two m x n matrices. Then, prove that (A+ B)* = A* + B*.

11. Find A,B,C € My(C) such that AB = AC but B # C (Cancellation laws don’t

hold).
010
12. Let A= |0 0 1|. Compute A% and A3. Is A3 = I? Determine aA® + bA + cA>.
1 00

1.3.4 Inverse of a Matrix

Definition 1.3.14. Let A € M,,(C). Then
1. B € M,(C) is said to be a left inverse of A if BA = I,,.
2. C € M,,(C) is called a right inverse of A if AC = I,.
3. Ais invertible (has an inverse) if there exists B € M,,(C) such that AB = BA = I,.

Lemma 1.3.15. Let A € M,,(C). If there exist B,C € M,,(C) such that AB = I, and CA = I,
then B = C, i.e., If A has a left inverse and a right inverse then they are equal.

Proof. Note that C = CI,, = C(AB) = (CA)B = I,B = B. .
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Remark 1.3.16. Lemma 1.5.15 implies that whenever A is invertible, the inverse is unique.
Thus, we denote the inverse of A by A~'. That is, AA~' = A~1A=1.

Theorem 1.3.17. Let A and B be two invertible matrices. Then,

Proof. (1). Let B = A~'. Then AB = BA = I. Thus, by definition, B is invertible and
B~! = A. Or equivalently, (A™1)~! = A.

(2). By associativity (AB)(B~'A™!) = A(BB 1) A ' =1 = (B 'A Y (AB).

(3). As AA™ ' = A"1A =1, we get (AA1)* = (A7LA)* = I'*. Or equivalently, (A~1)*A* =
A*(A™H* = I. Thus, by definition (4*)~! = (A71)*. =

We will again come back to the study of invertible matrices in Sections 2.4 and 2.8.
EXERCISE 1.3.18. 1. If A is an invertible matriz then (A=Y = A~", for all r € N.

2. If A1, ..., A, are invertible matrices then B = A1 Ao --- A, is also invertible.

3. Find the inverse of [(:(.)S(H) sin(ﬁ)] and [C(.)s(ﬁ) —sin(@)]‘
sin(f)  — cos(f) sin(d)  cos(f)

4. Let A € M,,(C) be an invertible matriz. Then

(a) Ali,:] # 0T, for any i.

(b) Al:,j] # 0, for any j.

(c) Ali,:] # Alj,:], for any i and j.

(d) A[:,i] # A[:, 5], for any i and j.

(e) A[3,:] # aA[l,:] + BA[2,:], for any o, B € C, whenever n > 3.

(f) Al:, 3] # aAl:, 1] + BA]:, 2], for any «, 5 € C, whenever n > 3.

1 2

5. Determine A that satisfies (I +3A)~1 = 1

6. Let A be an invertible matriz satisfying A> + A — 21 = 0. Then A~! = (A2 + I).

N |

7. Let A = [a;j] be an invertible matriz and B = [p*Ja;j], for some p € C, p # 0. Then
B~ = [p (A7)
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1.4 Some More Special Matrices

Definition 1.4.1. 1. For 1 <k <m and 1 < ¢ < n, define ey € M,, ,(C) by
(exe) 1, if (k,6) = (4,])
€Lr)ii —
M 0, otherwise.

Then, the matrices exp for 1 < kK < m and 1 < £ < n are called the standard basis

elements for M, ,,(C).

1 ool [ 01 0] [1
So, if ey € Mz 3(C) th = =1a O 0pe2= =010
o ifeye € Mya(C) then eny [0 0 0] H[ J-en [O 0 0] H[ |

0 0 O 0
and egy = =
010 1

o0 1 0]

T — eje*, for 1 <i,j < n.

In particular, if e;; € M,(C) then e;; = e;e; :
1 3
3 2|

2. Let A € M,,(R). Then

(a) A is called symmetric if AT = A. For example, A =

0 3
(b) A is called skew-symmetric if A7 = —A. For example, A = 3 0] :
. T T 11 1
(c) A is called orthogonal if AA" = A* A= I. For example, A = VATl

(d) A is said to be a permutation matrix if A has exactly one non-zero entry, namely

0 1
1, in each row and column. For example, I, for each positive integer n, [1 0],

0 1
0 0 are permutation matrices. Verify that per-

1 0 0
mutation matrices are Orthogonal matrices.

0 0 1 1
, 10 1 0] and 0
1 00 0

o = O
= o O

3. Let A € M,,(C). Then

(a) A is called normal if A*A = AA*. For example,

] . .
. ] is a normal matrix.
v 1

1 1+i
(b) A is called Hermitian if A* = A. For example, A = . ;l .
—1i
. e 0 1+i
(c) A is called skew-Hermitian if A* = —A. For example, A = ii oo |
—1+1
. . . 1 |1+i 1
(d) A is called unitary if AA* = A*A = I. For example, A = — .
V3| -1 1-i

Verify that Hermitian, skew-Hermitian and Unitary matrices are normal matrices.

4. A vector u € M, 1 (C) such that u*u =1 is called a unit vector.



20

. A matrix A is called idempotent if A2 = A. For example, A =

CHAPTER 1. INTRODUCTION TO MATRICES

0
0] is idempotent.

. An idempotent matrix which is also Hermitian is called a projection matrix. For example,

if u € M, 1(C) is a unit vector then A = uu* is a Hermitian, idempotent matrix. Thus A

is a projection matrix.

In particular, if u € M, 1 (R) is a unit vector then A = uu?. Then verify that u’ (x—Ax) =

u’x —ulAx = u"x — u”(uu?)x = 0 (as u’u = 1), for any x € R?. Thus, with respect

to the dot product in R?, Ax is the foot of the perpendicular from the point x on the

vector u. In particular, if u = %[1,2,—1]T and A = uu’. Then, for any vector

x = |11, 72, 73]7 € M3 1(R),

TX)_JT1+21‘2—333 w1+ 2w — 23

u= 1,2,—1]7.

Ax = (uu

. Fix a unit vector u € M, 1(R) and let A = 2uu’ — I,,. Then, verify that A € M,,(R) and

Ay = 2(uly)u—y, for all y € R”. This matrix is called the reflection matrix about the
line, say ¢, containing the points 0 and u. This matrix fixes each point on the line ¢ and

send the vector v, which is orthogonal to u, to —v.

. Let A € M,,(C). Then, A is said to be nilpotent if there exists a positive integer n

such that A™ = 0. The least positive integer k for which A* = 0 is called the order of
nilpotency. For example, if A = [a;;] € M,,(C) with a;; equal to 1 if i — j = 1 and 0,
otherwise then A" =0 and A* #0 for1 </ <n—1.

EXERCISE 1.4.2. 1. Consider the matrices e;; € M, (C) for1 <i,j,<n. Isejsei; = ej1e12?

What about €12€929 and €92€192 ?

. Let {uy,us,u3} be three vectors in R® such that wu, =1, for 1 <i <3, and uju; =0

whenever i # j. Prove the following.

(a) If U = [u; ug ug] then U*U = I. What about UU* = ujuj + ugub + uguj?

(b) If A=, for 1 <i <3 then A2 = A. Is A Hermitian? Is A a projection matriz?
(¢) If A=u;u; +ujuj, fori# j then A? = A. Is A a projection matriz?

. Let A be an n x n upper triangular matriz. If A is also an orthogonal matrix then A is a

diagonal matriz with diagonal entries £1.

. Prove that in M5(R), there are infinitely many orthogonal matrices of which only finitely

many are diagonal (in fact, there number is just 32).

. Prove that permutation matrices are real orthogonal.
. Let A, B € M,,(C) be two unitary matrices. Then both AB and BA are unitary matrices.

. Let A € M,,(C) be a Hermitian matriz.

(a) Then the diagonal entries of A are necessarily real numbers.
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(b) Then, for any x € M, 1(C). x*Ax is a real number.
(¢) For each B € M,,(C) the matrix B*AB is Hermitian.
(d) Further, if A2 =0 then A=0.

8. Let A € M,,(C). Ifx*Ax € R for every x € M, 1(C) then A is a Hermitian matriz. [Hint:
Use ej,e; + e, and e; +iey, of M, 1(C) for x.]
9. Let A and B be Hermitian matrices. Then AB is Hermitian if and only if AB = BA.

10. Let A € M,,(C) be a skew-Hermitian matriz. Then prove that

(a) the diagonal entries of A are either zero or purely imaginary.
(b) for each B € M,,(C) prove that B*AB is a skew-Hermitian matrix.
(¢) Then, for any x € M, 1(C), x*Ax is either 0 or purely imaginary.

11. Let A € M,(C). Then A = S1+5S5, where S; = $(A+A*) is Hermitian and S = 3(A—A*)

is skew-Hermitian.

12. Let A, B be skew-Hermitian matrices with AB = BA. Is the matrizc AB Hermitian or

skew-Hermitian?

13. Let A be a nilpotent matriz. Then prove that I + A is invertible.

1 0 0 1 0 0
14. Let A = |0 cosf —sinf| and B = |0 cosf sin|, for @ € [—m, m). Are they
0 sinf  cosf 0 sinf —cosf
orthogonal?

1.5 Submatrix of a Matrix

Definition 1.5.1. For k € N, let [k] ={1,...,k}. Also, let A € M, (C).

1. Then, a matrix obtained by deleting some of the rows and/or columns of A is said to be

a submatrix of A.

2. If S C [m] and T' C [n] then by A(S|T) , we denote the submatrix obtained from A by
deleting the rows with indices in S and columns with indices in 7. By A[S, T, we mean
A(S¢|T°), where S¢ = [m]\ S and T° = [n] \ T. Whenever, S or T consist of a single
element, then we just write the element. If S = [m], then A[S,T| = A[;,T] and if T = [n]
then A[S,T] = A[S,:] which matches with our notation in Definition 1.2.1.

3. If m = n, the submatrix A[S, S] is called a principal submatrix of A.

Lds . Then, A[{1,2},{1,3}] = A[;,{1,3}] = [1 5],

Example 1.5.2. 1. Let A =
1 0 2

1

A1) = (1), A[2,3) = 2, AL 21 1) = Al 1 = | AL {1,3)] = [15] and A are a fow

1 4 1
sub-matrices of A. But the matrices L O] and [0 are not sub-matrices of A.
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1 2 3
1 3
2 Let A= |5 6 7|,5={1,3} and T = {2,3}. Then, A[S,S] = [9 | A 18)= 6],
9 8 7
6 7 . .
AT, T) = X 7] and A(T' |T) = [1] are principal sub-matrices of A.

Let A € M, ,,(C) and B € M, ,(C). Then the product AB is defined. Suppose r < m.

Then A and B can be decomposed as A = [P Q] and B =

H
K]’ where P € M,,,(C) and
H € M, ,(C) so that AB = PH + QK. This is proved next.

Theorem 1.5.3. Let the matrices A, B, P, H,Q and K be defined as above. Then
AB = PH + QK.

Proof. Verify that the matrix products PH and QK are valid. Further, their sum is defined
as PH, QK S Mn,p((c) 1\IOW7 let P = [P’ij]y Q = [Qij]a H = [Hij]; and K = [KU] Then, for
1<i<nandl1<j<p, we have

m T m T m
(AB)ij = Y awbij =Y awbij+ Y ainbij = > PuHej+ Y QuKy;
k=1 k=1 k=1

k=r+1 k=r+1
= (PH); + (QK)ij = (PH +QK)j-

Thus, the required result follows. n
Remark 1.5.4. Theorem 1.5.3 is very useful due to the following reasons:

1. The matrices P,Q, H and K can be further partitioned so as to form blocks that are either
identity or zero or have certain mice properties. So, such partitions are useful during

different matrixz operations. Examples of such partitions appear throughout the notes. For

I, 0
example, let A = o ol P = [Pl P2:| and Q) = ?21] . Then, verify that PAQ = P1Q1.

2
This is similar to the understanding that

ail ai2| |y1
[561 962} = 21011Y1 + T1012Y2 + T2a21Y1 + T2022Y2.
a1 a2 |Y2

2. Suppose one wants to prove a result for a square matriz A. If we want to prove it using
induction then we can prove it for the 1 x 1 matriz (the initial step of induction). Then

assume the result to hold for all k X k sub-matrices of A or just the first k x k principal

B

XT a

the result holds for B and then one can proceed to prove it for A.

sub-matrixz of A. At the next step write A = , where B is a k X k matrixz. Then

EXERCISE 1.5.5. 1. Complete the proofs of Theorems 1.8.5 and 1.3.12.

1
2. Letx = [ ],y:
T2

Y1 cosa —sina

Y2

A=

] and B =

cos(20)  sin(20)
sin(20) —cos(20) |

sina  cosa
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(a) Then'y = Ax gives the counter-clockwise rotation through an angle .
(b) Then'y = Bx gives the reflection about the line y = tan(0)x.

(c) Let o = 6 and compute'y = (AB)x andy = (BA)x. Do they correspond to reflec-
tion? If yes, then about which line(s)?

(d) Further, if y = Cx gives the counter-clockwise rotation through 8 andy = Dx gives
the reflections about the line y = tan(d) x. Then prove that

i. AC =CA andy = (AC)x gives the counter-clockwise rotation through o + .
it. y = (BD)x and y = (DB)x give rotations. Which angles do they represent?

3. Let A € M,,(C). If AB = BA for all B € M,,,(C) then A is a scalar matriz, i.e., A = ol

for some o € C (use the matrices e;; in Definition 1.4.1.1).

4. For Apxn = [a;j], the trace of A, denoted tr(A), is defined by tr(A) = a11 +axn +---+ann.
2 4 —

and A = 3 .
2 ) 1

1 1
-9 -3

(c) Let A and B be two square matrices of the same order. Then
i. tr(A+B) =tr(A) +tr(B).
ii. tr(AB) = tr(BA).
(d) Does there exist matrices A, B € M,(C) such that AB — BA = cI, for some ¢ # 07

(a) Compute tr(A) for A=

1

(b) Let A be a matriz with A 0 and A . Determine tr(A)?

5. Let J € M,(R) be a matriz having each entry 1.

(a) Verify that J =117, where 1 is a column vector having all entries 1.
(b) Verify that J?> = n.J.
(c) Also, for any ay, a9, 1, B2 € R, verify that there exist as, f3 € R such that

(clp + B1J) - (agly + BoJ) = asly, + [3J.

(d) Let a, B € R such that o # 0 and a+nf # 0. Now, define A = al, + 3J. Then,

use the above to prove that A is invertible.

6. Suppose the matrices B and C are invertible and the involved partitioned products are
defined, then verify that that

0 Cc-1
B! —B-lAc!

A B
c o

A
1*1 * , where A11 € M, (C) is invertible and ¢ € C.
\ANe

7. Let A=
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(a) If p=c— y*Al_llx is mnon zero, then verify that

A1 — Ay 0 Jr} Af'x { £ g1 _1}
0 o p| -1 H
0 —-1|2 0 —1 2
(b) Use the above to find the inverse of 1 14| and 3 1| 4
2 11 2 5[-3

8. Let x € M, 1 (R) be a unit vector (recall the reflection matriz).

(a) Define A = I, — 2xx*. Prove that A is symmetric and A?> = I. The matriz A is

commonly known as the Householder matrix.

(b) Let o # 1 be a real number and define A = I,, — axx’. Prove that A is symmetric

and invertible. [The inverse is also of the form I, + fxxT, for some B.]

9. Let A € M,(R) be an invertible matriz and let x,y € M, 1(R). Also, let B € R such that
a=1+ByT A x #0. Then, verify the famous Shermon-Morrison formula
B

—CA xyTAY
o

(A+pxy")t=A""

This formula gives the information about the inverse when an invertible matriz is modified

by a rank (see Definition 2.5.1) one matriz.

10. Let A € M, n(C). Then, a matrizx G-€ My, ,,(C) is called a generalized inverse (for
short, g-inverse) of A if AGA = A.
1 -2«
o

for all o € R. So, for a fixed singular matriz A, there are infinitely many g-inverses.

(a) For example, a generalized inverse of the matriz A = [1,2] is a matriz G =

(b) A generalized inverse G is called a pseudo inverse or a Moore-Penrose inverse
if GAG = G and the matrices AG and GA are symmetric. Thus, verify that AG and
GA are both idempotent matrices. It can also be shown that the pseudo inverse of a

2
matriz is unique. Check that for a = R the matriz G is a pseudo inverse of A.

(¢) It turns out that among all the g-inverses, the inverse with the least euclidean norm

is the pseudo inverse.

1.6 Summary

In this chapter, we started with the definition of a matrix and came across lots of examples.

We recall these examples as they will be used in later chapters to relate different ideas:
1. The zero matrix of size m x n, denoted 0,,x, or O.
2. The identity matrix of size n x n, denoted I, or I.

3. Triangular matrices.
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4. Hermitian/Symmetric matrices.

5. Skew-Hermitian/skew-symmetric matrices.
6. Unitary/Orthogonal matrices.

7. Idempotent matrices.

8. Nilpotent matrices.

We also learnt product of two matrices. Even though it seemed complicated, it basically

tells that multiplying by a matrix on the
1. left of A is same as operating on (playing with) the rows of A.
2. right of A is same as operating on (playing with) the columns of A.

The matrix multiplication is not commutative. We also defined the inverse of a matrix. Further,
there were exercises that informs us that the rows and columns of invertible matrices cannot

have certain properties.
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Chapter 2

System of Linear Equations

2.1 Introduction

We start this section with our understanding of the system of linear equations.
Example 2.1.1. Let us look at some examples of linear systems.

1. Suppose a,b € R. Consider the system ax = b in the variable z. If

|

(a) a # 0 then the system has a UNIQUE SOLUTION x =
(b) a=0 and

i. b # 0 then the system has NO SOLUTION.

a’

ii. b =0 then the system has INFINITE NUMBER OF SOLUTIONS, namely all z € R.

2. Recall that the linear system ax + by = ¢ for (a,b) # (0,0), in the variables z and y,

represents a line in R2. So, let us consider the points of intersection of the two lines
a1x + b1y = ¢1, asx + boy = co, (2.1.1)

where a1, as, b1, ba, c1,c0 € R with (a1,b1), (az,b2) # (0,0) (see Figure 2.1 for illustration

of different cases).

No Solution Infinite Number of Solutions Unique Solution: Intersecting Lines
Pair of Parallel lines Coincident Lines P: Point of Intersection

Figure 2.1: Examples in 2 dimension.

(a) UNIQUE SOLUTION (a1bs — agb; # 0): The linear system 2 —y = 3 and 2x + 3y = 11

4
has [x] = L] as the unique solution.

27
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(b) NO SOLUTION (a1by — a2b; = 0 but ajca — agep # 0): The linear system z + 2y = 1

and 2z + 4y = 3 represent a pair of parallel lines which have no point of intersection.

(¢) INFINITE NUMBER OF SOLUTIONS (a1by — agb; = 0 and ajce —aze; = 0): The linear

system = + 2y = 1 and 2z 4+ 4y = 2 represent the same line. So, the solution set
C1=2y| |1
Y

0
(1L : :
i [0] corresponds to the solution = 1,y = 0 of the given system.

x

Y

+ty

-2
equals [ . ] with y arbitrary. Observe that the vector

-2
ii. [ ) ] gives ¢ = —2,y = 1 as the solution of x + 2y = 0,22 + 4y = 0.

(d) If the linear system az + by = ¢ has
i. (a,b) =(0,0) and ¢ # 0 then ax + by = ¢ has no solution.

ii. (a,b,¢) =(0,0,0) then ax+by = ¢ has INFINITE NUMBER OF SOLUTIONS, namely
whole of R2.

Let us now look at different interpretations of the solution concept.

Example 2.1.2. Observe the following of the linear system in Example 2.1.1.2a.

1. ] corresponds to the point of intersection of the corresponding two lines.
. . e . 1 -1
2. Using matrix multiplication, the given system equals Ax = b, where A = 5 3|
3 3 1|[3 4
x=|" and b = . So, the solution is x = A~'b = % = .
Y 11 -2 1|11 1
" 1 -1 3 . 1 -1 3 )
3. Re-writing Ax = b as T + Yy = gives us 4 +1 = This
2 3 11 2 3 11

corresponds to addition of vectors in the Euclidean plane.

Thus, there are three ways of looking at the linear system Ax = b, where, as the name
suggests, one of the ways is looking at the point of intersection of planes, the other is the vector
sum approach and the third is the matrix multiplication approach. We will see that all the

three approaches are fundamental to the understanding of linear algebra.

Definition 2.1.3. A system of m linear equations in n variables x1,x2,...,2, is a set of

equations of the form

ai1x1 + aip®s + -+ ax, = b

agx1 + anrs + -+ awmr, = by
(2.1.2)

Am1T1 + a2 + - + ATy = by

where for 1 <i <m and 1 < j < n; a;;,b; € R. The linear system (2.1.2) is called homoge-

neous if b = 0= by = --- = b, and non-homogeneous, otherwise.



2.1. INTRODUCTION 29

air a2 - Glp
1 b1

. agy a2 - A2q
Definition 2.1.4. Let A = | | o ~|,x=|:] and b= | : |. Then, Equa-

Tn, bm
Am1 Am2 ° Gmn
tion (2.1.2) can be re-written as Ax = b, where A is called the coefficient matrix and the

block matrix [A b] is called the augmented matrix .

In the above definition, note the following.

1. the i-th row of the augmented matrix, namely, ([A b])[i,:], corresponds to the i-th linear

equation.

2. the j-th column of the augmented matrix, namely, ([A b])[:, j]|, corresponds to the j-th

unknown /variable whenever 1 < j < n and

3. the (n + 1)-th column, namely ([A b])[:,n + 1], corresponds to the vector b.

Definition 2.1.5. Consider a linear system Ax = b. Then
1. a solution of Ax = b is a vector y such that the matrix product Ay indeed equals b.
2. the set of all solutions is called the solution set of the system.

3. this linear system is called consistent if it admits a solution and is called inconsistent

if it admits no solution.

1 1 1 1 0
For example, Ax = b, with A= |1 4 2] and b= [0| has -1 as the solution set.
4 1.1 1 2

2

11
Similarly, A = L 2] and b = [3] has as the solution set. Further, they are consistent

systems. Whereas, the system x + y = 2,2z + 2y = 3 is inconsistent (has no solution).

Definition 2.1.6. For the linear system Ax = b the corresponding linear homogeneous system

Ax = 0 is called the associated homogeneous system.
The readers are advised to supply the proof of the next remark.

Remark 2.1.7. Consider the linear system Ax = b with two distinct solutions, say u and v.
1. Then x5, = u — v is a non-zero solution of the associated homogeneous system Ax = 0.

2. Thus, any two distinct solutions of Ax = b differs by a solution of the associated homoge-
neous system Ax = 0, i.e., {Xo+Xp} is the solution set of Ax = b with xo as a particular

solution and xp, a solution of the associated homogeneous system Ax = 0.

3. Equivalently, A (au+ (1 — a)v) = cAu+ (1 —a)Av = ab+ (1 —a)b = b. Thus, the line

joining the two points u and v is also a solution of the system Ax = b.

4. Now, consider the associated homogeneous linear system Ax = 0.

(a) Then, x = 0, the zero vector, is always a solution, called the trivial solution.
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(b) Let w # 0 be a solution of Ax = 0. Then w is called a non-trivial solution. Thus
y = cw is also a solution for all ¢ € R. So, a non-trivial solution implies the solution

set has infinite number of elements.
k
(c) Let wi,...,wy be solutions of Ax = 0. Then, > a;w; is also a solution of Ax =0,
i=1
for each choice of a; € R;1 <4 < k.

Example 2.1.8. Let A =

1 1
) .Thenxz[

] is a non-trivial solution of Ax = 0.

EXERCISE 2.1.9. 1. Consider a system of 2 equations in 3 variables. If this system is con-

sistent then how many solutions does it have?

2. Give a linear system of 3 equations in 2 variables such that the system is inconsistent

whereas it has 2 equations which form a consistent system.

3. Give a linear system of 4 equations in 3 variables such that the system is inconsistent
whereas it has three equations which form a consistent system.

4. Let Ax = b be a system of m equations in n variables, where A € M, ,,(R).

(a) Can the system, Ax = b have ezactly two distinct solutions for any choice of m and

n? Give reasons for your answer.

(b) Can the system Ax = b have only a finitely many (greater than 1) solutions for any

choice of m and n? Give reasons foryour answer.

2.2 Row-Reduced Echelon Form (RREF)

A system of linear equations can be solved by people differently. But, the final solution set
remains the same. In this section, we use a systematic way to solve any linear system which is

popularly known as the Guass - Jordan. We start with Gauss Elimination Method.

2.2.1 Gauss Elimination Method

To proceed with the understanding of the solution set of a system of linear equations, we start

with the definition of a pivot.

Definition 2.2.1. Let A be a non-zero matrix. Then, in each non-zero row of A, the left most
non-zero entry is called a pivot/leading entry. The column containing the pivot is called a
pivotal column.

If a;; is a pivot then we denote it by . For example, the entries ajo and as3 are pivots

03] 4 2

imA=10 0 0 0f. Thus, columns 2 and 3 are pivotal columns.
0 0 1

Definition 2.2.2. A matrix is in row echelon form (REF) (staircase/ ladder like)

1. if the zero rows are at the bottom:;
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2. if the pivot of the (i + 1)-th row, if it exists, comes to the right of the pivot of the i-th

TOW.

3. if the entries below the pivot in a pivotal column are 0.

Example 2.2.3. 1. The following matrices are in echelon form.
r 7 1] 2 0 5
0 4 2 10 2 3 0 6 0 0
0 0 [1] 1|,l0 0 0 [3] 4], and |0 [1] 0.
0 0 0
0 0 0 0f |0 00 O 0 0

0 0 0 O

2. The following matrices are not in echelon form (determine the rule(s) that fail).

0 [1] 4 2] 1] 10 2 3

0 0 0 Oland |0 0 0 0 [1]|.

0 0 [1] 1 0 0 0 [1] 4

We now start with solving two systems of linear equations. The idea is to manipulate the
rows of the augmented matrix in place of the linear equations themselves. Since, multiplying
a matrix on the left corresponds to row operations, we left multiply by certain matrices to
the augmented matrix so that the final matrix is in row echelon form (REF). The process of
obtaining the REF of a matrix is called the Gauss Elimination method. The readers should
carefully look at the matrices being multiplied on the left in the examples given below.

Example 2.2.4. 1. Solve the linear system y+ 2 =2, 20 4+32=5, x +y+ 2z = 3.
01 1 2

Solution: Let By = [A b, the augmented matrix. Then, Bo = |2 0 3 5|. We now
1 113

systematically proceed to get the solution.

(a) Interchange 1-st and 2-nd equations (interchange Byl[l,:] and By|[2,:] to get By).

20 +32 =5 01 0 035
y+z =2 Bi=|10 0{Bo=|0 1 1 2
r+y+z =3 00 1 1 113

1
(b) In the new system, replace 3-rd equation by 3-rd equation minus 5 times the 1-st

1
equation (replace B1[3,:] by Bi[3,:] — 531[1, ;] to get Ba).

20 +32 =5 1 00 0o 3 5
y+z =2 By=| 0 1 0/Bi=]0 12
—1z =1 ~1/2 0 1 0 1 -1/2 1/2

(¢) In the new system, replace 3-rd equation by 3-rd equation minus 2-nd equation

(replace Bs[3,:] by Ba[3,:] — B2[2,:] to get Bs).

204+32 =5 1 0 0 0o 3 5
y+z =2 By=10 1 0|Bx=]0 1 2
~3, =-3 0 -1 1 0 0 —3/2
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Observe that the matrix Bs3 is in REF. Using the last row of Bs, we get z = 1. Using
this and the second row of Bs gives y = 1. Finally, the first row gives x = 1. Hence,
the solution set of Ax = b is {[z,y,2]" | [,9,2] = [1,1,1]}, A UNIQUE SOLUTION. The
method of finding the values of the unknowns y and x, using the 2-nd and 1-st row of Bj

and the value of z is called back substitution.

2. Solve the linear system z +y+2=4, 20 +32=05, y+ z = 3.
111 4

Solution: Let By =[A b] = 0 3 5| be the augmented matrix. Then
1 1 3

(a) The given system looks like (correspond to the augment matrix By).

T+y+z =4 11 4
2¢+32z =5 Bo=|[2 0 3 5
y+z = 0 1 1 3

(b) In the new system, replace 2-nd equation by 2-nd equation minus 2 times the 1-st
equation (replace By[2,:] by By[2,:] — 2 - By[l,:] to get By).

r+y+z= 4 1 00 1 1 4
2y +z= -3 Bi=[-2 1 0|By=|0 1 -3].
y+z= 3 0 01 0 1 1 3

(¢) In the new system, replace 3-rd equation by 3-rd equation plus 1/2 times the 2-nd
equation (replace B1[3,:] by Bi[3,:] +1/2- B1[2,:] to get Bs).

r+ytz= 4 1 0 0 1 1 4
—2y+z= -3 Bo=10 1 o|lBi=1]0 1 -3
3 3
= 5 0 1/2 1 0 0 [3/2] 3/2

Observe that the matrix By is in REF. Verify that the solution set is {[x,y, 2|7 | [z,y,2] =
[1,2,1]}, again A UNIQUE SOLUTION.

In both the Examples, observe the following.

1. Each operation on the linear system corresponds to a similar operation on the rows of the

augmented matrix.

2. At each stage, the new augmented matrix was obtained by left multiplication by a matrix,
say E. Note that E is obtained by changing exactly one row of the identity matrix. The
readers should find the relationship between the matrix £ and the row operations that

have been made on the augmented matrix.

3. Thus, the task of understanding the solution set of a linear system reduces to understand-

ing the form of the matrix F.

4. Note that E corresponds to a row operation made on the identity matrix I3.
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5. Also, for each matrix F note that we have a matrix F', again a variant of I3 such that
EF =13=FE.

We use the above ideas to define elementary row operations and the corresponding elemen-
tary matrices in the next subsection.
2.2.2 Elementary Row Operations
Definition 2.2.5. Let A € M, ,(C). Then, the elementary row operations are

1. Ejj: Interchange the i-th and j-th rows, namely, interchange Ai,:] and A[j, :].

2. Ei(c) for ¢ # 0: Multiply the k-th row by ¢, namely, multiply Ak, :] by c.

3. Eij(c) for ¢ # 0: Replace the i-th row by i-th row plus c-times the j-th row, namely,
replace Afi,:] by Ali,:] + cAlj, .

Definition 2.2.6. A matrix F € M,,(R) is called an elementary matrix if it is obtained by

applying exactly one elementary row operation to the identity matrix I,,.

For better understanding we give the elementary matrices for m = 3.

Notation Operations on | Elementary Row Opera- | Elementary
Equations tions: A is 3 X n matrix Matrix
100
Es(c), ¢ # 0; | Multiply the 2-th | A[2;:] + cA[2,] c 0
Eix(c), c#0 row by ¢ 0 01
1 00
Esi(c), ¢ # 0; | Replace 2-th row by | A[2,:] « A[2,:] + cA[l,] c 10
Eij(c), c#0 2-nd row plus c-times 0 01
1-st row ] ]
0 0
Ess; Ej; Interchange 2-nd and | Interchange A[2,:] and A[3, ] 1
3-rd rows 010
100 1 -5 0 00 1]
Example 2.2.7. Verify that F5(5) = [0 5 0|, Ei2(=5)= (0 1 0| and Ey3=
0 01 0 0 1 10
are elementary matrices.
EXERCISE 2.2.8. 1. Which of the following matrices are elementary?
2 0 1| |4 o0l [t -1 0] |1 00| |00 1] |0 01
0 1 0(,|0 1 0}, 1 ;15 1 0],[0 1 O0f,|1 0 O
0 01 0 0 1 0 1 0 01 100 0 10
2. Find some elementary matrices Fn, ..., Ex such that Ey --- E; i ;] =1I5.
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We now give the elementary matrices for general n.

Example 2.2.9. Let ey,...,e, be the standard unit vectors of M, 1(R). Then, using el e; =
0= e?ei and e;fpei =1= efej, verify that each elementary matrix is invertible.

1. Eg(c) = I, + (c — 1)eel for ¢ # 0. Verify that
Ei(e)Ex(1/c) = (I + (c — Vegel) (I, + (1/c — Dege}) = I, = Ey(1/c) Ex(c).
2. Eij(c)=1I,+c eie]T for ¢ # 0. Verify that

Eij(C)Ei'(*C) = (In +c eie]T) (In — C eieJT) = In = Eij(*C)EZ'j(C).

3. Eij = I, —eie] —eje] +eje] +ejel. Verify that

_ ol ol ol ol ol ol ol o) —
EijE;; = (In —ee; —eje; +ee; +eje; ) (In —ee; —eje; +ee; +eje; ) =1,.

We now show that the above elementary matrices correspond to respective row operations.

Remark 2.2.10. Let A € M, ,(R).

1. For ¢ #0, Ei(c)A corresponds to the replacement of Alk,:] by cAlk,:].
Using el e, = 1 and Alk,:] = el A, we get

(Br(c)A)k,:] = ef (Ex(c)A) =ef (Im+(c—1)eref) A= (ef + (c— 1)e} (exe})) A
= (ef +(c—1)e})A=cel A= cAlk,].

A similar argument with el'e, =0, for i # k, gives (Ey(c)A)[i,:] = A[i,:], fori # k.

2. For ¢ # 0, E;j(c)A corresponds to the replacement of Ali,:] by Ali,:] 4+ cAlj, .

Using el'e; =1 and Ali,:] = el A, we get

(Eij(c)A)i,:] = eiT (Eij(c)A) = eiT (Im +c eie;‘.r) A= (eiT +c eiT(eie;fF)) A

= (el +¢ ejT) A = Ali,:| + cAlj,:].
A similar argument with ele; =0, for k # i, gives (E;;j(c)A)[k,:] = Alk,:], for k # i.
3. E;;A corresponds to interchange of Ali,:] and A[j,:].
Using el'e; = 1,el'e; = 0 and Ali,:] = el A, we get
(EiA),:] = eZT (Ei;A) = eZT (Im - eielT - eje? + eief + ejelT) A
= e;fr—e;fr—OT—Fe]T—FOT)A:e;‘FA:A[j7:]

Similarly, using e]Tej = l,e?ei = 0 and A[j,:] = e?A show that (E;jA)lj,:] = Ali,:].
Further, using ele; =0 = ele;, for k #i,j show that (E;;A)[k,:] = Alk,].

Definition 2.2.11. Two matrices A and B are said to be row equivalent if one can be

obtained from the other by a finite number of elementary row operations. Or equivalently,

there exists elementary matrices E1,..., Ey such that B = E;--- E A.
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Definition 2.2.12. The linear systems Ax = b and Cx = d are said to be row equivalent if

their respective augmented matrices, [A b] and [C' d], are row equivalent.

Thus, note that the linear systems at each step in Example 2.2.4 are row equivalent to each

other. We now prove that the solution set of two row equivalent linear systems are same.

Theorem 2.2.13. Let Ax = b and Cx = d be two row equivalent linear systems. Then they

have the same solution set.

Proof. Let Ei,...,Ej be the elementary matrices such that E;--- Ex[A b] = [C d]. Put
E=F; - FEg. Then

FEA=C, Eb=d, A=E'Candb=FE""d. (2.2.3)
Now assume that Ay = b holds. Then, by Equation (2.2.3)
Cy=FEAy=FEb=d. (2.2.4)
On the other hand if C'z = d holds then using Equation (2.2.3), we have
Az=E"'Cz=FE"'d=0. (2.2.5)

Therefore, using Equations (2.2.4) and (2.2.5) the required result follows. n

The following result is a particular case of Theorem 2.2.13.

Corollary 2.2.14. Let A and B be two row equivalent matrices. Then, the systems Ax = 0

and Bx = 0 have the same solution set.

100 1 0 a
Example 2.2.15. Are the matrices A= |0 1 0| and B= |0 1 b| row equivalent?
0 01 0 00

a
Solution: No, as | b | is a solution of Bx = 0 but it isn’t a solution of Ax = 0.
-1

The following exercise shows that every square matrix is row equivalent to an upper trian-

gular matrix. We will come back to this idea again in the chapter titled “Advanced Topics”.

EXERCISE 2.2.16. 1. Let A = [a;;] € M,(R). Then there exists an orthogonal matriz U
such that U A is upper triangular. The proof uses the following ideas.
(a) If A[l,:] = O then proceed to the next column. FElse, Al:,1] # 0.
(b) If Al:,1] = aey, for some o € Ry # 0, proceed to the next column. FElse, either
a11 =0 oray; #0.
(c) If a;x = 0 then left multiply A with Ey; (an orthogonal matriz) so that the (1,1)
entry of B = E1;A is non-zero. Hence, without loss of generality, let a1 # 0.

(d) Let [wy,...,w,])T =w € R with wy # 0. Then use the Householder matriz H such

that Hw = wiey, i.e., find x € R" such that (I, — 2xx)w = wie;.
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w1 *
Al
(f) Use induction to get Hy € M, _1(R) satisfying HyAx = Ti, an upper triangular

(e) So, Part 1d gives an orthogonal matriz Hy with H1 A =

matrix.

(9) Define H = !1
0 Ho

upper triangular matrix.

T w1 *
T

, an

] H,. Then H is an orthogonal matriz and HA =

2. Let A € M,(R) such that tr(A) = 0. Then prove that there exists a non-singular matriz
S such that SAS™! = B with B = [bij] and by =0, for 1 <i<n.

2.3 Initial Results on LU Decomposition

Consider the linear system Ax = b, where A € M,(R) and b € M,,(R) are known matrices and
x € M, (R) is the unknown matrix. Recall that in Example 2.2.4 we used the Gauss Elimination
method to get the REF of the augmented matrix. If the REF was [C d] then C' was an upper
triangular matrix. The upper triangular form of C was used during back substitution.

The decomposition of a square matrix A as LU, where L is a lower triangular matrix and U is
an upper triangular matrix plays an important role in numerical linear algebra. To get a better
understanding of the LU-decomposition (LU-factorization), we recall a few observations

and give a few examples.

1. Observe that solving the system Ax = b is quite easy whenever A is a triangular matrix.

2. As L is a triangular matrix, the linear system Ly = b can be easily solved. Let yg be a

solution of Ly = b.

3. Now consider the linear system Uz = y(y. As U is again triangular, this system can again
be easily solved. Let ug be a solution of Uz = yy. Then, zg is a solution of the system
Ax = b as

Azy = (LU)zo = L(Uzg) = Lyo = b.

Hence, we observe that solving the system Ax = b reduces to solving two easier linear systems,
namely Ly = b and Uz =y, where y is obtained as a solution of Ly = b.

To give the LU-decomposition for a square matrix A, we need to know the determinant of A,
namely det(A), and its properties. Since, we haven’t yet studied it, we just give the idea of the
LU-decomposition. For the general case, the readers should see the chapter titled “Advanced
Topics”. Let us start with a few examples.

0

Example 2.3.1. 1. Let A= . Then A cannot be decomposed into LU.

Forif, A= LU =

0
“ ¢ f then the numbers a, b, ¢, e, f, g € R satisfy
b c||0 ¢

ae=0,af =1,be =1 and bf + cg = 0.

But, ae = 0 implies either a = 0 or e = 0, contradicting either af =1 or be = 1.
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e 1

2. Let e >0 and A = ol Then, A = LU, where L = and U = S . Thus,

1 _1
€ €
comparing it with the previous example, we see that the LU-decomposition is highly
unstable.
1 2 1 0 1 2
3. Let A = . Then, for any choice of « # 0, L = and U = 5 | gives
2 2 2 « 0 —=

(e
A = LU. Check that if we restrict ourselves with the condition that the diagonal entries

of L are all 1 then the decomposition is unique.

111
4. Let A= |2 0 3|. Then, using ideas in Example 2.2.4.2 verify that A = LU, where
0 11
1 0 0 1 1 1
L=2 1 0jlandU= ({0 -2 1
0 —-1/2 1 0 0 3/2

5. Recall that in Example 2.2.4.2, we had pivots pivots at each stage. Whereas, in Exam-
ple 2.2.4.1, we had to interchange the first and second row to get a pivot. So, it is not
possible to write A = LU.

6. Finally, using A = LU, the system Ax = b reduces to LUx = b. Here, the solution of

4 4 1
Ly =b, forb= |5| equals y = | =3 |. This, in turn implies x = | 2| as the solution of
3 3/2 1

bothUx =y or Ax=Db

So, to proceed further, let A € M, (R). Then, recall that for any S C {1,2,...,n}, A[S,S]
denotes the principal submatrix of A corresponding to the elements of S (see Page 21). Then,
we assume that det(A[S, S]) # 0, for every S = {1,2,...,i},1 <i<n.

We need to show that there exists an invertible lower triangular matrix L such that LA is

an invertible upper triangular matrix. The proof uses the following ideas.

A
1. By assumption A[l, 1] = a;; # 0. Write A = s , where Agg isa (n—1)x (n—1).
Aoy Ago
0" ~1 . . .

2. Let L1 = , where x = — Ay1. Then Ly is a lower triangular matrix and

x I,_1 ai

LoA— 10" | lann A ain A1z _|an Aio
1A = = .
X Ipo1] |A21 As annX + Agy xAjp + Ao 0 xApp+ Ao

3. Note that (2,2)-th entry of L1 A equals the (1,1)-th entry of xAj3 + Age. This equals

a21

—1 - Al{1,2},{1,2
— [a12 a1n] + (Agp)y = 92— 20 1,2}, 41,2)] 7 0.
a1 a1 a1

anl

11
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24

. Thus, L is an invertible lower triangular matrix with L1 A =

~ 1
. Define L =
0
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au and (Al)ll 75 0.

1
Hence, det(A) = a1; det(A;) and det(A1[S,S]) #0, for all S C {1,2,...,n— 1} as

(a) the determinant of a lower triangular matrix equals product of diagonal entries and

(b) if A and B are two n x n matrices then det(AB) = det(A) - det(B).

. Now, using induction, we get Ly € M,,_1(R), an invertible lower triangular matrix, with

1’s on the diagonal such that LoA; = 17, an invertible upper triangular matrix.

OT ~ aill
Ly. Then, verify that LA =

Lo 1

] , is an upper triangular matrix

with L as an invertible lower triangular matrix.

-1
. Defining L = (L) , we see that L is a lower triangular matrix (inverse of a lower trian-

aill *

gular matrix is lower triangular) with A = LU and U = 0o T
1

] , an upper triangular

invertible matrix.

As mentioned above, we will again come back to this at a later stage.

Row-Reduced Echelon Form (RREF)

We now proceed to understand the row-reduced echelon form (RREF) of a matrix. This un-

derstanding will be used to define the row-rank of a matrix in the next section. In subsequent

sections and chapters, RREF is used to obtain very important results.

Definition 2.4.1. A matrix C is said to be in row-reduced echelon form (RREF)

if C' is already in REF,
if the pivot of each non-zero row is 1,

if every other entry in each pivotal column is zero.

A matrix in RREF is also called a row-reduced echelon matrix.

Example 2.4.2. 1. The following matrices are in RREF.

1] 0 0 5
0 [1] o -2 03006 (1] 10 0 o
0 0 [1] 1{,]0 0o o [1]f, and [0 0 0 [1] 0.
0 0 [1] 2
00 0 0] |0 0 0 0 0 00 0 [1]

0 0 0 0
Note that if we look at the pivotal rows and columns then I5 is present in the first two
matrices and I3 is there in the next two. Also, the subscripts 2 and 3, respectively, in I

and I3 correspond to the number of pivots.

2. The following matrices are not in RREF (determine the rule(s) that fail).

0 [3] 3 of (0[] 3 of |0o[1] 3 1
0 00 [1]l,l0 00 of,|0 0 0 [1].

0 00 of (0 0o0T[1]] {0 00 o
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Even though, we have two pivots in examples 1 and 3, the matrix I3 doesn’t appear as a

3
submatrix in pivotal rows and columns. In the first one, we have [0 1] as a submatrix

11
and in the third the corresponding submatrix is [O 1] .

We now give another examples to indicate its application to the theory of the system of

linear equations.

Example 2.4.3. Consider a linear system Ax = b, where A € Mj3(C) and A[:,1] # 0. If
[C d] = RREF([A b]) then what are the possible choices for [C' d] and what are its
implication?

Solution: Since there are 3 rows, the number of pivots can be at most 3. So, let us verify that
there are 7 different choices for [C' d] = RREF([A b]).

1. There are exactly 3 pivots. These pivots can be in either the columns {1,2,3}, {1,2,4}

and {1,3,4} as we have assumed A[:, 1] # 0. The corresponding cases are given below.

1 0 0 d
(a) Pivots in the columns 1,2,3=[C'd]= [0 1 0 ds|. Here, Ax = b is consistent.
0 0 1 ds
x dq
The UNIQUE SOLUTION equals |y | =|da |-
z ds
1 0 a O 1 aa 00
(b) Pivots in the columns 1,2,40r 1,3,4 = [C'd]equals [0 1 B 0|or |0 0 1 Of.
00 01 0 0 01

Here, Ax = b is inconsistent for any choice of «, 8 as there is a row of [0 0 0 1]. This

corresponds to solving 0 -z +0-y + 0-z = 1, an equation which has no solution.

2. There are exactly 2 pivots. These pivots can be in either the columns {1,2}, {1,3} or

{1,4} as we have assumed A[:, 1] # 0. The corresponding cases are given below.

1 0 a d; 1 o« 0 d;
(a) Pivots in the columns 1,2 or 1,3 = [C'd] equals [0 1 B dy| or |0 0 1 dsf-
0 00 O 0 00 O
Here, for the first matrix, the solution set equals
T di — az dq e
y| = |d2—Bz| = |d2| +2|=5],
z z ds 1

where z is arbitrary. Here, z is called the “Free variable” as z can be assigned any
value and x and y are called “Basic Variables” and they can be written in terms of

the free variable z and constant.
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1 a g
3. There is exactly one pivot. In this case [C'd]= |0 0 0 0 |. Here, Ax = b is consis-
00 0 O
tent and has INFINITE NUMBER OF SOLUTIONS for every choice of «, 5 as RREF([A b])
has no row of the form [0 0 0 1].

2.4.1 The Gauss-Jordan Elimination Method

So, having seen the application of the RREF to the augmented matrix, let us proceed with the
algorithm, commonly known as the Gauss-Jordan Elimination (GJE), which helps us compute
the RREF.

1. Input: A € M, ,(R).
. Output: a matrix B in RREF such that A is row equivalent to B.
. Step 1: Put ‘Region’ = A.

B~ w1

Step 2: If all entries in the Region are 0, STOP. Else, in the Region, find the leftmost
nonzero column and find its topmost nonzero entry. Suppose this nonzero entry is a;; = ¢

(say). Box it. This is a pivot.

5. Step 3: Interchange the row containing the pivot with the top row of the region. Also,
make the pivot entry 1 by dividing this top row by c. Use this pivot to make other entries

in the pivotal column as 0.

6. Step 4: Put Region = the submatrix below and to the right of the current pivot. Now,
go to step 2.

Important: The process will stop, as we can get at most min{m,n} pivots.

0 237
1111
Example 2.4.4. Apply GJE to
p pply 13 48
0 0 01
1. Region = A as A # 0.
111 111
0 2 37 0 2 37
2. Then, F12A = . Also, E31(—1)E12A = = B (say).
12 1 3 48 31(—1)E1g 0 2 3 7 (say)
0 0 01 0 0 01
2 37 Lbt
: | 0 303
3. Now, Region = |2 3 7| # 0. Then, Ex(5)B = 0 o9 3 7 = C(say). Then,
0 1
0 0 01
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—1 =5
0 5 =
0 3 7
E13(—1)E3(—2)C = 2 2| = D(say).
12(—1) E32(—2) o 0 o0 o (say)
0 0 0 1
0 3 3
0 0 o [1] 2 I
4. Now, Region = . Then, F34D = 2 2 |. Now, multiply on the left
0 1 0 0 0
0 0 0 0
0 -+ o0
0 [1] 2 o
by F13(3) and Eq3(5) to get 2 , a matrix in RREF. Thus, A is row
0 0 0
0 0 0 0
0 -1+ 0
0 [1] 2 o0
equivalent to F', where F' = RREF(A) = 2 .
0 0 0
0 0 0 0

5. Note that we have multiplied A on the left by the elementary matrices, Ei2, F31(—1),
E5(1/2), E32—2, E1a(—1), Esa, E23(=7/2), E13(5/2), i.e.,

E13(5/2)E23(—7/2)EsyE12(—1)E32(—2)E2(1/2)Es1(—1)E12A = F = RREF(A).
6. Or equivalently, we have an invertible matrix P such that PA = F = RREF(A), where

P = E13(5/2)Ea3(—7/2) B3y F1ao(—1) Esa(—2) Eo(1/2) B3y (—1) Ey.

0 0 1 0 1 1 3 0 -1 1
EXERCISE 2.4.5. Let A= |1 0 3|,B=(0 0 1 3| andC=|-2 0 3|. Determine
307 1100 -5

their RREF.

2.4.2 Results on RREF

The proof of the next result is beyond the scope of this book and hence is omitted.

Theorem 2.4.6. Let A and B be two row equivalent matrices in RREF. Then A = B.
As an immediate corollary, we obtain the following important result.

Corollary 2.4.7. The RREF of a matriz A is unique.

Proof. Suppose there exists a matrix A having B and C' as RREFs. As the RREFs are obtained
by left multiplication of elementary matrices, there exist elementary matrices F1,..., E; and
by, ..., Fysuch that B=FE---E;A and C = Fy --- FyA. Thus,

B :E1"-EkA:E1"'Ek(Fl-"Fg)_lc:El"'EkF[l-'-F{lFflC.

As inverse of an elementary matrix is an elementary matrix, B and C are are row equivalent.
As B and C are in RREF, using Theorem 2.4.6, B = C. "
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Remark 2.4.8. Let A € M, ,(R).
1. Then, the uniqueness of RREF implies that RREF(A) is independent of the choice of the
row operations used to get the final matriz which is in RREF.
2. Let B = EA, for some elementary matriz E. Then, RREF(A) = RREF(B).
3. Then RREF(A) = PA, for some invertible matriz P.

4. Let F = RREF(A) and B = [A[:,1],..., A[:, s]], for some s <n. Then,

RREF(B) = [F[,1],..., F[:, s]l.

Proof. By Remark 2.4.8.3, there exist an invertible matriz P, such that
F =PA=[PA[:,1],...,PA[,n]| = [F[,1],..., F[,n]].

But, PB = [PA[;,1],...,PA[,s]] = [F[,1],...,F[:,s]]. As F is in RREF, its first s
columns are also in RREF. Thus, by Corollary 2.4.7, RREF(PB) = [F[,1],..., F[, s]].
Now, a repeated application of Remark 2.4.8.2 implies RREF(B) = [F[:,1],..., F[:, s]].

Thus, the required result follows. "

Proposition 2.4.9. Let A € M,,(R). Then, A is invertible if and only if RREF(A) = I, i.e.,

every invertible matriz is a product of elementary matrices.

Proof. If RREF(A) = I, then there exist elementary matrices Eji,..., Ey such that I, =
RREF(A) = Ey--- ExA. As elementary matrices are invertible and product of invertible ma-
trices are invertible, we get A = (Ey---Ey)T!© Al = Fy--- E}.

Now, let A be invertible with B = RREF(A) = E; - -- E A, for some elementary matrices
FEy, ..., Er. As A and E;’s are invertible, the matrix B is invertible. Hence, B doesn’t have any
zero row. Thus, all the n rows of B have pivots. Therefore, B has n pivotal columns. As B
has exactly n columns, each column is a pivotal column and hence B = I,,. Thus, the required

result follows. n

EXERCISE 2.4.10. 1. Let A € M, ,(R). Then RREF(SA) = RREF(A), for any invertible
matriz S € My (R).

2. Let A € M,,(R) be an invertible matriz. Then, for any matriz B, define C = [A B} and

A I
D= .

2.4.3 Computing the Inverse using GJE
Recall that if A € M,,(C) is invertible then there exists a matrix B such that AB = I,, = BA.
So, we want to find a B such that

. Then, RREF(C) = [In A—lB} and RREF(D) =

ler -+ ey =L=AB=A[B[1] - Bl.nl|=[AB[1] - ABl.n]).

So, if B = [B[:7 1] -+ Bl[yn] } is the matrix of unknowns then we need to solve n-system

of linear equations ABJ:, 1] = ey,..., AB[:;,n] = e,. Thus, we have n-augmented matrices
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[A|ei],..., [A ] en]. So, in place of solving the n-augmented matrices separately, the idea of

GJE is to consider the augmented matrix
[A ‘ e e - en} = [A‘ In}.

Thus, if E' is an invertible matrix such that E[A ‘ In} = [In ‘ B} then FA =1, and F = B.
Hence, invertibility of F implies AE = I,, and hence, B = E = A~!. This idea together with
Remark 2.4.8.4 is used to compute A~! whenever it exists.

Let A € M,(R). Compute RREF(C), where C = [A I I,]. Then RREF(C) = [RREF(A) B.
Now, either RREF(A) = I, or RREF(A) # I,,. Thus, if RREF(A) = I,, then we must have
B = A7!. Else, A is not invertible. We show this with an example.

0 0 1|1 0O
Solution: Applying GJEto[A | I3)= |0 1 1[0 1 0 | gives
1 1 110 0 1
1 1 1{0 0 1 1 1 0/-1 01
Al 2 o1 1o 1 PreE 22 g 1 021 1
00 1|1 0 00 1|1 00O
1 00,0 =11
e T R
00 1|1 0
0o -1 1
Thus, A~'=|—-1 1 0
1 0 0
1 2 3 1 3 3
EXERCISE 2.4.12. Use GJE to compute the inverseA= |1 3 2| and B= |2 3 2
2 47 3 5 4

2.5 Rank of a Matrix

Recall that the RREF of a matrix is unique. So, we use RREF(A) to define the rank of a A.

Definition 2.5.1. Let A € M, ,(C). Then, the rank of A, denoted Rank(A), is the number
of pivots in the RREF(A).

Note that Rank(A) is defined using the number of pivots in RREF(A). These pivots
were obtained using the row operations. The question arises, what if we had applied column

operations? That is, what happens when we multiply by invertible matrices on the right?
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Will the pivots using column operations remain the same or change? This question cannot be
answered at this stage. Using the ideas in vector spaces, we can show that the number of pivots
do not change and hence, we just use the word Rank(A).

We now illustrate the calculation of the rank by giving a few examples.
Example 2.5.2. Determine the rank of the following matrices.
1. Rank(I;,) = n and Rank(0) = 0.

2. Let A = diag(dy,...,d,). Then, Rank(A) equals the number of non-zero d;’s.

12
3. Let A= 4l Then RREF(A) = = Rank(A4) = 1.

i 3 2 3
4. Let A= (|- Then RREF(4) = | | = Rank(4) =1

(100 10 0
5. Let A= |0 1 0|. Then RREF(4)= |0 1 0| = Rank(A)=2.

2 0 0 0 O
-2 =2 .

6. Let A = and B = . Then, Rank(A) = Rank(B) = 1. Also, verify that

-6 —12
AB = 0 and BA = [ 5 6 ] So, Rank(AB) = 0 # 1 = Rank(BA). Observe that A

and B are not invertible. So, the rank can either remain the same or reduce.

7. Let A=

N =

2
3
1

S ==
— N

1
2|. Then, Rank(A) = 2 as it’s REF has two pivots.
1

Remark 2.5.3. Before proceeding further, for A, B € My, ,(C), we observe the following.
1. If A and B are row-equivalent then Rank(A) = Rank(B).
2. The number of pivots in the RREF(A) equals the number of pivots in REF of A. Hence,
one needs to compute only the REF to determine the rank.
EXERCISE 2.5.4. Let A € M, ,(R).
1. Then Rank(A) < min{m,n}.

A C

2. If B= 0 then Rank(B) = Rank([A C]).
A

3. If B= then Rank(B) = Rank(A)

4. If A = PB, for some invertible matriz P then Rank(A) = Rank(B).

A A
5 IfA= 11 A12

Aoy AQJ then Rank(A) < Rank ({An A12D + Rank ([A21 A22D,
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We now have the following result.

Corollary 2.5.5. Let A € M, ,(R) and B € M, 4(R). Then, Rank(AB) < Rank(A).
In particular, if B € M, (R) is invertible then Rank(AB) = Rank(A).

Proof. Let Rank(A) = r. Then, there exists an invertible matrix P and A; € M, ,(R) such

A A AB
that PA = RREF(A) = "|. Then, PAB=|""|B=|"""]. So, using Remark 2.5.3 and
Exercise 2.5.4.2
A1B
Rank(AB) = Rank(PAB) = Rank = Rank(A;B) < r = Rank(A). (2.5.1)

In particular, if B is invertible then, using Equation (2.5.1), we get
Rank(A) = Rank(ABB™') < Rank(AB)
and hence the required result follows. =

Proposition 2.5.6. Let A € M, (C) be an invertible matriz and let S be any subset of {1,2,...,n}.
Then Rank(A[S,:]) = |S| and Rank(A[:, S]) = |5].

Proof. Without loss of generality, let S = {1,...,r} and S¢ = {r+1,...,n}. Write 4; = A[:, 5]
and Ay = A[:, S¢. Since A is invertible, RREF(A) = I,,. Hence, by Remark 2.4.8.3, there exists
an invertible matrix P such that PA = I,,. Thus;

0

[PA1 PAQ} - P[A1 Ag} —PA=1, = [i} ol

Thus, PA; = . So, using Corollary 2.5.5, Rank(A;) = r.

I
] and PAy; =
0

n—r

For the second part, let By = A[S,:], By = A[S¢,:] and let Rank(B1) =t < s. Then, by
Exercise 2, there exists an s x s invertible matrix ) and a matrix C' in RREF, of size ¢t x n and

having exactly ¢ pivots, such that
C
@B; = RREF(B;) = ol (2.5.2)

As t < s, QB has at least one zero row. Then

QR 0 . Q 0 ||Bi| |QB
0 I, 0 I, .||B2 By B,
As f)) I ] and A are invertible, their product is invertible. But, their product has a zero
n—r
row, a contradiction. Thus, Rank(Bj) = s. .

Let us also look at the following example to understand the prove of the next theorem.
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1 2 3 4 12 0 0

Example 2.5.7. Let A= (2 4 5 1|. Then RREF(A) = {0 0 1 0]|. Thus, we have
1 2 47 0 001

an invertible matrix P such that PA = RREF(A). Note that Rank(A) = 3 and hence I3 is

a submatrix of RREF(A). So, we need to find @ € My(R) such that PAQ = |:Ig 0]. Now,

consider the following column operations.

100 2
. Tet B= [0 1 0 0|. Then B = RREF(A) FasFsu.
0010
100 -2
roo2l
9. B(En(—2))" = BE1(-2)= 10 1 0 0 :[I 0]
(E11(-2)) 14(—2) 00 1 0 3
0010
000 1

3. Thus, define Q = Fa3F34F14(—2) to get PAQ = [13 0

Theorem 2.5.8. Let A € M, ,(R). If Rank(A) = r then, there exist invertible matrices P and

Q such that
I. -0
PAQ= )

Proof. Let C = RREF(A). Then, by Remark 2.4.8.3 there exists as invertible matrix P such
that C' = PA. Note that C has r pivots and they appear in columns, say i1 < ig < -+ < i,.

Now, let Q1 = E1i,E2, - Epi,.. As Ejij’s are elementary matrices that interchange the

I, B
columns of C, one has D = CQq = [0 ol where B € M, ,,_»(R).

B
and Q) = Q1Q2. Then @ is invertible and

-l

Thus, the required result follows. n

Now, let Q I =
ow, le =
*“lo 1,

'

I, B
0 0

I, -B

PAQ =CQ =CQ1Q2 = DQ2 = 0 1

Since we are multiplying by invertible matrices on the right, the idea of the above theorem
cannot be used for solving the system of linear equations. But, this idea can be used to
understand the properties of the given matrix, such as ideas related to rank-factorization, row-
space, column space and so on which have not yet been defined.

As a corollary of Theorem 2.5.8, we now give the rank-factorization of a matrix A.

Corollary 2.5.9. Let A € M,, ,(R). If Rank(A) = r then there exist matrices B € M,, »(R)

and C € M,.,(R) such that Rank(B) = Rank(C) = r and A = BC. Purthermore, A=Y x;y},
i=1
for some x; € R™ and y; € R”.
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I. 0
Proof. By Theorem 2.5.8, there exist invertible matrices P and @ such that P A Q = [O 0] .
I, 0
0
B e M, (R) and C € M, ,(R). Then Rank(B) = Rank(C') = r (see Proposition 2.5.6) and

Or equivalently, A = P~}

C
Q~!. Decompose P~! = [B D] and Q! = [F] such that

I, 0| |C C
A=[BD]|" :[B o} = BC.
F F
yi
,
Furthermore, assume that B = [xl e xr} and C' = | ! |. Then A= BC =Y x;y7. n
i=1
v

Proposition 2.5.10. Let A,B € M,,,(R). Then, prove that Rank(A + B) < Rank(A) +
k

Rank(B). In particular, if A=Y x;y}, for some x;,y; € R, for 1 <i <k, then Rank(A) < k.
i=1

Proof. Let Rank(A) = r. Then, there exists an invertible matrix P and a matrix A; € M, ,(R)

Ay

such that PA = RREF(A) = . Then,

Ay By

By

A1+ B

P(A+B) = PA+ PB =
Bo

+

Now using Corollary 2.5.5, we have
Rank(A + B) = Rank(P(A + B)) < r + Rank(B2) < r 4+ Rank(B) = Rank(A) + Rank(B).

Thus, the required result follows. The other part follows, as Rank(x;y!) =1,for 1 <i<k. =

EXERCISE 2.5.11. 1. Let A € My, »(R) be a matriz of rank 1. Then prove that A = xy’,

for mon-zero vectors x € R™ andy € R".

2. Let A € M,,,(R). If Rank(A) = 1 then prove that A2 = oA, for some scalar o.
2 4 8

and B =
1 3 2

(a) Find P and Q such that B = PAQ. Thus, A= P~! [Ig 0} QL.

1 00
010

3. Let A =

(b) Define G =Q

I
2T P. Then, verify that AGA = A. Hence, G is a g-inverse of A.

X

(¢) In particular, if b = 0 then G = Q P. In this case, verify that GAG = G,

I
OT
(AG)T = AG and (GA)T = GA. Hence, this G is the pseudo-inverse of A.

1 2 3

. Let A=
4 1 1




48 CHAPTER 2. SYSTEM OF LINEAR EQUATIONS

a «o
(a) Find a matriz G such that AG = I. Hint: Let G = |b B|. Now, use AG = I to
c v

get the solution space and proceed.
(b) What can you say about the number of such matrices? Give reasons for your answer.
(¢) Does the choice of G in part (a) also satisfies (AG)T = AG and (GA)T = GA? Give
reasons for your answer.

(d) Does there exist a matrixz C' such that CA = I3? Give reasons for your answer.

(e) Could you have used the ideas from Exercise 2.5.11.3 to get your answers?

5. Let A € M, ,(R) with Rank(A) = r. Then, using Theorem 2.5.8, we can find invertible

I, 0

matrices P and Q such that P A Q = . Choose arbitrary matrices U,V and W

I, U

I
such that the matriz [‘; is an nxm matriz. Define G = Q P. Then, prove

that G is a g-inverse of A.

6. Let A € M, »(R) with Rank(A) = r. Then, using Corollary 2.5.9 there exist matrices B €
M, »(R) and C € M, ,,(R) such that Rank(B) = Rank(C') =7 and A = BC. Thus, BT B
and CCT are invertible matrices. Now, define G1 = (BT B)™'BT and Gy = CT(CCT)~L.
Then, prove that G = G2G1 is a pseudo-inverse of A.

2.6 Solution set of a Linear System

Having learnt RREF of a matrix and the properties of the rank function, let us go back to the
system of linear equations and apply those ideas to have a better understanding of the system
of linear equations. So, let us consider the linear system Ax = b. Then, using Remark 2.4.8.4
Rank([A b]) > Rank(A). Further, the augmented matrix has exactly one extra column. Hence,

either

Rank([A b]) = Rank(Augmented Matrix) = Rank(Coefficient matrix) + 1 = Rank(A4) + 1
or

Rank([A b]) = Rank(Augmented Matrix) = Rank(Coefficient matrix) = Rank(A).

In the first case, there is a pivot in the (n + 1)-th column of the augmented matrix [A b].
Thus, the column corresponding to b has a pivot. This implies b # 0. This implies that the
row corresponding to this pivot in RREF([A b]) has all entries before this pivot as 0. Thus,
in RREF([A b]) this pivotal row equals [0 0 --- 0 1]. But, this corresponds to the equation
0-21+0-29+---+0-xz, = 1. This implies that the Ax = b has no solution whenever

b # 0 and Rank(Augmented Matrix) > Rank(Coefficient matrix).

We now define the words “basic variables” and “free variables”.
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Definition 2.6.1. Consider the linear system Ax = b. If RREF([A b]) = [C d]|. Then,
the variables corresponding to the pivotal columns of C' are called the basic variables and the

variables that correspond to non-pivotal columns are called free variables.
To understand the second case, we look at the homogeneous system Ax = 0.

Example 2.6.2. Consider a linear system Ax = 0. Suppose RREF(A) = C, where

1] o 2 -1 0 0 2]
0 1 3 0 0 5
C=10 0 0 0 0 -1
0 0 0 0 0 —4
0 00 0 0 0 0

Then to get the solution set, observe that C has 4 pivotal columns, namely, the columns 1,2,5
and 6. Thus, =1, z2, x5 and x¢ are basic variables. Therefore, the remaining variables x3, x4 and

x7 are free variables. Hence, the solution set is given by

T —2x3 + x4 — 227 -2 1 —2
X9 —x3 — 3T4 — D7 -1 -3 -5
X3 T3 1 0

x4| = T4 =x3| 0 | +24 |1 |+27]| 0],
X5 4y 0 0

X6 4 — x7 0 0 —1

| X7 i T7 \ i 0 | i 0 | i 1 |

where 3,4 and x7 are arbitrary. Let

[ul us 113] =

-1
1

o O O o =
o O O = O

Then, for 1 < ¢ < 3, Cu; = 0 = Au; = 0. Further, as z3,z4 and x; are the free variables,
observe that the submatrix of {ul us u3} corresponding to the 3-rd, 4-th and 7-th rows

equals I3.
Let us now summarize the above ideas and examples.

Theorem 2.6.3. Let Ax = b be a linear system in n variables with RREF([A b]) = [C d].
1. Then the system Ax = b is inconsistent if Rank([A b]) > Rank(A).

2. Then the system Ax = b is consistent if Rank([A b]) = Rank(A).
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(a) Further, Ax =b has A UNIQUE SOLUTION if Rank(A) = n.
(b) Further, Ax = b has INFINITE NUMBER OF SOLUTIONS if Rank(A) < n. In this
case, there exist vectors xg,uq,...,U,_ € R" with Axg = b and Au; = 0, for

1 <i<n—r. Furthermore, the solution set is given by
{xo+kiw +houg+ -+ kp oy | KeR 1<i<n—r}

Proof. PART 1: As Rank([4 b]) > Rank(A), by Remark 2.4.8.4 ([C d])[r +1,:] = [0T 1]. Note

that this row corresponds to the linear equation
O-z1+0-22+---+0-2,, =1

which clearly has no solution. Thus, by Theorem 2.2.13, Ax = b is inconsistent.

PART 2: As Rank([A b]) = Rank(A), by Remark 2.4.8.4, [C' d] doesn’t have a row of the
form [07 1]. Further, the number of pivots in [C' d] and that in C is same, namely, r pivots.

PART 2A: As Rank(A) = r = n, there are no free variables. Hence, x; = d;, for 1 < i < n,
is the unique solution.

PART 2B: As Rank(A) = r < n. Suppose the pivots appear in columns i1, ..., with
1 <i; < -+ <ip <n. Thus, the variables Tij, for 1 < j < r, are basic variables and the
remaining n — r variables, say x¢,,...,x, ., are free variables with t; < --- < t,,_,. Since C'is
in RREF, in terms of the free variables and basic variables, the ¢-th row of [C' d], for 1 < ¢ < r,

corresponds to the equation (writing basic variables in terms of a constant and free variables)

n—r n—r

T, + Z Cot, Ty, = dy & T, = dy — Z Cot), Tty -
k=1 k=1

Thus, the system Cx = d is consistent.. Hence, by Theorem 2.2.13 the system Ax = b is

consistent and the solution set of the system Ax = b and Cx = d are the same. Therefore, the

solution set of the system Cx = d (or equivalently Ax = b) is given by

_ e -
r . dy — Clt, T r o r r r 7
T ! k; M di City City Clt,
n—r
T, d, — Z Cri, Tt dy Crty Crtqy Crtp_r
Ty | = k=1 =|0|+ay| 1 | +at,| O | +--Fz4,.| 0 |. (26.3)
x4, Tt 0 0 1 0
Tty .
Tt | 0 | | 0 ] L 0 | 1]
mtnf'r .
[d, ] 1, | e, |
dy Crty Crtp_r
Define xp = |0| andu; = | 1 |,...,4p—p = 0 |. Then, it can be easily verified
0 0
| 0| | 0 ] | 1]
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that Axg = b and, for 1 <i <n —r, Au; = 0. Also, by Equation (2.6.3) the solution set has
indeed the required form, where k; corresponds to the free variable x;,. As there is at least one
free variable the system has infinite number of solutions. "

Thus, note that the solution set of Ax = b depends on the rank of the coefficient matrix, the
rank of the augmented matrix and the number of unknowns. In some sense, it is independent

of the choice of m.

EXERCISE 2.6.4. Consider the linear system given below. Use GJE to find the RREF of its

augmented matriz and use it to find the solution.

r +vy —2u +4wv = 2
z 4u 20 =3

v 4w =3

v +2w =5

Let A € M, »(R). Then, Rank(A) < m. Thus, using Theorem 2.6.3 the next result follows.

Corollary 2.6.5. Let A € M, ,(R). If Rank(A) = r < n then the homogeneous system Ax = 0

has at least one non-trivial solution.

Remark 2.6.6. Let A € M, ,(R). Then, Theorem 2.6.3 implies that Ax = b is consistent
if and only if Rank(A) = Rank([A b]). Further, the the vectors u;’s associated with the free

variables in Equation (2.6.3) are solutions of the associated homogeneous system Ax = 0.
We end this subsection with some applications.

Example 2.6.7. 1. Determine the equation of the circle passing through the points (—1,4), (0, 1)
and (1,4).
Solution: The equation a(z?+ y?) +bx +cy+d = 0, for a, b, c,d € R, represents a circle.
Since this curve passes through the given points, we get a homogeneous system having 3

equations in4 unknowns, namely

)

(-1)2+4%2 -1 4 1 )
02+12 0 1 1 =0
12442 1 4 1||°

d

Solving this system, we get [a,b,c,d] = [%d,O,—%d, d]. Hence, choosing d = 13, the
required circle is given by 3(x? + y?) — 16y + 13 = 0.

2. Determine the equation of the plane that contains the points (1,1,1), (1, 3,2) and (2, -1, 2).
Solution: The general equation of a plane in space is given by ax + by + cz +d = 0,
where a, b, c and d are unknowns. Since this plane passes through the 3 given points, we
get a homogeneous system in 3 equations and 4 variables. So, it has a non-trivial solution,
namely [a,b,c,d] = [—%d, —%, —%d, d]. Hence, choosing d = 3, the required plane is given
by —4x —y +22+3 =0.
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2 3 4
3. Let A= |0 —1 0|. Then, find a non-trivial solution of Ax = 2x. Does there exist a
0 -3 4

nonzero vector y € R? such that Ay = 4y?

Solution: Solving for Ax = 2x is equivalent to solving (A — 2I)x = 0. The augmented

0 3 40
matrix of this system equals [0 —3 0 0|. Verify that x’ = [1,0,0] is a nonzero
0 -3 2 0
solution. For the other part, the augmented matrix for solving (A — 4I)y = 0 equals
-2 3 4 0
0 -5 0 0. Thus, verify that y = [2,0,1] is a nonzero solution.
0 -3 0 0

EXERCISE 2.6.8. 1. Let A € M,(R). If A’x = 0 has a non trivial solution then show that

Ax = 0 also has a non trivial solution.

2. Letu= (1,1,-2)T and v = (—1,2,3)T. Find condition on x,y and z such that the system
)T

cu+dv = (x,y,2)" in the unknowns ¢ and d is consistent.

3. Find condition(s) on x,y,z so that the systems given below (in the unknowns a,b and c)
s consistent?
(a) a+2b—3c==x, 2a+6b—1lc=y, a—2b+ Tc=z.
(b) a+b+5c=z, a+3c=y, 2a—b+4c=z.
4. For what values of ¢ and k, the following systems have i) no solution, i) a unique
solution and 1) infinite number of solutions.
(o) c+y+2=3, v+2y+cz=4, 2x+3y+2cz=k.
(b)) x+y+2=3, x4+y+2cz=7, z+2y+3cz=k.
(c) x+y+22=3, x+2y+cz=5 x+2y+4z=k.
(d) +2y+32z=4, 20 +5y+52=6, 2z + (¢ —6)z = c+ 20.
(e) x+y+2=3,2v+5y+4z=c, 3x+ (c® — 8)z = 12.
5. Consider the linear system Ax = b in m equations and 3 unknowns. Then, for each of

the given solution set, determine the possible choices of m? Further, for each choice of

m, determine a choice of A and b.
(a) (1,1,1)T is the only solution.
(b) {c(1,2,1)T|c € R} as the solution set.
(c) {(1,1, )T +¢(1,2,1)T|c € R} as the solution set.
(d) {c(1,2,1)T +d(2,2,—-1)T|c,d € R} as the solution set.
(e) {(1,1, )7 +¢(1,2, )T +d(2,2,-1)T|c,d € R} as the solution set.
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2.7 Square Matrices and Linear Systems

In this section, we apply our ideas to the linear system Ax = b, where the coefficient matrix is

square. We start with proving a few equivalent conditions that relate different ideas.
Theorem 2.7.1. Let A € M,,(R). Then, the following statements are equivalent.

1. A is invertible.

2. RREF(A) = I,.

3. A is a product of elementary matrices.

4. Rank(A) = n.

5. The homogeneous system Ax = 0 has only the trivial solution.

6. The system Ax = b has a unique solution for every b.

7. The system Ax = b is consistent for every b.

Proof. 1 & 2and 2 & 3 See Proposition 2.4.9.

24 By definition. For the converse, Rank(A) = n = A has n pivots and A has n
columns. So, all columns are pivots. Thus, RREF(A) = I,.

1=25 As A is invertible A7 A = I,,.. So, if x¢ is any solution of the homogeneous
system Ax = 0 then

xg=1, x0= (AilA)X[) = Ail(AXQ) =A"lo=0.

h=1 Ax = 0 has only the trivial solution implies that there are no free variables. So,
all the unknowns are basic variables. So, each column is a pivotal column. Thus, RREF(A) = [,,.

1=6 Note that xg = A~ 'b is the unique solution of Ax = b.

6=>17 A unique solution implies that is at least one solution. So, nothing to show.
7T=1 Given assumption implies that for 1 < i < n, the linear system Ax = e; has a
solution, say u;. Define B = [uj,ug,...,u,|. Then
AB = Aluj,uy,...,u,] = [Auy, Aug, ..., Au,] = [e1,e2,...,e,] = I),.

Now, consider the linear homogeneous system Bx = 0. Then AB = I, implies that
Xp) = InXO = (AB)XO = A(BXO) =A0=0.

Thus, the homogeneous system Bx = 0 has a only the trivial solution. Hence, using Part 5, B
is invertible. As AB = I,, and B is invertible, we get BA = I,. Thus AB = I,, = BA. Thus, A
is invertible as well. n

We now give an immediate application of Theorem 2.7.1 without proof.
Theorem 2.7.2. The following two statements cannot hold together for A € M, (R).

1. The system Ax = b has a solution for every b.
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2. The system Ax = 0 has a non-trivial solution.

As an immediate consequence of Theorem 2.7.1, the readers should prove that one needs to

compute either the left or the right inverse to prove invertibility of A € M, (R).
Corollary 2.7.3. Let A € M,,(R). Then the following holds.

1. If there exists C' such that CA = I,, then A~ exists.

2. If there exists B such that AB = I,, then A~ exists.

Corollary 2.7.4. (Theorem of the Alternative) The following two statements cannot hold
together for A € M,(C) and b € R".

1. The system Ax = b has a solution.
2. The system yT A =07, y"b # 0 has a solution.

Proof. Observe that if xq is a solution of Ax = b and yjq is a solution of y’A = 07 then
yvib =yl (Axo) = (y& A)xo = 07x¢ = 0. n

Note that one of the requirement in the last corollary is y’b # 0. Thus, we want non-zero
vectors xo and yo in R” such that they are solutions of Ax = b and y’ 4 = 07, respectively,
with the added condition that yy and b are not orthogonal or perpendicular (their dot product

is not zero).
EXERCISE 2.7.5. 1. Give the proof of Theorem 2.7.2 and Corollary 2.7.3.

2. Let A € M, 1, (R) and B € M, o(R). Either use Theorem 2.7.1.5 or multiply the matrices
to verify the following statementes.
(a) Then, prove that I — BA is invertible if and only if I — AB is invertible.
(b) If I — AB is invertible then, prove that (I — BA)™' =1+ B(I — AB)"'A.
(c) If I — AB is invertible then, prove that (I — BA)™'B = B(I — AB)™ 1.
(d) If A, B and A+ B are invertible then, prove that (A~' + B~1)~! = A(A+ B)~'B.
3. Let bl =[1,2,—1,—2]. Suppose A is a 4 x 4 matriz such that the linear system Ax = b
has no solution. Mark each of the statements given below as TRUE or FALSE ?
(a) The homogeneous system Ax = 0 has only the trivial solution.
(b) The matriz A is invertible.
(c) Let ¢’ =[—1,-2,1,2]. Then, the system AX = ¢ has no solution.
(d) Let B= RREF(A). Then,
i. B[4,:]=10,0,0,0].
ii. B[4,:] =[0,0,0,1].
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2.8 Determinant

1 2 3
Recall the notations used in Section 1.5 on Page 21 . If A= [1 3 2| then A(1|2) = [; i]
2 4 7
and A({1,2} | {1,3}) = [4]. The actual definition of the determinant requires an understanding
of group theory. So, we will just give an inductive definition which will help us to compute
the determinant and a few results. The advanced students can find the main definition of the
determinant in Appendix 9.2.22, where it is proved that the definition given below corresponds

to the expansion of determinant along the first row.

Definition 2.8.1. Let A be a square matrix of order n. Then, the determinant of A, denoted
det(A) (or | A|) is defined by

a, if A = [a] (corresponds to n = 1),
det(A) = S (—1)ay;det(A(1 ] 5)), otherwise.
j=1
Example 2.8.2. 1. Let A =[—2]. Then, det(4) = | A| = —2.
b
2 Let A= |" 4l Then, det(A) = a det(A(1|1)) — b det(A(1|2)) = ad — be.
c
(a) If A= then det(A)=1-5—-2.0=05.
1
(b) If B = 0] then det(B) =2-0—1-5= —5.

Observe that B is obtained from A by interchanging the columns. This has resulted in
the value of the determinant getting multiplied by —1. So, if we think of the columns of
the matrix as vectors in R? then, the sign of determinant gets related with the orientation

of the parallelogram formed using the two column vectors.

3. Let A = [a;] be a 3 x 3 matrix. Then,

det(A)= | A| = ajidet(A(1]1)) —ajadet(A(1|2))+ ajzdet(A(1 | 3))
az2 Aa23 az; a3 az; a2
= an — a2 + a3
az2 ass asp ass as;  as2

= ai1(axass — azgasz) — aiz(aziassz — aziazs) + a13(agiasz — azraze).

12 3
31 2 1 2 3

For A= |2 3 1|, det(A)=1- ~2. +3- =4-2(3)+3(1) = 1.
D 2 2 1 2 12

EXERCISE 2.8.3. Find the determinant of the following matrices.
1 27 3 0 01

8 2
0 4 3 2 0 2 05 boaa
i) i) iii) |1 b b
00 2 3 6 -7 1 0 )
1 ¢ ¢

0005 3 2 06
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Definition 2.8.4. A matrix A is said to be a SINGULAR if det(A4) = 0 and is called NON-
SINGULAR if det(A) # 0.

It turns out that the determinant of a matrix equals the volume of the parallelepiped formed
using the columns of the matrix. With this understanding, the singularity of A gets related with
the dimension in which we are looking at the parallelepiped. For, example, the length makes
sense in one-dimension but it doesn’t make sense to talk of area (which is a two-dimensional
idea) of a line segment. Similarly, it makes sense to talk of volume of a cube but it doesn’t make
sense to talk of the volume of a square or rectangle or parallelogram which are two-dimensional

objects.

We now state a few properties of the determinant function. For proof, see Appendix 9.3.
Theorem 2.8.5. Let A be an n X n matriz.

1. det(I,) =1.

2. If A is a triangular matriz with di, . ..,d, on the diagonal then det(A) =d; ---d,,.

3. If B=E;;A, for1 <i# j <n, then det(B) = —det(A). In particular, det(E;;) = —1

4. If B=E;(c)A, forc# 0,1 < i <mn, then det(B) = cdet(A). In particular, det(E;(c)) = c.

5. If B = E;j(c)A, for ¢ # 0 and 1 < i # j < n, then det(B) = det(A). In particular,
det(Eij(c)) =1.

6. If Ali,:] = 0T, for 1 <i,j < n then det(A) = 0.

7. If Ali,:] = A[j,:] for 1 <i# j <n then det(4) = 0.

2 2 6 ! 11 3
F1i(5 _ _

Example 2.8.6. Let A = |1 3 2|. Then 4 P L R 1]

11 2 1 2 00 —1

1
Thus, using Theorem 2.8.5, det(4) =2-(1-2-(—1)) = —4, where the first 2 appears from the

elementary matrix El(i)
EXERCISE 2.8.7. Prove the following without computing the determinant (use Theorem 2.8.5).

1. Let A= |u v 2u+3v|, where u,v € R3. Then, det(A) = 0.

a b ¢ a e z?a+ze+h
2. Let A= |e f g|.- Ifz#0and B= |b f 2%b+xf+j| then det(A) = det(B).
h 5 ¢ c g xlcHxg+l

3 1 2
Hence, conclude that 3 divides |4 7 1

1 4 -2
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Remark 2.8.8. Theorem 2.8.5.3 implies that the determinant can be calculated by erpanding

along any row. Hence, the readers are advised to verify that

det(A) = En:(—l)kﬂakj det(A(k | j)), forl1<k<n.
j=1

Example 2.8.9. Using Remark 2.8.8, one has
2 6

2 1
2 2 1 2 2 6

0021 - -

01 g 0:(—1)+-2~o 1 0|+ (=1**]0 1 2/=-2-1+(-8)=-10.
121 121

1211

2.8.1 Inverse of a Matrix

Definition 2.8.10. Let A € M,,(R). Then, the cofactor matrix, denoted Cof(A), is an M, (R)
matrix with Cof(A4) = [Cj;], where

Cij = (—1)" det (A(i | 5)), for 1 <4,j <n.

And, the Adjugate (classical Adjoint) of A, denoted Adj(A), equals Cof’ (A).

1 2 3

Example 2.8.11. Let A= |2 3 1]|. Then,
1 2 4

Cn Ca1 O3

Adj(A) = Cof'(A) = |Cia Coa O

Ciz Ca3 Cs3

(=D det(A(1[1))  (=1)*"det(A(2[1)) (—1)"" det(A(3]1))
= [(=D'2det(A(1]2)) (=1)*"2det(A(2]2)) (—1)32det(A(3]2))
(A(1[3 )

(- D3 det(A(1]3)) (—1)2F3det(A(2]3)) (—1)3F3det(A(3]3))
(10 —2 -7
= |[-7 1 5
1 0 -1
-1 0 0 det(A) 0

Now, verify that AAdj(A)= | 0 -1 det(A) 0 = Adj(A)A.
0 -1 0 0 det(A)

Il
o
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r—1 -2 -3 ]
Consider zIs —A=| —2 2 —3 —1 |. Then,
-1 -2 x—4
O O Oy [22—72+10  20-2 31— 7
Adj(SCI - A) = 012 022 032 = 20 — 7 .112‘2 —o5r+1 z+5
013 023 033 T+ 1 2x 332 —4x—1
-7 2 3
= 2’ I+x|2 -5 1 |+Adj(A)=2T+ Bz + C(say).
1 2 —4

Hence, we observe that Adj(xl — A) = 221 + Bz + C is a polynomial in z with coefficients as
matrices. Also, note that (v — A)Adj(zI — A) = (2® — 822 4+ 102 — det(A))I3. Thus

(I — A)(2*T 4+ Bz + C) = (2% — 822 + 10z — det(A)) ;.

That is, we have obtained a matrix identity. Hence, replacing x by A makes sense. But, then
the LHS is 0. So, for the RHS to be zero, we must have A3 — 842 + 104 — det(A)I = 0 (this

equality is famously known as the Cayley-Hamilton Theorem).
The next result relates adjugate matrix with the inverse, in case det(A4) # 0.

Theorem 2.8.12. Let A € M, (R).

1. Then Y ai; Cij = > aij(—1)" det(A(i]j)) = det(A), for 1 <i < n.
= =]

2. Then Y a;; Coj = Y aij(—1)"7 det(A(¢]5)) =0, fori # (.
j=1 j=1

3. Thus A(Adj(A)) = det(A)I,. Hence,

1
det(A)

whenever det(A) #0 one has A™! = Adj(A). (2.8.1)
Proof. Part 1: It follows directly from Remark 2.8.8 and the definition of the cofactor.

Part 2: Fix positive integers ¢, with 1 < i # ¢ < n. Suppose that the i-th and ¢-th rows of
B are equal to the i-th row of A and Blt,:| = Alt,:], for t # i, ¢. Since two rows of B are equal,
det(B) = 0. Now, let us expand the determinant of B along the ¢-th row. We see that

n

0=det(B) = Y (=1)"bydet(B((])) (2.8.2)
j=1
= Z(—l)“—jaij det(B(f | ])) (b,’j = bgj = Qajj for all ])
j=1
= > (=D)Haj;det (A | §)) =) ai;Co;. (2.8.3)
Jj=1 Jj=1

This completes the proof of Part 2.
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Part 3: Using the first two parts, observe that

- - 0, if i # j,
A(Adj(A)):| = ik (Adj(A)) .= a;,Cip = { o ]
[ ij ; k ; ’ det(A), ifi=j.
Thus, A(Adj(A)) = det(A)I,. Therefore, if det(A) # 0 then A (mAdj(A)) = I,,. Hence,
by Proposition 2.4.9, A1 = mAdj(A). "
1 -1 0 -1 1 -1
Example 2.8.13. For A= [0 1 1|,Adj(A)=|1 1 —1| and det(A) = —2. Thus,
1 2 1 -1 -3 1
/2 —-1/2 1/2
by Theorem 2.8.12.3, A~ = | -1/2 —1/2 1/2

/2 3/2 —1/2

Let A be a non-singular matrix. Then, by Theorem 2.8.12.3, A~ = #(A»Adj(fl). Thus
A(Adj(A)) = (Adj(A))A = det(A) I, and this completes the proof of the next result

Corollary 2.8.14. Let A be a non-singular matriz. Then,

g det(A)7 if j =k,
Zcik ajj = .
] 0, if 1 # k.

The next result gives another equivalent condition for a square matrix to be invertible.
Theorem 2.8.15. A square matriz A is non-singular if and only if A is invertible.

Proof. Let A be non-singular. Then, det(A) # 0 and hence A~! = mAdj(A).
Now, let us assume that A is invertible. Then, using Theorem 2.7.1, A = Fy - - - F}, a product

of elementary matrices. Thus, a repeated application of Parts 3, 4 and 5 of Theorem 2.8.5 gives
det(A) #0. m

2.8.2 Results on the Determinant

The next result relates the determinant of a matrix with the determinant of its transpose. Thus,

the determinant can be computed by expanding along any column as well.

Theorem 2.8.16. Let A € M,,(R). Then det(A) = det(AT). Further, det(A*) = det(A).

Proof. If A is singular then, by Theorem 2.8.15, A is not invertible. So, AT is also not invertible
and hence by Theorem 2.8.15, det(A”) = 0 = det(A).
Now, let A be a non-singular and let AT = B. Then, by definition,

n n

det(AT) = det(B):Z(—l)Hjblj det(B(1 | 4)) :Z(—I)Hjaﬂdet(A(j | 1))

= Zaﬂc’jl = det(A)

j=1
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using Corollary 2.8.14. Further, using induction and the first part, one has

n

det(A™) = det((A)7) = det(A) = > (~1)"Vag; det (A(1 ] ))

j=1
= > (=1)'ay;det(A(1 ] j)) = det(A)
j=1
Hence, the required result follows. "

The next result relates the determinant of product of two matrices with their determinants.

Theorem 2.8.17. Let A and B be square matrices of order n. Then,
det(AB) = det(A) - det(B) = det(BA).

Proof. Case 1: Let A be non-singular. Then, by Theorem 2.8.12.3, A is invertible and by
Theorem 2.7.1, A = Ey - -- Ei, a product of elementary matrices. Thus, a repeated application

of Parts 3, 4 and 5 of Theorem 2.8.5 and an inductive argument gives the desired result as

det(AB) = det(E1 cee EkB) = det(El) det(EQ s EkB)
= det(El) det](EQ cee Ek) det(B) = det(ElEQ cee Ek) det(B)
= det(A)det(B).

Case 2: Let A be singular. Then, by Theorem 2.8.15 A is not invertible. So, by Proposi-

C C
tion 2.4.9 there exists an invertible matrix P such that PA = 01] .SoA=P 1| AsP
is invertible, using Part 1, we have
C C1B CB
det(AB) = det <<P1 ' ) B) = det (Pl ! ) = det(P1) - det ( ! >
= det(P)-0=0=0-det(B) = det(A) det(B).
Thus, the proof of the theorem is complete. "

We now give an application of Theorem 2.8.17.

Example 2.8.18. Let A € M,(R) be an orthogonal matrix then, by definition, AAT = I.
Thus, by Theorems 2.8.17 and 2.8.16

1 =det(I) = det(AAT) = det(A) det(AT) = det(A) det(A) = (det(A))?%.

Hence det A = +1. In particular, if A =

b
¢ d] € Mz(R) then the following holds.
c

a2+b2 ac+bd

1. I =AAT =
ac+bd 2+ d?

2. Thus a? + b? = 1 and hence there exists § € [~, 7) such that a = cosf and b = sin 6.

3. Further, ac+bd=0and ?+d?> =1= c¢=sinf,d = —cosf or ¢ = —sinf,d = cos¥b.
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cosf sinf cosf sind

4. Thus A = or A=

sinf —cos6 —sinf cosf

cosf sind

5. For A =

, det(A) = —1. Then A represents a reflection about the line
sinf —cosd

y = mx. Determine m? (see Exercise 2.2b).

6. For A — cos@ sinf

, det(A) = 1. Then A represents a rotation through the angle 6.
—sinf cosf

Is the rotation clockwise or counter-clockwise (see Exercise 2.2a)?

EXERCISE 2.8.19. 1. Let A be a square matriz. Then, prove that A is invertible < AT is
invertible < AT A is invertible < AAT is invertible.

2. Let A and B be two matrices having positive entries and of orders 1 x n and n x 1,

respectively. Which of BA or AB is invertible? Give reasons.

2.8.3 Cramer’s Rule

Consider the linear system Ax = b. Then, using Theorems 2.7.1 and 2.8.15, we conclude
that Ax = b has a unique solution for every b if and only if det(A) # 0. The next theorem,
commonly known as the Cramer’s rule gives a direct method of finding the solution of the
linear system Ax = b when det(A) # 0.

Theorem 2.8.20. Let A be an n X n non-singular matriz. Then, the unique solution of the

linear system Ax = b with the unknown vector x* = [x1,...,x,] is given by
det(Aj)
P = =1,2,...
.17] det(A) b fOT’j < ,TL,

where A; is the matriz obtained from A by replacing the j-th column of A, namely Al:, j], by b.

Proof. Since det(A) # 0, A is invertible. Thus A7'[A | b] = [I | A™'b]. Let d = A~'b. Then
Ax = b has the unique solution z; = d;, for 1 < j < n. Thus,

AilAj = A! [A[:, 1,..., A, j—1],b, A, j + 1],. .. ,A[:,n]]

- [A‘lA[:, 1,..., A A, =1, A7, A7 AL + 1], .. .,A—lA[;,n]]

= [ela"wej*ladaejJrl’"'aen}'

Thus, det(A™14;) = dj, for 1 < j < n. Also,

d — dj . det(A_lAj) . det(A_lAj) B det(A_l)det(Aj) . det(Aj)
TT 1 T det() det(ATTA)  det(A-T)det(4)  det(A)
det(Aj)

Hence, z; = and the required result follows. "

det(A)
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1 2 3 1
Example 2.8.21. Solve Ax = b using Cramer’s rule, where A= |2 3 1| and b= |1].
1 2 2 1
Solution: Check that det(A) =1 and xT = [~1,1,0] as
1 2 3 1 1 3 1 2 1
r1=1|1 3 1|l=-1,20=12 1 1|=1, and z3=1|2 3 1/ =0
1 2 2 11 2 1 21
2.9 Miscellaneous Exercises
EXERCISE 2.9.1. 1. Determine the determinant of an orthogonal matrix.

2. Let A be a unitary matriz then what can you say about | det(A) |?

3. Let A € M,(R). Prove that the following statements are equivalent:

10.

11.

12.

(a) A is not invertible.

(b) Rank(A) # n.

(c) det(A) = 0.

(d) A is not row-equivalent to I,.

(e) The homogeneous system Ax = 0 has a non-trivial solution.

(f) The system Ax = b is either inconsistent or it has an infinite number of solutions.

(9) A is not a product of elementary matrices.

. Let A € Myp11(R) be a skew-symmetric matriz. Then det(A) = 0.
. If A is a Hermitian matriz then det A is a real number.

. Let A € M,,(R). Then A is invertible if and only if Adj(A) is invertible.

Let A and B be invertible matrices. Prove that Adj(AB) = Adj(B)Adj(A).

B

Let A be an n x n invertible matriz and let P = ol Then, show that Rank(P) =n

if and only if D = CA™'B.
Let A be a 2 x 2 matriz with tr(A) =0 and det(A) = 0. Then, A is a nilpotent matriz. _
Determine necessary and sufficient condition for a triangular matrixz to be invertible.

Let A and B be two non-singular matrices. Are the matrices A+ B and A — B non-

singular? Justify your answer.

For what value(s) of X\ does the following systems have non-trivial solutions? Also, for

each value of \, determine a non-trivial solution.
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15.

1.

15.

16.
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(a) A =2)z+y=0, 2+ (A+2)y=0.
(b) Az +3y =0, (A\+6)y =0.

Let ay,...,a, € R and define A = [a;j]nxn with a;; = a’t. Prove that det(A) =

7

[ (aj —a;). This matriz is usually called the van der monde matriz.
1<i<j<n

Let A = [a;j] € M,(R) with a;; = max{i, j}. Prove that det A = (—1)""n.

Letp € R,p # 0. Let A = [a;], B = [bij] € M,(R) with bj; = p"Ja;j, for 1 <i,j < n.
Then, compute det(B) in terms of det(A).

The position of an element a;; of a determinant is called even or odd according as i+ j is
even or odd. Prove that if all the entries in

(a) odd positions are multiplied with —1 then the value of determinant doesn’t change.
(b) even positions are multiplied with —1 then the value of determinant

1. does not change if the matrix is of even order.

1. 1s multiplied by —1 if the matriz is of odd order.

2.10 Summary

In this chapter, we started with a system of m-linear equations in n variables and formally

wrote it as Ax = b and in turn to the augmented matrix [A | b]. Then, the basic operations on

equations led to multiplication by elementary matrices on the right of [A | b]. These elementary

matrices are invertible and applying the GJE on a matrix A, resulted in getting the RREF of
A. We used the pivots in RREF matrix to define the rank of a matrix. So, if Rank(A4) = r and
Rank([A | b]) =7,

1.

2.

then, r < r, implied the linear system Ax = b is inconsistent.
then, r = r, implied the linear system Ax = b is consistent. Further,

(a) if » = n then the system Ax = b has a unique solution.

(b) if r < n then the system Ax = b has an infinite number of solutions.

We have also seen that the following conditions are equivalent for A € M, (R).

1.

A is invertible.
The homogeneous system Ax = 0 has only the trivial solution.

The row reduced echelon form of A is I.

. A is a product of elementary matrices.

The system Ax = b has a unique solution for every b.
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6. The system Ax = b has a solution for every b.

7. Rank(A) = n.

8. det(A) # 0.

So, overall we have learnt to solve the following type of problems:

1. Solving the linear system Ax = b. This idea will lead to the question “is the vector b a

linear combination of the columns of A”?

2. Solving the linear system Ax = 0. This will lead to the question “are the columns of A

linearly independent/dependent”? In particular, we will see that

(a) if Ax = 0 has a unique solution then the columns of A are linear independent.

(b) if Ax = 0 has a non-trivial solution then the columns of A are linearly dependent.



Chapter 3
Vector Spaces

In this chapter, we will mainly be concerned with finite dimensional vector spaces over R or C.
Please note that the real and complex numbers have the property that any pair of elements can
be added, subtracted or multiplied. Also, division is allowed by a non-zero element. Such sets in
mathematics are called field. So, Q, R and C are examples of field and they have infinite number
of elements. But, in mathematics, we do have fields that have only finitely many elements. For
example, consider the set Zs = {0,1,2,3,4}. In Zs5, we define addition and multiplication,

respectively, as

+101(11(12(3|4 01112314
01011234 0/{0l0]|0O|O0O]O
1112340 11011234
and .
212131401 21012141113
313[4/0]1/2 310[3[1(4/|2
41410111213 4101413121

Then, we see that the elements of Zs can be added, subtracted and multiplied. Note that 4
behaves as —1 and 3 behaves as —2. Thus, 1 behaves as —4 and 2 behaves as —3. Also, we see
that in this multiplication 2-3 =1 and 4-4 = 1. Hence,

1. the division by 2 is similar to multiplying by 3,
2. the division by 3 is similar to multiplying by 2, and

3. the division by 4 is similar to multiplying by 4.

Thus, Z5 indeed behaves like a field. So, in this chapter, F will represent a field.

3.1 Vector Spaces: Definition and Examples

Let us recall that the vectors in R? and R? satisfy the following properties:

1. Vector Addition: To every pair u, v € R? there corresponds a unique element u+v € R?
(called the addition of vectors) such that

(a) u+ v =v+u (Commutative law).

65
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(b) (u+v)+w=u+(v+w) (Associative law).

(c) R3 has a unique element, denoted 0, called the zero vector that satisfies u+0 = u,

for every u € R? (called the additive identity).
(d) for every u € R? there is an element w € R? that satisfies u +w = 0.
2. Scalar Multiplication: For each u € R? and o € R, there corresponds a unique element
a-u € R? (called the scalar multiplication) such that
(a) a-(B-u)=(a-p)-uforevery o, € R and u € R3,
(b) 1-u = u for every u € R3, where 1 € R.
3. Distributive Laws: relating vector addition with scalar multiplication
For any «a, 3 € R and u,v € R3, the following distributive laws hold:
(a) a-(u+v)=(a-u) + (a-v).
(b) (@4 p)-u=(a-u) + (5-u).

So, we want the above properties to hold for any collection of vectors. Thus, formally, we have

the following definition.

Definition 3.1.1. A vector space V over F, denoted V(F) or in short V (if the field IF is clear
from the context), is a non-empty set, in which one can define vector addition, scalar multipli-
cation. Further, with these definitions, the properties of vector addition, scalar multiplication

and distributive laws (see items 1, 2 and 3-above) are satisfied.

Remark 3.1.2. 1. The elements of F are called scalars.
2. The elements of V are called vectors.
3. We denote the zero element of F by 0, whereas the zero element of V will be denoted by 0.

4. Observe that Condition 1d implies that for every u € V, the vector w € V such that
u+w = 0 holds, is unique. For if, wi,wo € V with u+w; = 0, fori = 1,2 then by

commutativity of vector addition, we see that
wi=w;+0=w; +(u+wy) = (w; +u)+wy =0+ wy = ws.

Hence, we represent this unique vector by —u and call it the additive inverse.
5. IfV is a vector space over R then V is called a real vector space.
6. If V is a vector space over C then V is called a complex vector space.

7. In general, a vector space over R or C is called a linear space.

Some interesting consequences of Definition 3.1.1 is stated next. Intuitively, they seem

obvious. The proof are given for better understanding of the given conditions.
Theorem 3.1.3. Let V be a vector space over F. Then,

1. u+ v =u implies v=0.
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2. a-u=0 if and only if either u =0 or a = 0.
3. (=1)-u= —u, for everyu e V.
Proof. Part 1: By Condition 1d and Remark 3.1.2.4, for each u € V there exists —u € V such
that —u +u = 0. Hence u 4+ v = u implies
0=-ut+u=-u+(ut+v)=(—ut+u)+v=0+v=yv.

Part 2: As 0 = 0+ 0, using Condition 3, -0 =a-(0+0) = (a-0) + («-0). Thus, using
Part 1, -0 = 0 for any o € F. Similarly, 0-u= (0+0)-u= (0-u) +(0-u) implies 0-u =0,
for any u € V.

Now suppose a-u = 0. If « = 0 then the proof is over. So, assume that o # 0, € F. Then

(a)~! € F and using, 1-u = u for every vector u € V (see Condition 2.2b), we have
0=(@) 0= (a-u)=(a)t a) u=1-u=u.
Thus, if & # 0 and a - u = 0 then u = 0.
Part 3: As0=0-u=(1+(-1))u=u+(—1)-u, one has (-1)-u= —u. .
Example 3.1.4. The readers are advised to justify the statements given below.

1. Let V= {0}. Then, V is a real as well as a complex vector space.

2. Let A € M, »(F) and define V = {x € M, ;(F) : Ax = 0}. Then, by Theorem 2.1.7, V
satisfies:
(a) 0 €Vas A0 =0.
(b) if x € V then ax € V, for all a € F. In particular, for « = -1, —x € V.
(c) if x,y € V then, for any o, 3 € F, ax + By € V.

Thus, V is a vector space over F.
3. Consider R with the usual addition and multiplication. Then R forms a real vector space.
4. Let R" = {(ay,...,a,)T | a; € R,1 <i < n}. Foru=(ay,...,a,)", v=(b1,...,b,)7 €

V and a € R, define

u+v=_(a1+bi,...,an+b,)" and a-u=(aai,...,aa,)"

(CALLED COMPONENT-WISE OPERATIONS). Then, V is a real vector space. The vector

space R" is called the real vector space of n-tuples.

Recall that the symbol ¢ represents the complex number /—1.

5. Let C" = {(21,...,20)T | 2 € C,1 < i <n}. Forz = (21,...,2n), W = (w1,...,wy)" €
C™ and a € F, define component-wise vector sum and scalar multiplication. Then, verify
that C™ forms a vector space over C (called the complex vector space) as well as over R
(called the real vector space). Unless specified otherwise, C™ will be considered a complex

vector space.
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10.

11.

12.

13.

14.

CHAPTER 3. VECTOR SPACES

Remark 3.1.5. If F = C then i(1,0,...,0)T = (i,0,...,0)T is allowed. Whereas, if
F =R then i(1,0,...,0)" doesn’t make sense asi & R.

Fix m,n € N and let My, ,(C) = {Amxn = [aij] | a;j € C}. Then, with usual addition
and scalar multiplication of matrices, M, ,,(C) is a complex vector space. If m = n, the
vector space M, ,,(C) is denoted by M, (C).

Let S be a non-empty set and let R® = {f | f is a function from S to R}. For f,g € RY
and a € R, define (f + ag)(x) = f(z) + ag(z), for all z € S. Then, R is a real vector
space. In particular, for S = N, observe that RN consists of all real sequences and forms

a real vector space.

. Fix a,b € R with a < b and let C([a,b],R) = {f : [a,b] — R | f is continuous}. Then,

C([a,b],R) with (f + ag)(z) = f(x) + ag(z), for all = € [a,b], is a real vector space.

Let C(R,R) = {f: R — R | f is continuous}. Then, C(R,R) is a real vector space, where
(f +ag)(z) = f(z) + ag(x), for all z € R.

Fix ¢ < b € R and let C?((a,b),R) = {f : (a,b) — R | f”is continuous}. Then,
C*((a,b),R) with (f + ag)(z) = f(z)

+ ag(z), for all z € (a,b), is a real vector space.

Let R[z] = {ap + a1z + -+ + apz™ | a; € R, for 0 <7 < n}. Now, let p(z),q(z) € Rz].
Then, we can choose m such that p(z) =ag+ a1z + -+ + apx™ and g(x) = by + byz +

-+ 4 by 2™, where some of the a;’s or b;’s may be zero. Then, we define
p(x) + q(x) = (ap + bo) + (a1 + b1)x + -+ + (@ + b)) 2™

and ap(z) = (aag) + (aar)r + -+ + (aapy)z™, for a € R. With these operations
“component-wise addition and multiplication”, it can be easily verified that R[x] forms a

real vector space.

Fix n € N and let R[z;n] = {p(x) € R[z] | p(x) has degree < n}. Then, with component-

wise addition and multiplication, the set R[z;n] forms a real vector space.

Let V and W be vector spaces over F, with operations (+, e) and (&, ®), respectively. Let
VxW={(v,w)]| veV,we W} Then, VxW forms a vector space over F, if for every
(vi,w1),(ve,ws) € VX W and a € R, we define

(vi,wi) @ (vo,ws2) = (vi+va, Wi ®wy), and

ao(vi,wy) = (aevi,a®wyp).

vi+vy and wi @ ws on the right hand side mean vector addition in V and W, respectively.
Similarly, « e vi and a ® wy correspond to scalar multiplication in V and W, respectively.

Note that R? is similar to R x R, where the operations are the same in both spaces.

Let Q be the set of scalars. Then,
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(a) R is a vector space over Q. In this space, all the irrational numbers are vectors but

not scalars.
(b) V=1{a+bv2:a,b€ Q} is a vector space.
(c) V={a+bV/2+cV/3+dV6:a,b,c,dc Q} is a vector space.
(d) V={a+by/=3:a,be Q} is a vector space.

15. Let Rt = {z € R| > 0}. Then,
(a) RT is not a vector space under usual operations of addition and scalar multiplication.

(b) RT is a real vector space with 1 as the additive identity if we define
udv=u-v and a®u=u?® foral u,veR" and a € R.
16. For any o € R and x = (z1,22)7,y = (y1,92)" € R?, define
xDy = (21 —l—y1+1,x2—i—y2—3)T and a©x = (azr +a— 1,a:c2—3a—|—3)T.
Then, R? is a real vector space with (—1,3)7 as the additive identity.

17. Recall the field Zs = {0,1,2,3,4} given on the first page of this chapter. Then, V =

{(a,b) | a,b € Zs} is a vector space over Zs having 25 elements/vectors.
From now on, we will use ‘u+ v’ for ‘u® v’ and ‘cu or - u’ for ‘a ® u’.

EXERCISE 3.1.6. 1. Verify that the vectors spaces mentioned in FExample 3.1.4 do satisfy all

the conditions for vector spaces.
2. Does R withx®y=x—y and a ® x = —ax, for all x,y,a € R form a vector space?

3. Let V=R2 Forx=(r1,22)",y = (y1,42)" € R? and o € R, define
(a) (901,3/1)T ® (90273/2)T = (21 + sz,O)T and o © ($1’y1)T = (anl,O)T-
(b) x+y = (z1+y1,72 +y2)T and ax = (ax1,0)7T.

Then, does V form a vector space under any of the two operations?

3.1.1 Vector Subspace

Definition 3.1.7. Let V be a vector space over F. Then, a non-empty subset W of V is called
a subspace of V if W is also a vector space with vector addition and scalar multiplication in
W coming from that in V (compute the vector addition and scalar multiplication in V and then

the computed vector should be an element of W).
Example 3.1.8.
1. The vector space R[z;n] is a subspace of Rx].
2. Is V= {zp(x) | p(z) € Rlz]} a subspace of R[z]?

3. Let V be a vector space. Then V and {0} are subspaces, called trivial subspaces.
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4. The real vector space R has no non-trivial subspace. To check this, let V # {0} be a
vector subspace of R. Then, there exists x € R,z # 0 such that x € V. Now, using scalar
multiplication, we see that {ax | @« € R} C V. As, z # 0, the set {az | « € R} = R. This
in turn implies that V = R.

5 W= {x€R3| [1,2,—1]x = 0} is a subspace. It represents a plane in R® containing 0.

1 1 1

6. W=<x€R3|
1 -1 -1

X = 0} is a subspace. What does it represent?

7. Verify that W = {(z,0)” € R? | z € R} is a subspace of R2.
8. Is the set of sequences converging to 0 a subspace of the set of all bounded sequences?

9. Let V be the vector space of Example 3.1.4.16. Then,
(a) S={(z,0)T | x € R}isnot asubspaceof Vas (z,0)T®(y,0)? = (z+y+1,-3)T ¢ S.
(b) Verify that W = {(z,3)” | x € R} is a subspace of V.

10. The vector space RT defined in Example 3.1.4.15 is not a subspace of R.

Let V(F) be a vector space and W C V, W # (). We now prove a result which implies that

to check W to be a subspace, we need to verify only one condition.

Theorem 3.1.9. Let V(IF) be a vector space and W C V. W #£ (. Then, W is a subspace of V
if and only if cu+ Bv € W whenever o, 5 € F and u,v € W.

Proof. Let W be a subspace of V and let u,v € W. As W is a subspace, the scalar multiplication
and vector addition gives elements of W itself. Hence, for every o, € F, au,fv € W and
ou+ pv e W.

Now, we assume that au + v € W, whenever o, 8 € F and u,v € W. To show, W is a
subspace of V:

1. Taking a =0and 8 =0=0€ W. So, W is non-empty.
2. Taking a« =1 and § =1, we see that u+ v € W, for every u,v € W.

3. Taking 8 = 0, we see that au € W, for every € F and u € W. Hence, using Theo-
rem 3.1.3.3, —u = (—1)u € W as well.

4. The commutative and associative laws of vector addition hold as they hold in V.

5. The conditions related with scalar multiplication and the distributive laws also hold as
they hold in V. "

EXERCISE 3.1.10. 1. Prove that a line in R? is a subspace if and only if it passes through

origin.

2. Prove that {(x,y,2)T € R3| azx + by + cz = d} is a subspace of R3 if and only if d = 0.
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3. Does the set V given below form a subspace? Give reasons for your answer.
(a) LetV ={(z,y,2)T |z +y+2z=1}.
(b) LetV = {(z,y)T € R? |z -y =0}.
(c) Let V= {(z,9)T € R? | z = ¢?}.
(d) Let V= {(z,y)T € R? | z,y >0}.
4. Determine all the subspaces of R and R2.

5. Fizn € N. In the examples given below, is W a subspace of M,(R), where

(a) W={A e M,(R) | A is upper triangular}?

(b) W ={A e M,(R

| A is symmetric}?

(d) W={AeM,(R)| A isa diagonal matriz}?

(e) W={AeM,(R)| trace(A) =0}?
(

)
)
(c) W={A€eM,(R) | Ais skew-symmetric} ?
)
)
(f) W= {A € Mu(R)

| AT = 2A}?

6. Fixn € N. Then, is W = {A = [a;;] € M,(R| a11 + a2z = 0} a subspace of the complex
vector space My (C)? What if My (C) is a real vector space?

7. IsW={feC(-1,1]) | f(—-1/2) =0,f(1/2) =0} a subspace of C([—1,1])?
8. Are all the sets given below subspaces of R[x]?

() W = {f(z) € Rla] | deg(/(x)) = 3).
(b) W= {f(x) € Rlx] | 2g(x) for some g(z) € Rla]}.

9. Among the following, determine the subspaces of the complex vector space C™?

(a) {(21,22,...,2a)T | 21 is real }.
(b) {(217227'”7Zn)T ‘ Zl+22:73}.
(c) {(z1,22,...,z)T | |21 |=| 22|}

10. Prove that G = {A € M,(R) | det(A) =0} is not subspaces of M,(R).

3.2 Linear Combination and Linear Span

Let us recollect that system Ax = b was either consistent (has a solution) or inconsistent (no
solution). It turns out that the system Ax = b is consistent leads to the idea that the vector b

is a linear combination of the columns of A. Let us try to understand them using examples.

Example 3.2.1.
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11 2 2 1 1 2
1. Let A = |1 2| and b = |3|. Then, |3| = |1| 4+ [2|. Thus, |3| is a linear
1 3 4 4 1 3 4
1 1 10
combination of the vectors in S = 1], (2] p. Similarly, the vector |16| is a linear
1 3 22
10 1] 1
combination of the vectors in S as |16 =4|[1| +6(2| = A 2 .
22 1

2
2. Let b= |3|. Then, the system Ax = b has no solution as REF([A b]) =
5

[
S =
— =N

Formally, we have the following definition.

Definition 3.2.2. Let V be a vector space over F and let S = {uy,...,u,} C V. Then, a
vector u € V is called a linear combination of elements of S if we can find a1,...,a, € F
such that .
u=aoau+- -+ o, = Zaiui.
i=1
n
Or equivalently, any vector of the form »_ a;u;, where aq,...,a, € F, is said to be a linear
combination of the elements of S. Q)
Thus, the system Ax = b has a solution = b is a linear combination of the columns of A.
Or equivalently, b is a linear combination means the system Ax = b has a solution. So, recall
that when we were solving a system of linear equations, we looked at the point of intersections
of lines or plane etc. But, here it leads us to the study of whether a given vector is a linear
combination of a given set S or not? Or in the language of matrices, is b a linear combination

of columns of the matrix A or not?
Example 3.2.3.

1. (3,4,5) is not a linear combination of (1,1,1) and (1,2, 1) as the linear system (3,4,5) =
a(1,1,1) +b(1,2,1), in the unknowns a and b has no solution.

2. Is (4,5,5) a linear combination of (1,0,0), (2,1,0) and (3,3,1)?

1 2 3 4
Solution: Define A = [0 1 3| and b = |5|. Then, does the system Ax = b has a
0 01 5

solution? Verify that x = [9, —10, 5]7 is a solution.

EXERCISE 3.2.4. 1. Let x € R3. Prove that x* is a linear combination of (1,0,0), (2,1,0)
and (3,3,1).
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2. Find condition(s) on x,y,z € R such that
(a) (x,y, %) is a linear combination of (1,2,3),(—1,1,4) and (3,3,2).
(b) (z,y,z2) is a linear combination of (1,2,1),(1,0,—1) and (1,1,0).
(c) (z,y,2) is a linear combination of (1,1,1),(1,1,0) and (1,—1,0).

3.2.1 Linear Span

Let V be a vector space over F and S a subset of V. We now look at ‘linear span’ of a collection
of vectors. So, here we ask “what is the largest collection of vectors that can be obtained as
linear combination of vectors from S”7 Or equivalently, what is the smallest subspace of V that

contains S7 We first look at an example for clarity.

Example 3.2.5. Let S = {(1,0,0),(1,2,0)} C R3. We want the largest possible subspace
of R® which contains vectors of the form «(1,0,0),3(1,2,0) and «(1,0,0) + 3(1,2,0) for all
possible choices of «, 8 € R. Note that

1. 44 ={«(1,0,0) : @ € R} gives the X-axis.

2. 05 ={p(1,2,0) : B € R} gives the line passing through (0,0,0) and (1,2,0).

So, we want the largest subspace of R? that contains vectors which are formed as sum of

any two points on the two lines #; and f5. Or the smallest subspace of R? that contains S? We

give the definition next.

Definition 3.2.6. Let V be a vector space over F and S C V.
1. Then, the linear span of S, denoted LS(S), is defined as

LS(S) = {oqui+-+apu, |o; €F,u; €58, for 1 <i<n}.

That is, LS(S) is the set of all possible linear combinations of finitely many vectors of S.
If S is an empty set, we define LS(S) = {0}.

2. V is said to be finite dimensional if there exists a finite set S such that V= LS(S).

3. If there does not exist any finite subset S of V such that V = LS(S) then V is called

infinite dimensional.
Example 3.2.7. For the set S given below, determine LS(S).

1.8 = {(1,0)7,(0,1)T} C R2.
Solution: LS(S) = {a(1,0)” + (0, )T | a,b € R} = {(a,b)T | a,b € R} = R2. Thus,

R? is finite dimensional.

2. S ={(1,1,1)7,(2,1,3)T}. What does LS(S) represent in R3?
Solution: LS(S) = {a(1,1,1)T +b(2,1,3)" | a,b € R} = {(a+2b,a+b,a+3b)T | a,bc
R}. Note that LS(S) represents a plane passing through the points (0,0,0)7, (1,1,1)T
and (2,1, 3)T. To get he equation of the plane, we proceed as follows:

Find conditions on z,y and z such that (a 4+ 2b,a + b, a + 3b) = (z,y, z). Or equivalently,
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find conditions on z,y and z such that a +2b = z,a+ b =y and a + 3b = 2z has a solution
1 0 2 —x
for all a,b € R. The RREF of the augmented matrix equals |0 1 x—y . Thus,

0 0 z24+y—2z
the required condition on z,y and z is given by z + y — 2z = 0. Hence,

LS(S) = {a(1,1,1)T +5(2,1,3)" | a,b € R} = {(z,y,2)" € R® |22 —y — 2 = 0}.

Verify that if 7= S U {(1,1,0)7} then LS(T) = R3. Hence, R? is finite dimensional. In

general, for every fixed n € N, R" is finite dimensional as R™ = LS ({e1, ..., e, }).

3.8 ={1+4+2z+32%1+x+22% 1+ 2z + 23}.
Solution: To understand LS(S), we need to find condition(s) on «, 3,7, d such that the

linear system
a(1+ 2z + 322%) + b(1 + 2 + 22%) + ¢(1 + 22 + 2°) = a + Bz + y2° + 62°

in the unknowns a,b,c is always consistent. An application of GJE method gives

a+ f—v—3) =0 as the required condition. Thus,
LS(S) = {a+ pz+y2® + 63 e R[z] |a+ B —~v — 35 = 0}.
Note that, for every fixed n € N, R[x; n] is finite dimensional as Rlz; n] = LS ({1,z,...,z2"}).
01 1
4. S=<1I3, |1 1 2],
1 20 2 2 4
Solution: To get the equation, we need to find conditions on a;;’s such that the system

a B+ B+2y ail a2 a3
B+ a+pB 28+2y| = |az1 a2 a3,
B 'f‘ 2’7 QB + 2’)/ o+ 2’7 a3] asz ass

in the unknowns «, 8, is always consistent. Now, verify that the required condition

equals

a2 + ass — a3
2 )
agp — azz + 3a3 age — azz + 3ai3 }

a2 = 4 ,a23 = B

LS(S) = {A = [a;j] e M3(R)| A= AT 4y, =

In general, for each fixed m,n € N, the vector space M, ,(R) is finite dimensional as

5. C[z] is not finite dimensional as the degree of a polynomial can be any large positive
integer. Indeed, verify that Clz] = LS({1,z,2%,...,2",...}).

6. The vector space R over Q is infinite dimensional.

EXERCISE 3.2.8. Determine the equation of the geometrical object represented by LS(S).
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1. S={n} CR.
2. S ={(x,y)! : 2,y <0} CR2.
3. S ={(x,y)" : either x # 0 or y # 0} C R2,

4.8 = {(1,0,1)7,(0,1,0)7,(2,0,2)T} C R3. Give two examples of vectors u,v different
from the given set such that LS(S) = LS(u,v).

5 8={(z,y,2)" 1 2,y,2 > 0} C R3.

o 1 ol o o 1] ]o0
6.S=<S1-1 0 1/,|l0 o0 1|,|-1 0 0]y < M;s(R).
0 -1 0| |-1 -1 0] |-1 0

7.8 ={(1,2,3,4)T,(-1,1,4,5)7,(3,3,2,3)T} CR%.
8. S ={1+2x+32% —1+x+42% 3 + 3z + 222} C C[z;2].
9. S={1,x,2% ...} CCla].
Lemma 3.2.9. Let V be a vector space over F with S CV. Then LS(S) is a subspace of V.

Proof. By definition, 0 € LS(S). So, LS(S) is non-empty. Let u,v € LS(S). To show,
au+ bv € LS(S) for all a,b € F. As u,v € LS(S), there exist n € N, vectors w; € S and

scalars «;, B; € F such that u = aywy + -+ + apwy, and v = Sywy + - - - + 8, w,. Hence,
au+ bv = (aay + bB)wy + - -+ + (aqy, + bBy)w, € LS(S)

as aa; + bp; € F for 1 <i < n. Thus, by Theorem 3.1.9, LS(S) is a vector subspace. "

EXERCISE 3.2.10. Let V be a vector space over F and W CV.
1. Then LS(W) =W if and only if W is a subspace of V.

2. If W is a subspace of V. and S C W then LS(S) is a subspace of W as well.

Theorem 3.2.11. Let V be a vector space over F and S C V. Then LS(S) is the smallest

subspace of V containing S.

Proof. For every u € S,u=1-ue€ LS(S). Thus, S C LS(S). Need to show that LS(S) is the
smallest subspace of V containing S. So, let W be any subspace of V containing S. Then, by
Exercise 3.2.10, LS(S) C W and hence the result follows. .

Definition 3.2.12. Let V be a vector space over F and S, T be two subsets of V. Then, the
sum of S and T, denoted S + T equals {s+t|s e S,t € T}.

Example 3.2.13.
1. V=R, S5=1{0,1,2,3,4,5,6} and T' = {5,10,15} then S+ T = {5,6,...,21}.

vwvews—{ [hwar ([ ams s (1]
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- ss([]) ams oz { [ ol ).

EXERCISE 3.2.14. Let P and Q be two non-trivial, distinct subspaces of R%. Then P+ Q = R2.

—1

3. IfV:RZ,S:{ +c

We leave the proof of the next result for readers.

Lemma 3.2.15. Let P and QQ be two subspaces of a vector space V over F. Then P+ Q is a
subspace of V. Furthermore, P 4+ @Q is the smallest subspace of V containing both P and Q.

EXERCISE 3.2.16. 1. Leta € R? a# 0. Then {x € R? | alx = 0} is a non-trivial subspace

of R?. Geometrically, what does this set represent in R??

2. Find all subspaces of R3.

b 0
3. Let U = { 0] |a,b€]R} and W = {[g d] |a,d€]R} be subspaces of Ma(R).

Determine UNW. Is Mp(R) = U+ W?

a

4. Let W and U be two subspaces of a vector space V over F.

(a) Prove that WNU is a subspace of V.

(b) Give examples of W and U such that W U U is not a subspace of V.
(c) Determine conditions on W and U such that WU U a subspace of V?
(d) Prove that LS(WUU) =W+ U.

5. Let S = {x1,Xo,X3,X4}, where x; = (1,0,0)7, x5 = (1,1,0)7,x3 = (1,2,0)" and x4 =
(1,1,1)T. Then, determine all x; such that LS(S) = LS(S\ {x;}).

6. Let W = LS((1,0,0)7,(1,1,0)7) and U = LS((1,1,1)T). Prove that W+ U = R3 and
WNU = {0}. Ifv € R3, determine w € W and u € U such that v =w +u. Is it

necessary that w and u are unique?

7. Let W = LS((1,-1,0),(1,1,0)) and U = LS((1,1,1),(1,2,1)). Prove that W + U = R3
and WNU # {0}. Find v € R? such that v = w + u, for 2 different choices of w € W

and u € U. Thus, the choice of vectors w and u is not unique.

8 Let S={(1,1,1,1)T, (1,-1,1,2)7 (1,1,-1,1)T} C R*. Does (1,1,2,1)T € LS(S)? Fur-

thermore, determine conditions on x,y, z and u such that (z,y, z,u)T € LS(S).

3.3 Linear Independence

Let us now go back to homogeneous system Ax = 0. Here, we saw that this system has either a
non-trivial solution or only the trivial solution. The idea of a non-trivial solution leads to linear
dependence of vectors and the idea of only the trivial solution leads to linear independence. We

look at a few examples for better understanding.
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Example 3.3.1.

1 1
1. Let A= |1 2|. Then Ax = 0 has only the trivial solution. So, we say that the columns
1 3
1
of A are linearly independent. Thus, the set S = 1|, ]2]| ¢, consisting of columns of
1
A, is linearly independent.
1 1 2 1 1 2
2. Let A= |1 2 3|. As REF(A) = |0 1 1|, Ax = 0 has only the trivial solution.
1 35 0 0 1
1 2
Hence, the set S = 11, (2], [3] p, consisting of columns of A, is linearly independent.
1 5|
11 2 11 2
3. Let A= |1 2 3|. AsREF(A)= |0 1 1|, Ax = 0 has a non-trivial solution. Hence,
1 3 4 000
1 1 2
the set S = 1] , 121, 13| 7, consisting-of columns of A, is linearly dependent.
1 3 4

Formally, we have the following definition.

Definition 3.3.2. Let S = {uy,...,u,,} be a non-empty subset of a vector space V over F.

Then, S is said to be linearly independent if the linear system
aju; +asus + - - - + apuy, =0, (331)

in the unknowns «;’s, 1 < i < m, has only the trivial solution. If Equation (3.3.1) has a
non-trivial solution then S is said to be linearly dependent. If S has infinitely many vectors
then S is said to be linearly independent if for every finite subset 1" of S, T is linearly

independent.

Observe that we are solving a linear system over F. Hence, whether a set is linearly inde-

pendent or linearly dependent depends on the set of scalars.

Example 3.3.3.

1. Consider C? as a vector space over R. Let S = {(1,2)7,(7,2i)T}. Then, the linear system
a-(1,2)T +b-(i,2i)T = (0,0)T, in the unknowns a,b € R has only the trivial solution,

namely a = b= 0. So, S is a linear independent subset of the vector space C? over R.

2. Consider C? as a vector space over C. Then S = {(1,2)7,(4,2i)”} is a linear dependent

subset of the vector space C? over C as a = —i and b = 1 is a non-trivial solution.
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3. Let V be the vector space of all real valued continuous functions with domain [—m, 7].
Then V is a vector space over R. Question: What can you say about the linear indepen-
dence or dependence of the set S = {1,sin(x), cos(x)}?

Solution: For all z € [, 7], consider the system

1 sin(x) cos(x)] bl =0<a-1+b-sin(z)+ c-cos(z) =0, (3.3.2)

c

in the unknowns a,b and c. Even though we seem to have only one linear system, we we
can obtain the following two linear systems (the first using differentiation and the second

T
using evaluation at 0, 3 and 7 of the domain).

a+bsinx + ccosx =0 at+c =0
O-a+bcosz —csinz =0 or a+b =0
0-a—bsinx —ccosz =0 a—c =0

Clearly, the above systems has only the trivial solution. Hence, S is linearly independent.

4. Let A € M, ,(C). If Rank(A) < m then, the rows of A are linearly dependent.
C
Solution: As Rank(A) < m, there exists an invertible matrix P such that PA = .

Thus, 07 = (PA)[m,:] = Y pmiAli,:]. As Pis invertible, at least one p,,; # 0. Thus, the
i=1
required result follows.

5. Let A € M, ,(C). If Rank(A) < n then, the columns of A are linearly dependent.

Solution: As Rank(A) < n the system Ax = 0 has a non-trivial solution.

6. Let S = {0}. Is S linearly independent?
Solution: Let u = 0. So, consider the system au = 0. This has a non-trivial solution
a=1las1-0=0.

7. Let S = 0,1
0" [2

solution x = ol Hence, S is linearly dependent.

. This has a non-trivial

}. Then Ax = 0 corresponds to A =

.
8. Let § = { [2 } Is S linearly independent?

1
Solution: Let u = 5| Then the system au = 0 has only the trivial solution. Hence S

is linearly independent.

So, we observe that 0, the zero-vector cannot belong to any linearly independent set. Fur-
ther, a set consisting of a single non-zero vector is linearly independent.
EXERCISE 3.3.4. 1. Show that S = {(1,2,3)T,(-2,1,1)7,(8,6,10)T} C R? is linearly de-
pendent.
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2. Let A € M,(R). Suppose x,y € R"\ {0} such that Ax = 3x and Ay = 2y. Then, prove

that x and y are linearly independent.

2 1 3
3. Let A= |4 —1 3|. Determine x,y,z € R3\ {0} such that Ax = 6x, Ay = 2y and
3 -2 5
Az = —2z. Use the vectors X,y and z obtained above to prove the following.

(a) A%v = 4v, where v = cy + dz for any c,d € R.
(b) The set {x,y,z} is linearly independent.
(c) Let P =[x, Yy, z] be a 3 x 3 matriz. Then, P is invertible.

6 0 0
(d) Let D= [0 2 0 |. Then AP = PD.
0 0 -2

3.3.1 Basic Results on Linear Independence

The reader is expected to supply the proof of the next proposition.

Proposition 3.3.5. Let V be a vector space over F.
1. Then, 0, the zero-vector, cannot belong to a linearly independent set.
2. Then, every subset of a linearly independent set in V is also linearly independent.
3. Then, a set containing a linearly dependent set of V is also linearly dependent.
We now prove a couple of results which will be very useful in the next section.

Proposition 3.3.6. Let S be a linearly independent subset of a wvector space V over F. If
T1, T are two subsets of S such that Ty N Ty = () then, LS(T1) N LS(T3) = {0}. That is, if
v € LS(Ty) N LS(Ty) then v = 0.

Proof. Let v € LS(T1)NLS(T»). Then, there exist vectors uy, ..., ux € 11, wi,...,wy; € Ty and
k ¢

scalars o;’s and (;’s (not all zero) such that v = ) oyu; and v = ) f;w; . Thus, we see that
i=1 j=1

k /
> agui+ > (—Bj)w; = 0. As the scalars o;’s and 3;’s are not all zero, we see that a non-trivial
i=1 j=1

linear combination of some vectors in 77 UT5 C S is 0. This contradicts the assumption that S

is a linearly independent subset of V. Hence, each of a’s and ;s is zero. That is v = 0. n

Lemma 3.3.7. Let S be a linearly independent subset of a vector space V over F. Then, each

v € LS(S) is a unique linear combination of vectors from S.

Proof. Suppose there exists v € LS(S) with v € LS(T1), LS(T) with T1,75 € S. Let Th =
{vi,..., v} and Tp = {wy,...,wy}, for some v;’s and w;’s in S. Define T' = T; U T5. Then,

T is a subset of S. Hence, using Proposition 3.3.5, the set T is linearly independent. Let T =
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{ui,...,up,}. Then, there exist o;’s and ;’s in F, not all zero, such that v =aqui +---+apu,

as well as v = fiuy + - - - + pu,. Equating the two expressions for v gives
(a1 — B)ug + - + (o — Bp)u, = 0. (3.3.3)

As T is a linearly independent subset of V, the system ¢;vi + -+ + ¢,v, = 0, in the variables
C1,...,Cp, has only the trivial solution. Thus, in Equation (3.3.3), o — 3; = 0, for 1 < i < p.
Thus, for 1 <i < p, a; = §; and the required result follows. "

Theorem 3.3.8. Let S = {uy,...,ux} be a non-empty subset of a vector space V over F. If
Z C LS(S) having more than k vectors then, Z is a linearly dependent subset in V.

Proof. Let Z = {w1,...,wn}. As w; € LS(S), there exist a;; € F such that
w; = a;1u1 + - - - + ajpug, for 1 <7 < m.

So,

w1 aijiuy + - - -+ apUg ai; - a1 | (a1

Wm Am1Uy + -+ + QiU aml = Amk uy

As m > k, the homogeneous system A’x = 0 has a non-trivial solution, say y # 0, i.e.,
ATy =0 < yTA=0". Thus,

vyl =y Al =GT4)] | =0T | =0".
Wi, ug Uy ug

As y # 0, a non-trivial linear combination of vectors in Z is 0. Thus, the set Z is linearly

dependent subset of V. "

Corollary 3.3.9. Fizn € N. Then, any subset S of R™ with | S | > n+1 is linearly dependent.

Proof. Observe that R™ = LS({e,...,e,}), where e; = I,,[:, ], is the i-th column of I,,. Hence,

using Theorem 3.3.8, the required result follows. n

Theorem 3.3.10. Let S be a linearly independent subset of a vector space V over F. Then, for
any v € V the set S U{v} is linearly dependent if and only if v € LS(S).

Proof. Let us assume that S U {v} is linearly dependent. Then, there exist v;’s in S such that
the linear system

Q1vy + -+ apvp + ap1v = 0 (334)

in the variables «;’s has a non-trivial solution, say a; = ¢;, for 1 < i < p+ 1. We claim that

cp+1 # 0.
For, if ¢p41 = 0 then, Equation (3.3.4) has a non-trivial solution corresponds to having a

non-trivial solution of the linear system a;vy + - -+ ,v, = 0 in the variables a1, ..., a,. This
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contradicts Proposition 3.3.5.2 as {vy,...,v,} C S, a linearly independent set. Thus, ¢,41 # 0
and we get
1 o
v=——-(c1vi+-+¢vp) € LS(v1,...,vp) as — —— €F, for 1 <i<p.

Cp+1 Cp+1
Now, assume that v € LS(S). Then, there exists v; € S and ¢; € F, not all zero, such that

P
v = > ¢;v;. Thus, the linear system agvy + -+ a, vy, + ap11v = 0 in the variables a;’s has a
i=1
non-trivial solution [c1,. .., ¢y, —1]. Hence, S U {v} is linearly dependent. "
We now state a very important corollary of Theorem 3.3.10 without proof. This result can

also be used as an alternative definition of linear independence and dependence.

Corollary 3.3.11. Let V be a vector space over F and let S be a subset of V containing a

non-zero vector uj.

1. If S is linearly dependent then, there exists k such that LS(uy,...,u;) = LS(uy,...,ux_1).
Or equivalently, if S is a linearly dependent set then there exists a vector ug, for k > 2,

which is a linear combination of the previous vectors.

2. If S linearly independent then, v € V \ LS(S) if and only if S U {v} is also a linearly
independent subset of V.

3. If S is linearly independent then, LS(S) =V if and only if each proper superset of S is

linearly dependent.

As an application, we have the following result about finite dimensional vector spaces. We
leave the proof for the reader as it directly follows from Corollary 3.3.11 and the idea that an

algorithm has to finally stop if it has finite number of steps to implement.

Theorem 3.3.12. Let V is a finite dimensional vector space over F.
1. If S is a finite subset of V such that LS(S) =V then we can find a subset T of S such
that T is linearly independent and LS(T) = V.

2. Let T be a linearly independent subset of V. Then, we can find a superset S of T such
that S is linearly independent and LS(S) = V.

EXERCISE 3.3.13.
1. Prove Corollary 3.3.11.

2. Let V and W be subspaces of R" such that V+ W = R"™ and VN'W = {0}. Prove that

each u € R™ is uniquely expressible as u = v +w, where v eV and w € W.
3. Let W be a subspace of a vector space V over F. For u,v € V\ W, define K = LS(W, u)
and M = LS(W,v). Then, prove that v € K if and only if u € M.

4. Suppose V is a vector space over R as well as over C. Then, prove that {ui,...,ux}
is a linearly independent subset of V over C if and only if {ui,...,ux,iuy,...,1ux} is a

linearly independent subset of V over R.
5. Is the set {1,x,2%,...} a linearly independent subset of the vector space Clx] over C?

6. Is the set {e;| 1 <i <m,1 < j < n} a linearly independent subset of the vector space
M, n(C) over C (see Definition 1.4.1.1)%
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3.3.2 Application to Matrices

In this subsection, we use the understanding of vector spaces to relate the rank of a matrix
with linear independence and dependence of rows and columns of a matrix. We start with our
understanding of the RREF.
Theorem 3.3.14. Let A € M, ,(C) with Rank(A) =r. Then,

1. there exist r rows of A that are linearly independent.
every collection of (r + 1) rows of A are linearly dependent.

there exist r columns of A that are linearly independent.

e

every collection of (r + 1) columns of A are linearly dependent.

Proof. As Rank(A) = r, there exist an invertible matrix P and an r X n matrix B having r
B
pivots such that PA = RREF(A) = R = ol As B is in RREF, the matrix I, is a submatrix

of B. Hence, the rows of B are linearly independent. Thus, we have shown that the pivotal
rows of R are linearly independent. These pivotal rows would have come from certain initial
rows, say i1,...,i, of A. Thus, the rows {A[i1,:],..., Ali,,:}] is a linearly independent set.

B

Further, PA = implies, A = P! 0

B
=[P P [0] = P, B, for some matrix P, Thus,

every row of A is a linear combination of the r-rows of B. Hence, using Theorem 3.3.8 any
collection of (r 4+ 1) rows of A are linearly dependent.

Let B[:,i1],...,B][:,i,] be the pivotal eolumns of B. Then, they are linearly independent
due to pivotal 1’s. As B = RREF(A), there exists an invertible matrix P such that B = PA.

Then, the corresponding columns of A satisfy

[A[i1), ..., Al in)) = [P7*Bl,ia, ..., P B[, is]) = P~ [Bl: 1), .. ., B[, iy]l.

1 x1

As P is invertible, the systems [A[:,i1],..., A[:,%r]] | : | =0 and [B[:,41],...,B[;,iy]]| - | =0
Ty L

are row-equivalent. Thus, they have the same solution set. Hence, {A[:,i1],..., Al ]} is

linearly independent if and only if { B[:, 1], ..., B]:, ;| } is linear independent. Thus, the required

result follows. "

We consider an example for clarity of the above result.

1 1
0 -1 ,
Example 3.3.15. Let A= ) with RREF(A) = B =
1

— = O

0

—_ N = =
o O O =
o O = O
o = O O

2
1. Then, B[:,3] = —B[;,1] + 2B[:,2]. Thus, A[;,3] = —A[;,1] + 2A[, 2].

2. As the 1-st, 2-nd and 4-th columns of B are linearly independent, the set consisting of
corresponding columns {A[:, 1], A[:, 2], A[:, 4]} is linearly independent.
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3. Also, note that during the application of GJE, the 3-rd and 4-th rows were interchanged.
Hence, the rows A[l,:], A[2,:] and A[4, ] are linearly independent.

As an immediate corollary of Theorem 3.3.14 one has the following result.

Corollary 3.3.16. The following statements are equivalent for A € M,,(C).
1. A is invertible.
2. The columns of A are linearly independent.
3. The rows of A are linearly independent.

EXERCISE 3.3.17. 1. Let Sy ={uy,...,u,} and Sy = {w1,...,w,} be subsets of a complex

vector space V. Also, let |w; --- wn} = [ul un}A for some matriz A € M, (C).

(a) If A =ay;] is invertible then Sy is a linearly independent if and only if S is linearly
independent.

(b) If Sy is linearly independent then prove that A is invertible. Further, in this case,
the set Sy is necessarily linearly independent.
2. Let S ={uy,...,u,} CC" and T = {Auy, ..., Au,}, for some matriz A € M, (C).

(a) If S is linearly dependent then prove that T is linear dependent.
(b) If S is linearly independent then prove that T is linearly independent for every in-

vertible matriz A.

(c) If T is linearly independent then S is linearly independent. Further, in this case, the

matriz A is necessarily invertible.

3.4 Basis of a Vector Space

Definition 3.4.1. Let S be a subset of a set T. Then, S is said to be a maximal subset of
T having property P if

1. S has property P and
2. no proper superset of S in T has property P.
Example 3.4.2. Let T = {2,3,4,7,8,10,12,13,14,15}. Then, a maximal subset of T of

consecutive integers is S = {2, 3,4}. Other maximal subsets are {7,8}, {10} and {12, 13,14, 15}.
Note that {12,13} is not maximal. Why?

Definition 3.4.3. Let V be a vector space over F. Then, S is called a maximal linearly
independent subset of V if

1. § is linearly independent and

2. no proper superset of S in V is linearly independent.

Example 3.4.4.
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1. In R3, the set S = {ej, ez} is linearly independent but not maximal as S U {(1,1,1)T} is
a linearly independent set containing S.

2. InR3, S ={(1,0,0)7,(1,1,0)7, (1,1, 1)} is a maximal linearly independent set as S is
linearly independent and any collection of 4 or more vectors from R3 is linearly dependent

(see Corollary 3.3.9).

3. Let S = {vi,...,vig} € R" Now, form the matrix A = [vy,...,vi] and let B =
RREF(A). Then, using Theorem 3.3.14, we see that if B[:,i1],...,B]:,i,| are the piv-

otal columns of B then {v; ,...,v; } is a maximal linearly independent subset of S.
4. Ts the set {1,z,22,...} a maximal linearly independent subset of C[xz] over C?
5. Is the set {e;;| 1 <i <m,1 < j <n} amaximal linearly independent subset of M, ,,(C)

over C?

Theorem 3.4.5. Let V be a vector space over F and S a linearly independent set in V. Then,

S is mazimal linearly independent if and only if LS(S) = V.

Proof. Let v € V. As S is linearly independent, using Corollary 3.3.11.2, the set S U {v} is
linearly independent if and only if v € V' \ LS(S). Thus, the required result follows. n

Let V = LS(S) for some set S with | S| = k. Then, using Theorem 3.3.8, we see that if
T C V is linearly independent then | T | < k. Hence, a maximal linearly independent subset

of V can have at most k vectors. Thus, we arrive at the following important result.

Theorem 3.4.6. Let'V be a vector space overF and let S and T be two finite maximal linearly
independent subsets of V. Then | S| = |T|.

Proof. By Theorem 3.4.5, S and T are maximal linearly independent if and only if LS(S) =
V = LS(T). Now, use the previous paragraph to get the required result. "

Let V be a finite dimensional vector space. Then, by Theorem 3.4.6, the number of vectors
in any two maximal linearly independent set is the same. We use this number to now define

the dimension of a vector space.

Definition 3.4.7. Let V be a finite dimensional vector space over F. Then, the number of
vectors in any maximal linearly independent set is called the dimension of V, denoted dim(V).
By convention, dim({0}) = 0.
Example 3.4.8.

1. As {1} is a maximal linearly independent subset of R, dim(R) = 1.

2. As {ey,...,e,} is a maximal linearly independent subset in R", dim(R") = n.
3. As {eyq,...,e,} is a maximal linearly independent subset in C" over C, dim(C") = n.
4. Using Exercise 3.3.13.4, {e1,...,ep,iey,...,ie,} is a maximal linearly independent subset

in C" over R. Thus, as a real vector space, dim(C") = 2n.

5. As {e;;| 1 <i<m,1 <j <n}is amaximal linearly independent subset of M, ,(C) over
C, dim(M,, ,(C)) = mn.
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Definition 3.4.9. Let V be a finite dimensional vector space over F. Then, a maximal linearly
independent subset of V is called a basis of V. The vectors in a basis are called basis vectors.

By convention, a basis of {0} is the empty set.
Thus, using Theorem 3.3.12 we see that every finite dimensional vector space has a basis.
Remark 3.4.10 (Standard Basis). The readers should verify the statements given below.

1. All the maximal linearly independent set given in Example 3.4.8 form the standard basis

of the respective vector space.

2. {1,z,22,...} is the standard basis of R[z] over R.

3. Fizx a positive integer n. Then {1,z,22,... 2"} is the standard basis of R[z;n] over R.

4. Let V= {A c M,(R) | A= AT}. Then, V is a vector space over R with standard basis
{eii,eij +ej; ’ 1<i<y < n}

5. Let V={A€cM,(R)| AT = —A}. Then, V is a vector space over R with standard basis
{eij—eji\1§i<j§n}.

Definition 3.4.11. Let V be a vector space over F. Then, a subset S of V is called minimal
spanning if LS(S) =V and no proper subset of .S spans V.
Example 3.4.12.

1. Note that {—2} is a basis and a minimal spanning subset in R.

2. Let uj,up,uz € R2. Then {u;,us,u3} can neither be a basis nor a minimal spanning
subset of R?.

3. Let V= {(z,9,0)T | 7,y € R} CR3. Then, B ={(1,0,0)T,(1,3,0)T} is a basis of V.

4. Let V= {(2,9,2)T € R3| 2 +y— 2 =0} CR3 As each element (z,y, 2)T € V satisfies
x4y — 2z =0. Or equivalently z = = + y, we see that

(#,9,2) = (9,2 +y) = (2,0,2) + (0,y,9) = 2(1,0,1) + y(0, 1, 1).

Hence, {(1,0,1)7,(0,1,1)"} forms a basis of V.

5. Let S = {a1,...,a,}. Then, R is areal vector space (see Example 3.1.4.7). For 1 <i < n,
define the functions
1 ifj=i
ei(a;) = {

0 otherwise

Then, prove that B = {e1,...,e,} is a linearly independent subset of R® over R. Is it a
basis of RS over R? What can you say if S is a countable set?

6. Let S = {vi,...,vi} € R". Define A = [vy,...,vg]. Then, using Example 3.4.4.3,
we see that dim(LS(S)) = Rank(A). Further, using Theorem 3.3.14, the columns of A
corresponding to the pivotal columns in RREF(A) form a basis of LS(S).
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3.4.1 Main Results associated with Bases

Theorem 3.4.13. Let V be a non-zero vector space over F. Then, the following statements are

equivalent.

1. B is a basis (maximal linearly independent subset) of V.
2. B is linearly independent and spans V.

3. B is a minimal spanning set in V.

Proof. 1 = 2 By definition, every basis is a maximal linearly independent subset of V.
Thus, using Corollary 3.3.11.2, we see that I3 spans V.

2 =3 Let S be a linearly independent set that spans V. As S is linearly independent,
for any x € S, x ¢ LS (S — {x}). Hence LS (S — {x}) S LS(S) = V.

3 = 1 If B is linearly dependent then using Corollary 3.3.11.1, B is not minimal
spanning. A contradiction. Hence, B is linearly independent.

We now need to show that B is a maximal linearly independent set. Since LS(B) =V, for
any x € V\ B, using Corollary 3.3.11.2, the set BU {x} is linearly dependent. That is, every

proper superset of B is linearly dependent. Hence, the required result follows. n
Now, using Lemma 3.3.7, we get the following result.

Remark 3.4.14. Let B be a basis of a vector space’V over F. Then, for each v € V, there exist
n

unique u; € B and unique o; € F, for 1 <i <mn, such that v=">_ a;u;.
i=1

The next result is generally known as “every linearly independent set can be extended to

form a basis of a finite dimensional vector space”. Also, recall Theorem 3.3.12.

Theorem 3.4.15. Let 'V be a vector space over F with dim(V) = n. If S is a linearly independent
subset of V then there exists a basis T of V such that S C T.

Proof. 1f LS(S) =V, done. Else, choose u; € V\ LS(S). Thus, by Corollary 3.3.11.2, the set
SU{uy} is linearly independent. We repeat this process till we get n vectors in T" as dim(V) = n.

By Theorem 3.4.13, this T' is indeed a required basis. "

3.4.2 Constructing a Basis of a Finite Dimensional Vector Space

We end this section with an algorithm which is based on the proof of the previous theorem.
Step 1: Let v € V with v; # 0. Then, {v;} is linearly independent.

Step 2: If V = LS(v1), we have got a basis of V. Else, pick vo € V\ LS(vy). Then, by
Corollary 3.3.11.2, {v1, va} is linearly independent.

Step i: Either V = LS(vy,...,v;) or LS(vy,...,v;) & V. In the first case, {vi,...,v;} is
a basis of V. Else, pick v;11 € V\ LS(vy,...,v;). Then, by Corollary 3.3.11.2, the set

{Vv1,...,Vit1} is linearly independent.

This process will finally end as V is a finite dimensional vector space.
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EXERCISE 3.4.16. 1. Let B = {uy,...,u,} be a basis of a vector space V over F. Then,
n

does the condition Y a;u; = 0 in a;’s imply that a; =0, for 1 <i<n?
i=1

2. Let S = {v1,...,vp} be a subset of a vector space V over F. Suppose LS(S) =V but S
is not a linearly independent set. Then, does this imply that each v € V is expressible
in more than one way as a linear combination of vectors from S? Is it possible to get a

subset T of S such that T is a basis of V over F? Give reasons for your answer.
3. Let V be a vector space of dimension n and let S be a subset of V having n vectors .

(a) If S is linearly independent then prove that S forms a basis of V.
(b) If LS(S) =V then prove that S forms a basis of V.

4. Let {vy,...,v,} be a basis of C". Then, prove that the two matrices B = [vy,...,v,] and
vi
C = | : | areinvertible.
1

5. Let W1 and Wy be two subspaces of a finite dimensional vector space V such that Wi C Ws.
Then, prove that W1 = Wy if and only if dim(W;) = dim(Wy).

6. Let Wy be a subspace of a finite dimensional vector space V over F. Then, prove that

there exists a subspace Wo of V such that
Wi NnWy = {0},W1 + Wy =V and dim(WQ) = dlm(V) — dim(Wl).

Also, prove that for each v € V there exist unique vectors w1 € Wy and wo € Wy with
v =wi+Wws. The subspace Wy is called the complementary subspace of W1 in V and
we write V=W & Ws.

7. Let V be a finite dimensional vector space over F. If Wi and Wy are two subspaces of V
such that WiNWy = {0} and dim(W)+dim(Wy) = dim(V) then prove that W1+Wy = V.

8. Consider the vector space C([—m, 7]) over R. For each n € N, define e,(z) = sin(nx).
Then, prove that S = {e, | n € N} is linearly independent. [Hint: Need to show that every
finite subset of S is linearly independent. So, on the contrary assume that there exists £ € N and
functions ey, , ... ek, such that ayer, +--- + arer, = 0, for some oy # 0 with 1 <t < {. But,
the above system is equivalent to looking at oy sin(k1z) + - - - + aysin(kex) = 0 for all x € [—7, 7).
Now in the integral

/ sin(mx) (g sin(k1z) + - - - + agsin(kex)) do= / sin(mx)0 dz=0

—Tr —T

replace m with k;’s to show that cc; = 0, for alli,1 < i < . This gives the required contmdiction./

9. Is the set {1,sin(x), cos(x),sin(2z), cos(2x), sin(3x), cos(3z), ...} a linearly subset of the

vector space C(|—m, m|,R) over R?
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10. Find a basis of R® containing the vector (1,1,—2)T and (1,2, —1)7.
11. Determine a basis and dimension of W = {(z,y,z,w)T € R*| 2 +y — 2 +w = 0}.

12. Find a basis of V= {(z,y,z,u) €ER*| 2 —y—2=0,2+ 2z —u = 0}.

10110
13. Let A= |0 1 2 3 0]|. Find a basis of V= {x € R>| Ax = 0}.
0 0001

14. Let u” = (1,1,-2),vl = (-1,2,3) and w’ = (1,10,1). Find a basis of LS(u,v,w).

Determine a geometrical representation of LS(u,v,w).

15. Is the set W = {p(z) € R[z;4] | p(—1) =p(1) =0} a subspace of R[x;4]? If yes, find its

dimension.

3.5 Fundamental Subspaces Associated with a Matrix

In this section, we will study results that are intrinsic to the understanding of linear algebra
from the point of view of matrices. For the sake of clarity, we will also restrict our attention to
matrices with real entries. So, we start with defining the four fundamental subspaces associated

with a matrix.
Definition 3.5.1. Let A € M, ,(R). Then, we define the four fundamental subspaces associ-
ated with A as

1. CoL(A4) = {Ax | x € R"} is a subspace of R™, called the Column space, and is the

linear span of the columns of A.

2. Row(A) = CoL(AT) = {ATx | x € R™} is a subspace of R", called the row space of A

and is the linear span of the rows of A.
3. NULL(A) = {x € R" | Ax = 0}, called the Null space of A.

4. NULL(AT) = {x e R™ | ATx = 0}, also called the left-null space.

EXERCISE 3.5.2. Let A € M, »,(R). Then prove that
1. NULL(A) and ROW(A) are subspaces of R™.
2. NULL(AT) and CoL(A) are subspaces of R™.

Example 3.5.3.

1. Compute the fundamental subspaces for A= |1 2 -1 1

Solution: Verify the following

(a) Row(A) = {(z,y,z,u)T € R*| 3z — 2y = 2,52 — 3y +u = 0}.
(b) Con(A) = {(z,y,2)T € R?| 4z — 3y — 2 = 0}.



3.5. FUNDAMENTAL SUBSPACES ASSOCIATED WITH A MATRIX 89

(c) NuLL(A) = {(z,y,2,u)T € R*| 2+ 32 —5u=0,y — 22+ 3u=0}.
(d) NULL(AT) = {(z,5,2)T € R® | &+ 4z = 0,y — 32 = 0},

1 1 0 -1
2. Let A= |1 —1 1 2 |. Then, verify that
2 0 1 1

Remark 3.5.4. Let A € M, ,(R). Then, in Example 3.5.3, observe that the direction ratios
of normal vectors of COL(A) matches with vector in NULL(AT). Similarly, the direction ratios
of normal vectors of ROW(A) matches with vectors in NULL(A). Are these true in the general
setting?

EXERCISE 3.5.5. 1. For the matrices given below, determine the four fundamental spaces.

Further, find the dimensions of all the vector subspaces so obtained.

1 2 1 3 2 2 4 0 6

0 2 2 2 4 -1 0 =2 5
A= and B = .

2 -2 4 0 8 -3 =5 1 -4

4 2 5 6 10 —-1--1 1 2

2. Let A= [XY]. Then, determine the condition under which CoL(X) = CoL(Y).

The next result is a re-writing of the results on system of linear equations. The readers are

advised to provide the proof for clarity.

Lemma 3.5.6. Let A € My, x,(C) and let E be an elementary matriz. If
1. B = EA then NULL(A) = NULL(B), Row(A) = Row(B). Thus, the dimensions of the

corresponding spaces are equal.

2. B = AE then NULL(AT) = NuLL(BT), CoL(A) = CoL(B). Thus, the dimensions of the

corresponding spaces are equal.

Let Wy, and W; be two subspaces of a vector space V over F. Then, recall that (see
Exercise 3.2.16.4d) Wy + Wy = {u+v | ue Wy, ve Wy} = LS(W; UWy) is the smallest
subspace of V containing both W; and Wy. We now state a result similar to a result in Venn
diagram that states | A| + | B| = | AUB| + | AN B |, whenever the sets A and B are
finite (for a proof, see Appendix 9.4.1).

Theorem 3.5.7. Let V be a finite dimensional vector space over F. If Wi and Wo are two

subspaces of V' then
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For better understanding, we give an example for finite subsets of R”. The example uses
Theorem 3.3.14 to obtain bases of LS(S), for different choices S. The readers are advised to
see Example 3.3.14 before proceeding further.

Example 3.5.8. Let V= {(v,w,z,y,2)T €R® | v+z+2=3y} and W = {(v,w,x,y,2)" €
R® | w— 1z = z,v = y}. Find bases of V and W containing a basis of VN'W.
Solution: One can first find a basis of VN W and then heuristically add a few vectors to get
bases for V and W, separately.

Alternatively, First find bases of V,W and VN W, say By,Bw and B. Now, consider
S = B U By . This set is linearly dependent. So, obtain a linearly independent subset of S that
contains all the elements of B. Similarly, do for T'= B U By .

So, we first find a basis of VNW. Note that (v, w,z,y, 2)T € VAW if v, w, z,y and z satisfy
v+ax—3y+2=0, w—x—2=0and v =y. The solution of the system is given by

(v,w,x,y, Z)T = (y7 2y7x7ya Qy - x)T = y(17 21 Oa 17 2)T + $(0, 07 17 07 _1)T

Thus, B = {(1,2,0,1,2)7,(0,0,1,0,—1)T} is a basis of VN W. Similarly, a basis of V is
given by C = {(-1,0,1,0,0)",(0,1,0,0,0)7,(3,0,0,1,0)",(~1,0,0,0,1)T} and that of W is
given by D = {(1,0,0,1,0)7,(0,1,1,0,0)7,(0,1,0,0,1)"}. To find the required basis form a
matrix whose rows are the vectors in B,C and D (see below) and apply row operations other

than F;;. Then, after a few row operations, we get

2 01 2 1201 2 .
1201 2 12 01 2

0 01 0 -1 0 01 0 -1
0010 -1 0010 -1

-1 01 0 O 0100 O

— 1 0 01 -0 1 0 0

1 00 O 0 001 3
0110 0 000 O

001 O 0000 O
0100 0000 O
-1 00 0 1 0 000 O - - - -

Thus, a required basis of V is {(1,2,0,1,2)7,(0,0,1,0,-1)",(0,1,0,0,0)7, (0,0,0,1,3)"}. Sim-
ilarly, a required basis of W is {(1,2,0,1,2)7,(0,0,1,0,—1)7,(0,1,0,0,1)7}.

EXERCISE 3.5.9. 1. Give an example to show that if A and B are equivalent then COL(A)

need not equal COL(B).

2. LetV = {(z,y,z,w)T eR*| o 4+y—24+w=0,0+y+2+w=0,2+2y =0} and
W ={(z,y,2,w)T €eR*| 2 —y—2+w=0,7+2y —w = 0} be two subspaces of R*.
Think of a method to find bases and dimensions of V, W, VAW and V+ W.

3. Let Wy and Wy be two subspaces of a vector space V. If dim(W7) 4+ dim(Ws) > dim(V),
then prove that dim(W; NWy) > 1.

3.6 Fundamental Theorem of Linear Algebra and Applications

We start with proving the rank-nullity theorem and give some of it’s consequences.
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Theorem 3.6.1 (Rank-Nullity Theorem). Let A € M,,xn(C). Then,
dim(CoL(A)) + dim(NULL(A)) = n. (3.6.2)

Proof. Let dim(NULL(A)) = r < n and let B = {uy,...,u,} be a basis of NULL(A). Since B is

a linearly independent set in R™, extend it to get C = {uy,...,u,} as a basis of R™. Then,

CoL(A) = LS(AB)= LS(Auy,...,Au,)
= LS(0,...,0,Au,41,...,Au,) = LS(Au, 41, ..., Auy,).

So, D = {Au,41, ..., Au,} spans COL(A). We further need to show that D is linearly indepen-

dent. So, consider the homogeneous linear system given below in the unknowns oy, ..., ap_.
aAuppg + -+ ap—rAu, =0 Alqupp + -+ appuy) =0 (3.6.3)

Thus, aquy41 + -+ - + ap—ruy, € NULL(A) = LS(B). Therefore, there exist scalars 5;, 1 <i <r,
n—r

— T
such that > aju,q; = Bju;. Or equivalently,
- —

i=1 J
fiug + -+ Bruy —aqpyg — - — ap_puy, = 0. (3.6.4)

Equation (3.6.4) is a linear system in vectors from C with a;’s and $;’s as unknowns. As C is a

linearly independent set, the only solution of Equation (3.6.4) is
a; =0, for 1<i<n—r-and 3; =0, for 1 <j<r.
In other words, we have shown that the only solution of Equation (3.6.3) is the trivial solution.

Hence, {Au,41, ..., Au,} is a basis of COL(A). Thus, the required result follows. n

Theorem 3.6.1 is part of what is known as the fundamental theorem of linear algebra (see
Theorem 3.6.5). The following are some of the consequences of the rank-nullity theorem. The

proofs are left as an exercise for the reader.
EXERCISE 3.6.2. 1. Let A € M, »,(R).

(a) If n > m then the system Ax = 0 has infinitely many solutions,

(b) If n < m then there exists b € R™ \ {0} such that Ax = b is inconsistent.
2. The following statements are equivalent for an m X n matriz A.

(a) Rank (A) = k.

(b) There exist a set of k rows of A that are linearly independent.
(¢) There exist a set of k columns of A that are linearly independent.
(d) dim(CoL(A)) = k.

(e) There exists a k x k submatriz B of A with det(B) # 0. Further, the determinant of
every (k+ 1) x (k+ 1) submatriz of A is zero.
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(f) There ezists a linearly independent subset {by,...,br} of R™ such that the system
Ax = by, for 1 <i <k, is consistent.

(g) dim(NULL(A)) =n — k.

3. Let A € M,(R) and define a function f : R™ — R™ by f(x) = Ax. Then, the following
statements are equivalent.
(a) f is one-one.
(b) f is onto.
(c) f is invertible.

-1

4. Let A = . Then, verify that NULL(A) = COL(A). Can such examples exist in R™

for n odd? What about n even? Further, verify that R? # NULL(A) + CoL(A). Does it

contradict the rank-nullity theorem?
5. Determine a 2 x 2 matriz A of rank 1 such that R? = NULL(A) + CoL(A).

We end this section by proving the fundamental theorem of linear algebra. We start with

the following result.
Lemma 3.6.3. Let A € M, ,(R). Then, NULL(A) = NuLL(AT A).

Proof. Clearly, NULL(A) C NULL(AT A) as Ax = 0 implies (AT A)x = AT (Ax) = 0.
So, let x € NULL(AT A). Then, (AT A)x = 0 implies (Ax)T(Ax) = xTATAx = xT0 = 0.

Thus, Ax = 0 and the required result follows. "
Let u,v € R”. Then u is said to be orthogonal to v if u’v = 0 (dot product of vectors in
R™). Further, for S C R", the orthogonal complement of S, denoted S, is defined as
St={xeR":xTs=0forallseS}
The readers are required to prove the following lemma.

Lemma 3.6.4. Consider the vector space R™. Then, for S CR" prove that
1. St is a subspace of R".
2. St = (LS(S))*.
3. (STt = St if and only if S is a subspace of R™.
4. Let W be a subspace of R™. Then, there exists a subspace V of R"™ such that

(a) R" =W V. Or equivalently, W and V are complementary subspaces.
(b) vI'u =0, for everyu € W and v € V. This, further implies that W and V are also

orthogonal to each other. Such spaces are called orthogonal complements.
Theorem 3.6.5 (Fundamental Theorem of Linear Algebra). Let A € M, ,,(R). Then,

1. dim(NULL(A)) + dim(CoL(A)) = n.
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2. NULL(A) = (COL(AT))L and NULL(AT) = (COL(A))l

3. dim(CoL(A)) = dim(CoL(AT)). Or equivalently, Row-rank(A) = Column-rank(A).

Proof. PART 1: Proved in Theorem 3.6.1.

PART 2: To show: NULL(A) C Cor(AT)*. Equivalently, need to show that for each
x € NULL(A) and u € CoL(AT),u”x = 0. As u € CoL(AT) there exists y € R™ such that
u = A”y. Further, x € NULL(A) implies Ax = 0. Thus, we see that

ulx = (ATy)TX = (y'A)x =yT(Ax) =yT0o=0.

Hence, NULL(A) C Corn(AT)L.
We now show that Cor(A”)t C NuLL(A). Let z € CoL(AT)t C R™. Then, for every
y € R™, ATy € CorL(AT) and hence (ATy)Tz = 0. In particular, for y = Az € R™, we have

0=(ATy)z=yTAz=yy oy =0.

Thus Az = 0 and z € NULL(A). This completes the proof of the first equality in Part 2. A
similar argument gives the second equality.

PART 3: Note that, using the rank-nullity theorem we have
dim(Col(A4)) = n — dim(Null(4)) = n — dim ((Col(AT))L) =n — (n— dim (Col(AT))).

Thus, dim(Col(A4)) = dim (Col(AT)).

Hence the proof of the fundamental theorem is complete. =

Remark 3.6.6. Let A € M, ,(R). Then, Theorem 3.6.5.2 implies the following:
1. NULL(A) = (COL(AT))L. This is just stating the usual fact that if x € NULL(A) then
Ax = 0. Hence, the dot product of every row of A with x equals 0.
2. R" = NULL(A) @ CoL(AT). Further, NULL(A) is orthogonal complement of COL(AT).

3. R™ = NULL(AT) @ CoL(A). Further, NULL(AT) is orthogonal complement of COL(A).

As an implication of last two parts of Theorem 3.6.5, we show the existence of an invertible
function f : Cor(AT) — CoL(A).

Corollary 3.6.7. Let A € M,, ,(R). Then, the function f : COL(AT) — CoOL(A) defined by

f(x) = Ax is invertible.

Proof. Let us first show that f is one-one. So, let x,y € CoL(A”) such that f(x) = f(y).
Hence, Ax = Ay. Thus x —y € NULL(A) = (CoL(AT))* (by Theorem 3.6.5.2). Therefore,
x —y € (CoL(AT))+ N CoL(AT) = {0}. Thus x = y and hence f is one-one.
We now show that f is onto. So, let z € COL(A). To find y € CoL(AT) such that f(y) = z.
As z € COL(A) there exists w € R" with z = Aw. But NULL(A) and CoL(AT) are
complementary subspaces and hence, there exists unique vectors, w; € NULL(A) and wq €

CoL(AT), such that w = w; + wy. Thus, z = Aw implies

z =Aw = A(w; + wy) = Aw; + Awy = 0+ Awsy = Awy = f(wa),
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R" R™

Row(A) Col(4)

dim(Row(A)) =r dim(Col(A)) =r

Null(A)

Null(AT)
dim(Null(A)) =n—r

1

dim(Null(AT)) =m —r

A, ., with Rank(A) =r

mXxn
for wy € CoL(AT. Thus, the required result follows. "

The readers should look at Example 3.5.3 and Remark 3.5.4. We give one more example.

1
Example 3.6.8. Let A= (2

3 2
1. {(0,1,1)7,(1,1,2)"} is a basis of COL(A).
2. {(1,1,-1)T} is a basis of NuLL(AT).
3. NuLL(AT) = (CoL(A))*.

10
1 1|. Then, verify that
1

For more information related with the fundamental theorem of linear algebra the interested
readers are advised to see the article “The Fundamental Theorem of Linear Algebra, Gilbert
Strang, The American Mathematical Monthly, Vol. 100, No. 9, Nov., 1993, pp. 848 - 855.” The

diagram 3.6 has been taken from the above paper. It also explains Corollary 3.6.7.
EXERCISE 3.6.9. 1. Find subspaces W1 # {0} and Wy # {0} in R® such that they are
orthogonal but they are not orthogonal complement of each other.
2. Let A € M, n(R). Prove that CoL(AT) = CoL(AT A). Thus, Rank(A) = n if and only if
Rank(AT A) = n. [ Hint: Use the rank-nullity theorem and/ or Lemma 3.6.3]
3. Let A € My, n(R). Then, for every
(a) x €R", x = u+ v, where u € CoL(AT) and v € NULL(A) are unique.
(b)) y ER™, y =w +z, where w € COL(A) and z € NULL(AT) are unique.
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4. Let A,B € M,(R) such that A is idempotent and AB = BA = 0. Then prove that
CoL(A + B) = CoL(A) + CoL(B).

5. Let A € M, ,(R). Then, a matriz G € My, ,,»(R) is a g-inverse of A if and only if for any
b € CoL(A), the vector y = Gb is a solution of the system Ay = b.

6. Let A € My, n(R). If G € My, n(R) is a g-inverse of A then, for any b € COL(A) the
solution set of the system Ay = b is given by Gb+ (I — GA)z, for any arbitrary vector z.

3.7 Summary

In this chapter, we defined vector spaces over F. The set F was either R or C. To define a vector
space, we start with a non-empty set V of vectors and I the set of scalars. We also needed to

do the following:
1. first define vector addition and scalar multiplication and
2. then verify the conditions in Definition 3.1.1.

If all conditions in Definition 3.1.1 are satisfied then V is a vector space over F. If W was a
non-empty subset of a vector space V over F then for W to be a space, we only need to check
whether the vector addition and scalar multiplication inherited from that in V hold in W.

We then learnt linear combination of vectors and the linear span of vectors. It was also shown
that the linear span of a subset S of a vector space V is the smallest subspace of V containing
S. Also, to check whether a given vector v'is-a linear combination of uy,...,u,, we needed to
solve the linear system cyjuj + - - - + ¢, u, = Vv in the variables ¢y, ..., c,. Or equivalently, the
system Ax = b, where in some sense A[:,i] = u;, 1 <i <n, x! =[c1,...,¢,] and b =v. It
was also shown that the geometrical representation of the linear span of S = {uy,...,u,} is
equivalent to finding conditions in the entries of b such that Ax = b was always consistent.

Then, we learnt linear independence and dependence. A set S = {uy,...,u,} is linearly
independent set in the vector space V over F if the homogeneous system Ax = 0 has only the
trivial solution in F. Else S is linearly dependent, whereas before the columns of A correspond
to the vectors u;’s.

We then talked about the maximal linearly independent set (coming from the homogeneous
system) and the minimal spanning set (coming from the non-homogeneous system) and culmi-
nating in the notion of the basis of a finite dimensional vector space V over F. The following

important results were proved.
1. A linearly independent set can be extended to form a basis of V.
2. Any two bases of V have the same number of elements.

This number was defined as the dimension of V, denoted dim(V).
Now let A € M,,(R). Then, combining a few results from the previous chapter, we have the

following equivalent conditions.

1. A is invertible.
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10.

11.

12.

13.
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. The homogeneous system Ax = 0 has only the trivial solution.
. RREF(A) = I,,.

. A is a product of elementary matrices.

. The system Ax = b has a unique solution for every b.

. The system Ax = b has a solution for every b.

Rank(A) = n.

. det(A) # 0.

. CoL(AT) = Row(4) = R".

Rows of A form a basis of R™.
CoL(A) = R™.
Columns of A form a basis of R”.

NuLL(A) = {0}.



Chapter 4

Inner Product Spaces

4.1 Definition and Basic Properties

Recall the dot product in R? and R3. It satisfies the following properties.
l.Lu-(av+w)=av-u+u-w,foral u,v,w € R® and a € R.
2. u-v=v-u,forall u,v e R3
3. u-u >0 for all u € R®. Further, equality holds if and only if u = 0.
The dot product helped us to compute the length of vectors and talk of perpendicularity of
vectors. This enabled us to rephrase geometrical problems in R? and R? in the language of

vectors. We now generalize the idea of dot product to achieve similar goal for a general vector

space over R or C.

Definition 4.1.1. Let V be a vector space over F. An inner product over V, denoted by

(,),is amap from V x V to F satisfying

1. (au+v,w)=a (u,w)+ (v,w), for all u,v,w € Vand a € F,

2. (u,v) = (v, u), the complex conjugate of (u,v), for all u,v € V and
3. (u,u) >0 for all u € V. Furthermore, equality holds if and only if u = 0.

Remark 4.1.2. Using the definition of inner product, we immediately observe that

1. (u,0) = (u,0+ 0) = (u,0) + (u,0). Thus, (u,0) =0, for allueV.

2. (viaw)=(aw,v)=a(w,v)=a (v,w), forala €F and v,w € V.

3. If (u,v) =0 for all v € V then in particular (u,u) = 0. Hence u = 0.

Definition 4.1.3. Let V be a vector space with an inner product (, ). Then, (V,(, }) is called

an inner product space (in short, 1PSs).

Example 4.1.4. Examples 1 to 4 that appear below are called the standard inner product
or the dot product. Whenever an inner product is not clearly mentioned, it will be assumed

to be the standard inner product.

97
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1. For u = (u1,...,un)?,v = (vi,...,v,)" € R® define (u,v) = wyvy + -+ + upv, = v

Then, (, ) is indeed an inner product and hence (R”, (, ) is an 1PS.

2. For u = (u1,...,un)T,v = (vi,...,v,)T € C" define (u,v) = w107 + - - - + up¥p, = v:u.
Then, (C”, (, >) is an 1PS.

3. For A, B € M, (R), define (A, B) = tr(BTA). Then,

(A+B,C) = tr(CT(A+B)) =tr(CTA) +tr(C"B) = (A,C) + (B, C) and
(A,B) = tr(BTA)=tr( (BTA)T ) =1tr(ATB) = (B,A).

n n n

If A = [a;;] then (A, A) = tr(ATA) = Y (ATA) = 3 ajaj = > aﬁ and therefore,
i=1 ij=1 ij=1

(A, A) > 0 for all non-zero matrix A.

1
4. Consider the real vector space C[—1, 1] and define (f,g) = [ f(z)g(x)dz. Then,
“1
1
(a) (£,f) = [ |f(z) |*dz > 0as | f(z)|? > 0. Further, (f,f) = 0 if and only if f = 0 as
1
f is continuous.

0) (6.6 = | g(@)i)de = | (@)i(wde = | (oglalds = (Eg).

1 1
(c) (f+gh)= i(f +g)(@)h(z)dr = 7f1 [f(2)h(z) + g(z)h(z)]dz = (£, h) + (g, h).
1 1

(d) (af,g) = _f1 (af(2))g(z)dz = Oé_fl f(z)g(z)dz = aff, g).
5. For x = (z1,22)",y = (y1,42)" € R? and A = _41 _21], define (x,y) = yT Ax. Then,

(, ) is an inner product as (x,x) = (z1 — z2)? + 323 + 3.

6. Fix A =
c

b

] with a,c > 0 and ac > b%. Then, (x,y) = y! Ax is an inner product on
2

R? as (x,x) = ax? + 2bx129 + 23 = a [331 + b%] + é [ac - bz] 3.

7. Verify that for x = (21,22, 23)T,y = (y1,y2,93)T € R3, (x,y) = 102191 + 3z1y2 + 37201 +
2x9y2 + Toy3 + x3y2 + x3y3 defines an inner product.

EXERCISE 4.1.5. For x = (z1,72)7,y = (y1,42)" € R?, we define three maps that satisfy at
least one condition out of the three conditions for an inner product. Determine the condition

which is not satisfied. Give reasons for your answer.
1. (x,y) = z1y1-
2. (x,y) =2 +yi + a3 +13.
3. (x,y) = 21y} + 22y3.

As (u,u) > 0, for all u # 0, we use inner product to define the length/ norm of a vector.
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Definition 4.1.6. Let V be an inner product space over F. Then, for any vector u € V, we
define the length (norm) of u, denoted ||ul| = /(u,u), the positive square root. A vector of

norm 1 is called a unit vector. Thus, el is called the unit vector in the direction of u.

[[ul]

Example 4.1.7. 1. Let V be an 1Ps and u € V. Then, for any scalar o, |loul| = |a| - [Ju].

2. Let u = (1,-1,2,-3)T € R*. Then, |ul| = VI+1+4+9 = /15. Thus, ru and

1 . . . .
——=1u are unit vectors in the direction of u.
V15

EXERCISE 4.1.8. 1. Letu=(-1,1,2,3,7)T € R5. Find all « € R such that |jou| = 1.
2. Letu=(—1,1,2,3,7)T € C°. Find all o € C such that ||ou|| = 1.
3. Letu = (1,2)T,v = (2,—-1)T € R%. Then, does there exist an inner product in R? such

that ||ul| = 1,||v|| =1 and (u,v) =07 [Hint: Let A = and define (x,y) = y1 Ax.

c

Use given conditions to get a linear system of 3 equations in the variables a,b,c./

4. Prove that under the standard inner product in M, »(R),

|A]|2 = tr(ATA) = ZHA S ZHA 0|12, for all A € My n(R).

4.2 Cauchy-Schwartz Inequality

A very useful and a fundamental inequality, commonly called the Cauchy-Schwartz inequality,

is a generalization of |x -y| < ||x]|| - ||ly||, and is proved next.

Theorem 4.2.1 (Cauchy- Schwartz inequality). Let V be an inner product space over F. Then,
for any u,v € V
| (w,v) | < [[a]l [Iv]. (4.2.1)

Moreover, equality holds in Inequality (4.2.1) if and only if u and v are linearly dependent. In

particular, if u # 0 then v = <v, u> L.
[[all /" f[ull

Proof. If u = 0 then Inequality (4.2.1) holds. Hence, let u # 0. Then, by Definition 4.1.1.3,

(AMu+v,Au+v) >0 for all A\ € F and v € V. In particular, for A = — <|r1;H112>’ we have
0 < Qu+v, u+v)=\ul|® +Au,v)+Xv,u) + ||v|?
(v,u) (v, u) (v,u) (v,u) 2 > |{vu) P
= e 2 — (u,v) — (vou) + [v[I* = [Ivl]" = —5—=5—
[afl* ful? [af]? Jul? [[a]]?

Or, in other words | (v,u) |? < ||u/|?||v||? and the proof of the inequality is over.
Now, note that equality holds in Inequality (4.2.1) if and only if (Au+ v, Au+v) = 0, or

equivalently, Au + v = 0. Hence, u and v are linearly dependent. Moreover,
0=(0,u) = (Au—+v,u) = A(u,u) + (v,u)

implies that v = —A\u = v, 112>u = <V’ u> v .
[[af lall / [lull

As an immediate corollary, the following hold.
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Corollary 4.2.2. Prove the following results.

n 2 n
L <zxy> :|x-y12§||xu2-uyu?=(z )(zyl),fomux,yem

=1

2. |Ax|| < ||A|| - |Ix||, for all A € My, ,(R) and x € R™.

Proof. We will just prove the second part. Note that

14> = D 1(Ax), P =Y 1Ak x) P =) lix, Alk, )
k=1 k=1 k=1
< DIl ALk, )P = IIXH22||A 717 = Il Al

B
Il

1

1
EXERCISE 4.2.3. 1. Let a,b € R with a,b > 0. Then, prove that ( < b) > 4. In
a
>n

+b)
general, for 1 <i <mn, let a; € R with a; > 0. Then < > ( >
i= =10

2. Prove that | z1+ -+ 2z, | </n(|21 2+ + | 2 |2), for z1,...,2, € C. When does
the equality hold?

3. LetV be an 1PS. Ifu,v € V with ||u|| = 1,||v]| =1 and (u,v) =1 then prove that u = av

for somea € F. Isa=1%

Let V be a real vector space. Then, for u;v &€ V, the Cauchy-Schwartz inequality implies

that —1 < V)
= Tl v = _ _
define the angle between two vectors in a real inner product space.

< 1. This together with the properties of the cosine function is used to

Definition 4.2.4. Let V be a real vector space. If § € [0, 7] is the angle between u,v € V\ {0}

then we define

cosf = V)
[[all {lv]
Example 4.2.5. 1. Take (1,0)7,(1,1)T € R?. Then cosf = % So 6 = m/4.
2. Take (1,1,0)7,(1,1,1)7 € R3. Then, angle between them, say 3 = cos™! 2

7
3. Angle depends on the IP. Take (x,y) = 2x1y1 + X1y2 + X2y1 + X2y2 on R2. Then, angle
3

T T - 12 -1.3
between (1,0)",(1,1)" € R* equals cos itk

4. As (x,y) = (y,x) for any real vector space, the angle between x and y is same as the

angle between y and x.

A B
c

Figure 4.1: Triangle with vertices A, B and C
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We will now prove that if A, B and C are the vertices of a triangle (see Figure 4.1) and a,b
P+ —a” This
=———— Thi

and ¢, respectively, are the lengths of the corresponding sides then cos(A) 5%
c

in turn implies that the angle between vectors has been rightly defined.

Lemma 4.2.6. Let A, B and C be the vertices of a triangle (see Figure 4.1) with corresponding
side lengths a,b and c, respectively, in a real inner product space V then
b2+ c? — a?
A)= ————.
cos(A) T

Proof. Let 0, u and v be the coordinates of the vertices A, B and C, respectively, of the triangle
ABC. Then, AB = u, AC =vand BC =v—u. Thus, we need to prove that

_ VI ) = v = u®

cos(4) & [IVIIP + ul® = v = ul® = 2 |[v] u]| cos(A).
2[|vl{lull
Now, by definition ||[v—ul|? = ||v||?+]|ul|? —2(v,u) and hence ||v|*+|[u||®>—|[v—ul|? = 2 (u, V).
As (v,u) = ||v|| ||u]| cos(A), the required result follows. n

EXERCISE 4.2.7. Let x,y € R™ then prove that

1. (x,y) =0<+= |x—y|* = |Ix]|* + |ly]|> (Pythagoras Theorem).
Solution: Use ||x —y||? = [|x||?> + ||y||* — 2(x,y) to get the required result follows.

2. x| = |lyl| &= (x+y,x—y) =0 (x and y form adjacent sides of a rhombus as the
diagonals x +y and x —y are orthogonal).

Solution: Use (x +y,x —y) = ||x||> = ||y||? to get the required result follows.

3. 4x,y) = |x+y||* - ||x — y||* (polarization identity in R").
Solution: Just expand the right hand side to get the required result follows.

4. Ix+ylI?+ Ix — yl? = 2|x||? + 2|ly||*> (parallelogram law: the sum of squares of the
lengths of the diagonals of a parallelogram equals twice the sum of squares of the lengths
of its sides).

Solution: Just expand the left hand side to get the required result follows.

4.3 Normed Linear Space

In the last two sections, we have used the idea of inner product to define the norm/ length of
a vector. This idea was used to get the Cauchy-Schwartz inequality, the basic back ground for
defining the angle between two vectors. The question arises ‘does every norm come from an
inner product’. To understand it, we first state the properties that a norm must enjoy. We only

look at linear spaces which are vector spaces over R or C.

Definition 4.3.1. Let V be a linear space.
1. Then, a norm on V is a function f(x) = ||x|| from V to R such that

(a) ||x]| >0 for all x € V and if ||x|| = 0 then x = 0.
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(b) |lex|| = | | ||x|| for all « € F and x € V.
(c) Ix+yl <|x|l + |yl for all x,y € V (triangle inequality).

2. A linear space with a norm on it is called a normed linear space (NLS).
Remark 4.3.2. 1. Let V be an 1PSs. Is it true that f(x) = \/(x,x) is a norm?
Proof. Yes, f(x) indeed defines an inner product. The readers should verify the first two

conditions. For the third condition, using the Cauchy-Schwartz inequality, we get
fx+y)? = x+y.x+y)=xx)+xy) +{x)+y,y)

Il =+l - Iy 1+ 1 I+ 1y 1P = (F() + f(y)*

Thus, f(x) = +/(x,x) is a norm, called the norm induced by the inner product (-,-).

IN

2. If | -|| s a norm in 'V then d(x,y) = ||[x —y||, for x,y € V, defines a distance function.
Proof. To see this, note that

(a) d(x,x) =0, for each x € V.
(b) using the triangle inequality, for any z € V, we have
dxy) = lx=yl=l(x-2)=(y —2) | <[[(x=2) |+](y = 2) [| = d(x,2) +d(z,y).
Theorem 4.3.3. Let V be a normed linear space and x,y € V. Then ||x| — ||yH’ <|x—-yl.

Proof. As |[x|| = [lx —y +yll < [lx =yl + [lyll one has ||| = [ly[} < [lx — y||. Similarly, one

obtains [|y| — ||x]| < |ly — x|| = ||x — y||. Combining the two, the required result follows. .
EXERCISE 4.3.4. 1. Let'V be a complex 1PS.. Then,
4x,y) = |x+yl|? = ||x — y|* +illx + iy||® — i||x — iy||> (Polarization Identity).
2. Consider the complex vector space C". If x,y € C" then prove that
(a) If x # 0 then |x+ix||? = ||x||? + ||ix[|?, even though (x,ix) # 0.
(b) (x,y) =0 whenever |x +y|* = [|x|* + ly[|* and [x +iy|* = [Ix]* + [liy|*.

3. Let A € M,,(C) satisfy || Ax|| < ||x| for all x € C"™. Then, prove that if « € C with
|| > 1 then A — ol is invertible.

The next result is stated without proof as the proof is beyond the scope of this book.

Theorem 4.3.5. Let ||-|| be a norm on a normed linear space V. Then the norm ||-|| is induced

by some inner product if and only if || - || satisfies the PARALLELOGRAM LAW:

e+ 3% + lIx = yl1* = 2l|x[|* + 2y

We now define a norm which doesn’t come from an inner product.

Example 4.3.6. For x = (z1,22)7 € R?, we define ||x|| = |x1| + |x2|. Verify that ||x| is

indeed a norm. But, for x = e; and y = eq, 2(||x|> + ||y||?) = 4 whereas
I+ yII? + 1% =yl = [[(L DT+ 1L =D = (1] + 1)*+ (1] + [-1)* =8.
So the parallelogram law fails. Thus, ||x|| is not induced by any inner product in R2.

EXERCISE 4.3.7. Does there exist an inner product in R? such that ||x|| = max{|z1|, |x2|}?
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4.4 Orthogonality in Inner Product Space

We come back to the study of Inner product spaces the topic which is a building block for most

of the applications. To start with, we give the definition of orthogonality of two vectors.

Definition 4.4.1. Let V be an inner product space over F. Then,
1. the vectors u,v € V are called orthogonal/perpendicular if (u,v) = 0.

2. Let S C V. Then, the orthogonal complement of S in V, denoted S+, equals

St={veV: (v,w)=0, forall weS}.

Example 4.4.2. 1. 0 is orthogonal to every vector as (0,x) = 0 for all x € V.
2. If V is a vector space over R or C then 0 is the only vector that is orthogonal to itself.
3. Let V=R.

(a) If S = {0} then, S+ =R.

(b) If S = R then, S* = {0}.

(c) Let S be any subset of R containing a non-zero real number. Then S+ = {0}.
4. Let u = (1,2)T. What is ut in R2?

Solution: By definition, ut = {(x, )" € R? | 2 + 2y = 0}. Thus, u' is the NULL(u).
Note that ut = LS ((2, —1)T). Further, observe that for any vector x € R?,

21‘1 — X2
5

u >_$1—|—2$2

T
T 5 (LA

x = (x,u) —_ + (x ~(x,u) 2,-1)T

[[all?
is a decomposition of x into two vectors, one parallel to u and the other parallel to u=.

5. Fixu = (1,1,1,1)7, v = (1,1,-1,0)" € R*. Determine z, w € R* such that u = z + w
with the condition that z is parallel to v and w is orthogonal to v.
Solution: As z is parallel to v, z = kv = (k,k, —k,0)”, for some k € R. Since w is

orthogonal to v the vector w = (a, b, ¢,d)? satisfies a + b — c = 0. Thus, ¢ = a + b and
(L,L,1, ) =u=z+w=(k,k,—k,0)T + (a,b,a +b,d)T.

Comparing the corresponding coordinates, gives the linear system d = 1, a + k = 1,
b+k=1 zind a+b—k=1in thelunknowns a,b,d and k. Thus, solving for a,b,d and k
gives z = g(1, 1,-1,0)" and w = g(2,2,4, 3T,

6. Apollonius’ Identity: Let the length of the sides of a triangle be a, b, ¢ € R and that of
the median be d € R. If the median is drawn on the side with length a then prove that

pae=o (e (2))
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7. Let P=(1,1,1)T, Q = (2,1,3)T and R = (—1,1,2)7 be three vertices of a triangle in R3.
Compute the angle between the sides PQ and PR.
Solution: Method 1: Note that P_Q = (2,1,3)T — (1,1, )T = (1,0,2)7, PR =
(—2,0,1)T and RQ = (-3,0,—1)T. As <P_Q,P7%) = 0, the angle between the sides
PQ and PR is g
Method 2: |[PQ| = V/5,[|[PR|| = V5 and |QR|| = V10. As [|QR|* = [ PQ|* + | PR|?,
by Pythagoras theorem, the angle between the sides PQ and PR is g
EXERCISE 4.4.3. 1. Let V be an IPS.
(a) If S CV then St is a subspace of V and S+ = (LS(9))* .
(b) Furthermore, if V is finite dimensional then S+ and LS(S) are complementary.
Thus, V = LS(S) ® S*. Equivalently, (u,w) =0, for allu € LS(S) and w € S*+.

2. Find v,w € R? such that v,w and (1,—1,—2)T are mutually orthogonal.
3. Let W= {(z,y,z,w)T €eR*: 2 +y+2z—w=0}. Find a basis of W+.
4. Determine W+, where W = {A € M,(R) | AT = A}.

5. Consider R® with the standard inner product. Find
(a) St for S = {(17 L, 1)T7 (07 L, _1)T}'
(b) k such that cos™! ((u,v)) = 7/3, whereu = (1,—-1,1)T and v = (1,k,1)T.

(¢) vectors v,w € R3 such that v,w_ and u = (1,1,1)T are mutually orthogonal.

6. Consider R? with the standard inner product. Find the plane containing
(a) (1,1 —1) with (a,b,c) # 0 as the normal vector.
(b) (2,—-2,1)T and perpendicular to the line £ = {(t — 1,3t +2,t + 1) : t € R}.
(c) the lines (1,2,—2) 4+ t(1,1,0) and (1,2,—2) 4+ ¢(0, 1, 2).
(d) (1,1,2)T and orthogonal to the line £{(2+1,3,1—1t):t € R}.

7. Let P = (3,0,2)7,Q = (1,2, —-1)T and R = (2,—1,1)T be three points in R3. Then,
(a) find the area of the triangle with vertices P,Q and R.
(b) find the area of the parallelogram built on vectors P_Q and Q?%.
(c) find a non-zero vector orthogonal to the plane of the above triangle.
(d) find all vectors x orthogonal to PQ and QR with ||x|| = v/2.

(e) the volume of the parallelepiped built on vectors P—Q and Q_R and x, where X is one
of the vectors found in Part (d). Do you think the volume would be different if you

choose the other vector x?

8. Let p1 be a plane containing the point A = (1,2,3)T and the vector (2,—1,1)T as its

normal. Then,

(a) find the equation of the plane po that is parallel to p1 and contains (—1,2, —3)7.
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(b) calculate the distance between the planes p1 and ps.

9. In the parallelogram ABCD, AB|DC and AD|BC and A = (-2,1,3)T, B = (-1,2,2)T
and C = (=3,1,5)T. Find the
(a) coordinates of the point D,
(b) cosine of the angle BCD.
(c) area of the triangle ABC
(d) volume of the parallelepiped determined by AB, AD and (0,0, —7)T.

4.4.1 Properties of Orthonormal Vectors

We start with the definition of an orthonormal set.

Definition 4.4.4. Let V be an 1Ps. Then, a non-empty set S = {vy,...,v,} C Vis called an

orthogonal set if v; and v; are mutually orthogonal, for 1 <i # j <n, i.e.,
(uj,u;) =0, for 1 <i<j<n.

Further, if |v;|| = 1, for 1 <4 < n, Then S is called an orthonormal set. If S is also a

basis of V then S is called an orthonormal basis of V.

Example 4.4.5. 1. A few orthonormal sets in R? are
1 1
(1, nT (1, )7, —(1,-1)T} and 2, )7, —a,-2)"
{ DT} {1 DT (1, -7 and {27, (-2}

2. Let S ={ey,...,e,} be the standard basis of R™. Then, S is an orthonormal set as

(a) |le;]] =1, for 1 <i<n.

(b) (es,ej) =0, for 1 <i#j<mn.

T T T
1 1 1 1 1 2 1 1 : : 3
3. The set { [7, _ﬁ, ﬁ] y |:O, ﬁ’ %i| 5 [%, %, —%i| } is an orthonormal set in R°.

4. Recall that (f(x f f(z)g(x)dz defines the standard inner product in C[—m, n].
Consider S = {1} U {em | m > 1} U{f, | n > 1}, where 1(z) = 1, e, (z) = cos(mz) and
f,(z) = sin(nx), for all m,n > 1 and for all € [—m, 7]. Then,

(a) S'is a linearly independent set.
(b) [IL[* = 27, em||* = = and [If,]|* =

)
()

the functions in .S are orthogonal.

1 1 1
Hence, s — yUq —e;, | m >1,U< —f, | n > 17 is an orthonormal set in C|—m, =].
{7 oigmen iz 1 u{ 5t 2] .

We now prove the most important initial result of this section.

Theorem 4.4.6. Let S = {uy,...,u,} be an orthonormal subset of an 1ps V(F).
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1. Then S is a linearly independent subset of V.

n

2. Suppose v € LS(S) with v = > aju,, for some a;’s in F. Then,
i=1
(a) o; = (v, ;).

) IvIP =1 3

n
gl =Y | a; |
7 =1

1 i

3. LetzeV andy = > (z,u;)u;.
i=1
(a) Thenz =y + (z —y) with (z—y,y) =0, i.e., z—y € LS(S)*.
(b) Pythagoras Theorem: |z|? = |y||* + ||z — y|°.

(¢) Thus, y is the nearest vector in LS(S). That is, if w € LS(S) with w # y then
lz —wl|® =z —y +y —wl* = |z = y|* + lly —wl|* > ||z - y]*.
4. Let dim(V) =n. Then (v,u;) =0 for alli=1,2,...,n if and only if v= 0.

Proof. Part 1. Consider the linear system cju; + - - - + ¢,u, = 0 in the unknowns cy,...,c,. As
(0,u) =0 and (uj,u;) =0, for all j # i, we have
n
0= <0, lli> = <01u1 + -+ cpuy, ui> = ch<uja lli> = ci(ui, lli> = ¢.
j=1
Hence ¢; = 0, for 1 < ¢ < n. Thus, the above linear system has only the trivial solution. So,
the set S is linearly independent.
n

Part 2: Note that (v,u;) = () aju;,w) =
Jj=1 J
Sub-part (a). For Sub-part (b), we have

n n n n n
2
|| E aiui|| = E Qg E o ) = E Qg \ Uy, E iy
i=1 i=1 i=1 i=1 j=1
n

n n n
= Z%ZO&TW@',U]’) = Zaiai<uiaui> = Z i |*.
=1 i=1 i=1

1

aj(uj, ;) = oy(u, u;) = o;. This completes
1

n

Iv]I?

Part 3: Note that for 1 < i < n,

<Z - y7ui> = <Z7ui> - <y’ui> = <Z7ui> - <Z<Z’uj>uj’ui>

j=1

= (z,u;) — Z(z,uj><uj,ui> = (z,u;) — (z,u;) = 0.

j=1
So,z—y € LS(S)t. Asy € LS(S), (z—y,y) =0 and
2] = lly + (z = ) I* = [IyI* + llz = yI* > lIy]*.
Further, w,y € LS(S) implies w —y € LS(S). Hence (z—y,w —y) = 0 and

lz = wi* = llz —y +y = wl* = |lz = y|* + [ly = wl* > [z — y|*
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Part 4: Follows directly using Part 2b as {uj,...,u,} is a basis of V. .

A rephrasing of Theorem 4.4.6.2b gives a generalization of the Pythagoras theorem, popu-

larly known as the Parseval’s formula. The proof is left as an exercise for the reader.

Theorem 4.4.7. Let V be an with an orthonormal basis {vi,--- ,vy,}. Then
n S
(x,y) = Z<X7Vi><yavi>7 for each x,y € V.
i=1

n
Furthermore, if x =y then ||x||> = 3. | (x,v;) |? (generalizing the Pythagoras Theorem ).
i=1

We have another corollary of Theorem 4.4.6 which talks about an orthogonal set.

Theorem 4.4.8 (Bessel’s Inequality). Let V be an 1Ps with {vi,--- , vy} as an orthogonal set.
oo | (z,vg) ‘2 2 . . . " (z, Vi)
Then, for eachz €V, 3 ———75— < ||z||*. Equality holds if and only if z =} 5 V-
=t vl i=1 IVl

Proof. For 1 < k < n, define u = Yk and use Theorem 4.4.6.4 to get the required result. =

[Vl
Remark 4.4.9. Using Theorem 4.4.6, we see that if B = [Vl, .. ,Vn] is an ordered orthonormal
basis of an 1PS V then
<uv V1>
[ulg = : , for eachu e V.
(u,vp)

Thus, to get the coordinates of a vector with respect to an orthonormal ordered basis, we just

need to compute the inner product with basis vectors.

To proceed further with the applications of the above ideas, we pose a question for better

understanding.
Example 4.4.10. Which point on the plane P is closest to the point, say Q7
/ ¢

Plane — P
0 Yy

Solution: Let y be the foot of the perpendicular from @ on P. Thus, by Pythagoras
Theorem (see Theorem 4.4.6.3¢c), y is unique. So, the question arises: how do we find y?

Note that }@ gives a normal vector of the plane P. Hence, 6 =y+ 3@ So, need to
decompose a into two vectors such that one of them lies on the plane P and the other is

orthogonal to the plane.

Thus, we see that given u,v € V\ {0}, we need to find two vectors, say y and z, such that
y is parallel to u and z is perpendicular to u. Thus, y = ucos(f) and z = usin(6), where 6 is

the angle between u and v.
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OR =v — 4

[[ull?

Figure 4.2: Decomposition of vector v

We do this as follows (see Figure 4.2). Let u = ﬁ be the unit vector in the direction

u
of u. Then, using trigonometry, cos(f) = %. Hence [|OQ|| = |OP|| cos(d). Now using
Definition 4.2.4, |0Q| = |v|| H\<"|],\l\ll>1|| = <ﬁ’1’;ﬁ> , where the absolute value is taken as the

length/norm is a positive quantity. Thus,

Hence, y = O_Q = <v, ||u||> m andz =v— <V, ”u‘> ﬁ In literature, the vector y = O_Q
u u u
is called the orthogonal projection of v on u, denoted Proj,(v). Thus,
. u u _ - (v,u)
Proj,(v) = <V, > —— and ||Proj,(v)| = |OQ] = . (4.4.2)
" Jall /[l " [[u

Moreover, the distance of u from the point P.equals ||O_RH = HP_QH = Hv — (v, ”—:‘IH) ”—EH

Example 4.4.11. 1. Determine the foot of the perpendicular from the point (1,2,3) on the
XY-plane.
Solution: Verify that the required point is (1,2,0)?

2. Determine the foot of the perpendicular from the point @ = (1,2,3,4) on the plane
generated by (1,1,0,0),(1,0,1,0) and (0,1,1,1).

Answer: (z,y,z,w) lies on the plane r —y—z+4+2w =0 < ((1,-1,-1,2), (z,y, z,w)) = 0.

So, the required point equals

1 1

1,2,3,4) — ((1,2,3,4), —(1,—1,—1,2)) —

( ) —(( )ﬁ( ))\ﬁ
4 1

= (1,2.3.4) — -(1,-1,-1,2) = (3,18,25,20).

(17 _17 _17 2)

3. Determine the projection of v = (1,1,1,1)7 on u = (1,1, —1,0)7.
u

Solution: By Equation (4.4.2), we have Proj,(u) = (v,u) Tl =1
u

w = (1,1,1,1) — Proj, (u) = %(2, 2,4,3)T is orthogonal to u.

4. Letu=(1,1,1,1)",v=(1,1,-1,00", w = (1,1,0, —1)T € R*. Write v = v| + va, where
v1 is parallel to u and vy is orthogonal to u. Also, write w = wi + wo + w3 such that
w1 is parallel to u, ws is parallel to vo and ws is orthogonal to both u and vs.
Solution: Note that
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(a) vi = Proj,(v) = (v,u) % = tu=1(1,1,1,1)7 is parallel to u.

[[uf?

(b) vo=v —tu=1(3,3,-5,—1)7 is orthogonal to u.

Note that Proj,(w) is parallel to u and Proj,,(w) is parallel to vo. Hence, we have

1(1,1,1,1)7 is parallel to u,

Y Y Y

N)—'

(a) w1 = Proj,(w) = (w,u) ||1?‘2 =

(b) wa = Proj,,(w) = (w,va) VaE = £(3,3, —5,—1)T is parallel to vy and

(c) w3 =w —wi —wg = ->(1,1,2, —4)T is orthogonal to both u and vs.

4.5 Gram-Schmidt Orthonormalization Process

In view of the importance of Theorem 4.4.6, we inquire into the question of extracting an
orthonormal basis from a given basis. The process of extracting an orthonormal basis from a
finite linearly independent set is called the Gram-Schmidt Orthonormalization process.
We first consider a few examples. Note that Theorem 4.4.6 also gives us an algorithm for doing
so, i.e., from the given vector subtract all the orthogonal projections/components. If the new
vector is nonzero then this vector is orthogonal to the previous ones. The proof follows directly

from Theorem 4.4.6 but we give it again for the sake of completeness.

Theorem 4.5.1 (Gram-Schmidt Orthogonalization Process). Let V be an 1pS. If {vq,...,vp}
is a set of linearly independent vectors in V then there exists an orthonormal set {wy,... , wy,}
in V. Furthermore, LS(w1,...,w;) = LS(vy,...,v;), for 1 <i<n.

Proof. Note that for orthonormality, we need ||w;|| = 1, for 1 < i < n and (w;,w;) = 0, for
1 <i# j <n. Also, by Corollary 3.3.11.2, v; ¢ LS(v1,...,vi_1), for 2 <i <n,as {vi,...,v,}

is a linearly independent set. We are now ready to prove the result by induction.

Step 1: Define w; = ﬁ then LS(vi) = LS(wy).
Vi
Step 2: Define ug = vy — (vo, wi)wy. Then, ug # 0 as vo € LS(v1). So, let wo = Hu—2”
uz
Note that {w;, ws} is orthonormal and LS(w1,ws) = LS(vy,v2).
Step 3: For induction, assume that we have obtained an orthonormal set {wi,..., wx_1} such
that LS(vy,...,vg_1) = LS(wy,...,wk_1). Now, note that
k—1 k—1
Uy = Vi — > Vi, W)W = Vi — > Projy,. (vi) # 0 as v ¢ LS(vy,...,vg_1). So, let us put
i=1 i=1
W = Huk” Then, {w1,...,wy} is orthonormal as ||wg| =1 and
ug
k—1 k—1
Jupll(we, wi) = (ug,wi) = (v = > (v, Wi) Wi, wi) = (v, W) Z Vi, Wi) Wi, W1)
=1 =1
k—1
= <Vk‘awl> - Z<Vk‘7wi><wia W1> = <Vk;,W1> - <V]€,W1> =0.
i=1

Similarly, (wg, w;) =0, for 2 <i < k — 1. Clearly, wy = ug/|ux|| € LS(w1,...,Wg_1,Vg). So,
wy € LS(vy,...,Vg).
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k—1

As v = ||lugl|lwg + > (v, wi)w;, we get vy € LS(wy,...,wy). Hence, by the principle of
i=1

mathematical induction LS(w1,...,wy) = LS(vy,...,vg) and the required result follows. =

We now illustrate the Gram-Schmidt process with a few examples.

Example 4.5.2. 1. Let S = {(1,-1,1,1),(1,0,1,0),(0,1,0,1)} € R*. Find an orthonormal
set 1" such that LS(S) = LS(T).

Solution: As we just require LS(S) = LS(T), we can order the vectors as per our

convenience. So, let vi = (1,0,1,0)7, vy = (0,1,0,1)7 and v3 = (1,—1,1,1)7. Then,

= 1.(1,0,1,0)T. As (vo,w;) = 0, we get wo = —=(0,1,0,1)”. For the third vector,

Wi = \/5 o)
let ug = v3 — (v3, wi)wy — (v3, wa)wa = (0,—1,0,1)7. Thus, w3 = %(O, —1,0,1)7T.

T T T T
2. LetS:{vlz 2 00 va=[3 2 0 va=[1 § o] va=[1 1 1 } Find
an orthonormal set T such that LS(S) = LS(T).

T
Solution: Take w; = IIEH = [1 0 0} = e;. For the second vector, consider us =

5 T T
v2—§w1:[0 2 0} . So, put wg = 22 :[0 1 0} = eo.

[[uz]

2

For the third vector, let uz = v3 — > (v3, w;)w; = (0,0,0)”. So, v3 € LS((w1,ws)). Or
i=1

equivalently, the set {vy,ve,v3} is linearly dependent.

2
So, for again computing the third vector, define uy = v4 — > (v4, w;)w;. Then, uy =
i=1
vy — Wi — Wg = e3. So wy = e3. Hence, T = {w1,wy,wy} = {e, ez, e3}.

3. Find an orthonormal set in R? containing (1,2,1)7.
Solution: Let (z,y,2)T € R? with <(1,2, 1), (a;,y,z)> = 0. Thus,

(x,y,2) = (—2y — z,9,2) = y(—2,1,0) + 2(—1,0,1).
Observe that (—2,1,0) and (—1,0,1) are orthogonal to (1,2,1) but are themselves not
orthogonal.
METHOD 1: Apply Gram-Schmidt process to {%(1, 2,1)T, (-2,1,0)7,(-1,0,1)T} C R3.
METHOD 2: Valid only in R? using the cross product of two vectors.
In either case, verify that {%(1, 2,1), ;—%(2, —1,0), JT%(lv 2, —5)} is the required set.
We now state the following result without proof.

Corollary 4.5.3. Let V # {0} be a finite dimensional 1PS. Then

1. 'V has an orthonormal basts.
2. any linearly independent set S in 'V can be extended to form an orthonormal basis of V.

Remark 4.5.4. Let S = {vi,...,vp,} # {0} be a non-empty subset of a finite dimensional

vector space V. Then, we observe the following.

1. If S is linearly independent then we obtain an orthonormal basis {w1,...,w,} of LS(S).
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2. If S is linearly dependent then as in Example 4.5.2.2, there will be stages at which the
vector u, = 0. Thus, we will obtain an orthonormal basis {wi,...,wn} of LS(S), but

note that m < n.

3. a re-arrangement of elements of S then we may obtain another orthonormal basis of
LS(vi,...,vy). But, observe that the size of the two bases will be the same.
EXERCISE 4.5.5. 1. Let (V,(, )) be an n-dimensional 1PS. If u € V with ||u|| =1 then give

reasons for the following statements.

(a) Let S* ={v eV | (v,u) =0}. Then, dim(S*+) =n —1.
(b) Let 0 # S €F. Then S ={v eV : (v,u) =} is not a subspace of V.
(¢c) Let v € V. Then v = v+ (v,u)u for a vector vo € S*. Thus V= LS(u, S*).

2. Let V be an 1S with B = {v1,...,v,} as a basis. Then, prove that B is orthonormal if
and only if for each x € V, x = i(x,vi>vi. [Hint: Since B is a basis, each x € V has a
unique linear combination in terlm:; of vi’s.]

3. Let S be a subset of V having 101 elements. Suppose that the application of the Gram-
Schmidt process yields us = 0. Does it imply that LS(vy,...,vs) = LS(vy,...,v4)? Give
reasons for your answer.

4. Let B ={v1,...,vy,} be an orthonormal set in R™. For 1 < k < n, define Ay = i vivlT.

i=1
Then prove that AL = Ay, and Ai = Ag. Thus, Ay’s are projection matrices. Further,

show that Rank(Ag) = k.
5. Determine an orthonormal basis of R* containing (1,-2,1,3)T and (2,1, -3,1)7.

6. Let x € R" with ||x|| = 1.

(a) Then prove that {x} can be extended to form an orthonormal basis of R™.
(b) Let the extended basis be {x,X2,...,X,} and B = [e1,...,ey] the standard ordered

basis of R™. Prove that A = |[X|p, [x2]B, .-, [Xn]g] is an orthogonal matriz.

7. Let viw € R", n > 1 with ||u|| = ||w|| = 1. Prove that there exists an orthogonal matriz
P such that Pv = w. Prove also that A can be chosen such that det(P) = 1.

4.6 QR Decomposition

In this section, we study the Q) R-decomposition of a matrix A € M, (R). The decomposition
is obtained by applying the Gram-Schmidt Orthogonalization process to the columns of the
matrix A. Thus, the set {A[:,1],..., A[:,n]} of the columns of A are taken as the collection of
vectors {vy,...,vp}.

If Rank(A) = n then the columns of A are linearly independent and the application of
the Gram-Schmidt process gives us vectors {wi,...,w,} C R™ such that the matrix @ =

[Wl --. w,| is an orthogonal matrix. Further the condition

LS(A[:,1),...,A[:,k]) = LS(w1,...,wg), for 1 <k <mn,
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in the Gram-Schmidt process implies that A[:,k] = LS(wi,...,wyg), for 1 < k < n. Hence,

a1k
there exist a;, € R,1 < j <k, such that A[;,k] = [wy,...,wg]| : |. Thus A = QR, where
ALk
Qi Q12 v Qg
0 g -+ a2
Q=|wg -- Wn:| and R =
i 0 0 Onn |

This decomposition is stated next.

Theorem 4.6.1 (QR Decomposition). Let A € M,,(R) be a matriz with Rank(A) = n. Then,
there exist matrices Q@ and R such that Q) is orthogonal and R is upper triangular with A = QR.
Furthermore, the diagonal entries of R can be chosen to be positive. Also, in this case, the

decomposition s unique.
Proof. The argument before the statement of the theorem gives us A = QR, with
1. @ being an orthogonal matrix (see Exercise 5.8.8.5) and
2. R being an upper triangular matrix.
Thus, this completes the proof of the first part. Note that
1. aj; #0, for 1 <i <mn,as Af:,1] # 0 and A[:yi] ¢ LS(wi,...,w;_1) as A has full column

rank.
2. if ay; < 0, for some 4,1 < i < n then'we can replace v; in Q by —v; to get new matrices

@ and R with the added condition that the diagonal entries of R are positive.

Uniqueness: Suppose Q1 R1 = Q2 Rs for some orthogonal matrices Q);’s and upper triangular
matrices R;’s with positive diagonal entries. As @);’s and R;’s are invertible, we get Q5 1o, =
RgRl_l. As product of upper triangular matrices is also upper triangular (see Exercise 2) the
matrix R2R1_1 is an upper triangular matrix. Similarly, Q5 1Qy is an orthogonal matrix.

So, the matrix RgRl_l is an orthogonal upper triangular matrix. Hence RoR| V= T,. So,
Ry = Ry and therefore Q)2 = Q1. n

Remark 4.6.2. Note that in the proof of Theorem 4.6.1, we just used the idea that Al:,i] €

LS(wi,...,w;) to get the scalars aj;, for 1 < j <i. As {wi,...,W;} is an orthonormal set
aji = (Als, 1], wj), for1 <j <.
So, it is quite easy to compute the entries of the upper triangular matriz R.

Now, let A be an m x n matrix with Rank(A) = r. Then, by Remark 4.5.4, we obtain an

orthonormal set {wy,...,w,} C R" such that
LS(A[:1),...,Al:,5]) = LS(w1,...,w;), for 1 <i<j<n.

Hence, proceeding on the lines of the above theorem, one has the following result.
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Theorem 4.6.3 (Generalized QR Decomposition). Let A be an m xn matriz with Rank(A) = r.
Then A = QR, where

1. Q =[wi,...,w,] is an m x v matriz with QT Q = I,
2. LS(A[:,1],..., Al j]) = LS(v1,...,vi), for 1 <i<j<n and
3. R is an r X n matriz with Rank(R) = r.

We look at a few examples to understand it better.

10 1 2
01 -1 i .

Example 4.6.4. 1. Let A = 0o 1 1l Find an orthogonal matrix ) and an upper
01 1 1

triangular matrix R such that A = QR.
Solution: From Example 4.5.2, we know that w; = %(1,0, 1,0)", wo = %(O, 1,0,1)7
1

and w3 = ﬁ(O, —1,0,1)T. We now compute wy. If v4 = (2,1,1,1)7 then

1
uy = vy — (Va, W)Wy — (Vyg, W)W — (V4, W3)W3 = 5(1,0, -1,0)7.

Thus, wy = %(—1,0, 1,0)T. Hence, we see that A = QR with

L 1 3
G (1’ 0 7 V2 0 V2 -
0 % = O 0 vV2 0 —V2
Q= [le ’W4] = 1 vz V2 1 and R = \[ \[
5 0 0 3 0 0 V2 (1J
1 1 1
0 B 0 v
11 1 0
-1 0 -2 1| _. , .
2. Let A = L1 ol Find a 4 x 3 matrix @ satisfying @Q* ) = Is and an upper
1 0 2 1

triangular matrix R such that A = QR.
Solution: Let us apply the Gram-Schmidt orthonormalization process to the columns of
A Asvi=(1,-1,1,1D)7, we get wy = %Vl. Let vo = (1,0,1,0)”. Then,
1

w = vy — (vo, wi)wy = (1,0,1,0) —wy = (L1 L, -nT.
Hence, wo = 1(1,1,1,—1)7. Let v3 = (1,-2,1,2)T. Then,

us = Vg — <V3,W1>W1 — <V3,W2>W2 =v3 —3wj +wg = 0.
So, we again take v3 = (0,1,0,1)7. Then,

us3 = V3 — <V3,W1>W1 — <V3,W2>W2 = V3 — 0W1 — OWQ = V3.

So, w3 = %(0, 1,0,1)T. Hence,

1 1

11

T 21 3 0
Q=[vivovs]=|2 2 Voi and R=10 1 -1 0

D) 00 0 V2

2 2 P
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The readers are advised to check the following;:
(a) Rank(A) =3,
(b) A= QR with QTQ = I3, and
(c) Ris a3 x 4 upper triangular matrix with Rank(R) = 3.
Remark 4.6.5. Let A € M, ,(R) with Rank(A) =n .
1. Then AT A is invertible (see Erxercise 3.6.9.3).
By Theorem 4.6.3, there exist matrices Q € My, ,(R) and R € M, ,(R) such that A = QR.

Further, the columns of Q form an orthonormal set and hence QT Q = I,,.

L

Furthermore, Rank(R) = n as Rank(A) = n. Thus R is invertible. Hence RTR is
invertible and (RTR)™' = R~1(RT)~1.

5. So, if Q = [wi,...,wy] then

A(ATA)flAT — QR(RTR)flRTQT — (QR)(Rfl(RT)fl)RTQT — QQT

T
w1
6. Thus P = A(ATA)TTAT = QQT = [wi,...,wy]| ¢ | = 3 wywl is the projection
i=1
T
Wn

matriz that projects on COL(A) (see Ezxercise 4.5.5.4).

4.7 Summary

In the previous chapter, we learnt that if V is vector space over F with dim(V) = n then V
basically looks like F™. Also, any subspace of " is either COL(A) or NULL(A) or both, for some
matrix A with entries from F.

So, we started this chapter with inner product, a generalization of the dot product in R?
or R™. We used the inner product to define the length/norm of a vector. The norm has the
property that “the norm of a vector is zero if and only if the vector itself is the zero vector”. We
then proved the Cauchy-Schwartz Inequality which helped us in defining the angle between two
vector. Thus, one can talk of geometrical problems in R™ and proved some geometrical results.

We then independently defined the notion of a norm in R™ and showed that a norm is
induced by an inner product if and only if the norm satisfies the parallelogram law (sum of
squares of the diagonal equals twice the sum of square of the two non-parallel sides).

The next subsection dealt with the fundamental theorem of linear algebra where we showed
that if A € M, »,(C) then

1. dim(NuLL(A)) 4+ dim(CoL(A4)) = n.

2. NULL(A) = (COL(A*))l and NULL(A*) = (COL(A))L

3. dim(CoL(A)) = dim(CoL(A")).
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We then saw that having an orthonormal basis is an asset as determining the coordinates
of a vector boils down to computing the inner product.

So, the question arises, how do we compute an orthonormal basis? This is where we came
across the Gram-Schmidt Orthonormalization process. This algorithm helps us to determine
an orthonormal basis of LS(S) for any finite subset S of a vector space. This also lead to the

QR-decomposition of a matrix.
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Chapter 5

Linear Transformations

5.1 Definitions and Basic Properties

Recall that understanding functions, their domain, co-domain and their properties, such as
one-one, onto etc. played an important role. So, in this chapter, we study functions over vector

spaces that preserve the operations of vector addition and scalar multiplication.

Definition 5.1.1. Let V and W be vector spaces over F with vector operations +, - in V and
@,® in W. A function (map) f:V — W is called a linear transformation if for all « € F

and u,v € V the function f satisfies
fla-u)=a® f(u) and f(u+v) = f(u) & f(v). (5.1.1)

By L(V,W), we denote the set of all linear transformations from V to W. In particular, if
W = V then the linear transformation f is called a linear operator and the corresponding set

of linear operators is denoted by £(V).

Even though, in the definition above, we have differentiated between the vector addition
and scalar multiplication for domain and co-domain, we will not differentiate them in the book
unless necessary.

Equation (5.1.1) just states that the two operations, namely, taking the image (apply f) and
doing ‘vector space operations (vector addition and scalar multiplication) commute, i.e., first
apply vector operations (u+ v or av) and then look at their images f(u+v) or f(av)) is same
as first computing the images (f(u), f(v)) and then compute vector operations (f(u) + f(v)

and af(v)). Or equivalently, we look at only those functions which preserve vector operations.

Definition 5.1.2. Let g,h € L(V,W). Then g and h are said to be equal if g(x) = h(x), for
all x € V.

We now give examples of linear transformations.

Example 5.1.3. 1. Let V be a vector space. Then, the maps Id,0 € £(V), where
(a) Id(v) = v, for all v € V| is commonly called the identity operator.

(b) O(v) =0, for all v € V, is commonly called the zero operator.
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. Let V.and W be vector spaces over F. Then, 0 € L(V, W), where O0(v) =0, for all v e V,

is commonly called the zero transformation.

. The map f(x) = 7x, for all x € R, is an element of L(R) as

flax) = T(ax) = a(7x) = af(x) and f(x+y) =T(x +y) = Tx+ Ty = f(x) + f(y)-

. Let V,W and Z be vector spaces over F. Then, for any 7' € L(V,W) and S € L(W,Z),

the map SoT € L(V,Z), defined by (SoT)(v) = S(T(v)) for all v € V, is called the

composition of maps. Observe that for each u,v € V and o, 5 € R,

(SoT)(av+pu) = S(T(av+ pu)) =S(aT(v)+ Bf(u))
— aS(T()) + BS(T(w) = a(§ o T)(v) + B(S o T)(w).

Hence S o T, in short ST, is an element of L(V,Z).

. Fix a € R and define f(x) = a’x, for all x € R". Then f € £(R",R). In particular, if

X = [x1,...,2,]" then, for all x € R",

n
(a) f(x) = > x; =1"x is a linear transformation.
i=1

(b) fi(x) = z; = el'x is a linear transformation, for 1 < i < n.

. Define f : R?> - R3 by f ((m,y)T) = (z +y,22 —y,x + 3y)T. Then f € L(R? R3). Here

fler) = (1,2,1)T and f(es) = (1,—1,3)L.

Fix A € M, »xn(C). Define f4(x) = Ax, for every x € C". Then, f4 € L(C",C™). Thus,
for each A € M, ,(C), there exists a linear transformation f4 € £L(C",C™).

. Define f : R*™! — Rla;n] by f ((al7 e ,an+1)T) = a1 + asx + -+ + anpy12", for each

(a1,...,an41) € R*1. Then f is a linear transformation.

. Fix A € M,,(C). Now, define f4 : M,(C) — M,(C) and g4 : M, (C) — C by

fa(B) = AB and ga(B) = tr(AB), for every B € M,(C).
Then f4 and g4 are both linear transformations.

Is the map T : R[z;n] — R[z;n + 1] defined by T(f(x)) = xf(z), for all f(x) € R[z;n| a

linear transformation?

The maps T, S : R[z] — R[z| defined by T'(f(z)) = % (x) and S(f(x)) = zf(t)dt, for all

f(z) € R[z] are linear transformations. Is it true that 7S = Id? What about ST

Recall the vector space RY in Example 3.1.4.7. Now, define maps 7,5 : RY — RN
by T({a1,as,...}) = {0,a1,a9,...} and S({a1,a2,...}) = {az,as,...}. Then, T and S,
commonly called the shift operators, are linear operators with exactly one of ST or T'S

as the Id map.
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13. Recall the vector space C(R,R) (see Example 3.1.4.9). Define T : C(R,R) — C(R,R) by
T(f)(z) = [ f(t)dt. For example, T'(sin)(z) = [ sin(t)dt = 1—cos(z), for all z € R. Then,
0 0
verify that T is a linear transformation.

Remark 5.1.4. Let A € M,(C) and define Ty : C" — C" by Ta(x) = Ax, for every x € C™.
Then, verify that T%(x) = (TaoTao---0Ta)(x) = Akx, for any positive integer k.

k times

EXERCISE 5.1.5. Fiz A € M, (C). Then, do the following maps define linear transformations?

1. Define f,g : M,(C) — My, (C) by f(B) = A*B and g(B) = BA, for every B € M,(C).
2. Define h,t : M,(C) — C by h(B) = tr(A*B) and t(B) = tr(BA), for every B € M,(C).

We now prove that any linear transformation sends the zero vector to a zero vector.

Proposition 5.1.6. Let T € L(V,W). Suppose that Oy is the zero vector in V and Owy is the
zero vector of W. Then T'(0y) = Ow.

Proof. Since Oy = Oy + Oy, we get T'(0y) = T'(0y + Oy) = T(0y) + T (0y). As T(0y) € W,
Ow + T'(0v) = T(0Ov) = T(0Ov) + T'(Ov).

Hence T'(0y) = Oyy. .
From now on 0 will be used as the zero vector of the domain and co-domain. We now

consider a few more examples for better understanding.

Example 5.1.7. 1. Does there exist a linear transformation 7" : V — W such that T'(v) # 0,
for all v € V7
Solution: No, as T(0) = 0 (see Proposition 5.1.6).

2. Does there exist a linear transformation 7' : R — R such that T'(z) = 22, for all z € R?

Solution: No, as T'(az) = (az)? = a?z? = a*T(z) # aT(z), unless a = 0, 1.

3. Does there exist a linear transformation 7' : R — R such that 7'(5) = 10 and 7'(10) = 57
Solution: No, as T(10) =T (5+5) = T'(5) + t(5) = 10+ 10 = 20 # 5.

4. Does there exist a linear transformation f : R? — R? such that f((z,y)?) = (z +y,2)7?
Solution: No, as f(0) # 0.

5. Does there exist a linear transformation f : R? — R? such that f((z,y)?) = (z +y, 2y)"?
Solution: No, as f((2,2)7) = (4,4)T # 2(2, )T =2f((1,1)T).

6. Define a map T': C — C by T'(z) = z, the complex conjugate of z. Is T' a linear operator
over the real vector space R?

Solution: Yes, as for any a € R, T'(az) = az = oz = o1 '(z).
We now define the range space.

Definition 5.1.8. Let f € £(V,W). Then the range/ image of f, denoted RNG(f) or Im(f),
is given by RNG(f) = {f(x) : x € V}.
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As an exercise, show that RNG(f) is a subspace of W. The next result, which is a very
important result, states that a linear transformation is known if we know its image on a basis

of the domain space.

Lemma 5.1.9. Let V and W be vector spaces over F with B = {vi,va,...} as a basis of V. If
f e L(V,W) then T is determined if we know the set {f(v1), f(v2),...}, we., if we know the
image of f on the basis vectors of V, or equivalently, RNG(f) = LS(f(x)|x € B).

Proof. Let B be a basis of V over F. Then, for each v € V| there exist vectors uy,...,u; in B
k
and scalars ci, ..., c; € F such that v = ) ¢u;. Thus
i=1

k k
T(v)=f (Z ciui> = Zf(czu,) = ZciT(ui).

i=1 i=1 i=1

Or equivalently, whenever

c1 C1
v=[us,...,u]| : | then f(v):[f(ul) IR (5.1.2)
Ck Ck

Thus, the image of f on v just depends on where the basis vectors are mapped. Equation 5.1.2
also shows that RNG(f) = {f(x) : x € V} = LS(f(x)|x € B). .

Example 5.1.10. Determine RNG(T') of the following linear transformations.

1. f € L(R3RY), where f((x,y,2)T) = (x —y+ 2,y — 22,20 — 5y + 52)T.
Solution: Consider the standard basis {ej, ez, e3} of R3. Then

RNG(f) = LS(f(e1),T(e2),T(e3)) = LS((1,0,1,2)",(-1,1,0,-5)T,(1,-1,0,5)T)
= LS((1,0,1,2)7,(1,-1,0,5)") = {\(1,0,1,2)" + B(1,-1,0,5)" | A\, B € R}
= {(A+8,-8,\2X+58) : N\, R}
= {(z,y,z,w)l eR*|z+y—2=0,5y — 22 +w = 0},

2. Let B € M(R). Now, define a map 7" : Ma(R) — Ma(R) by T(A) = BA — AB, for all
A € My(R). Determine RNG(T") and NuLL(T).
Solution: Recall that {e;;|1 <i,j < 2} is a basis of Ma(R). So,

(a) if B = cI, then RNG(T) = {0}.

(b) if B = i] then T'(e11) = [(2) _02 , T(erz) = [_02 _23 ,T(en) = E _02] and
T(ex) = [O | Thus, RNG(T) = LS ([ 0 2], [2 3 ] [_2 OD_
-2 0 -2 0" [0 —2|"|-3 2
2 . B 0 212 2|20
(c) for B = 3] , verify that RNG(T') = LS ( L O] 7 [O _2], [_2 2] >
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Recall that by Example 5.1.3.5, for each a € R™, the map T'(x) = alx, for each x € R", is

a linear transformation from R" to R. We now show that these are the only ones.

Corollary 5.1.11. [Reisz Representation Theorem] Let T € L(R™,R). Then, there exists
a € R" such that T(x) = a’x.

Proof. By Lemma 5.1.9, T is known if we know the image of T' on {ey,...,e,}, the standard
basis of R™. So, for 1 < i < n, let T(e;) = a;, for some a; € R. Now define a = [a1,...,a,]"
and x = [r1,...,2,]7 € R™. Then, for all x € R",

n n n
T(x)=T (Z xﬁi) = Z%‘T(ei) = Z ria; = a’ x.
i=1 i=1 i=1

Thus, the required result follows. "

Example 5.1.12. In each of the examples given below, state whether a linear transformation
exists or not. If yes, give at least one linear transformation. If not, then give the condition due

to which a linear transformation doesn’t exist.

1. Can we construct a linear transformation 7' : R? — R? such that T'((1,1)7) = (¢,2)? and
T(2,1)7) = (5,477
Solution: The first thing that we need to answer is “is the set {(1,1),(2,1)} linearly

independent”? The answer is ‘Yes’. So, we can construct it. So, how do we do it?

1 2 1 2]
We now need to write any vector [m] =« Iill + 5 L] = L ) [g] as by definition of
Y

linear transformation

1 2 1 2] 5
(") = 7(al'|+58]7|) =ar + AT o INEY
y 1 1 1 1] 2 4
-1

e 5 |« e ) 1 2 T

o2 4l gl |2 4] |1 1 y

o le 5| |=1 2||z| [(b-e)x+(2e—5)y

o2 4|l =1 |y 2 '

2. T :R? — R? such that T((1,1)7) = (1,2)T and T((1,-1)T) = (5,10)T?
1
Solution: Yes, as the set {(1,1),(1,—1)} is a basis of R%. Write B = . Then,

'

)

(CRARITE)
- G (DI 2 G

- —1r oty
| 5] [1 1 ] x] _ [1 5] [2] _ [3x—2y]
2 10\ [t —1] |y 2 10| |25 6 — 4y

g)

1
1
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3. T :R? — R? such that T((1,1)T) = (1,2)T and T((5,5)T) = (5,11)7?
Solution: Note that the set {(1,1),(5,5)} is linearly dependent. Further, (5,11)7 =
T((5,5)T) = 57((1,1)T)5(1,2)T = (5,10)7 gives us a contradiction. Hence, there is no
such linear transformation.

4. Does there exist a linear transformation 7 : R? — R? with T'(1,1,1) = (1,2),7(1,2,3) =
(4,3) and T(2,3,4) = (7,8)?
Solution: Here, the set {(1,1,1),(1,2,3),(2,3,4)} is linearly dependent and (2,3,4) =
(1,1,1) + (1,2,3). So, we need T((2,3,4)) = T((1,1,1) + (1,2,3)) = T((1,1,1)) +
7((1,2,3)) = (1,2) 4+ (4,3) = (5,5). But, we are given 7'(2,3,4) = (7,8), a contradiction.
So, such a linear transformation doesn’t exist.

5. T :R? — R? such that T((1,1)T) = (1,2)T and T((5,5)7) = (5,10)T?
Solution: Yes, as (5,10)" = T((5,5)7) = 57((1,1)7) = 5(1,2)" = (5,10)7.

To construct one such linear transformation, note that {(1,1)7,(1,0)7} is a basis of R2.

11
Let B = [1 0] and pick v € R%. Now define T((1,0)7) = v = (v1,v2)T. Then, as in the

. |z 0 1 ||z Y
previous example, note that B = = and hence
y L —1] |y T -y
1 1 1 1
(") =T ,T B~ = vl Y =y| |+ (x—y)v.
Y 1 0 Y 2 vl |lx—y 2

6. Does there exist a linear transformation T : R® — R? with T'(1,1,1) = (1,2),7(1,2,3) =
(4,3) and T'(2,3,4) = (5,5)7
Solution: As (2,3,4) = (1,1,1) + (1,2,3) and T((2,3,4)) = T((1,1,1) + (1,2,3)) =
T((1,1,1)) +T((1,2,3)), such a linear transformation exists. To get the linear transfor-
mation, get a basis, namely {1,1,1),(1,2,3),e;}, of R®. Note that this basis contains
(1,1,1) and (1,2,3). Now, define T'(e1) as any vector of R2. This give us a linear trans-
formation satisfying the given condition.

7. T : R? — R? such that NULL(T) = {x € R? | T(x) = 0} = LS{(1,7)"}?
Solution: Yes. Take {(1,7)7, u} as a basis of R? and define T'((1,7)”) = 0 and T'(u) = u.

il

1 2
Solution: Yes. Take { [2 1] , €11, €19, e21} as a basis of My(R) and define

1)

EXERCISE 5.1.13. 1. Use matrices to construct linear operators T, S : R> — R> that satisfy:

8. T : Ma(R) — R? such that NULL(T) = {x € My(R) | T'(x) = 0} = LS{

T(en) = e, T(elg) = €9, T(ezl) = e3 and T (

(a) T#0, ToT =T?#0, ToToT =T%=0.
(b)) T#0, S#0, SoT=8T+#0, ToS=TS=0.
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(c) SoS=82=T2=ToT, S#T.
(d) ToT =T%= Id, T # Id.

. Fiz a positive integer p and let T : R" — R™ be a linear operator with T* # 0 for

1 <k <pand TPT' = 0. Then prove that there exists a vector x € R™ such that the set
{x,T(x),...,TP(x)} is linearly independent.

. Fiz xg € R™ with xg # 0. Now, define T € L(R™,R™) by T'(xq) = yo, for some yo € R™.

Define T Y(yg) = {x € R" : T(x) = yo}. Then prove that x € T~ (yo) if and only if
x —x9 € T7Y0). Further, T~1(yq) is a subspace of R™ if and only if yo = 0.

. LetV and W be vector spaces over F. If{vi,...,v,} is a basis of V and {wi,...,w,} CW

then prove that there exists a unique T € L(V, W) with T'(v;) = w;, fori=1,...,n.

. Let'V be a vector space and let a € V. Then the map T : V — V defined by Ta(x) = x+a,

for all x € V is called the translation map. Prove that T, € L(V) if and only if a = 0.

. Prove that there exists infinitely many linear transformations T : R?® — R? such that

T((1,-1,D)7) = (1,2)" and T((-1,1,2)") = (1,0)T?

. Does there exist a linear transformation T : R3 — R? such that

(a) T((1,0,1)T) = (1,2)T, T((0,1,1)T) = (1,0)T and T((1,1,1)T) = (2,3)T?
(b) T((1,0,1)T) = (1,2)T, T((0,1,1)T) = (1,0)" and T((1,1,2)T) = (2,3)T ?

. Find T € L(R3) for which RNa(T) =LS((1,2,0)7,(0,1,1)7,(1,3,1)7).

. Let T : R? — R3 be defined by T((z,y,2)T) = (2x + 3y +4z,2+y+ 2,2 +y+32)T. Find

the value of k for which there exists a vector x € R® such that T'(x) = (9,3,k)7.

Let T : R3 — R? be defined by T((x,y,2)T) = (20 — 2y + 22, —2x + 5y + 22,0 +y + 42)7.
Find x € R3 such that T(x) = (1,1,-1)7.

Let T : R? — R3 be defined by T((z,y,2)T) = (2o +y + 3z,4x — y + 32,3z — 2y + 52)7.
Determine x,y,z € R\ {0} such that T(x) = 6x, T(y) = 2y and T(z) = —2z. Is the set
{x,y,2} linearly independent?

Let T : R® — R3 be defined by T((x,y,2)") = (2x + 3y + 4z, —y, —3y + 42)T. Determine
x,y,z € R3\ {0} such that T(x) = 2x, T(y) = 4y and T(z) = —z. Is the set {x,y,z}

linearly independent?
Does there exist a linear transformation T : R3 — R™ such that T((1,1,-2)T) = x,
T((-1,2,3)T) =y and T((1,10,1)T) = z

(a) withz=x+y?

(b) with z = cx + dy, for some choice of ¢,d € R?

For each matriz A given below, define T € L(R?) by T(x) = Ax. What do these linear

operators signify geometrically?
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V3 1] 11 -1l 11 =B8] o -1 )
waclal? aal ala YL )}
1f1 —1] 1]1 2] Jo o] [1 o
oaspls 3]sk L )
1Vv3 1 | 1|1 1| 1|1 V3| |cos(¥) sin(¥F
RS P P -

15. Consider the space C3 over C. If f € L(C3) with f(x) = x, f(y) = (1 +i)y and f(z) =
(2 + 3i)z, for x,y,z € C3\ {0} then prove that {x,y,z} forms a basis of C3.

V)

s 2

cos (?) —sin

N N
3 oy

I

N | =
(&)

sin (%) cos (

|

5.2 Rank-Nullity Theorem

Recall that for any f € L(V, W), RNG(f) = {f(v)|v € V} (see Definition 5.1.8). Now, in line
with the ideas in Theorem 3.6.1, we define the null-space or the kernel of a linear transformation.
At this stage, the readers are advised to recall Section 3.6 for clarity and similarity with the

results in this section.

Definition 5.2.1. Let f € £(V,W). Then the null space of f, denoted NULL(f) or KER(f),
is given by NULL(f) = {v € V|f(v) = 0}. In most linear algebra books, it is also called the
kernel of f and written KER(f). Further, if V is finite dimensional then one writes

dim(RNG(T')) = RANK(T) and dim(NuLL(7T)) = NuLLiTy(T).

Example 5.2.2. 1. Define f € L(R3 RY) by f((x,y,2)") = (x—y+2,y—2, 2,220 —5y+52)T.
Then, by definition,

NuL(f) = {(z,y.2)" €R’ : f((z,y,2)") = 0}
= {(z,y,2)T €eR® : (x—y+2z,y—2z,2c—5y+52)7 =0}
= {(z,y,2)T €eR® :x—y+2=0,y—2=0,2=0,2z — 5y + 5z = 0}
= {(z,9,2)T €R? 1y —2=0,2 =0}
= {(0,2,2)T €R® : 2z € R} = LS((0,1,1)T)

2. Fix B € My(R). Now, define T': Ma(R) — My(R) by T'(A) = BA—AB, for all A € M(R).
Solution: Then A € NULL(T) if and only if A commutes with B. In particular,
{I,B,B?,...} C NULL(T). For example, if B = al, for some a then NULL(T) = My(R).

EXERCISE 5.2.3. 1. Let T € L(V,W). Then NULL(T) is a subspace of V. Furthermore, if
V is finite dimensional then dim(NULL(T)), dim(RNG(T")) < dim(V).

2. Define T € L(R?,RY) by T((x,y)T) = (z+y,v—y,2x+y, 3z —4y)T. Determine NULL(T).

3. Describe NULL(D) and RNG(D), where D € L(R[x;n]) is defined by (D(f))(x) = f'(x),
the differentiation with respect to x. Note that RNG(D) C R[z;n — 1].

4. Define T € L(R[z]) by (T(f))(z) = xf(z), for all f(x) € L(R[z]). What can you say
about NULL(T) and RNG(T)?
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5. Define T € L(R3) by T(e1) = e1 +es3, T(es) = ey + ez and T(e3) = —e3. Then

(a) determine T((x,y,2)7), for x,y,z € R.
(b) determine NULL(T) and RNG(T).
(c) is it true that T?> = Id?

We now prove a result which is similar to Exercise 3.3.17.2.

Theorem 5.2.4. Let V and W be vector spaces over F and let T € L(V,W).
1. If S CV is linearly dependent then T'(S) = {T(v) | v € V} is linearly dependent.

2. Suppose S CV such that T(S) is linearly independent then S is linearly independent.

Proof. Part 1: As S is linearly dependent, there exist kK € N and v; € S, for 1 < i < k, such that

k
the system > 2;v; = 0, in the unknowns x;’s, has a non-trivial solution, say z; = a; € F,1 <i <
i=1

k. Thus i a;v; = 0. Then a;’s also give a non-trivial solution to the system zk: yT'(v;) =0,
i=1 i i i i=1
where y;’s are unknown, as - a;T(v;) = 3 T(a;vi) =T <Z aivi> = T(0) = 0. Hence the
required result follows. = = =
Part 2 : On the contrary assume that S is linearly dependent. Then by Part 1, T'(S) is
linearly dependent, a contradiction to the given assumption that 7°(S) is linearly independent. =
We now prove the rank-nullity Theorem. The proof of this result is similar to the proof of

Theorem 3.6.1. We give it again for the sake of completeness.

Theorem 5.2.5 (Rank-Nullity Theorem). Let V and W be vector spaces over F. If dim(V) is
finite and T € L(V, W) then

RANK(T) + NuLLITY(T) = dim(RNG(T")) + dim(NuLL(T)) = dim(V).

Proof. Let dim(V) = n. As NULL(T') C V, let dim(NULL(T")) = k < n. Let B = {vy,...,vi}
be a basis of NULL(T'). We extend it to form a basis C = {vi,..., Vg, Vki1,...,Vp} of V. As
T(v)=0, for all v € B,

RNG(T) = LS(T(v1),- ... T(vi), T(Vis1)s - -, T(v)) = LS(T(Vis1)s - - .. T(¥))-

We claim that {T(vki1),...,T(vy)} is linearly independent subset of W.
n—k
So, consider the system > a;T(vgy;) = 0 in the unknown ay,...,a,_k. Note that
i=1

n—k n—=k n—k
> al(visi) =0T (Z aivk+i> =04 Y a;ivpyi € NuLL(T).

i=1 i=1 =1

n—k k
Hence, there exists by, ..., b; € F such that Y a;vii; = bjv;. This gives a new system
i=1 =1

= =

n—k k
D aiviyi+ Y (=bj)v; =0,
i=1 j=1
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in the unknowns a;’s and b;’s. As C is linearly independent, the new system has only the trivial
n—k

solution, namely [a1,...,ag, —b1,...,—bs]T = 0. Hence, the system Y a;T(vy;) = 0 has only
i=1

the trivial solution. Thus, the set {T(viy1),...,T(vy)} is linearly independent subset of W. It

also spans RNG(T") and hence is a basis of RNG(T"). Therefore,

dim(RNG(T)) + dim(NuLL(T)) = k + (n — k) = n = dim(V).

Thus, we have proved the required result. "

As an immediate corollary, we have the following result. The proof is left for the reader.
Corollary 5.2.6. Let V and W be finite dimensional vector spaces over F and let T € L(V,W).
If dim(V) = dim(W) then the following statements are equivalent.

1. T s one-one.

2. KEr(T) = {0}.

3. T s onto.

4. dim(RNG(T)) = dim(W) = dim(V).
EXERCISE 5.2.7. 1. Prove Corollary 5.2.6.

2. Let V and W be finite dimensional vector spaces over F. If T € L(V,W) then

(a) T cannot be onto if dim(V) < dim(W):
(b) T cannot be one-one if dim(V) > dim(W).
3. Let A € M, (R) with A2 = A. Define T € L(R™) by T(v) = Av for all v € R". Then
prove that
(a) T? =T, or equivalently, (T(Id—T))(x) = 0, for all x € R".
(b) NuLL(T') " RNG(T') = {0}.
(¢) R" = RNG(T') + NuLL(T).

4. Let 21, 20, ..., 21, be k distinct complex numbers. Define T € L(C[z;n],CF) by T(P(z)) =
(P(z1),..., P(zk))T, for all P(z) € Clz;n]. Determine RANK(T).

5.3 Algebra of Linear Transformations
We start with the following definition.

Definition 5.3.1. Let V, W be vector spaces over F and let S,T € L(V,W). Then, we define
the point-wise
1. sum of S and T', denoted S+ T', by (S +T)(v) = S(v) +T(v), for all ve V.

2. scalar multiplication, denoted ¢ T for ¢ € F, by (¢ T)(v) = ¢(T(v)), for all v € V.
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To understand the next result, consider £(R?,R3) and let B = { vy = , Vo =

0 0
1 <i<2,1<j<3, define elements of £(R? R3) by

1 0 0
and C = ¢ wy = |:O ,2Wo = |1|,ws= |0 be bases of R? and R3, respectively. Now, for
1

Wy, ifk=1

fji(vk):{ 0, ifk+£i

Then verify that the above maps correspond to the following collection of matrices?

1 0 0 1 0 0 0 0 0 0 0 0
fii= 10 0f,fi2=10 0|, fo1= 1|1 0|,fe2=1{0 1|,f31=1{0 0|,f2= (0 0
0 0 0 0 0 0 0 0 1 0 01

Theorem 5.3.2. Let V and W be vector spaces over F. Then L(V,W) is a vector space over
F. Furthermore, if dimV = n and dim'W = m, then dim L(V, W) = mn.

Proof. It can be easily verified that under point-wise addition and scalar multiplication, defined
above, L(V,W) is indeed a vector space over F. We now prove the other part. So, let us
assume that B = {vy,...,v,} and C = {wy,..., w;,} are bases of V and W, respectively. For

1<i<n,1< 5 <m, we define the functions fj; on the basis vectors of V by

w;, ifk=1
fji(v’“):{ 0J i k£

n
For other vectors of V, we extend the definition by linearity, i.e., if v = ) asvs then
s=1

fji(V) = fji (Z a5V5> = Zasfji(vs) = aifji(vi) = Q;Wj. (531)
s=1

s=1
Thus f;; € L(V,W). We now show that {f;;|1 <i <n,1 <j <m} is a basis of L(V,W).
As a first step, we show that f;;’s are linearly independent. So, consider the linear system
n m
> > c¢jifj; = 0, in the unknowns ¢j;’s, for 1 <4 < n,1 < j < m. Using the point-wise addition

i=1j=1
and scalar multiplication, we get

n m n m m
0=0(vy) = Z chifji (vi) = Z chifji(vk) = Z CikWj.
i=1 j=1 i=1 j=1 j=1

But, the set {w1,...,w,} is linearly independent. Hence the only solution equals c;j; = 0, for
1 < j <m. Now, as we vary v, from vy to v, we see that ¢j; = 0,for 1 <j <mand 1 <i <n.
Thus, we have proved the linear independence of {f;;|1 <i <n,1 <j <m}.

Now, let us prove that LS ({f;;|1 <i<n,1<j<m}) = L(V,W). So, let f € L(V,W).
Then, for 1 < s <mn, f(vs) € W and hence there exists f;s’s such that f(vs) = i Biswy. So, if

t=1
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v = > asvs € V then, using Equation (5.3.1), we get

n
s=1

n m

f(V) = f (Z O58"5) = Zasf(vs) = Z Qg (Z ﬁtswt) = Z Zﬁts(aswt)
s=1 s=1 s=1 t=1 s=1 t=1
- Z Z ﬁtsfts (V) = (Z Z /Btsfts> (V)

s=1 t=1 s=1t=1

n m
Since the above is true for every v € V, we get f = > > Bisfis. Thus, we conclude that
s=1t=1
fe LS{f;ll <i<n,1<j<m}). Hence, LS ({fj|]l <i<n,1<j<m}) = L(V,W) and
thus the required result follows. n

We now give a corollary of the rank-nullity theorem.

Corollary 5.3.3. Let V be a vector space over F with dim(V) =n. If S,T € L(V) then
1. NurLLitY(T') + NuLLity(S) > NuLLiTy(S7T) > max{NuLLITY(T), NULLITY(S)}.

2. min{Rank(S), Rank(T)} > Rank(ST) > n — Rank(S) — Rank(T).

Proof. The prove of Part 2 is omitted as it directly follows from Part 1 and Theorem 5.2.5.
Part 1 - Second Inequality: Suppose v € KER(T). Then

(ST)(v) = S(T(v)) = 5(0) =0

implies KER(T') € KER(ST'). Thus NuLLITY(T') < NULLITY(ST).

By Theorem 5.2.5, NULLITY(S) < NULLITY(ST) < Rank(S) > Rank(ST'). This holds as
RNG(T) C V implies RNG(ST) = S(RNG(T)) C S(V) = RNG(S).

Part 1 - First Inequality: Let {vi,..., v} be a basis of NULL(T"). Then {vy,...,vi} C
NULL(ST). So, let us extend it to get a basis {vi,..., vk, u1,...,us} of NULL(ST).

Now, proceeding as in the proof of the rank-nullity theorem, implies that {7'(uy),...,T(us)}
is a linearly independent subset of NULL(S). Hence, NULLITY(S) > ¢ and therefore, we get
NuLLiTy(ST) = k + ¢ < NuLLITY(T) + NULLITY(S). .

Before proceeding further, recall the following definition about a function.

Definition 5.3.4. Let f : S — T be any function. Then

1. a function g : T — S is called a left inverse of f if (go f)(z) = x, for all x € S. That is,
go f =1d, the identity function on S.

2. a function h : T'— S is called a right inverse of f if (f o h)(y) =y, for all y € T. That
is, f o h = 1d, the identity function on 7'

3. f is said to be invertible if it has a right inverse and a left inverse.
Remark 5.3.5. Let f : S — T be invertible. Then, it can be easily shown that any right inverse

and any left inverse are the same. Thus, the inverse function is unique and is denoted by f~1.

It is well known that f is invertible if and only if f is both one-one and onto.
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Lemma 5.3.6. Let V and W be vector spaces over F and let T € L(V,W). If T is one-one and
onto then, the map T—' : W — V is also a linear transformation. The map T~ is called the

inverse linear transform of T and is defined by T~ (w) = v whenever T(v) = w.

Proof. PART 1: As T is one-one and onto, by Theorem 5.2.5, dim(V) = dim(W). So, by
Corollary 5.2.6, for each w € W there exists a unique v € V such that T'(v) = w. Thus, one
defines T-1(w) = v.

We need to show that T~ (a1wy + asws) = a1T H(wy) + asT 1(ws), for all aj,ay € F
and wi,wy € W. Note that by previous paragraph, there exist unique vectors vi,ve € V such
that T-1(w1) = v; and T~} (wy) = va. Or equivalently, T(v1) = wy and T(v2) = wa. So,

T(a1vi + agvy) = a1wi + agwe, for all aj, as € F. Hence, for all ag, as € F, we get
T ogwy + aowsy) = ayvi + agve = an T (wy) + T (w).
Thus, the required result follows. "

Example 5.3.7. 1. Let T : R? — R? be given by (z,y) ~ (z +y,z — y). Then, verify that

z+y ﬂ)

T~ is given by ~ (T’ 3

i—1
a;z'~, for (ay,...,a,) € R™

-

2. Let T € L(R™,R[z;n — 1]) be given by (ai,...,an) ~

=1

n . n .

Then, 7~ maps > a;2'~! ~ (ay,...,ay), for each polynomial > a;x'~! € Rla;n — 1].
i=1 i=1

Verify that T~! € L(R[z;n — 1], R").

Definition 5.3.8. Let V and W be vector spaces over F and let T' € £(V,W). Then, 7T is said
to be singular if {0} G KER(T), i.c., KBR(T) contains a non-zero vector. If KEr(T) = {0}

):

We now prove a result that relates non-singularity with linear independence.

then, T is called non-singular.

X

Y

Example 5.3.9. Let T € L£L(R?,R3) be defined by T ( . Then, verify that T is

o =y

non-singular. Is T invertible?

Theorem 5.3.10. Let V and W be vector spaces over F and let T € L(V,W). Then the

following statements are equivalent.
1. T is one-one.
2. T s non-singular.
3. Whenever S C 'V is linearly independent then T(S) is necessarily linearly independent.

Proof. 1=2  On the contrary, let T' be singular. Then, there exists v # 0 such that T'(v) =
0 = 7'(0). This implies that T is not one-one, a contradiction.
2=3 Let S C V be linearly independent. Let if possible T'(S) be linearly dependent.

k
Then, there exists vi,...,vy € S and a = (a1,...,a;x)’ # 0 such that > a;T(v;) = O.
i=1
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k k

Thus, T (Z aivi) = 0. But T is non-singular and hence we get Y  a;v; = 0 with a # 0, a
i=1 =1

contradiction to S being a linearly independent set.

3=1 Suppose that 7' is not one-one. Then, there exists x,y € V such that x # y but
T(x) = T'(y). Thus, we have obtained S = {x — y}, a linearly independent subset of V with
T(S) = {0}, a linearly dependent set. A contradiction to our assumption. Thus, the required

result follows. -

Definition 5.3.11. Let V and W be vector spaces over F and let T" € £(V,W). Then, T is
said to be an isomorphism if T is one-one and onto. The vector spaces V and W are said to

be isomorphic, denoted V =2 W, if there is an isomorphism from V to W.

We now give a formal proof of the statement that every finite dimensional vector space V
over [ looks like F™, where n = dim(V).

Theorem 5.3.12. Let V be an n-dimensional vector space over F. Then V = F",

Proof. Let {vi,...,v,} be a basis of V and {ey,...,e,}, the standard basis of F”. Define

n n n

T € L(V,F") by T (Z aivi> = > «;e;, whenever v .= > v;e; € V. Then, it is easy to
i=1 i=1 i=1

observe that T is one-one and onto. Hence, T is an isomorphism. "

As a direct application using the countability argument, one obtains the following result

Corollary 5.3.13. The vector space R over Q is not finite dimensional. Similarly, the vector

space C over Q is not finite dimensional.

We now summarize the different definitions related with a linear operator on a finite dimen-
sional vector space. The proof basically uses the rank-nullity theorem and they appear in some

form in previous results. Hence, we leave the proof for the reader.
Theorem 5.3.14. Let V be a finite dimensional vector space over F with dimV = n. Then the
following statements are equivalent for T € L(V).

1. T 1is one-one.

2. Ker(T) = {0}.

3. Rank(T') = n.

4. T 1s onto.

5. T is an isomorphism.

D

Af{vi,..., v} is a basis for V then so is {T'(v1),...,T(vn)}.
7. T is non-singular.

8. T is invertible.
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5.4 Ordered Bases

Let V be a vector space of dimension n over F. Then Theorem 5.3.12 implies that V is isomorphic
to F™. So, one should be able to visualize the elements of V as an n-tuple. Further, our problem
may require us to look at a subspace W of V whose dimension is very small as compared to the
dimension of V (this is generally encountered when we work with sparse matrices or whenever
we do computational work). It may also be possible that a basis of W may not look like a
standard basis of F", where the coefficient of e; gave the i-th component of the vector. We start
with the following example. Note that we will be using ‘small brackets’ in place of ‘braces’ to

represent a basis.
Example 5.4.1.

1. Let f(z) = 1 — 2% € R[;2]. If B = (1,z,2%) be a basis of R[z;2] then, f(z) =
1
[1 T xQ} 0
—1

2. Let V = {(u,v,w,z,9)T € R°| w—2 =u,v =y,u+v+x =3y} Then, verify that
B= ((—1, 0,0,1,0)7,(2,1,2,0, 1)T) = (u1,u2), say, can be taken as a basis of V. So, even

though V is a subspace of R>, we just need two scalars a, 3 to understand any vector in

3 Y
R

So, from Example 5.4.1 we conclude the following: Let V be a vector space of dimension n

V. For example, (7,5,10,3,5)” = 3u; + 5us = [uy, uy]

n
over F. If we fix a basis, say, B = (uj,ug,...,u,) of Vand if ve V with v= > au; =
i=1
a1 (&3
e%) o1
v =[u,ug,...,u,]| | =[ug,u,...,uy]
Qp Qn,

Note the change in the first two components of the column vectors which are elements of F.
So, a change in the position of the vectors u;’s gives a change in the column vector. Hence,
if we fix the order of the basis vectors u;’s then with respect to this order all vectors can be

thought of as elements of F”. We use the above discussion to define an ordered basis.

Definition 5.4.2. Let W be a vector space over F with a basis B = {uy,...,u}. Then, an
ordered basis for W is a basis B together with a one-to-one correspondence between B and
{1,2,...,m}. Since there is an order among the elements of B, we write B = (u1,...,u,,). The

matrix B = [uy,...,u,,] containing the basis vectors of W and is called the basis matrix.

Example 5.4.3. Note that for Example 5.4.1.1 [1, x, 2%] is a basis matrix, whereas for Exam-

ple 5.4.1.2, [u;, ug] and [ug, u;] are basis matrices.
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Definition 5.4.4. Let B = [vy,...,Vvy,] be the basis matrix corresponding to an ordered basis
B = (vi,...,vy) of W. Since B is a basis of W, for each v.€ W, there exist 3;,1 < i < m,
A 63}

m
such that v = > B;v; = B| : |. The vector | : |, denoted [v]g, is called the coordinate
i=1

Bm Brm

vector of v with respect to B. Thus,

\2!
v = B[v]|g = [V1,...,Vm][V]s, or equivalently, v = [v]5| : |. (5.4.1)
Vim

The expressions in Equation (5.4.1) are generally viewed as a symbolic expressions.

Example 5.4.5. Consider Example 5.4.1. Then for

1. f(z) =1—2? € Rlx;2] with B = (1,2, 2?) as an ordered basis of R[z;2] = (2)]z= | 0
-1

2. (7,5,10,3,5) € V = {(u,v,w,z,y)T € R | w—2 = w,v = y,u+v +x = 3y} with

3
B=((-1,0,0,1,0)",(2,1,2,0,1)7) as an ordered basis of V = [(7,5,10,3,5)]z = 5|
Remark 5.4.6. Let V be a vector space over F of dimension n. Suppose B = (vi,...,vy) is

an ordered basis of V.

1. Then [av + w|g = a[v]p + [w]|s, forall « €F and v,w € V.

2. So, once we have fixed B, we can think of each element of V as a vector in F". Therefore,
if S =4{w1,..., W} CV then in place of working with S, we can work with its coordinates
or equivalently with S" = {[w1]g, ..., [wWmn|s}. Hence,

(a) S is linearly independent if and only if S’ is linearly independent in F™.

(b) S is linearly dependent if and only if S” is linearly dependent in F™.

(¢) a vector v € LS(S) if and only if [v]g € LS(S").

(d) for any ordered basis C = (wi,...,Wy) of V, we can work with the n x n matriz
C = [[wl]g [wm]g}. Note that C' is invertible.

(e) the symbolic expression v = B[v|g can also be thought of as a matrixz equation. Thus

v = B[v]g & [v]g = B™'v for every v € V. (5.4.2)

Example 5.4.7. Consider the matrix A = € My, n(R). If B=(e11,e12,€13,...,€e33)

w N =
- W W

2
1
1

is an ordered basis of M3(R) then [A]; =11 2 3 2 1 3 3 1 4]
Thus, a little thought implies that M, ,(R) can be mapped to R™" with respect to the

ordered basis B = (e11,...,€1n,€21,...,€2,...,€ml,...,€my) of My, n(R).
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The next definition relates the coordinates of a vector with respect to two distinct ordered

bases. This allows us to move from one ordered basis to another ordered basis.

Definition 5.4.8. Let V be a vector space over F with dim(V) = n. Let A = [vy,...,v,] and
B = [uy,...,u,] be basis matrices corresponding to the ordered bases A and B, respectively, of

V. Thus, continuing with the symbolic expression in Equation (5.4.1), we have
A=1vi,...,vs] =[B[vils,--., Blvals] = B|[vils;-- -, [vn]g] = B[A]z, (5.4.3)

where [A]p = [[Vi]B, - - -, [Vn]B], is called the matrix of A with respect to the ordered basis

B or the change of basis matrix from A to B.

We now summarize the ideas related with ordered bases. This also helps us to understand

the nomenclature ‘change of basis matrix’ for the matrix [A]z.

Theorem 5.4.9. Let V be a vector space over F with dim(V) = n. Further, let A = (vi,...,Vp)

and B = (uy,...,u,) be two ordered bases of V.
1. Then the matriz [A]g is invertible. Further, Equation (5.4.2) gives [A]g = B~ A.
2. Similarly, the matriz [B] 4 is invertible and [B]l4 = A~'B.

3. Moreover, [x|p = [Alg[x]a, for all x € V, i.e., [A]p takes coordinate vector of x with

respect to A to the coordinate vector of x with respect to B.
4. Similarly, [x]a = [Bla[x|s, for allx € V.
5. Furthermore ([Alg)~1 = [B] 4.

Proof. Part 1: Note that using Equation (5.4.3), we see that the matrix [A]|g takes a linearly
independent set to another linearly independent set. Hence, by Exercise 3.3.17, the matrix [A]g
is invertible, which proves Part 1. A similar argument gives Part 2.

Part 3: Using Equation (5.4.2), [x]g = B™'x = B~1(447)x = (B71A)(A7'x) = [A]5[x] 4,

for all x € V. A similar argument gives Part 4 and clearly Part 5. "

Example 5.4.10.
1. Let V=R" A =[vy,...,v,] and B = (ey,...,e,) be the standard ordered basis. Then
A=[vi,...,van] =[[vi]B,---, [Va]B] = [A]5.
2. Suppose A = ((1,0,0)7,(1,1,0)7,(1,1,1)7) and B = ((1,1,1)7, (1,-1,1)",(1,1,0)") are

two ordered bases of R3. Then, we verify the statements in the previous result.

T 1 11 T T —y
(a) Using Equation (5.4.2), |y| =[]0 1 1 yl = ly—=2
0 01 z z
A
~1
T 1 1 1 x -1 1 2 x —r+y+2z
.. 1

(b) Similarly, |y| =[1 -1 1 y| =3 1 -1 o0lly|= 5 z—y

2 4 1 1 0 z 2 0 -2| |z 2¢ — 2z
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~-1/2 0 1 0 2 0
€ [Als=|1/2 0 0|, [Bla= |0 —2 1| and [A)s[B]4 = Is.
1 1 0 1 1 0

EXERCISE 5.4.11. In R3, let A = ((1,2,0)T, (1,3,2)7, (0, 1,3)T) be an ordered basis.
1. If B = ((1,2,1)T, 0,1,2)7, (1, 4, 6)T) is another ordered basis of R3. Then, determine
[A]p, [B]a and verify that [A]g[B]a = Is.

2
2. Determine the ordered basis C such that [Alc = |3
0

S = =
— N W

5.5 Matrix of a linear transformation

In Example 5.1.3.7, we saw that for each A € M,,x,(R) there exists a linear transformation
T € L(R™,R™) given by T'(x) = Ax, for all x € R™. In this section, we prove that if V

and W are finite dimensional vector spaces over F with ordered bases A = (vi,...,vy,) and
B = (wi,..., W), respectively, then any 7" € L(V, W) corresponds to an m X n matrix.
To understand it let A = [vy,...,v,] and B = [wy,...,wy,,] be the basis matrix of A and

B, respectively. Thus, for any 7' € L(V,W) and v € V, using the symbolic expression in
Equation (5.4.1), we see that T'(v) = B[T(v)|p and v = A[v]4. Hence, for any x € V

BITX)s = Tx)=T([v1,. . vallxa) = [T(v1) - T(va)] xla

= [BIrvOls o BITOIs] Ka=B|[T(vols - [T(va)ls|X.a.
As we can think of B as an invertible matrix (see Equation (5.4.2)), we get
[T(x)]5 = [[T(v1)]5, - - -, [T(vn)]5] [X]4, for each x € V.

Note that the matrix [[T(vl)]g [T(Vn)]lg}, denoted T[A, B], is an m X n matrix and is
unique with respect to the ordered bases A and B as the i-th column equals [T'(v;)]s, for the

i-th vector v; € 4, 1 <i <n. So, we immediately have the following definition and result.

Definition 5.5.1. Let A = (vy1,...,v,) and B = (wy,...,Wy,) be ordered bases of V and W,
respectively. If T' € £(V, W) then the matrix T'[A, B] is called the coordinate matrix of T or

the matrix of the linear transformation 7" with respect to the bases A and B, respectively.

When there is no mention of bases, we take it to be the standard ordered bases and denote
the corresponding matrix by [T]. Also, note that for each x € V, the matrix T[A, B][x]4 is
the coordinate vector of T'(x) with respect to the ordered basis B of the co-domain. Thus,
the matrix T'[A, B] takes coordinate vector of the domain points to the coordinate vector of its

images. The above discussion is stated as the next result.

Theorem 5.5.2. Let A = (vi,...,vy) and B = (wy,...,W,,) be ordered bases of V. and W,
respectively. If T € L(V, W) then there exists a matriz S € My, xn(F) with

$=TIAB = [[T(vi)lg - [T(va)ls| and [T(x)]s = S [x]a, for all x € V.
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A B

T A, B] [x]

\ W

Figure 5.1: Matrix of the Linear Transformation

See Figure 5.1 for clarity on which basis occurs at which place.

Remark 5.5.3. Let V and W be vector spaces over F with ordered bases Ay = (vi,...,vp)
and By = (W1,...,Wy,), respectively. Also, for a € F with a # 0, let Ay = (avy,...,avy,) and

By = (awy,...,awy,,) be another set of ordered bases of V and W, respectively. Then, for any
T e L(V,W)
TlAs, Bl = [[T(avi)ls, -+ [Tova)ls,| = [[Tvils, -~ [T(v)ls, | = Tl Bl

Thus, the same matrix can be the matrix representation of T for two different pairs of bases.

We now give a few examples to understand the above discussion and Theorem 5.5.2.

Q' = (—sinf, cos )

O

Figure 5.2: Counter-clockwise Rotation by an angle 6

Example 5.5.4. 1. Let T € £L(IR?) represent a counter-clockwise rotation by an angle 6, for
some 0 € [0, 27]. Then, using the right figure in Figure 5.2, we see that z = OP cos «
and y = OPsin . Thus, verify that

[x’ OP(cos o cos O — sin a sin 0)] B [cos 0 —sin 9] [x]
y/

OoP (sin acos 8 + cos asin 9) Y '
Or equivalently, using the left figure in Figure 5.2 we see that the matrix in the standard

OP’ cos(a + 0)
OP'sin(a + 0)

sinf cosf

ordered basis of R? equals

cosf) —sinf
. (5.5.1)

sinf cosf

7] = |T(e1), T(es)| = [
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2. Let T € L(R?) with T((x,y)T) = (z +y,z —y)T.

() Then [7] = [[T(er)] [T(e2)]] = [1 1]-

1 -1
. . 1 |1
(b) On the image space take the ordered basis as B = ol 111/ Then
1 1 0 2
mefrean e =[], [1]]-[2 3
1 -1 1 -1
B B
: . -1 (3
(¢) In the above, let the ordered basis of the domain space be A = 1 [1] . Then

Al PRI, B

3. Let A = (e1,e2) and B = (e; + ez, e; — e3) be two ordered bases of R2. Then Compute
T[A, A] and T[B, B], where T((z,y)T) = (z + y,» — 2y)7.

Solution: Note that the bases matrices for the two ordered bases are A = Idy and

3
1

TIA,B| = T

B = ! , respectively. So, A~! =1Idy and B~! = 1 [1 ! . Thus,
1 -1 211 -1
0 " 1 A 1 " -2 1 1 -2
1l 3
)], ~1) /|, -1, 3] 5 3 3
as[Q = B! 2]and [O :Bflo.
-1 5 -1 3 5 3

4. Let T € L(R3 R?) be defined by T((z,y,2)7) = (x +y — z,2 + 2)T. Determine [T].

Solution: By definition
1] 11 -1
1l [t o 1]

5. Define T € L(C?) by T(x) = x, for all x € C3. Note that T is the Id map. De-
termine the coordinate matrix with respect to the ordered basis A = (el,eg,eg) and
B =((1,0,0),(1,1,0),(1,1,1)).
Solution: By definition, verify that

1T] = [[T(e1)], [T(e)], [T(es)]] = [H H

ol [o 1 -1 0
T[A,B] = [[T'(e1)]s, [T'(e2)]s, [T'(e3)]s] = | [0 ,|1] , |0 =10 1 -1
ol lo| |1 00 1
B 1B B
and _
1 1 111
7B, A= |lo| ,|1] ,|1] [=1]o 1 1
ol |1 00 1
A A A L
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Thus, verify that T[B, A~ = T[A,B] and T[A, A] = T[B,B] = I3 as the given map is
indeed the identity map.

We now give a remark which relates the above ideas with respect to matrix multiplication.

Remark 5.5.5. 1. Fiz S € M,,(C) and define T € L(C™) by T(x) = Sx, for all x € C". If
A is the standard basis of C" then [T] =S as

1] = [T(e)]a = [S(e)]a = [S[illa = S[d], forl<i<n.

2. Fiz S € My, o(C) and define T € L(C",C™) by T'(x) = Sx, for allx € C". Let A and B
be the standard ordered bases of C" and C™, respectively. Then T[A,B] =S as

(TA,B])[:,i] = [T'(ei)]s = [Seiln = [S]:,i]]s = S[:,i], forl<i<n.

3. Fiz S € M,,(C) and define T € L(C™) by T'(x) = Sx, for allx € C". Let A= (vi,...,Vp)

and B = (uy,...,uy,) be two ordered bases of C"™ with respective basis matrices A and B.
Then
TAB = |Ttvils - [Tv)ls] = [B'T(w) - B7T(v)
- [B—lsv1 B_lSvl] _ B'S [vl vn] — B'SA.

In particular, if A= B then T|A, Al = A=\SA. Thus, if S = I,, then
(a) T = Id and IdJA, Al = I,,.
(b) Id[A,B] = B~YA, an invertible matriz.
(c) Similarly, Id[B, Al = A~'B. So, Id[B, A] - Id[A,B] = (A~'B)(B~!A) = I,.
Example 5.5.6. 1. Let T ((a:, y)T) = (z+y,z—y)" and A = (e1,e; + e3) be the ordered

1 1
basis of R?. Then, for S = , T'(x) = Sx. Further, if A =

1
1] is the basis

matrix of A then using Remark 5.5.5.3a, we obtain

R R

2. [Finding T from T[A, B]] Let V and W be vector spaces over F with ordered bases A and

T[A, A = A" SA =

B, respectively. Suppose we are given the matrix S = T[A, B]. Then to determine the
corresponding 1" € L(V, W), we go back to the symbolic expression in Equation (5.4.1)
and Theorem 5.5.2. We see that

(a) T(v) = B[T(v)|g = BT[A, B][v]|4 = BS[v] 4.
(b) In particular, if V=W = F" and A = B then T(v) = BSB~!v.
(c) Further, if B is the standard ordered basis then T'(v) = Sv.

EXERCISE 5.5.7. 1. Relate Remark 5.5.5.8 with Theorem 5.4.9 as 1d is the identity map.

2. Verify Remark 5.5.5 from different examples in Example 5.5.4.
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3. Let T € L(R?) represent the reflection about the line y = mz. Find [T].

4. Let T € L(R3) represent the reflection about/across the X -azxis. Find [T]. What about the

reflection across the XY -plane?

5. Let T € L(R3) represent the counter-clockwise rotation around the positive Z-axis by an
angle 6,0 < 0 < 2m. Find its matriz with respect to the standard ordered basis of R3.
cosf —sinf 0
[Hint: Is |sinf cos® 0| the required matriz?]
0 0 1

6. Define a function D € L(R[z;n]) by D(f(x)) = f'(z). Find the matriz of D with respect
to the standard ordered basis of R[x;n|. Observe that RNG(D) C Rlz;n — 1].

5.6 Similarity of Matrices

Let V be a vector space over F with dim(V) = n and ordered basis B. Then any T € L(V)
corresponds to a matrix in M, (F). Then in Remark 5.5.5.3 we have already seen that if A is
the standard ordered basis of F” and B is any ordered basis of F" with basis matrix B then
T[B,B] = B7'T|A, A|B. Similarly, if C is any other ordered basis of F" with basis matrix C
then T[C,C] = C~'T[A, A]C and thus

TIC,C)=C ' T[A, A C=C"YBTB,B B HC=(B'C)T[B,B] (B~'0).

This idea can be generalized to any finite dimensional vector space. To do so, we start with
the matrix of the composition of two linear transformations. This also helps us to relate matrix

multiplication with composition of two functions.

T[Byc]an S[C>,D}P><m
(V,B,n) (W,C,m) (Z,D,p)

e ——

(ST)[B, D]yxn = S[C, D] - T[B,C]

Figure 5.3: Composition of Linear Transformations

Theorem 5.6.1 (Composition of Linear Transformations). Let V, W and Z be finite dimen-
sional vector spaces over F with ordered bases B,C and D, respectively. Also, let T € L(V, W)
and S € L(W,Z). Then SoT = ST € L(V,Z) (see Figure 5.3). Then

(ST) [B,D] = S[¢,D] - T[B,C).

Proof. Let B = (uy,...,uy), C = (v1,...,Vy) and D = (wy,...,w,) be the ordered bases of
V, W and Z, respectively. As (ST)(u) € Z, using Theorem 5.5.2, we note that

[(ST)(w)]p = [S(T(w)]p = S[C. D] - [T(w)le = S[C, D] - (T[B,C] - [u]g) -
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So, for all u € V, we get (S[C,D]-T[B,C])[ulg = [(ST)(u)lp = (ST)[B,D][ulz. Hence
(ST) [B,D] = S[C,D] - T[B,C]. "
As an immediate corollary of Theorem 5.6.1 we see that the matrix of the inverse linear

transform is the inverse of the matrix of the linear transform, whenever the inverse exists.

Theorem 5.6.2 (Inverse of a Linear Transformation). Let V is a vector space with dim(V) = n.
If T € L(V) is invertible then for any ordered basis B and C of the domain and co-domain,
respectively, one has (T[C,B])™" = T~YB,C]. That is, the inverse of the coordinate matriz of

T 1is the coordinate matrix of the inverse linear transform.
Proof. As T is invertible, TT~! = Id. Thus, Remark 5.5.5.3 and Theorem 5.6.1 imply
I, =1d[B,B] = (TTYHY[B,B] =T[C,B] -T'[B,C].
Hence, by definition of inverse, T~1[B,C] = (T[C, B])"" and the required result follows. n
EXERCISE 5.6.3. Find the matriz of the linear transformations given below.

1. Let B = (x1,%2,x3) be an ordered basis of R*. Now, define T € L(R?) by T'(x1) = %2,
T(x2) = x3 and T(x3) = x1. Determine T|B,B]. Is T invertible?

2. Let B= (1,:1:,:62,:63) be an ordered basis of Rlx; 3] and define T € L(R[x;3]) by T(1) =1,
T(x) =1+z, T(z%) = (1 +2)? and T(x®) = (1 + x)3. Prove that T is invertible. Also,
find T[B, B) and T~1[B, B.

Let V be a finite dimensional vector space. Then, the next result answers the question “what
happens to the matrix T'[B, B] if the ordered basis B changes to C?”

T[B, B|
(V,B) (V,B)
oT
1d[B,C] 1d[B,C]
T™Id
(V,C) (V,C)
T[C,C)

Figure 5.4: T[C,C] = Id[B,C] - T[B, B] - (Id[B,C]) " - Similarity of Matrices
Theorem 5.6.4. Let B = (uy,...,u,) and C = (vi,...,vy) be two ordered bases of V and Id
the identity operator. Then, for any linear operator T € L(V)

T[C,C] = Id[B,C] - T|B,B] - (1d[B,C])"". (5.6.1)

Proof. As Id is the identity operator, the composite functions (7 o1d), (Id o T') from (V,B) to

(V,C) are equal (see Figure 5.4 for clarity). Hence, their matrix representations with respect to
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ordered bases B and C are equal. Thus, (T'01d)[B,C] = T'[B,C] = (Id o T')[B,C]. Thus, using
Theorem 5.6.1, we get

1d[B,C] - T|B, B| = T|B,C] = T[C, C]1[B,C].

Hence, using Theorem 5.6.2, the required result follows. n

Let V be a vector space and let T € L(V). If dim(V) = n then every ordered basis B of V
gives an n x n matrix T[B,B]. So, as we change the ordered basis, the coordinate matrix of
T changes. Theorem 5.6.4 tells us that all these matrices are related by an invertible matrix.

Thus, we are led to the following definitions.

Definition 5.6.5. Let V be a vector space with ordered bases B and C. If T" € L(V) then,
TIC,C] =1d[B,C]-T[B,B] -1d[C, B]. The matrix Id[B,(] is called the change of basis matrix
(also, see Theorem 5.4.9) from B to C.

Definition 5.6.6. Let X,Y € M,,(C). Then, X and Y are said to be similar if there exists a
non-singular matrix P such that P! XP =Y < X = PYP~! & XP = PY.

Example 5.6.7. Let B= (1+2,1+2z+2%2+2) and C = (1,14 2,1+ 2 + z?) be ordered
bases of R[z;2]. Then, verify that Id[B,C]~! = 1d[C, B], as

-1 1 =2
dic,B] = [[ls[l+zs[l+z+2%5=|0 0 1| and
0 1
0 -1 1
Id[B,C] = [[l+x]c,[1+2z+2%c,[2+x]c]= |1 1
0 1 0

EXERCISE 5.6.8. 1. Let A € M,(R) such that tr(A) = 0. Then prove that there exists a
non-singular matriz S such that SAS™' = B with B = [b;;] and b;; =0, for 1 <i <n.

2. Let V be a vector space with dim(V) = n. Let T € L(V) satisfy T" ' # 0 but T" = 0.
Then, use Ezercise 5.1.13.2 to get an ordered basis B = (u,T(u),...,T" ' (u)) of V.

00 0 --- 0]
10 0 --- 0
(a) Now, prove that T[B,B]=10 1 0 --- 0f.
00 -~ 1 0

(b) Let A € M,,(C) satisfy A"~! # 0 but A® = 0. Then, prove that A is similar to the

matriz given in Part 2a.

3. Let A be an ordered basis of a vector space V over F with dim(V) = n. Then prove that

the set of all possible matrix representations of T is given by (also see Definition 5.6.5)

{S-T[A, Al -S7| S € M,(F) is an invertible matriz}.
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4. Let Bi(o, B) = {(z,y)T € R? : (x — a)? + (y — B)? < 1}. Then, can we get a linear
transformation T € L(R?) such that T(S) = W, where S and W are given below?
(a) S = B1(0,0) and W = By(1,1).
(b) S = B1(0,0) and W = B;(.3,0).
(¢c) S = B1(0,0)
(d) S = B1(0,0) and W = {(z,y)T € R? : 22 +y?/4 = 1}.
(e) S = hull(£ey,xe2) and W is the interior of a pentagon.

and W = hull(+ey, +e2), where hull means the convex hull.

)

5. Let V, W be vector spaces over F with dim(V) = n and dim(W) = m and ordered bases
B and C, respectively. Define Ipc : L(V,W) — My, o(F) by Zpc(T) = T[B,C]. Show
that Igc is an isomorphism. Thus, when bases are fized, the number of m X n matrices

is same as the number of linear transformations.

6. Define T € L(R?) by T((z,y,2)") = (x +y+ 22,0 —y — 32,20+ 3y + 2)T. Let B be the
standard ordered basis and C = ((1, LT, (1, -1,0)7T, (1, 1,2)T) be another ordered basis
of R3. Then find

(a) matrices T[B, B] and T[C,C].
(b) the matriz P such that P~'T[B,B] P.=T[C,C]. Note that P = Id|C, B].

5.7 Orthogonal Projections and Applications

As an application of the ideas and results related with orthogonality, we would like to go back
to the system of linear equations. So, recall that we started with the solution set of the linear
system Ax = b, for A € M, ,(C),x € C" and b € C™. We saw that if b € CoL(A) then the
system Ax = b is consistent and one can use the Gauss-Jordan method to get the solution set
of Ax = b. If the system is inconsistent can we talk of the ‘best possible solution’? How do we
define ‘Best’?

In most practical applications, the linear systems are inconsistent due to various reasons.
The reasons could be related with human error, or computational /rounding-off error or missing
data or there is not enough time to solve the whole linear system. So, we need to go bound
consistent linear systems. In quite a few such cases, we are interested in finding a point x € R"
such that the error vector, defined as ||b — Ax|| has the least norm. Thus, we consider the

problem of finding xg € R™ such that
|b — Ax¢|| = min{||b — Ax|| : x € R"}, (5.7.1)

i.e., we try to find the vector xg € R"™ which is nearest to b.

To begin with, recall the following result from Page 105.
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Theorem 5.7.1 (Decomposition). Let V be an 1PS having W as a finite dimensional subspace.
k

Suppose {f1,...,fx} is an orthonormal basis of W. Then, for each b € V, y = > (b, f;))f; is the
i=1
closest point in W from b. Thus

min{||b — Ax|| : x € R"} = ||b — y]||.
We now give a definition and then an implication of Theorem 5.7.1.

Definition 5.7.2. Let W be a finite dimensional subspace of an 1Ps V. Then, by Theorem 5.7.1,
for each v € V there exist unique vectors w € W and u € Wt with v = w + u. We thus define

the orthogonal projection of V onto W, denoted Py, by
Pin%W by Pw(v) = W.
The vector w is called the projection of v on W.

So, note that the solution x¢ € R™ satisfying ||b — Axq|| = min{||b — Ax|| : x € R"} is the
projection of b on the COL(A).

Remark 5.7.3. Let A € M, ,(R) and W = COL(A). Then, to find the orthogonal projection

Py (b), we can use either of the following ideas:

k
1. Determine an orthonormal basis {f1,...,f;} of COL(A). Then Pw(b) = > (b,fi)f;. Note
i=1
that

k k k k
xo = Pw(b) =) (b,f)f;=> fi(f'b)=> (£f/)b= (Z ﬂf?’) b= Pb,

i=1 i=1 =1 =1

k
where P =" £if! is called the projection matrix of R™ onto COL(A).
i=1

2. By Theorem 8.6.5.2, CoL(A) = NuLL(AT)L. Hence, for b € R™ there erists unique
u € CoL(A) and v € NULL(AT) such that b = u + v. Thus, using Definition 5.7.2 and
Theorem 5.7.1, Pyw(b) = u.

We now give another method to obtain the vector x¢ of Equation 5.7.1.

Corollary 5.7.4. Let A € M, ,(R) and b € R™. Then, xq is a least square solution of Ax =b
if and only if xq is a solution of the system AT Ax = ATb.

Proof. As b € R™, by Remark 5.7.3, there exists y € CoL(A) and v € NULL(AT) such that
b=y +v and min{|[b — w|| | w € COL(A)} = ||b — y|. Asy € CoL(A), there exists xo € R"
such that Axg =y, i.e.,

min{|[b — wi| [ w € CoL(4)} = [|b -yl = |[b — Axol|.

Hence (ATA)xg = AT (Axg) = ATy = AT (b —v) = ATb — 0 = A”b (as v € NuLL(AT)).
Conversely, let x; € R™ be a solution of AT Ax = ATb, i.e., AT (Ax; — b) = 0. To show

min{[|b — Ax|| | x € R"} = ||b — Axy|.
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Note that AT(Ax; —b) = 0 implies
0=(x—x1)70=(x—x)TAT(Ax; — b) = (Ax — Ax1)T (4% — b) = (Ax; — b, Ax — Ax)).
Thus, the vectors b — Ax; and Ax; — Ax are orthogonal and hence
b — Ax||? = b — Axy + Axy — Ax||? = [b — Axq |2 + [ Ax; — Ax|2 > [[b — x|

Thus, min{||b — Ax|| | x € R"} = ||b — Axy]|. Hence, the required result follows. .

We now give two examples to relate the above discussions.

Example 5.7.5. 1. Determine the projection of (1,1,1) on NuLL ([1,1, —1]).
Solution: Here A = [1,1,—1], a basis of NULL(A) equals {(1,—1,0)T,(1,0,1)T}, which
is not an orthonormal set. Also, a basis of COL(AT) equals {(1,1,—1)T}.

1 1
(a) Method 1: Observe that {ﬁ(l,—l,O)T,—(l,lj)T} is a basis of NULL(A). Thus,

\/6
1 1 2/3 —1/3 1/3
theprojectionmatrixP:% -1 [1 -1 0}4—% 1 [1 1 2}: -1/3 2/3 1/3
0 2 /3 1/3 1/3
1 2/3
and P[1| = [2/3].
1 4/3
1 1 1
(b) Method 2: Then the columms of B = |—1 0 1 | form a basis of R®. Then
0 1 -1
) 1
X = 3 4 | is a solution of Bx = |1|. Thus, we see that (1,1,1)7 = u + v, where
1

1 -2 4 2
u= §(1, 1,-1)T € ConL(AT) and v = (3(1, —1,0)T + g(1,0, 1)T) = g(1, 1,2)7 ¢

2 2 0\7T
NULL(A). Thus, the required projection equals v = < ) .

333
1 1
(c) Method 3: Since we want the projection on NULL(A). Consider B = | -1 0.
0 1
Then NULL(A) = CoL(B). Thus, we need the vector xg, a solution of the linear sys-
N
tem BT Bx = BT |1|. Or equivalently, we need the solution of [2 1] X = 0 . The
) 1 2
solution xg = ; _21 . Thus, the projection vector equals Bxg =v = <§, ;, §>T

2. Find the foot of the perpendicular from the point v = (1,2,3,4)7 on the plane generated
by the vectors (1,1,0,0)7,(1,0,1,0)” and (0,1,1,1)%.
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(a) Method 1: Note that the three vectors lie on the plane z —y — z — 2w = 0. Then

r = (1,—1,-1,2)7 is the normal vector of the plane. Hence
: r 4 r_ 1 T
v~ Projv = (1,2,3.4)" - Z(1,-1,-1,2)" = ~(3,18,25,20)

is the required projection of v.

(b) Method 2: Using the Gram-Schmidt process, we get

1 1 1
wi=—(1,1,0,0)T, wo = —(1,-1,2,0)7, w3 = —
1 ﬂ( )W \/6( )T W3 NG

as an orthonormal basis of the plane generated by the vectors (1,1,0,0)7,(1,0,1,0)7

(_2’ 2) 27 S)T

and (0,1,1,1)T. Thus, the projection matrix equals

6/7 1/7 /7 =27 3
3
1/7 6/7 —=1/7 2/7 1118
P:ZWiwiT: / / / / and Pv = — .
P 7 =1/7 6/7 2/7 7125
—2/7 2/T 2)T 3)7 20
1 10
10 1 o .
(¢) Method 3: Let A = 01 1l Then we need xg satisfying (A" A)x = A" b. Here
0 0 1
2 1 1 3 e o2
ATA = |1 2 1| and ATb = |4]. Note that (ATA)~! = -|-2 5 -1 and
1 1 3 9 -1 -1 3

hence the solution of the system (A7 A)x = ATb equals

) 5 —2 —1]12 1 1 ) -2

x:(ATA)*l(ATb):? -2 5 —1f|1 2 1) ==|5

-1 -1 3 1 1 3 20
1 1 0 3
Loa| 1] 1s

Thus, Ax = =l 5| == is the nearest vector to v = (1,2, 3,4)7.
01 1| 7 7125
20

0 0 1 20

EXERCISE 5.7.6. 1. Let W = {(2,9,z,w) € R* : o = y,z = w} be a subspace of R*.

Determine the matrixz of the orthogonal projection.

2. Let Pw, and Pw, be the orthogonal projections of R? onto Wy = {(x,0) : z € R} and
Wy = {(z,z) : © € R}, respectively. Note that Py, o Py, is a projection onto Wi. But,
it is not an orthogonal projection. Hence or otherwise, conclude that the composition of

two orthogonal projections need not be an orthogonal projection?

3. Let A= . Then, A is idempotent but not symmetric. Now, define P : R? — R? by

P(v) = Av, for all v € R?. Then,
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(a) P is idempotent.
(b) NULL(P) N RNG(P) = NuLL(A) N CoL(A4) = {0}.
(¢) R? = NULL(P) + RNG(P). But, (RNG(P))* = (Cor(A))* # NuLL(A).

(d) Since (COL(A))*t # NULL(A), the map P is not an orthogonal projector. In this
case, P is called a projection of R?> onto RNG(P) along NULL(P).

4. Find all 2 x 2 real matrices A such that A> = A. Hence, or otherwise, determine all

projection operators of R?.

5. Let W be an (n — 1)-dimensional subspace of R™ with ordered basis By = [f1,...,f,-1].
Suppose B = [f1,...,f,-1,1,] is an orthogonal ordered basis of R™ obtained by extending
n—1
Byw. Now, define a function Q : R™ — R™ by Q(v) = (v, £,)f, — > (v, £)f;. Then,
i=1

(a) Q fizes every vector in W,

(b) Q sends every vector w € W to —w.
(c) QoQ =1I,.
The function Q is called the reflection operator with respect to W+.

6. Let {fi,... ,fr} be an orthonormal basis of a subspace W of R™. If {f1,...,f,} is an
k n

££1 and PyL = Y, £iff. Then
=1 i=k+1

extended orthonormal basis of R™, define Py =

1

prove that
(a) I, — Py = Py
(b) (Pw)T = Py and (Py.)" = Py.. That is, Py and Py are symmetric.
(¢c) (Pw)? = Pw and (Py.)? = Py.. That is, Py and Py are idempotent.
(d) Py o Pyi = Py o Py = 0.

5.8 Orthogonal Operator and Rigid Motion*

We now give the definition and a few properties of an orthogonal operator in R".

Definition 5.8.1. A linear operator 7' : R" — R" is said to be an orthogonal operator if
IT(x)| = ||x]||, for all x € R™.

Example 5.8.2. Prove that the following maps T are orthogonal operators.

1. Fix a unit vector a € R™ and define 7' : R™ — R" by T'(x) = 2(x,a)a — x, for all x € R".
Solution: Note that Proj,(x) = (x,a)a. So, ((x,a)a, x — (x,a)a) = 0 and

Ix[1* = llx = (x,a)a + (x,a)al® = |x - (x,a)al* + || (x,a)a]*.
Thus, [[x - (x,a)a|* = [|x||* - ||(x,a)a]|* and hence

ITG1* = [l((x, a)a) + ((x,a)a = x)[I* = [[(x, a)all* + [x — (x,a)a]® = [x]*.
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cos —sinf| |z

Y

2. Fix 6,0 < 6 < 27 and define T : R? — R? by T(x) =
sinf cosd

], for all x € R?.

Solution: Note that || 7'(x)| = |

xcosfh — ysin b x
]! =Vt +y? =] H I

xsinf + ycosd

We now show that an operator is orthogonal if and only if it preserves the angle.

Theorem 5.8.3. Let T' € L(R™). Then, the following statements are equivalent.

1. T is an orthogonal operator.

2. (T(x),T(y)) = (x,y), for all x,y € R", i.e., T preserves inner product.
Proof. 1 = 2  Let T be an orthogonal operator. Then, ||T(x + y)||> = ||x + y|/?>. So,
IT)? + 1T +2(T(x), T(y)) = IT(x) + T[> = IT(x +3)II* = [x]* + Iy [* + 2(x,y).
Thus, using definition again (T'(x),T(y)) = (x,y).

2=1 If(T(x),T(y)) = (x,y), for all x,y € R" then T is an orthogonal operator as
IT)|? = (T(x), T(x)) = (x,%) = [|x]]*. .

As an immediate corollary, we obtain the following result.

Corollary 5.8.4. Let T € L(R™). Then, T is an orthogonal operator if and only if “for every
orthonormal basis {uy,...,uy} of R, {T(u1),...;T(u,)} is an orthonormal basis of R™”.

Thus, if B is an orthonormal ordered basis of R™ then T [B, B] is an orthogonal matriz.

Definition 5.8.5. A map 7 : R” — R" is said to be an isometry or a rigid motion if

|T(x) —T(y)| = |lx — yl|, for all x,y € R™. That is, an isometry is distance preserving.

Observe that if 7" and S are two rigid motions then ST is also a rigid motion. Furthermore,

it is clear from the definition that every rigid motion is invertible.

Example 5.8.6. The maps given below are rigid motions/isometry.

1. Let || - || be a norm in R™. If a € R™ then the translation map Ty : R™ — R™ defined by

Ta(x) = x + a for all x € R", is an isometry/rigid motion as
[Ta(x) = Ta(y)l = [ (x+a) = (y +a) | = [x =yl

2. Theorem 5.8.3 implies that every orthogonal operator is an isometry.
We now prove that every rigid motion that fixes origin is an orthogonal operator.

Theorem 5.8.7. The following statements are equivalent for any map T : R™ — R,
1. T is a rigid motion that fixes origin.
2. T is linear and (T'(x),T(y)) = (x,y), for all x,y € R™ (preserves inner product).

3. T is an orthogonal operator.
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Proof. We have already seen the equivalence of Part 2 and Part 3 in Theorem 5.8.3. Let us now
prove the equivalence of Part 1 and Part 2/Part 3.

If T is an orthogonal operator then T'(0) = 0 and | T(x) — T'(y)|| = |T(x —y)|| = [|[x — ¥|-
This proves Part 3 implies Part 1.

We now prove Part 1 implies Part 2. So, let T' be a rigid motion that fixes 0. Thus,
T(0) =0 and ||T(x) — T(y)|| = [|x — y||, for all x,y € R™. Hence, in particular for y = 0, we
have ||T(x)|| = ||x||, for all x € R™. So,

ITGI + 1T = 260T(x), T(y)) = [T(x) = T(y)I* = Ix = 1> = |x|* + ly|* - 2(x.¥).

Thus, using ||T'(x)|| = ||x]|, for all x € R™, we get (T'(x),T(y)) = (x,y), for all x,y € R™. Now,
to prove T is linear, we use (T'(x),T(y)) = (x,y), for all x,y € R", in 3-rd and 4-th line below
to get

IT(x+y) = (T(x)+TE) P = (T(x+y)—(Tx) +T(y)),T(x+y) - (T(x) + T(y)))
= (T(x+y),T(x+y)) - 2(T(x+y),T(x))

—2(T(x+y),T(y)) + (T'(x) + T(y),T(x)

= (x+y,x+y)-2x+y,x) —2x+y,y)

+HT'(x), T(x)) +2(T(x), T(y)) +(T(y), T(y))
= —(x+y,x+y) +(x,x)+2(x,y) + (y,y) =0.

+T(y))

Thus, T'(x+y)—(T(x) + T(y)) = 0 and hence T'(x+y) = T'(x)+7(y). A similar calculation
gives T'(ax) = oT'(x) and hence T is linear. n
EXERCISE 5.8.8. 1. Let A, B € M,(C). Then, A and B are said to be

(a) Orthogonally Congruent if B = ST AS, for some orthogonal matriz S.
(b) Unitarily Congruent if B = S*AS, for some unitary matriz S.

Prove that Orthogonal and Unitary congruences are equivalence relations on M, (R) and
M., (C), respectively.
2. Let x € C%. Identify it with the complex number x = X; + iXo. If we rotate x by a

counterclockwise rotation 0,0 < 0 < 27 then, we have
xe? = (x; + ixy) (cos O + isinf) = x; cos O — xysin O + i[x sin 6 4 x5 cos 0)].

Thus, the corresponding vector in R? is
1 cosf — xo9sinf B cosf —sinf| |z
21 sin 6 + xo cos b sin 6 cos@| |xa '
cost) —sinf

Is the matriz, |
sind  cosf

] , the matriz of the corresponding rotation? Justify.

6 sinf
3. Let A € M3(R) and T(0) = cosv S

—sinf cos6
0 1
0

], for 8 € R. Then, A is an orthogonal matrizx

if and only if A="T(0) or A= T(0), for some 6 € R.
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4. Let A € M,(R). Then, the following statements are equivalent.

(a) A is an orthogonal matriz.

(b) A=t = AT,

(c) AT is orthogonal.

(d) the columns of A form an orthonormal basis of the real vector space R™.
(e) the rows of A form an orthonormal basis of the real vector space R™.

(f) for any two vectors x,y € R", (Ax, Ay) = (x,y) ORTHOGONAL MATRICES PRESERVE
ANGLE.

(g9) for any vector x € R", || Ax|| = ||x|| ORTHOGONAL MATRICES PRESERVE LENGTH.
5. Let U € M,,(C). Then, prove that the following statements are equivalent.

(a) U is a unitary matriz.

(b)) U~1 =U*.

(¢c) U* is unitary.

(d) the columns of U form an orthonormal basis of the complex vector space C™.
(e) the rows of U form an orthonormal basis of the complex vector space C".

(f) for any two vectors x,y € C", (Ux,Uy) = (x,y) UNITARY MATRICES PRESERVE
ANGLE.

(g) for any vector x € C", ||Ux|| = ||x|| UNITARY MATRICES PRESERVE LENGTH.

6. If A = |a;;] and B = [b;j] are unitarily equivalent then prove that > |a;;|* = > |bi;|?.
ij ij
7. Let U be a unitary matriz and for every x € C", define

Ix||1 = max{|x;| : x! = [X1,...,Xn]}.

Then, is it necessary that |Ux|1 = ||x]]1 ¢

5.9 Dual Space*

Definition 5.9.1. Let V be a vector space over F. Then a map 7' € L(V,F) is called a linear

functional on V.
Example 5.9.2. 1. Let a € C" be fixed. Then, T'(x) = a*x is a linear function from C" to
C.

2. Define T'(A) = tr(A), for all A € M,(R). Then, T is a linear functional from M, (R) to R.
b

3. Define T(f) = [ f(¢)dt, for all f € C([a,b],R). Then, T is a linear functional from
L(C([a,b],R) to R.

4. Define T(f) = [t2f(t)dt, , for all f € C([a,b],R). Then, T is a linear functional from
L(C([a,b],R) to R.

8 — o
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5. Define T': C3 — C by T((x,y,2)T) = z. Is it a linear functional?
6. Let B be a basis of a vector space V over F. For a fixed element u € B, define
1 if x =
T(x) = ifx=u
0 ifxeB\u

Now, extend T linearly to all of V. Does, T give rise to a linear functional?

Definition 5.9.3. Let V be a vector space over F. Then £(V,F) is called the dual space of
V and is denoted by V*. The double dual space of V, denoted V**| is the dual space of V*.

We first give an immediate corollary of Theorem 5.3.12.

Corollary 5.9.4. Let V and W be vector spaces over F with dimV =n and dimW = m.

1. Then L(V,W) = F™". Moreover, {f;;|1 <i<n,1 <j<m} isa basis of LIV, W).

2. In particular, if W = F then L(V,F) = V* 2 F*. Moreover, if {v1,...,vn} is a basis of
1, ifk=1
0, k#i.

V then the set {f;|1 < i < n} is a basis of V*, where f;(vy) = { The basis

{fi|1 <i < n} is called the dual basis of F".

EXERCISE 5.9.5. Let V be a vector space. Suppose there exists v € V such that £f(v) = 0, for
all £ € V*. Then prove that v = 0.

So, we see that V* can be understood through a basis of V. Thus, one can understand V**
again via a basis of V*. But, the question arises “can we understand it directly via the vector
space V itself?” We answer this in affirmative by giving a canonical isomorphism from V to V**.
To do so, for each v € V, we define a map Ly : V* — F by Ly (f) = f(v), for each f € V*. Then

Ly is a linear functional as
Ly(af +g) = (of + g) (v) = of (v) + g(v) = aLv(f) + Lv(g).

So, for each v € V, we have obtained a linear functional L, € V**. Note that, if v # w then,
Ly # Ly. Indeed, if Ly = Ly then, Ly(f) = Lw(f), for all f € V*. Thus, f(v) = f(w), for all
f € V*. That is, f(v—w) =0, for each f € V*. Hence, using Exercise 5.9.5, we get v—w = 0,
or equivalently, v = w.

We use the above argument to give the required canonical isomorphism.

Theorem 5.9.6. Let V be a vector space over F. If dim(V) = n then the canonical map
T:V — V** defined by T(v) = Ly is an isomorphism.

Proof. Note that for each f € V*,
Loviu(f) = f(av +u) = af(v) + f(u) = aLy(f) + Lu(f) = (aLy + Ly) (f).

Thus, Loyvt+u = @Ly+Ly. Hence, T'(av+u) = aT'(v)+T'(u). Thus, T is a linear transformation.
For verifying T' is one-one, assume that 7'(v) = T'(u), for some u,v € V. Then, Ly, = L,. Now,
use the argument just before this theorem to get v = u. Therefore, T' is one-one.

Thus, T gives an inclusion (one-one) map from V to V**. Further, applying Corollary 5.9.4.2
to V¥, gives dim(V**) = dim(V*) = n. Hence, the required result follows. n

We now give a few immediate consequences of Theorem 5.9.6.
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Corollary 5.9.7. Let V be a vector space of dimension n with basis B = {vi,...,v,}.
1. Then, a basis of V**, the double dual of V, equals D = {Ly,,...,Ly,}. Thus, for each
T € V** there exists x € V such that T(f) = f(x), for all f € V*. Or equivalently, there
erists x € V such that T = Tk.

2. IfC={fy,...,£,} is the dual basis of V* defined using the basis B (see Corollary 5.9.4.2)

then D is indeed the dual basis of V** obtained using the basis C of V*. Thus, each basis
of V* is the dual basis of some basis of V.

Proof. Part 1 is direct as T : V — V** was a canonical inclusion map. For Part 2, we need to

show that

1. ifi=41 1 ifi—i
Ly,(f5) = BT o equivalently f;(v;) = o BRI
0, ifj#1 0, ifj#i
which indeed holds true using Corollary 5.9.4.2. -

Let V be a finite dimensional vector space. Then Corollary 5.9.7 implies that the spaces V
and V* are naturally dual to each other.

We are now ready to prove the main result of this subsection. To start with, let V and W
be vector spaces over F. Then, for each T' € L(V, W), we want to define a map T : W* — V*.
So, if g € W* then, f(g) a linear functional from V to F. So, we need to be evaluate f(g) at
an element of V. Thus, we define (T\(g)) (v) = g(T(v)), for all v. € V. Now, we note that

Te L(W* V*), as for every g, h € W*,
(T(ag+1)) (v) = (ag + 1) (T(v)) = ag (T(v)) + h(T(v)) = (aT(g) + T(h)) (v),
for all v € V implies that T'(ag + h) = oT(g) + T'(h).

Theorem 5.9.8. Let V and W be vector spaces over F with ordered bases A = (vi,...,vy)
and B = (W1,...,Wy,), respectively. Also, let A* = (f1,...,£,) and B* = (g1,...,8m) be the

corresponding ordered bases of the dual spaces V¥ and W*, respectively. Then,
T(B", A7) = (T[A.B)"

the transpose of the coordinate matriz T .

Proof. Note that we need to compute T[B*, A*] = Hf(gl)}A ey [f(gm)]A } and prove that
it equals the transpose of the matrix T[A, B]. So, let
air a2 - Qip
agy aze -+ a2y
TIA Bl =[[T(v)lg,--- [T(va)ls] =
|Am1  Gm2 " Gmn |

Thus, to prove the required result, we need to show that

n
[T(gj)]A* = [f Bl | | =Y agfr, for 1< <m. (5.9.1)
: k=1
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Now, recall that the functionals f;’s and g;’s satisfy <Z ozkfk) (ve) = > ap (fe(ve)) = oy,
k=1 k=1

T a row vector with 1 at the j-th place and 0,

for 1 <t < mn and [gj(wi),....gi(wn)] = ej,

elsewhere. So, let B = [wy,...,wy,,] and evaluate f(gj) at v¢’s, the elements of A.

(T(&) (V) = & (T(v2)) = & (BIT(Vo)]g) = [ (W), - 5(wn)] [T(v2)] 5

a1t
- | a2t "
= €| .| Tat= Zajkfk (vt).
. k=1
_a/mt_

N n
Thus, the linear functional 7'(g;) and ) a;if; are equal at vy, for 1 < ¢ < n, the basis vectors
k=1

of V. Hence f(gj) = Y a;ifi, which gives Equation (5.9.1). .
k=1

Remark 5.9.9. The proof of Theorem 5.9.8 also shows the following.
1. For each T € L(V,W) there exists a unique map Te L(W*,V*) such that

(f(g)> (v) = g (T(v)), for cach g € W*.

2. The coordinate matrices T[A,B] and T [B*, A*] are transpose of each other, where the
ordered bases A* of V* and B* of W* correspond, respectively, to the ordered bases A of
V and B of W.

3. Thus, the results on matrices and its transpose can be re-written in the language of a

vector space and its dual space.

5.10 Summary
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Chapter 6

Eigenvalues, Eigenvectors and

Diagonalizability

6.1 Introduction and Definitions

Note that we have been trying to solve the linear system Ax = b. But, in most cases, we are
not able to solve it because of certain restrictions. Hence in the last chapter, we looked at the

nearest solution or obtained the projection of b on the column space of A.

These problems arise from the fact that either our data size is too large or there are missing
informations (data is incomplete or the data has ambiguities or the data is inaccurate) or the
data is coming too fast in the sense that our computational power doesn’t match the speed at
which data is received or it could be any other reason. So, to take care of such issues, we either
work with a submatrix of A or with the matrix AT A. We also try to concentrate on only a few

important aspects depending on our past experience.

Thus, we need to find certain set of critical vectors/directions associated with the given
linear system. Hence, in this chapter, all our matrices will be square matrices. They will have
real numbers as entries for convenience. But, we need to work over complex numbers. Hence,
we will be working with M.,,(C) and x = (z1,...,2,)" € C", for some n € N. Further, C" will

be considered only as a complex vector space. We start with an example for motivation.

Example 6.1.1. Let A be a real symmetric matrix. Consider the following problem:
Maximize (Minimize) x? Ax such that x € R” and x'x = 1.

To solve this, consider the Lagrangian

n

L(X, )\) = XTAX — )\( TX — 1) = Zzn:aijxixj - A (En:lbg — 1) .

i=1 j=1

153
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Partially differentiating L(x, A\) with respect to z; for 1 <i <n, we get

OL
= = 2a1171 + 2a1272 + - - - + 2a1,%, — 227,
8901
OL
—— = 2ap1%1 + 2ap97T9 + ¢+ + 2000Tn — 2ATy,.
o0z,

Therefore, to get the points of extremum, we solve for

oL 0L oL\T oL
T = = ..., == ) === =2(Ax — \x).
0 <6x1’6x2’ ’8:15”) ox (Ax = Ax)

Thus, to solve the extremal problem, we need A € R, x € R™ such that x # 0 and Ax = Ax.
Note that we could have started with a Hermitian matrix and arrived at a similar situation.

So, in previous chapters, we had looked at Ax = b, where A and b were known. Here, we need

to solve Ax = Ax with x # 0. Note that 0 is already a solution and is not of interest to us.

Further, we will see that we are interested in only those solutions of Ax = Ax which are linearly

independent. To proceed further, let us take a few examples, where we will try to look at what

1 2 9 -2 T
,B= and x = .
2 1 -2 6 Y

1
(a) Then A magnifies the nonzero vector ) three times as A A= 3 L and behaves

does the system Ax = b imply?

Example 6.1.2. 1. Let A=

1 1 1
by changing the direction of [ as A =-1 [ 1] . Further, the vectors [1]
1
and ] are orthogonal.
. 1 -2 1 1 2 2
(b) B magnifies both the vectors and as B =5 and B =10 .
2 1 2 2 — -1
_ 1 2
Here again, the vectors ! ] and ] are orthogonal.
) _
2 )2
(c) xT'Ax = 3(334;7;) - (z —y) . Here, the displacements occur along perpendicular

1 1
linesx+y=0and z —y =0, Wherem+y:(m,y)[1] andx—y:(x,y)[ 1].

(z + 2y)? (2 —y)*

Whereas x'Bx = 5 + 10

displacements occur along the orthogonal lines = + 2y = 0 and 2z — y = 0, where

r+2y = (z,y) [;] and 2z —y = (z,y) [_21]

Here also the maximum/minimum

(d) the curve xT Ax = 10 represents a hyperbola, where as the curve x’ Bx = 10 rep-
resents an ellipse (see the left two curves in Figure 6.1 drawn using the package
“Sagemath”).
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30 249

10 1 o0

101

304, T T T T T T 21, T T T T T T T T i T T i T T T T
30 20 10 [ 10 20 30 2 15 -1 05 0 05 1 15 2 2-15-105005115 2

Figure 6.1: A Hyperbola and two Ellipses (first one has orthogonal axes)

In the above two examples we looked at symmetric matrices. What if our matrix is not
symmetric?

2. Let C = _z , a non-symmetric matrix. Then, does there exist a non-zero x € C?
which gets magnified by C?
We need x # 0 and a € C such that Cx = ax < [als—Clx =0. Asx # 0, [ala—Cl]x =0
has a solution if and only if det[a] — A] = 0. But,

a—=17 2 9
=a“ —9a + 18.

det[al — A] = det
-2 a—-2

2 1
So a = 6,3. For a = 6, verify that x = L] # 0 satisfies Cx = 6x. Similarly, x = [2]

and ”

(b) the maximum/minimum displacements do not occur along the lines 2x + y = 0 and

x + 2y = 0 (see the third curve in Figure 6.1). Note that

satisfies Cx = 3x. In this example,

(a) we still have magnifications in the directions [

70
{XE]R2:xTAx:lo}:{xeRz:leo 2]}{210},

7 0
where [O 5 is a symmetrization of A.

(c) the lines 22+ y = 0 and = + 2y = 0 are not orthogonal.

We observe the following about the matrices A, B and C' that appear above:
1. det(A) = -3 =3 x —1, det(B) =50 =5 x 10 and det(C) =18 =6 x 3.
2. tr(A) =2=3-1,tr(B) =15 =5+ 10 and det(C) =9 =6+ 3.

s e L) L

1
, [2] } are linearly independent.
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4. If vq = and S = [vy, va| then

1
and vy = [

3 0

(a) AS = [AVl,AVQ] = [3v1’ —Vg} - S!O 3 0

] = S571AS =

1] = diag(3, —1).

1
b) Let uy = —=v; and up = —
(b) 1 ﬂl 2 )

i.e., if U = [uy, ug] then I = UU* = ujuj + ugud and A = 3ujuj — ugud.

vo. Then, u; and us are orthonormal unit vectors,

1 2
5 If vi = [2] and vy = [ 1] and S = [vy, va| then

5 0
(a) AS = [Avy, Avy] = [5vy,10vy] = S 0

5 0
= S71AS = = diag(3, —1).
[0 10] 8(3, 1)

V5 V5

i.e., if U = [uy, ug] then I = UU* = ujuj + ugud and A = 5ujuj + 10uzul.

(b) Let u; = vy and ug = vy. Then, u; and us are orthonormal unit vectors,

2 1 B 6
6. If vi = ) and vy = ) and S = [vy, vy then ST CS =

0
3] = diag(6,3).

Thus, we see that given A € M,,(C), the number A € C and x € C",x # 0 satisfying Ax = Ax
have certain nice properties. For example, all of them are similar to diagonal matrices. That
is, for each matrix discussed above, there exists a basis of C? with respect to which the matrix
representation is a diagonal matrix. To understand the ideas better, we start with the following

definitions.

Definition 6.1.3. Let A € M,,(C). Then the equation
Ax =X x < (A-A,)x=0 (6.1.1)

is called the eigen-condition.

1. An a € C is called a characteristic value/root or eigenvalue or latent root of A if

there exists x # 0 satisfying Ax = ax.

2. A x # 0 satisfying Equation (6.1.1) is called a characteristic vector or eigenvector or

invariant /latent vector of A corresponding to \.
3. The tuple (o, x) with x # 0 and Ax = ax is called an eigen-pair or characteristic-pair.
4. For an eigenvalue a € C, NULL(A — af) = {x € R"|Ax = ax} is called the eigen-space

or characteristic vector space of A corresponding to «.

Theorem 6.1.4. Let A € M,,(C) and o € C. Then « is an eigenvalue of A if and only if
det(A — aly,) = 0.

Proof. Let B = A — al,. Then, by definition, « is an eigenvalue of A if any only if the system
Bx = 0 has a non-trivial solution. By Theorem 2.6.3 this holds if and only if det(B) =0. =

Definition 6.1.5. Let A € M,,(C). Then det(A — AI) is a polynomial of degree n in A and is
called the characteristic polynomial of A, denoted P4()), or in short P(A).
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1. The equation P4(A) = 0 is called the characteristic equation of A.

2. The multi-set (collection with multiplicities) {av € C: Pa(«) = 0} is called the spectrum

of A, denoted o(A). Hence, o(A) contains all the eigenvalues of A containing multiplicities.

3. The Spectral Radius, denoted p(A), of A € M,,(C) equals max{|a|: a € 0(A)}.
We thus observe the following.

Remark 6.1.6. Let A € M,,(C). Then A is singular if and only if 0 € o(A). Further, the

following statements hold.
1. If o € 0(A) then
(a) {0} G NULL(A — aI). Therefore, if RANK(A — o) = r then r < n. Hence, by

Theorem 2.6.3, the system (A — al)x = 0 has n — r linearly independent solutions.
(b) v € NULL(A—al) if and only if cv € NULL(A—al), for ¢ # 0. Thus, an eigenvector
v of A is in some sense a line £ = Span({v}) that passes through 0 and v and has

the property that the image of £ is either £ itself or 0.

T
(c) If x1,...,%x, € NULL(A—al) then ) ¢;x; € NULL(A —al), for all ¢; € C. Hence, if

i=1
S is a collection of eigenvectors then, we necessarily want the set S to be LINEARLY

INDEPENDENT.

2. a € o(A) if and only if o is a root of Pa(z) € Clx]|. As deg(Pa(x)) =n, A has exactly n

eigenvalues in C, including multiplicities.
3. Let (o, x) be an eigen-pair of A € M,(R). If « € R then x € R".

4. Let (a,x) be an eigen-pair of A. Then A*x = A(Ax) = A(ax) = a(Ax) = a?x. Thus,
the polynomial f(A) = bol + b1 A + - + b A* (in A) has (f(a),x) as an eigen-pair.

Almost all books in mathematics differentiate between characteristic value and eigenvalue
as the ideas change when one moves from complex numbers to any other scalar field. We give

the following example for clarity.

Remark 6.1.7. Let A € My(F). Then, A induces a map T € L(F?) defined by T(x) = Ax, for

all x € F2. We use this idea to understand the difference.

0 1
1. Let A= ol Then, pa(\) = A2 + 1.

(a) A has no characteristic value in R as A2 +1 =0 has no root in R.

(b) A has £i as the roots of P(\) = 0 in C. Hence, verify that A has (i,(1,4)T) and

(—i, (i,1)T) as eigen-pairs or characteristic-pairs.

2. Let A =

2
5| Then 2 ++/3 are the roots of the characteristic equation.

(a) Hence A has no characteristic value over Q.

(b) But A has characteristic values or eigenvalues over R.
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Let us look at some more examples. Also, as stated earlier, we look at roots of the charac-

teristic equation over C.

Example 6.1.8. 1. Let A = diag(dy,...,d,) with d; € C,1 < ¢ < n. Then, p(\) =
[1(A—d;) and thus verify that (di,e1),...,(ds,e,) are the eigen-pairs.
i=1

1

2. Let A= . Then, 1 is a repeated eigenvalue of A. In this case, (A — I3)x =0 has a

solution for every x € C2. Hence, any two LINEARLY INDEPENDENT vectors x!,y! € C?

gives (1,x) and (1,y) as the two eigen-pairs for A. In general, if S = {x1,...,x,} is a
basis of C" then (1,x1),...,(1,x,) are eigen-pairs of I, the identity matrix.
1
3. Let A= L Then, p(A\) = (1 —A)2. Hence, 0(A) = {1,1}. But the complete solution

of the system (A — Is)x = 0 equals x = cey, for ¢ € C. Hence using Remark 6.1.6.2, e; is
an eigenvector. Therefore, 1 IS A REPEATED EIGENVALUE WHEREAS THERE IS ONLY ONE
EIGENVECTOR.

n

4. Let A = (a;j) be an n x n triangular matrix. Then, p(A) = [[ (X — a;;) and thus verify
i=1

that 0(A) = {a11,a22,...,an,}. What can you say about the eigenvectors if the diagonal

] 1
i ) and (1 — 1, []) are the eigen-pairs of A.
i

0 1 0
6. Let A= |0 1] . Then, o(A) = {0,0,0} with e; as the only eigenvector.

entries of A are all distinct?

5 Let A=

. Then, (1 + 1,

0
0 0
0 1 0|0 0 En
0 0 1]0 0 T9
7.Let A= 10 0 0[0 0|. Then, o(A) = {0,0,0,0,0}. Note that A |z3| = 0 implies
00001 2
0 0 0j]0 O T5

o = 0 = 23 = x5. Thus, e; and e4 are the only eigenvectors. Note that the diagonal

blocks of A are nilpotent matrices.

EXERCISE 6.1.9. 1. Prove that the matrices A and AT have the same set of eigenvalues.

Construct a 2 x 2 matriz A such that the eigenvectors of A and AT are different.
2. Prove that \ € C is an eigenvalue of A if and only if X € C is an eigenvalue of A*.
3. Let A € M,(R) be an idempotent matriz. Determine its eigenvalues and eigenvectors.
4. Let A be a nilpotent matriz. Then, prove that its eigenvalues are all 0.

5. Let J =117 € M,,(C). Then, J is a matriz with each entry 1. Show that
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(a) (n,1) is an eigenpair for J.
(b) 0 € o(J) with multiplicity n—1. Find a set of n—1 linearly independent eigenvectors
for 0 €o(J).

6. Let A = [a;;] € M,(R), where a;; = a, if t = j and b, otherwise. Then, verify that

A= (a—0b)I+0bJ. Hence, or otherwise determine the eigenvalues and eigenvectors of J.
7. Let A € M,,(R) be a matriz of rank 1. Determine its eigen-pairs.

# —sinf
8. For a fixed 0 € R, find eigen-pairs of A = o8 S

sinf cos@ sinf —cosf

] and R =

cosf sinf ]

9. Let A € M, (C) satisfy ||Ax|| < ||x|| for all x € C™. Then prove that every eigenvalue of
A lies between —1 and 1.

10. Let A = [ai;] € M, (C) with Y a;; = a, for all 1 < i < n. Then, prove that a is an
j=1

eigenvalue of A with corresponding eigenvector 1 = [1,1,...,1]T.

0
11. Let B € M,(C) and C € M,,(C). Let Z = . Then

x
(a) (a,x) is an eigen-pair for B implies (a, [(J) is an eigen-pair for Z.

0
(b) (B,y) is an eigen-pair for C' implies (ﬁ, [ ]) is an eigen-pair for Z.
y

Definition 6.1.10. Let A € £(C"™). Then, a vector y € C™\ {0} satisfying y*A = \y* is called

a left eigenvector of A for A.

e LA B

verify that (6,x) and (3,y) are (right) eigen-pairs of A and (6,u), (3,v) are left eigen-pairs of

Example 6.1.11. Let A = . Then

A. Note that xv =0 and y"u = 0. This is true in general and is proved next.

Theorem 6.1.12. [Principle of bi-orthogonality] Let (\,x) be a (right) eigen-pair and (1,y)
be a left eigen-pair of A. If X # p then 'y is orthogonal to x.
Proof. Verify that uy*x = (y*A)x = y*(4x) = y*(Ax) = A\y*x. Thus y*x = 0. "
EXERCISE 6.1.13. 1. Let Ax = Ax and x*A = ux*. Then = A.

2. Let S be a non-singular matriz such that its columns are left eigenvectors of A. Then,

prove that the columns of (S*)~1 are right eigenvectors of A.

Definition 6.1.14. Let T' € £(C™"). Then a € C is called an eigenvalue of T if there exists
v € C" with v # 0 such that T'(v) = av.

Proposition 6.1.15. Let T' € L(C™) and let B be an ordered basis in C". Then («,v) is an
eigen-pair of T if and only if (o, [V]g) is an eigen-pair of A = T[B, BJ.
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Proof. By definition, T'(v) = av if and only if [Tw]p = [av]g. Or equivalently, o € o(T) if and
only if A[v|g = a[v]|g. Thus, the required result follows. n

Thus, the spectrum of a linear operator is independent of the choice of basis.

Remark 6.1.16. We give two examples to show that a linear operator on an infinite

dimensional vector space need not have an eigenvalue.

1. Let 'V be the space of all real sequences (see Example 3.1.4.7) and define T € L(V) by
T (ag,a,...) = (0,a1,as9,...).
Let if possible (a,x) be an eigen-pair of T with x = (x1,x2,...). Then
T(x) =ax < (0,21,22,...) = a(r1, 22, ...) = (az1, 0z, .. .).

So, if a # 0 then x1 = 0. This in turn implies x = 0, a contradiction. If o = 0 then

(0,21,22,...) = (0,0,...) = x =0, a contradiction. Hence, T" doesn’t have an eigenvalue.
2. Recall the map T € L(C[z]) defined by T(f(x)) = zf(x), for all f(x) € Clzx].

T has an eigen-pair (o, f(x)) < xf(z) = af(z) © (r —a)f(z) = 0. As x is an indeter-

minate, f(x) is the zero polynomial. Hence, T cannot have an eigenvector.

We now prove the observations that det(A) is the product of eigenvalues and tr(A) is the

sum of eigenvalues.

Theorem 6.1.17. Let \y,..., \,, not necessarily distinct, be the A = [a;;] € M, (C). Then,
det(A) = H A; and tr(A) = Z aji = Z Ai-
i=1 i=1 i=1

Proof. Since A1, ..., \, are the eigenvalues of A, by definition,

n

det(A — zI,) = (-1)" [ [(z = M) (6.1.2)

i=1
is an identity in  as polynomials. Therefore, by substituting z = 0 in Equation (6.1.2), we get
det(A) = (=1)" (=)™ II7_; A = [[i2q Ai- Also,

ayj] —« ai2 a1in
az1 age —T - G2n
det(A —zI,) = ] ) . _ (6.1.3)
| Gnl an2 o Gnn — T
= ag—xa;+ -+ (=1)" 12" g, g+ (—1)"2" (6.1.4)
for some ag, a1, ...,a,_1 € C. Then, a,_1, the coefficient of (—1)""12"~1, comes from the term

(a11 — x)(az2 — x) -+ (apn — ).

S0, an—1 = > ai; = tr(A), the trace of A. Also, from Equation (6.1.2) and (6.1.4), we have
i=1

ap — xay 4 -+ (=1)" " g, g (=1)"2" = (=1)" H(a: —\).
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Therefore, comparing the coefficient of (—1)""12"~! we have

n n
tr(A) = ap_1 = (1) {(—1) in} => X
i=1 i=1
Hence, we get the required result. =

EXERCISE 6.1.18. 1. Let A € M, (C). Then, A is invertible if and only if 0 is not an

eigenvalue of A.
2. Let A € M,(R). Then, prove that

(a) if a € o(A) then o* € o(A¥), for all k € N.
(b) if A is invertible and a € o(A) then o € a(A¥), for all k € Z.

3. Let A be a 3 x 3 orthogonal matriz (AAT =1I). If det(A) = 1, then prove that there exists
v € R3\ {0} such that Av =v.

4. Let A € Mgy, 1 (R) with AT = —A. Then, prove that 0 is an eigenvalue of A.

6.2 Spectrum of a Matrix

Definition 6.2.1. Let A € M,,(C). Then, for a € o(A)
1. the algebraic multiplicity of «, denoted ALG.MUL,(A), is the multiplicity of o as a

root of the characteristic polynomial or the number of times a € o(A).

2. the geometric multiplicity of «, denoted GEO.MUL,(A), equals dim(NULL(A — aJ)).

1 10
Example 6.2.2. 1. Let A = |0 1 1|. Then o(A) = {1,1,1,}. Hence, the algebraic
0 0 1
multiplicity of 1 is 3, i.e., ALG.MuUL;(A) = 3. Verify that GEO.MuL;(A) = 1.
31 1 ]
0 31 0 0
0 0 3
2 10 . . .
2. Let A = . Then A is an upper triangular matrix and thus
0 0 2 1 0
0 0 2
3 1
0 0
0 3

o(A) = {3,3,3,3,3,2,2,2}, ALG.MUL3(A) = 5 and ALG.MULy(A) = 3. Verify that
Rank(A — 3I) = 6, Rank(A — 2]) =7 = GEO.MUL3(A4) = 2 and GEO.MUL2(A4) = 1.

We now show that for any eigenvalue «, the algebraic and geometric multiplicities do not

change under similarity transformation, or equivalently, under change of basis.

Theorem 6.2.3. Let A and B be two similar matrices. Then,
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1. a € o(A) if and only if a € o(B).

2. foreacha € 0(A), ALG.MULy(A) = ALG.MUL,(B) and GEO.MUL(A) = GEO.MUL,(B).

Proof. Since A and B are similar, there exists an invertible matrix S such that A = SBS~!.

So, @ € o(A) if and only if a € o(B) as

det(A —zI) = det(SBS™' —aI) =det (S(B —zI)S™")
= det(S)det(B — zI)det(A™) = det(B — zI). (6.2.5)

Note that Equation (6.2.5) also implies that ALG.MUL,(A) = ALG.MUL,(B). We will now
show that GEO.MUL,(A) = GEO.MUL,(B).

So, let Q1 = {v1,...,vi} be a basis of NULL(A — al). Then, B = SAS~! implies that
Q2 ={Sv1,...,S8vi} C NULL(B —al). Since Q) is linearly independent and S is invertible, we
get ()9 is linearly independent. So, GEO.MUL,(A) < GEO.MUL,(B). Now, we can start with
eigenvectors of B and use similar arguments to get GEO.MUL,(B) < GEO.MUL,(A). Hence

the required result follows. n

Remark 6.2.4. 1. Let A= S7'BS. Then, from the proof of Theorem 6.2.3, we see that x
is an eigenvector of A for X\ if and only if Sx is an eigenvector of B for .

2. Let A and B be two similar matrices then o(A) = o(B). But, the converse is not true.
01
00
3. Let A € M,(C). Then, for any invertible matriz B, the matrices AB and BA =

B(AB)B™! are similar. Hence, in this case the matrices AB and BA have

For example, take A =

0
and B =
0

(a) the same set of eigenvalues.
(b) ALG.MUL,(AB) = ALG.MUL,(BA), for each o € o(A).
(¢) GEO.MUL,(AB) = GEO.MUL,(BA), for each o € o(A).

We will now give a relation between the geometric multiplicity and the algebraic multiplicity.
Theorem 6.2.5. Let A € M,,(C). Then, for a € 0(A), GEO.MUL,(A) < ALG.MUL,(A).

Proof. Let GEO.MUL,(A) = k. So, suppose that {vi,...,vg} is an orthonormal basis of
NULL(A — o). Extend it to get {v1,..., Vg, Vkt1,...,Vy} as an orthonormal basis of C™. Put
P=1[vi,..., Vi, Vii1,---,Vpn]. Then P* = P~1 and

P*AP = P*[Avy,...,AVi, AVita, ..., Avy]

vi ! 0= *
: 0 0| % *
Vi 0 A *
= [V, ...,V *, ... %] =
X 0 0| *
Vi+1
vy 0 0| = *
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Now, if we denote the lower diagonal submatrix as B then P* = P~! implies
Py(x) = det(A — 1) = det(P*AP — zI) = (o — x)* det(B — zI). (6.2.6)

So, ALG.MUL,(A4) = ALG.MUL,(P*AP) > k = GEO.MUL,(A). n
As a corollary to the above result, one obtains the following observations.

Remark 6.2.6. Let A € M, (C).
1. Then, for each a € o(A), dim(NULL(A — o)) > 1. So, we have at least one eigenvector.

2. If ALG.MULy(A) = r then dim(NULL(A — ol)) < r. Thus, A may not have r linearly

independent eigenvectors.

1 2 3
EXERCISE 6.2.7. 1. Let A= |3 2 1|. Then (6,X1 = %1) is an eigen-pair of A. Let
2 31

(x1,e1,€2) be an ordered basis of C3. Put X = [xl e 92:|. Compute X~ 1AX. Can
you now find the remaining eigenvalues of A?
2. Let A € My, xn(R) and B € M5 (R).

(a) If a« € 0(AB) and o # 0 then
i. « € 0(BA).
it. ALG.MUL,(AB) = ALG.MUL,(BA).
iti. GEO.MUL(AB) = GEO.MUL,(BA).

(b) If 0 € 0(AB) and n = m then ALG.MULy(AB) = ALG.MUL(BA) as there are n

etgenvalues, counted with multiplicity.

(c) Give an example to show that GEO.MULy(AB) need not equal GEO.MULy(BA) even

when n = m.

3. Let A € M, (R) be an invertible matriz and let x,y € R™ with x # 0 and yT A~'x # 0.

Define B = xyT A~1. Then, prove that

(a) o =yl A x is an eigenvalue of B of multiplicity 1.

(b) 0 is an eigenvalue of B of multiplicity n — 1 [Hint: Use Ezercise 6.2.7.2a].

(c) 1+ a)g is an eigenvalue of I + aB of multiplicity 1, for any o € R, o # 0.

(d) 1 is an eigenvalue of I + aB of multiplicity n — 1, for any o € R, v # 0.

(e) det(A + axy?) equals (14 aXg)det(A), for any a € R, # 0. This result is known

as the Shermon-Morrison formula for determinant.

4. Let A, B € Ma(R) such that det(A) = det(B) and tr(A) = tr(B).

(a) Do A and B have the same set of eigenvalues?

(b) Give examples to show that the matrices A and B need not be similar.

5. Let A, B € M,,(R). Also, let (A1,u) and (Aa, V) are eigen-pairs of A and B, respectively.



164 CHAPTER 6. EIGENVALUES, EIGENVECTORS AND DIAGONALIZABILITY

(a) If u = av for some o € R then (A1 + A2, u) is an eigen-pair for A+ B.

(b) Give an example to show that if u and v are linearly independent then A1 + A2 need

not be an eigenvalue of A+ B.

6.3 Basic Results on Diagonalization

Let A € M,,(C) and let T € L(C™) be defined by T'(x) = Ax, for all x € C". In this section, we
first find conditions under which one can obtain a basis B of C" such that T'[BB, B] is a diagonal

matrix. To start with, we have the following definition.

Definition 6.3.1. A matrix A € M, (C) is said to be diagonalizable if A is similar to a
diagonal matrix. Or equivalently, P~'AP = D < AP = PD, for some diagonal matrix D and
invertible matrix P. Or equivalently, there exists an ordered basis B of C™ such that A[B, B] is

a diagonal matrix.
Example 6.3.2. 1. Let A € M,,(C) be a diagonalizable matrix. Then, by definition, A is
similar to D = diag(dy,...,d,). Thus, by Remark 6.2.4, 0(A) = o(D) = {d1,...,d,}.

0 1
2. Let A = o ol Then, A cannot be diagonalized.

Solution: A is diagonalizable implies A is similar to a diagonal matrix D with diagonal
entries {d1,ds} = {0,0}. Hence D =0 = A = SDS~! = 0, a contradiction.

2 11
3. Let A=1|0 2 1|. Then, A cannot be diagonalized.
00 2

Solution: A is diagonalizable implies A is similar to a diagonal matrix D with diagonal
entries {dq,ds,ds} = {2,2,2}. Hence, D = 2I3 = A = SDS~! = 2I3, a contradiction.

0 ' —
4. Let A = . Then, (z’, [i]) and (—i, ) are two eigen-pairs of A. Define
Lt = —i 0
UZT . Then, U*U = I, = UU* and U*AU =
2111 0 4

Theorem 6.3.3. Let A € M, (R).
1. Let S be an invertible matriz such that ST'AS = diag(dy,...,d,). Then, for 1 <i<n,

the i-th column of S is an eigenvector of A corresponding to d;.

2. Then, A is diagonalizable if and only if A has n linearly independent eigenvectors.
Proof. Let S = [uy,...,u,]. Then S~'AS = D implies AS = SD. Thus
[Aui,..., Au,| = Afuy,...,u,]| = AS =SD =S diag(dy,...,d,) = [diuy,...,d,uy].

Or equivalently, Au; = d;u;, for 1 < ¢ < n. As S is invertible, {uj,...,u,} are linearly
independent. Hence, (d;, u;), for 1 < i < n, are eigen-pairs of A. This proves Part 1 and “only
if” part of Part 2.
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Conversely, let {uj,...,u,} be n linearly independent eigenvectors of A corresponding to
eigenvalues aq,...,a,. Then, by Corollary 3.3.16, S = [uy, ..., u,] is non-singular and
_al . -
0 ag -
AS = [Auy,..., Au,] = [aqug, ... Auy] = [ug,.ow) | | =85D,
0 0 - ay
where D = diag(az,...,a,). Therefore, ST'AS = D. This implies A is diagonalizable. "

The next result implies that the eigenvectors corresponding to distinct eigenvalues are lin-

early independent. A proof is given for clarity. A separate proof appears later in Corollary 6.3.7.

Theorem 6.3.4. Let (ay,vy),..., (o, vi) be k eigen-pairs of A € M, (C) with «;’s distinct.

Then, {v1,...,Vg} is linearly independent.

Proof. Let {v1,...,vi} be linearly dependent. Then, there exists a smallest £ € {1,...,k— 1}
and ¢ # 0 such that vy 1 = ;v + -+ + ¢ovy. So,

Q1 V4] = Qi1C1V] + -+ + Quy1cevy. (6.3.1)
and
a1V = Avepr =A(evi+ -+ cpvy) = vy + - -+ agcpvy. (6.3.2)
Now, subtracting Equation (6.3.2) from Equation (6.3.1) gives
0 = (a1 — 1) v+ + (a1 — ay) v,

So, vp € LS(vy,...,Vp_1), a contradiction to the choice of £. Thus, the required result follows. m

An immediate corollary of Theorem 6.3.3 and Theorem 6.3.4 is stated next without proof.

Corollary 6.3.5. Let A € M,,(C) have n distinct eigenvalues. Then, A is diagonalizable.

1 2 3 4

0 21 . .
Remark 6.3.6. 1. Let A = 00 3 5 Then o(A) = {1,2,3,7}, which are distinct.

0 007

Hence, A is diagonalizable.

2. The converse of Theorem 6.3.4 is not true as I, has n linearly independent eigenvectors

corresponding to the eigenvalue 1, repeated n times.

Corollary 6.3.7. Let ay,...,ax be k distinct eigenvalues A € M,,(C). Also, for 1 <i <k, let
dim(NuLL(A — o;I,)) = n;. Then, A has zk:ln@ linearly independent eigenvectors.
=
Proof. For 1 <i <k, let S; = {w1,...,wn,} be a basis of NULL(A — «;1,,). Then, we need to
prove that ij S; is linearly independent. To do so, denote p;(A) = (ﬁ (A— oziIn)> /(A —a;ly),
for 1 <j Szzkl Then, note that p;j(A) is a polynomial in A of degreé:]i —1and
0, if u € NULL(A — oy1,), for some i # j

pj(A)u = [[(ej —aj)u if ue NULL(A — o1,)
i#j

(6.3.3)
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k
So, to prove that J S; is linearly independent, consider the linear system
i=1

ciiuyl + o+ Clpg Wipg + -+ Cgrugr + -0+ Crpy Ugp, =0

in the variables ¢;;’s. Now, applying the matrix p;(A) and using Equation (6.3.3), we get

[I(a) — i) (erugn + -+ ¢jn;ujn,) = 0.
i#j
But [](a; — ;) # 0 as a;’s are distinct. Hence, cjiuji + -+ + ¢jn;Wjn; = 0. As S; is a basis
i#j
of NULL(A — a;1,), we get cjy = 0, for 1 <t < nj. Thus, the required result follows. "

Corollary 6.3.8. Let A € M,,(C) with distinct eigenvalues aq, ..., ax. Then, A is diagonaliz-
able if and only if GEO.MULy, (A) = ALG.MUL,, (A), for each 1 < i < k.

k
Proof. Let ALG.MUL,,(A) = m;. Then > m; = n. Let GEO.MULy, (A) = n;, for 1 <i < k.
i=1

k

Then, by Corollary 6.3.7, A has > n; linearly independent eigenvectors. Also, by Theorem 6.2.5,
i=1

n; <my, for 1 <i < m,.

Now, let A be diagonalizable. Then, by Theorem 6.3.3, A has n linearly independent
k k
eigenvectors. As n; < m;, we get n= > n; < > m; =n. Thus n; =m;,1 <i <k.
i=1 i=1

k k

Now, assume that m; = n;, for 1 < i < k. Then A has Y n; = > m; = n linearly
i=1 i=1

independent eigenvectors. Hence by Theorem 6.3.3, A is diagonalizable. "

Definition 6.3.9. 1. A matrix A € M,(C) is called defective if for some o € o(A),
GEO.MUL,(A) < ALG.MUL,(A).

2. A matrix A € M, (C) is called non-derogatory if GEO.MUL,(A) = 1, for each a € o(A).
As a direct consequence of the above discussions, we obtain the following result.

Corollary 6.3.10. Let A € M,,(C). Then,
1. A is non-defective if and only if A is diagonalizable.

2. A has distinct eigenvalues if and only if A is non-derogatory and non-defective.

2 1 1 1 1
Example 6.3.11. Let A= | 1 2 1 |. Then, |1,| 0 and | 2,] 1 are the only
0 -1 1 -1 -1

eigen-pairs. Hence, by Theorem 6.3.3, A is not diagonalizable.
EXERCISE 6.3.12. 1. A strictly upper triangular matriz is not diagonalizable.
2. A be diagonalizable if and only if A+ ol is diagonalizable for every o € C.

3. Let A be an nxn matriz with X € o(A) with ALG.MUL)(A) = m. If RANK[A—XI] #n—m

then prove that A is not diagonalizable.
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4. Let A and B be two similar matrices such that A is diagonalizable. Prove that B is

diagonalizable.

5. If 0(A) = o(B) and both A and B are diagonalizable then prove that A is similar to B.

Thus, they are two basis representation of the same linear transformation.

A 0
6. Let A € M,,(R) and B € M,,(R). Suppose C = o Bl Then, prove that C is diagonal-

izable if and only if both A and B are diagonalizable.

7. Let J =117 be an n x n. Define A = (a — b)I +bJ. Is A diagonalizable?
2 11

8. Is the matric A= |1 2 1| diagonalizable?
1 1 2

9. Let T : R — RS be a linear operator with RANK(T — I) = 3 and
NULL(T) = {(z1, z2, 3, 24, 5) € R® | 21 4+ 24 + 25 = 0, 9 + 23 = 0}.

(a) Determine the eigenvalues of T?
(b) For each distinct eigenvalue o of T', determine GEO.MUL,(T).

(c) Is T diagonalizable? Justify your answer.

10. Let A € M, (R) with A # 0 but A% = 0. Prove that A cannot be diagonalized.

10 -1 1 -3 3 1 3 3
11. Are the matrices [0 0 1|, |0 =5 6| and |0 —5 6| diagonalizable?
0 2 0 0 -3 4 0 -3 4

12. Let A € M,,(C) be a matriz of rank 1. Then

(a) A has at most one non-zero eigenvalue of algebraic multiplicity 1.
(b) find this eigenvalue and its geometric multiplicity.

(c) when is A diagonalizable?

13. Let u,v € C" such that {u,v} is a linearly independent set. Define A =uv’ + vul.

(a) Then prove that A is a symmetric matriz.
(b) Then prove that dim(KER(A)) =n — 2.
(¢) Then 0 € o(A) and has multiplicity n — 2.
(d) Determine the other eigenvalues of A.

6.4 Schur’s Unitary Triangularization and Diagonalizability

We now prove one of the most important results in diagonalization, called the Schur’s Lemma

or the Schur’s unitary triangularization.
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Lemma 6.4.1. [Schur’s unitary triangularization (SUT)] Let A € M,,(C). Then, there exists
a unitary matriz U such that A is similar to an upper triangular matriz. Further, if A € M, (R)

and o(A) have real entries then U is a real orthogonal matriz.

Proof. We prove the result by induction on n. The result is clearly true for n = 1. So, let n > 1

and assume the result to be true for kK < n and prove it for n.

Let (A1,x1) be an eigen-pair of A with [|x;|| = 1. Now, extend it to form an orthonormal
basis {x1,x2,...,X,} of C" and define X = [x1,X2,...,X,]. Then, X is a unitary matrix and
_x“f_
* * X; )\1 *
X*AX = X¥[Ax1, Axg, ..., A%y = | || [Mix1, AXa, ..., Ax,] = o Bl (6.4.4)
[0

where B € M,,_1(C). Now, by induction hypothesis there exists a unitary matrix U € M,,_1(C)

~ 1
such that U*BU = T is an upper triangular matrix. Define U = X [O . As product of

unitary matrices is unitary, the matrix U is unitary and

N* 1 0|, 10 1 0l(N =x|[1 0
(U)AU: -
0 U* 0 U o U*||o Bllo U
)\1* 10_)\1 * _)\1*
0 U*B||0 U 0 U*BU 0o T|
A1

*
Since T is upper triangular, 0o T is upper triangular.

Further, if A € M,,(R) and o(A) has real entries then x; € R" with Ax; = A\;x;. Now, one

uses induction once again to get the required result. "

Remark 6.4.2. Let A € M, (C). Then, by Schur’s Lemma there exists a unitary matriz U
such that U*AU =T = [t;5], a triangular matriz. Thus,

{at,...,an} =0(A) =c(UAU) = {t11,. .., tyn}- (6.4.5)
Furthermore, we can get the a;’s in the diagonal of T in any prescribed order.

Definition 6.4.3. Let A,B € M,,(C). Then, A and B are said to be unitarily equiva-

lent /similar if there exists a unitary matrix U such that A = U*BU.

Remark 6.4.4. We know that if two matrices are unitarily equivalent then they are necessarily
similar as U* = U™, for every unitary matriz U. But, similarity doesn’t imply unitary equiv-
alence (see Exercise 6.4.6.5). In numerical calculations, unitary transformations are preferred

as compared to similarity transformations due to the following main reasons:
1. A is unitary implies || Ax|| = ||x||. This need not be true under a similarity.

2. As U~Y = U*, for a unitary matriz, unitary equivalence is computationally simpler.
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3. Also, computation of “conjugate transpose” doesn’t create round-off error in calculation.

3 2 11
Example 6.4.5. Consider the two matrices A = ) 0] and B = [0 5| Then, we show

that they are similar but not unitarily similar.
Solution: Note that o(A) = o(B) = {1,2}. As the eigenvalues are distinct, by Theo-

rem 6.3.5, the matrices A and B are diagonalizable and hence there exists invertible matrices

0
S and T such that A = SAS™!, B = TAT~!, where A = 5| Thus A = ST1B(ST1)~L.

But Y |aij|? # 3 |bij|?. Hence by Exercise 5.8.8.6, they cannot be unitarily similar.

EXERCISE 6.4.6.
1. If A is unitarily similar to a triangular matriz T = [t;;] then Y [t;j|> = tr(A*A) = > [Ni?.
1<j
2. Consider the following 6 matrices.
2 -1 3v2 2 1 3v2 2 0 3V2
My =0 1 \/§7M2:01_\/§7M3:11 \/i;

0 0 3 00 3 00 1
(2 0 3v2 11 4 2 1 4

My=|-1 1 —V2|,Ms5=1{0 2 2| and Mg= |0 1 2|.
0 0 1 00 3 00 1

Now, use the exercises given below to conclude that the upper triangular matriz obtained
in the “Schur’s Lemma” need not be unique.

(a) Prove that My, My and Ms are unitarily equivalent.

(b) Prove that Ms, My and Mg are unitarily equivalent.

(¢) Do the above results contradict Exercise 5.8.8.5¢? Give reasons for your answer.

111 2 —1 2
3. Prove that A= [0 2 1| and B= |0 1 0 | are unitarily equivalent.
0 0 3 0o 0 3

4. Let A € M,,(C). Then, Prove that if x*Ax = 0, for all x € C", then A = 0. Do these

results hold for arbitrary matrices?

4 4
5. Show that the matrices A = 0 4 and B =

10 9
A 2] are similar. Is it possible to find

a unitary matriz U such that A =U*BU?
We now use Lemma 6.4.1 to give another proof of Theorem 6.1.17.

Corollary 6.4.7. Let A € M,(C). Ifau,...,an € 0(A) thendet(A) = [] a; andtr(A) = > «;.
i=1 i=1

Proof. By Schur’s Lemma there exists a unitary matrix U such that U*AU = T = [t;], a

n

triangular matrix. By Remark 6.4.2, 0(A) = o(T'). Hence, det(A) = det(T) = [[ tis = [] ou
1 %

7 =1

3

and tr(A) = tr(A(UU*)) = tr(U*(AU)) = tr(T) = anl ti = anl Q. .
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6.4.1 Diagonalizability of some Special Matrices

We now use Schur’s unitary triangularization Lemma to state the main theorem of this sub-
section. Also, recall that A is said to be a normal matrix if AA* = A*A. Further, Hermitian,

skew-Hermitian and scalar multiples of Unitary matrices are examples of normal matrices.

Theorem 6.4.8. [Spectral Theorem for Normal Matrices| Let A € M, (C). If A is a normal

matriz then there exists a unitary matriz U such that U*AU = diag(ou, . .., an).

Proof. By Schur’s Lemma there exists a unitary matrix U such that U*AU = T = [t;], a

triangular matrix. Since A is a normal
T°T = (UAU) (UAU) = U A*AU = U*AA™U = (UTAU)(U*AU)* =TT".

Thus, we see that T is an upper triangular matrix with T*7T = T'T™. Thus, by Exercise 1.3.13.8,
T is a diagonal matrix and this completes the proof. "

We re-write Theorem 6.4.8 in another form to indicate that A can be decomposed into linear
combination of orthogonal projectors onto eigen-spaces. Thus, it is independent of the choice

of eigenvectors. This remark is also valid for Hermitian, skew-Hermitian and Unitary matrices.

Remark 6.4.9. Let A € M,,(C) be a normal matriz with eigen-pairs aq, . . ., oy,
1. Then, there exists a unitary matriz U = [uy,...,u,] such that
(a) u; is an eigenvector of A for a;,1 <@ < n.
(b) I, =U*U =UU* =ujuj + - - -+ u,u,.
(¢) the columns of U form a set of orthonormal eigenvectors for A (use Theorem 6.3.3).

(d) A=A -1, =A(wu] + - +u,u}) = ajuuf + - - + auyul,.

2. Let the distinct eigenvalues of A be aq, ...,y with respective eigen-spaces Wi, ..., Wi.

(a) Then each eigenvector belongs to some W;. So, W;’s are orthogonal to each other.
(b) Hence C" =W @ --- ® Wy.
(c) If P,, is the orthogonal projector onto W;, 1 < i <k, then A = a1 Py + -+ + agPx.

Thus, A depends only on the eigen-spaces and not on the computed eigenvectors.

Theorem 6.4.8 also implies that if A € M,,(C) is a normal matrix then after a rotation or
reflection of axes (unitary transformation), the matrix A basically looks like a diagonal matrix.

As a special case, we now give the spectral theorem for Hermitian matrices.

Theorem 6.4.10. [Spectral Theorem for Hermitian Matrices] Let A € M,,(C) be a Hermitian

matriz. Then Remark 6.4.9 holds. Further, all the eigenvalues of A are real.

Proof. The first part is immediate from Theorem 6.4.8 as Hermitian matrices are also normal
matrices. Let (o, x) be an eigen-pair. To show, « is a real number.

As A* = A and Ax = ax, we have x*A = x*A* = (4Ax)* = (ax)* = ax*. Hence,

ax*x = x*(ax) = x*(Ax) = (x"A)x = (ax)x = ax™x.
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As x is an eigenvector, x # 0. Hence, ||x|> = x*x # 0. Thus a =@, i.e.,, a € R. .
As an immediate corollary of Theorem 6.4.10 and the second part of Lemma 6.4.1, we give

the following result without proof.

Corollary 6.4.11. Let A € M, (R) be symmetric. Then there exists an orthogonal matriz
P and real numbers aq,...,a, such that A = P diag(aq,...,an)PT. Or equivalently, A is

diagonalizable using orthogonal matriz.

EXERCISE 6.4.12. 1. Let A be a normal matriz. If all the eigenvalues of A are O then prove
that A = 0. What happens if all the eigenvalues of A are 17

2. Let A be a skew-symmetric matriz. Then A is unitarily diagonalizable and the eigenvalues

of A are either zero or purely imaginary.
3. Characterize all normal matrices in Ma(R).

4. Let 0(A) = {A1,...,\n}. Then, prove that the following statements are equivalent.
(a) A is normal.

(b) A is unitarily diagonalizable.

(c) X lai> = >[Nl
1,7 7
(d) A has n orthonormal eigenvectors.

5. Let A be a normal matriz with (A, x) as an eigen-pair. Then,

(a) (A*)ex for k € Z7 is also an eigenvector corresponding to \.

(b) (A\,x) is an eigen-pair for A*. [Hint: Verify ||A*x — Xx||? = || Ax — Ax||2.]
6. Let A be an n X n unitary matriz. Then,

(a) |A| =1 for any eigenvalue A of A.

(b) the eigenvectors x,y corresponding to distinct eigenvalues are orthogonal.

7. Let A be a 2 x 2 orthogonal matriz. Then, prove the following:

cosf —sind
(a) if det(A) = 1 then A = co8 o , for some 6,0 < 6 < 2mw. That is, A
|sinf  cosf
counterclockwise rotates every point in R? by an angle 6.
(cosf  sinf
(b) if det A = —1 then A = o8 S , for some 0,0 < 0 < 2mw. That is, A
|sinf)  —cosb
reflects every point in R? about a line passing through origin. Determine this line.
1 0
Or equivalently, there exists a non-singular matriz P such that P~1AP = 0 1] .
8. Let A be a 3 x 3 orthogonal matriz. Then, prove the following:
(a) if det(A) = 1 then A is a rotation about a fized axis, in the sense that A has an

4

eigen-pair (1,x) such that the restriction of A to the plane x— is a two dimensional

rotation in x*.
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(b) if det A = —1 then A corresponds to a reflection across a plane P, followed by a

rotation about the line through origin that is orthogonal to P.

9. Let A be a normal matriz. Then, prove that RANK(A) equals the number of nonzero

eigenvalues of A.

10. [Equivalent characterizations of Hermitian matrices] Let A € M,,(C). Then, the fol-

lowing statements are equivalent.

(a) The matriz A is Hermitian.

(b) The number x*Ax is real for each x € C™.

(¢) The matriz A is normal and has real eigenvalues.

(d) The matriz S*AS is Hermitian for each S € M, (C).

6.4.2 Cayley Hamilton Theorem

Let A € M,(C). Then, in Theorem 6.1.17, we saw that
Pa(z) =det(x] — A) = 2" — ap_ 12" ' +an_o0z" 2+ -+ (=1)" Loz + (-1)"ap  (6.4.6)

for certain a; € C, 0 < i < n — 1. Also, if a is an eigenvalue of A then P4(a) = 0. So,
2" —ap 12" an 0x" 24+ (=1)"Layz + (—1)"ag = 0 is satisfied by n complex numbers

which are eigenvalues of A. It turns out that the expression
A" — an,lA"_l + an,gAn_Q +o 4 (*1)71_1&114 + (*1)”@0[ =0

holds true as a matrix identity. This is a celebrated theorem called the Cayley Hamilton
theorem. We give a proof using Schur’s unitary triangularization. To do so, we look at

multiplication of certain upper triangular matrices.

Lemma 6.4.13. Let Aq,..., A, € M,,(C) be upper triangular matrices such that the (i,i)-th
entry of A; equals 0, for 1 <i<mn. Then AjAy--- A, =0.

Proof. We use induction to prove that the first £ columns of AjAs--- A is 0, for 1 < k < n.
The result is clearly true for k = 1 as the first column of A; is 0. For clarity, we show that the
first two columns of A; Ay is 0. Let B = A1 As. Then, using A;[:;,1] = 0 and (Asg)j = 0, for
1=1,2,7 > 2, we get

B[,Z] = Al[i,l](AQ)li +A1[2,2](A2)21' + -+ Al[:,n](Ag)m =0+4---4+0=0.

So, assume that the first n — 1 columns of C = A;--- A, _1 18 0. To show B = CA, = 0. As
n — 1 columns of C are zero, C[:,1](An)1: + C[:,2](An)2i + -+ + Cl:yn — 1] (An)(n_l)i =0, for
1<i<n-—1. Also C[;,n](A,)ni = 0 as the last row of A, = 07. Thus

Bl:,i] = Ol 1) (A1 + CL 2)(An)ai + -+ + Cl ) (Ap)ni = 0+ -+ + 0 = 0.

Hence, by the induction hypothesis the required result follows. n

We now prove the Cayley Hamilton Theorem using Schur’s unitary triangularization.
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Theorem 6.4.14. [Cayley Hamilton Theorem] Let A € M, (C). Then A satisfies its charac-
teristic equation, i.e., if Pa(z) = det(zl, — A) = 2" —ap_12" 1+ -+ (=1)"lagz + (=1)"ao
then

A" —ap AV ()" g A (1) apl = 0

holds true as a matriz identity.

Proof. Let 0(A) = {aa,...,an} then Py(x) = [[(z — a;). And, by Schur’s unitary triangular-

i=1
ization there exists a unitary matrix U such that U* AU =T, an upper triangular matrix with

ti; = ay, for 1 < i < n. Now, observe that if A; =T — ;I then the A;’s satisfy the conditions
of Lemma 6.4.13. Hence
(T —ayl)--- (T —anl) =0.

Therefore,

Pa(A) =[[(A- D) = [[UTU” - ,UIU*) = U[(T —ayI)--- (T = a,I)|U* = UOU* = 0.
=1 =1

Thus, the required result follows. =

We now give some examples and then implications of the Cayley Hamilton Theorem.

Remark 6.4.15. 1. Let A= . Then, Pa(x) = x? + 2z — 5. Hence, verify that

%)k

1 113 2
Further, A = —2A + 51 implies A~! = R (A+21) = £ [1 1] and

-4
=211

A% +2A — 51, =

A3 = A(A%) = A(—2A451) = —2A% 451 = —2(—2A+51)+5] = 4A—101+5] = 4A—51.
Now, use induction to show A™ € LS(I,A), for allm > 1.

3

1
2. Let A = . Then, Ps(t) =t — 3t — 2. So, P4(A) = 0 = A? = 3A + 2I. Thus,

A7l = #. Further, induction implies A™ € LS(I, A), for allm > 1.

0

3. Let A = . Then, Pa(z) = 2%. So, even though A # 0, A%2 = 0.

4. ForA= 1|0 0 0|, Pa(z) =23 So, Cayley Hamilton theorem = A3 = 0. Here A% = 0.

5 For A= |0 1 1|, Pa(t)=(t—1)3. So P4(A) = 0. But, observe that q(A) = 0, where
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6. Let A € M,,(C) with Pa(z) = 2" — ap_12™" 1 + -+ (=1)"Lagz + (—=1)"ao.

(a) Then, for any € € N, the division algorithm gives ag,aq,...,a,—1 € C and a poly-
nomial f(x) with coefficients from C such that

' = f(@)Pa(z) + ao +zay + -+ 2" Loy,

Hence, by the Cayley Hamilton theorem, A* = agl + 01 A+ -+ + a1 A" L.

1. Thus, to compute any power of A, one needs to apply the division algorithm to
get o;’s and know A, for 1 < i < n — 1. This is quite helpful in numerical
computation as computing powers takes much more time than division.

it. Note that LS {I, A, A?,...} is a subspace of My (C). Also, dim (My,(C)) = n?.
But, the above argument implies that dim (LS {I, A A% . }) < n.

114. In the language of graph theory, it says the following: “Let G be a graph on n
vertices and A its adjacency matriz. Suppose there is no path of length n — 1 or
less from a vertex v to a vertex u in G. Then, G doesn’t have a path from v to u
of any length. That is, the graph G is disconnected and v and w are in different

components of G.”

(b) Suppose A is non-singular. Then, by definition ag = det(A) # 0. Hence,

1
A7t = a [alf —aA+ -+ (—1)n_2an,1A”_2 + (_1)n—1An—1] )
0

This matrixz identity can be used to calculate the inverse.

(c) The above also implies that if A is invertible then A~' € LS {I, A A% } That is,

A~ is a linear combination of the vectors I, A, ..., A"~

EXERCISE 6.4.16. Miscellaneous Exercises:

1. Use the Cayley-Hamilton theorem to compute the inverse of following matrices:

2 3 4 -1 -1 1 1 -2 -1
56 7,1 -1 1| and [-2 1 —1].
1 1 2 0 1 1 0o -1 2

2. Let A, B € Miy(C) such that A = AB — BA. Then, prove that A2 = 0.

3. Let A, B € M,,(C) be upper triangular matrices with the top leading principal submatriz of
A of size k being 0. If Blk + 1,k + 1] = 0 then prove that the leading principal submatriz

of sizek +1 of AB is 0.
B X . . ) X
. Then | A, s an eigen-pair < | —\,
y -y

B

0

4. Let B € M, (C) and A = BT

1S an eLgen-pair.

5. Let B,C € M,(R). Define A = . Then, prove the following:

x
(a) if s is a real eigenvalue of A with corresponding eigenvector [ ] then s is also an
y

etgenvalue corresponding to the eigenvector [—y] .
X
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X+
b) if s+t is a complex eigenvalue of A with corresponding eigenvector Y then
( plez eig ponding eig :
-y +1x
L, . . ) , X — 1y
s — it is also an eigenvalue of A with corresponding eigenvector .
-y —ix

(c) (s+it,x +1iy) is an eigen-pair of B+iC' if and only if (s — it,x — iy) is an eigen-pair
of B—1C.

(d) (s+it, .
-y +11x

pair of B +iC.
(e) det(A) = |det(B +iC)|?.

X 41y

) is an eigen-pair of A if and only if (s +it,x + iy) is an eigen-

The next section deals with quadratic forms which helps us in better understanding of conic

sections in analytic geometry.

6.5 Quadratic Forms

Definition 6.5.1. Let A € M,,(C). Then A is said to be
1. positive semi-definite (psd) if x*Ax € R and x*Ax > 0, for all x € C".
2. positive definite (pd) if x*Ax € R and x*Ax > 0, for all x € C"\ {0}.
3. negative semi-definite (nsd) if x*Ax € R and x*Ax <0, for all x € C™.
4. negative definite (nd) if x*Ax € R and x*Ax < 0, for all x € C" \ {0}.

5. indefinite if x*Ax € R and there exist x,y € C" such that x*Ax < 0 < y*Ay.

Lemma 6.5.2. Let A € M,,(C). Then A is Hermitian if and only if at least one of the following

statements hold:
1. S*AS is Hermitian for all S € M,,.
2. A is normal and has real eigenvalues.

3. x*Ax € R for all x € C™.

Proof. Let S € M, (S*AS)* = S*A*S = S*AS. Thus S*AS is Hermitian.

Suppose A = A*. Then, A is clearly normal as AA* = A? = A*A. Further, if (), x) is an
eigenpair then Ax*x = x*Ax € R implies A € R.

For the last part, note that x*Ax € C. Thus x*Ax = (x*4x)* = x*A*x = x*Ax, we get
Im(x*Ax) = 0. Thus, x*Ax € R.

If S*AS is Hermitian for all § € M, then taking S = I,, gives A is Hermitian.

If A is normal then A = U* diag(A1,...,A\,)U for some unitary matrix U. Since \; € R,
A* = (U* diag(A1, ..., \)U)* = U* diag(A1,. .., An)U = U* diag(A1,...,A\)U = A. So, A is
Hermitian.

If x*Ax € R for all x € C" then a;; = e Ae; € R. Also, aj;+ajj+aij+aj; = (ej+e;) Ale; +
e;) € R. So, Im(a;;) = —Im(ay;). Similarly, a; + aj; + ia;; — iaj; = (e; +ie;)*A(e; + ie;) € R
implies that Re(a;;) = Re(a;;). Thus, A = A*. n
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Remark 6.5.3. Let A € M, (R). Then the condition x*Ax € R, for all x € C", in Defini-
tion 6.5.8 implies AT = A, i.e., A is a symmetric matriz. But, when we study matrices over

R, we seldom consider vectors from C™. So, in such cases, we assume A is symmetric.

3 141
Example 6.5.4. 1. Let A= or A= L IZ . Then, A is positive definite.
—1
11 2 14
2. Let A= or A= V2 T . Then, A is positive semi-definite but not positive
11 1—i V2
definite.
B [ 2 1]
3. Let A= or A= ! . Then, A is negative definite.
1 2] 1+ =2 |
1 1] [ 21— . . o
4. Let A= or A= . Then, A is negative semi-definite.
i 1 —1_ _1 +i -1 |
0 1 1 1+
5. Let A = L1 or A= L o . Then, A is indefinite.
— —1

Theorem 6.5.5. Let A € M,,(C). Then, the following statements are equivalent.

1. A is positive semi-definite.

2. A* = A and each eigenvalue of A is non-negative.

3. A= B*B for some B € M,,(C).

Proof. 1 = 2: Let A be positive semi-definite. Then, by Lemma 6.5.2, A is Hermitian. If
(o, V) is an eigen-pair of A then a||v|? =a(v*v) = v*(av) = v*Av > 0. So, a > 0.

2 = 3: Let 0(A) = {ai,...,a,}. Then, by spectral theorem, there exists a unitary
matrix U such that U*AU = D with D = diag(aq,...,an). As a; > 0, for 1 < i < n, define
Dz = diag(,/aq,...,\/@n). Then, A =UD:[D2U*] = B*B.

3= 1 Let A = B*B. Then, for x € C", x*Ax = x*B*Bx = ||Bx||?> > 0. Thus, the
required result follows. "

A similar argument gives the next result and hence the proof is omitted.

Theorem 6.5.6. Let A € M,,(C). Then, the following statements are equivalent.

1. A is positive definite.

2. A* = A and each eigenvalue of A is positive.

3. A= B*B for a non-singular matriz B € M, (C).

Remark 6.5.7. Let A € M,,(C) be Hermitian with eigenvalues Ay > Ao > -+ > \,. Then, there

exists a unitary matrix U = [uy,ug,...,u,] and a diagonal matric D = diag(A1, A2, ..., A\p)
such that A=UDU*. Now, for 1 <i<mn, define a; = max{\;,0} and ; = min{\;,0}. Then

1. for Dy = diag(aq,aa,...,ay), the matrizc Ay = UD1U* is positive semi-definite.
2. for Dy = diag(B1, B2, ..., Bn), the matrix Ay = UDoU* is positive semi-definite.

3. A= A1 — As. The matrixz Ay is generally called the positive semi-definite part of A.
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Definition 6.5.8. Let A = [a;;] € M,,(C) be a Hermitian matrix and let x,y € C". Then, a
sesquilinear form in x,y € C" is defined as H(x,y) = y*Ax. In particular, H(x,x), denoted

H(x), is called a Hermitian form. In case A € M, (R), H(x) is called a quadratic form.
Remark 6.5.9. Observe that
1. if A =1, then the bilinear/sesquilinear form reduces to the standard inner product.

2. H(x,y) is ‘linear’ in the first component and ‘conjugate linear’ in the second component.

3. the quadratic form H(x) is a real number. Hence, for a € R, the equation H(X) = «,

represents a conic in R™.

Example 6.5.10. 1. Let A € M,,(R). Then, f(x,y) = y’ Ax, for x,y € R", is a bilinear
form on R™.
2—1
241 2

2. Let A = € C2, verify that

g)

. Then, A* = A and for x = [x

H(x) = x*Ax = |z|* + 2Jy|> + 2Re ((2 — i)Ty)

where ‘Re’ denotes the real part of a complex number, is a sesquilinear form.

6.5.1 Sylvester’s law of inertia

The main idea of this section is to express H(x) as sum or difference of squares. Since H(x) is
a quadratic in x, replacing x by ex, for ¢ € C, just gives a multiplication factor by |¢|?. Hence,
one needs to study only the normalized vectors. Let us consider Example 6.1.2 again. There

we see that

(z+y)? (z-y)?

x'Ax = 3 5 5 = (2 +2y)* — 3y%, and (6.5.1)
2 2 Q¢ — 2 2 2
x'Bx = 5<x+5y) + 10(“:5” = (32 — gy)2 + 507'”. (6.5.2)

Note that both the expressions in Equation (6.5.1) is the difference of two non-negative terms.
Whereas, both the expressions in Equation (6.5.2) consists of sum of two non-negative terms.
Is the number of non-negative terms, appearing in the above expressions, just a coincidence?

For a better understanding, we define inertia of a Hermitian matrix.

Definition 6.5.11. Let A € M,,(C) be a Hermitian matrix. The inertia of A, denoted i(A),
is the triplet (i1 (A),i—(A),i0(A)), where iy (A) is the number of positive eigenvalues of A,
i—(A) is the number of negative eigenvalues of A and ig(A) is the nullity of A. The difference
i+(A) —i_(A) is called the signature of A.

EXERCISE 6.5.12. Let A € M,,(C) be a Hermitian matrixz. If the signature and the rank of A

is known then prove that one can find out the inertia of A.

To proceed with the earlier discussion, let A € M, (C) be Hermitian with eigenvalues

ai,...,0p. Then, by Theorem 6.4.10, U*AU = D = diag(ay,...,ay,), for some unitary matrix
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z
U. Let x = Uz. Then, ||x|| =1 implies ||z| = 1. Thus, if z= | : | then
Zn,
n p r 9
H(x) =2'U" AUz = 2Dz = Y alzi* = |Vaiz - Y ‘\/\ai| zi| | (6.5.3)
i=1 i=1 i=p+1
where a,...,0p > 0, api1,..., 0 < 0 and apq1,...,0p = 0, where p = iy (A) and r —p =

i—(A). Thus, we see that the possible values of H(x) seem to depend only on the positive and
negative eigenvalues of A. Since U is an invertible matrix, the components z;’s of z = U~ !x =
U*x are commonly known as the linearly independent linear forms. Note that each z; is a
linear expression in the components of x.

As a next result, we show that in any expression of H(x) as a sum or difference of n absolute
squares of linearly independent linear forms, the number p (respectively, r — p) gives the number
of positive (respectively, negative) eigenvalues of A. This is popularly known as the ‘Sylvester’s

law of inertia’.

Lemma 6.5.13. [Sylvester’s Law of Inertia] Let A € M, (C) be a Hermitian matriz and let

x € C™. Then, every Hermitian form H(x) = x*Ax, in n variables can be written as
H(x) = [y1* + -+ [yp = lypea* = = [y
where y1, ...,y are linearly independent linear forms in the components of x and the integers

p and r satisfying 0 < p <r <mn, depend only on A.

Proof. Equation (6.5.3) implies that H(x) has the required form. We only need to show that
p and r are uniquely determined by A. Hence, let us assume on the contrary that there exist

p,q,7,8 € N with p > ¢ such that

H(x) = [yif’+-+ |yl = lypralF = = |y [? (6.5.4)
= |z + 4z — |z o 2l (6.5.5)
y1 Z
Y1 A . ) . . .
where y = = Mx, z = P = NxwithY; = | ! | and Z; = | : | for some invertible
2 2
Yp Zq
matrices M and N. Now the invertibility of M and N implies z = By, for some invertible matrix
B, B Z By Byl | Y]
B. Decompose B = ! 2 , where Bj is a ¢ X p matrix. Then =)ot ™2 "1, As
Bs By Zy By By | Y2
(1
p > q, the homogeneous linear system B;Y; = 0 has a nontrivial solution, say /1}1 =|:| and
Yp

Then for this choice of y, Z; = 0 and thus, using Equations (6.5.4) and

[T
consider y = .
Y 0

(6.5.5), we have

HE) =0 + 5P+ 102 = 0=0— (lzg+1]* + - + |z5]7).
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Now, this can hold only if ?I = 0, a contradiction to ?I being a non-trivial solution. Hence

p = q. Similarly, the case > s can be resolved. This completes the proof of the lemma. O

Remark 6.5.14. Since A is Hermitian, RANK(A) equals the number of nonzero eigenvalues.
Hence, RANK(A) = r. The number r is called the rank and the number r — 2p is called the

inertial degree of the Hermitian form H(x).

Do we need *-congruence at this stage?
We now look at another form of the Sylvester’s law of inertia. We start with the following

definition.

Definition 6.5.15. Let A, B € M, (C). Then, A is said to be *-congruent (read star-
congruent) to B if there exists an invertible matrix S such that A = S*BS.

Theorem 6.5.16. [Second Version: Sylvester’s Law of Inertia] Let A,B € M, (C) be
Hermitian. Then, A is x-congruent to B if and only if i(A) = i(B).

Proof. By spectral theorem U*AU = A4 and V*BV = Ap, for some unitary matrices U,V

and diagonal matrices A4, Ap of the form diag(+,---,+,—,---,—,0,---,0). Thus, there exist
invertible matrices S, T such that S*AS = D4 and T*BT = Dpg, where D4, Dp are diagonal
matrices of the form diag(1,---,1,—1,---,—1,0,---,0).

If i(A) = i(B), then it follows that D4 = Dpg, i.e., S*AS = T*BT and hence A =
(TS~H)*B(TS™1).

Conversely, suppose that A = P*BP; for some invertible matrix P, and i(B) = (k,l,m).
As T*BT = Dp, we have, A = P*(T*)"'DgT~'P = (T"'P)*Dp(T~'P). Now, let X =
(T~'P)~1. Then, A = (X 1*DpX~! and we have the following observations.

1. As rank and nullity do not change under similarity transformation, ig(A) = io(Dp) = m

as i(B) = (k,l,m).
2. Using i(B) = (k,l,m), we also have

X[k + 1P AX [k 4+ 1) = X[k + 17 (XY De(X ™)) X[k + 1] = e}, Dpegsr = —1.

Similarly, X[,k +2*AX [,k + 2] = - = X[,k + []*AX[:,k + ] = —1. As the vectors
X[, k+1],...,X[:, k+1] are linearly independent, using 9.7.10, we see that A has at least

[ negative eigenvalues.

3. Similarly, X[:,1]*AX[:,1] = --- = X[}, k]*AX[, k] = 1. As X[, 1],...,X][;, k| are linearly

independent, using 9.7.10 again, we see that A has at least k positive eigenvalues.

Thus, it now follows that i(A) = (k,l, m). n

6.5.2 Applications in Eculidean Plane

We now obtain conditions on the eigenvalues of A, corresponding to the associated quadratic

form, to characterize conic sections in R?, with respect to the standard inner product.
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Definition 6.5.17. Let f(z,y) = ax? + 2hay + by? + 2fx + 2gy + ¢ be a general quadratic in

x and y, with coefficients from R. Then,

h
- ] oo

is called the associated quadratic form of the conic f(x,y) = 0.

Proposition 6.5.18. Consider the quadratic f(z,y) = ax® + 2hzy + by? + 29z + 2fy + ¢, for
a,b,c,g, f,h € R. If (a,b,h) # (0,0,0) then f(xz,y) = 0 represents

1. a parabola or a pair of parallel lines if ab — h? = 0,
2. a hyperbola or a pair of perpendicular lines if ab — h? < 0,

3. an ellipse or a circle or a point (point of intersection of a pair of perpendicular lines) if
ab— h% > 0.

Proof. Consider the associated quadratic axz? + 2hay + by? with A =

] as the associated

symmetric matrix. Then, by Corollary 6.4.11, A = U diag(ay, az)U”, where U = [ug, ug] is an
orthogonal matrix, with (o, u;) and (a2, ug) as eigen-pairs of A. As (a,b, h) # (0,0,0) at least

one of ay,as # 0. Also,

0 0
x' Ax = [a:, y}U “ ut 7l > [u v} o Y= aqu? +a202,
0 o Y 0 asf|v
where [u = UTx. The lines u = 0,v = 0 are the two linearly independent linear forms, which
v

correspond to two perpendicular lines passing through the origin in the (z,y)-plane. In terms
of u,v, f(x,y) reduces to f(u,v) = ayu® + aov? + diu + dav + ¢, for some choice of dy,dy € R.

We now look at different cases:

1. if a; = 0 and g # 0 then ab — h? = det(A) = ajag = 0. In this case,

d 2
fu,v) =0 (v+22> =c — dyu,

%)
for some c; € R.

(a) If d; = 0, the quadratic corresponds to either the same line v+ 2622 = 0, two parallel
lines or two imaginary lines, depending on whether ¢; = 0,ciae > 0 and cjas < 0,
respectively.

(b) If di # 0, the quadratic corresponds to a parabola of the form V2 = 4aU, for some

translate U =u+ o and V =v + 5.

2. If ajas < 0 then ab — h? = det(4) = Ml < 0. If ap = —f < 0, for B >
0 then the quadratic reduces to ai(u + d1)? — Ba(v + do)? = ds, or equivalently, to
(vVai(u+dy) 4+ VBa(v+da)) - (Vai(u+ di) — v/Ba(v + da)) = ds, for some dy, dg, d3 € R.

Thus, the quadratic corresponds to
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(a) a pair of perpendicular lines u 4+ d; = 0 and v 4+ d2 = 0 whenever d3 = 0.

(b) a hyperbola with orthogonal principal axes u + d; = 0 and v + do = 0 whenever
ds # 0. In particular, if ds > 0 then the corresponding equation equals

Oél(u+d1)2 B OQ(U-FCZQ)Q -1
ds ds -

3. If ajag > 0 then ab — h? = det(A) = ajas > 0. Here, the quadratic reduces to a;(u +
d1)? + az(v + d2)? = ds, for some dy, dy, d3 € R. Thus, the quadratic corresponds to

(a) a point which is the point of intersection of the pair of orthogonal lines u + d; = 0
and v +dy = 0 if dg = 0.

(b) an empty set if ajds < 0.

(c) an ellipse or circle with u + d; = 0 and v 4+ d2 = 0 as the orthogonal principal axes

if a1ds > 0 with the corresponding equation

at(u+dp)? n as(v + dg)?

=1.
ds ds
Thus, we have considered all the possible cases and the required result follows. "
U x
Remark 6.5.19. Observe that the linearly independent forms =yuT are functions of
v Yy

the eigenvectors uy and us. Further, the linearly independent forms together with the shifting

of the origin give us the principal axes of the, corresponding conic.

Example 6.5.20. 1. Let H(x) = 22+ y? + 2zy be the associated quadratic form for a class
1 1/4/2 1/v/2

and the eigen-pairs are | 2, /V2 and | O, /V2 .
1 1/V2 —1/V2

(a) f(z,y) = 2® + 2xy +y? — 8z — 8y + 16, we have f(x,y) =0 < (m—i—y—4)2 =0, just

one line.

of curves. Then, A =

In particular, for

(b) f(z,y) = 2%+ 22y +y* — 8x — 8y, we have f(x,9) =0& (x+y—8)-(x+y) =0, a

pair of parallel lines.
(c) f(z,y) = 2% + 22y +y* — 62 — 10y — 3, we have

o0 o 5() () () () o

() e ().

a parabola with principal axes © + y = 4, 2x — 2y = 19 and directrix x — y = 10.

2. Let H(x) = 1022 —5y% +20zy be the associated quadratic form for a class of curves. Then

10 10 . . 2/V5 B 1/v/5
A= [10 _5] and the eigen-pairs are (15, [1/\/5]) and ( 10, [_2/\/5]> So, for
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Figure 6.2: Conic 22 + 22y + 3% — 62 — 10y = 3

(a) f(z,y) = 1022 — 5y% 4+ 202y + 162 — 2y + 1, we have f(z,y) =0 < 32z +y +1)% —
2(x — 2y — 1)? = 0, a pair of perpendicular lines.

(b) f(x,y) = 102? — 5y® 4+ 20zy + 162 — 2y + 19, we have
z—2y—1\* [2z+y+1\?
fa) < 3 > < V6 ) ’
a hyperbola.

(c) f(z,y) = 1022 — 5y? + 202y + 162 — 2y — 17, we have

2 _ _ 2

a hyperbola.

7 01 o4
21 21 21
41 41 41
- - 4 2 0 2 4

Figure 6.3: Conic 102? — 5y 4+ 20xy + 162 — 2y =c¢, c= —1, c= —19 and ¢ = 17

[N

3. Let H(x) = 622 4 9y? + 4zy be the associated quadratic form for a class of curves. Then,

|6 2 . . 1/V5 2/V/5
A= [2 9], and the eigen-pairs are (10, [2/\/4) and (5, [_1/\/51 ) So, for

(a) f(z,y) = 622 + 9y? + dzy + 10y — 53, we have

B r+2y+1 2 20 —y — 1 2_
foy =0 (ZEBED) (B2

an ellipse.
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Figure 6.4: Conic 622 + 9y? + 42y + 10y = 53

EXERCISE 6.5.21. Sketch the graph of the following surfaces:
1. 22 + 2zy + y* + 62 + 10y = 3.
2. 222 + 6zy + 3y® — 122 — 6y = 5.
3. 4x? — dxy + 2% + 122 — 8y = 10.

4. 222 — 6xy + 5y? — 10z + 4y = 7.

6.5.3 Applications in Eculidean Space

As a last application, we consider a quadratic in 3 variables, namely z1,x2 and x3. To do so,

a h g Ty l Y1
let A =1h b f , X = |x2]|, b= m and vy = |1 Wlth
g f ¢ T3 n Y3
f(wla x2, $3) = x'Ax + 2bT'x +q

= a:r% + bx% + cx% + 2hziTo + 297123 + 2f 003
+2lx1 + 2mxs + 2nx3 + g (6.5.6)

Then, we observe the following:

1. As A is symmetric, PTAP = diag(ay, a2, a3), where P = [ug, up, u3] is an orthogonal

matrix and (g, u;), for i = 1,2, 3 are eigen-pairs of A.
2. Let y = PTx. Then, f(x1,z2,73) reduces to

9(y1,y2,y3) = a1yi + azys + asy3 + 2liy1 + 2laye + 2l3y3 + q. (6.5.7)

3. Depending on the values of «;’s, rewrite g(y1,%2,y3) to determine the center and the

planes of symmetry of f(x1,x2,x3) = 0.

Example 6.5.22. Determine the following quadrics f(z,y, z) = 0, where
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1. f(z,y,2) = 202 4+ 2y + 222 + 20y + 222 + 2yz + 4o + 2y + 42 + 2.
2. f(z,y,2) = 322 — 9% + 22 + 10.
3. flx,y,2) =322 —y? + 22 — 10.

4. f(x,y,2) = 322 —y? + 2 — 10.

1 1 1
2 1 1 2 5 AT
Solution: (1) Here A= |1 2 1|,b= [1| and ¢ = 2. So, verify P = \/Lg :/—% \/Lé and
1 —2
11 2 2 NG 0 =2
PTAP = diag(4,1,1). Hence, f(x,y,z) = 0 reduces to
2 2 2
r+y+z T —y a:+y—2,z>
4l——| +|——) +|——=—— | =4z +2y+42+2).
=57) () + (% oty sz
. 4(gc+y+z)+5)2 (x—y+1)2 <x+y—22—1)2 0
Or equivalently to 4 +|(———| +| —————] = 5. So, the
ety 04 (L0 V2 V6 ;
principal axes of the quadric (an ellipsoid) are 4(x +y+2) = -5,z —y=1land x +y — 2z = 1.

Part 2 Here f(z,y,z) = 0 reduces to % — % — % = 1 which is the equation of a

hyperboloid consisting of two sheets with center 0 and the axes x, y and z as the principal axes.
Part 3  Here f(z,y,z) = 0 reduces to % — 11’—(2) + % = 1 which is the equation of a
hyperboloid consisting of one sheet with center 0 and the axes x, y and z as the principal axes.
Part 4 Here f(z,y, z) = 0 reduces to z = y?> =322 +10 which is the equation of a hyperbolic

paraboloid.

Figure 6.5: Ellipsoid, hyperboloid of two sheets and one sheet, hyperbolic paraboloid

6.6 Singular Value Decomposition

In Theorem 6.4.10, we saw that if A € M,,(C) is a Hermitian matrix then we can find a unitary
matrix U such that A = UDU*, where D is a diagonal matrix. That is, after a rotation
or reflection of axes, the matrix A basically looks like a diagonal matrix. We also saw it’s

applications in Section 6.5. In this section, the idea is to have a similar understanding for any
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matrix A. We will do it over complex numbers and hence, the ideas from Theorem 6.4.10 will

be used. We start with the following result.

Lemma 6.6.1. Let A € M, ,(C) with m <n and RankA =k < m. Then A =UDV™, where

1. U is a unitary matriz and is obtained from the spectral decomposition of AA* = UAU*
with A11 > -+ > Amm > 0 are the eigenvalues of AA*,

2. D=A2 and

3. V* is formed by taking the first k rows of U*A and adding m — k new rows so that V* has

orthonormal rows.
If A is real, then U and V may be chosen to have real entries.
Proof. Note that AA* is an m x m Hermitian matrix. Thus, for any x € C™,
X" (AA)x = (x* A)(A"X) = (A"%)"(A"x) = [|4"%]2 = 0.

Hence, the matrix AA* is a positive semi-definite matrix. Therefore, all it’s eigenvalues are
non-negative. So, by the spectral theorem, Theorem 6.4.10, AA* = UAU*, where \; > 0 are
in decreasing order. As RankA =k, A\;; > 0, for 1 <i <k and \;; =0, for k+1 < i < m. Now,
let ¥ = [oy;] be the diagonal matrix with

{ 1, ifi<k
04 =

1, otherwise.

Then, we see that the matrix X = XU*A is an m X n matrix with

XX* = (XU A)(A'UE) = XU (UANU) UL = 0 0

T 0] . (6.6.8)

I,

As XX* = , the first k-rows of X form an orthonormal set. Note that the first k& rows

of the matrix X are given by

Or equivalently,

(U A1, = X[,V A1, -, (U Ak, ] = X[k, ]V M- (6.6.9)

Now, take these k rows of X and add m — k& many rows to form V*, so that the rows of V* are
orthonormal, i.e., V*V = I,,,. Also, using (6.6.8), we see that (XU*AA*UX)p11 x+1 = 0. Thus,

(SU*A)k +1,:)(A*US) [, k+1] =0 = (SU*A)[k+1,:] = 0.
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This in turn implies that (U*A)[k + 1,:] = 0. Similarly, (U*A)[j,:] = 0, for k+2 < j < m.
Thus, using (6.6.9) and the definition of the matrix V*, we get

X[1,:v i | X[1,1]

X[k, ]V ek . X[k, ]
U*A = — diag(\V M1y /Mg, 0,00 — DV*
o7 s(van g ) Vk+ 1,1

o” V*[m, ]
where D = diag(v/ M1, -+, VAkk, 0, ...0). Thus, we have A = UDV™.
We already know that in spectral theorem, that if A is real symmetric, we could choose U
to be a real orthogonal matrix and that makes the first k£ rows of V' to have real entries. We

can always choose the next m — k vectors to also have real entries. "

It is important to note that
A*A = (UDV**(UDV*) = (VDU*)(UDV*) = VD?*V*,

where D? = diag(\11,. .., Ak, 0,...0) are the eigenvalues of A*A and the columns of V are the

corresponding eigenvectors.

Corollary 6.6.2. [Polar decomposition] Let A € M, ,(C) with m <n. Then A= PW, for
some positive semi-definite matriz P with RankP = RankA and a matriz W having orthonormal

rows. In fact, P = (AA*)'/2.

Proof. By Lemma 6.6.1, A = UDV™*, where U is a unitary matrix which is obtained from
the spectral decomposition of AA* = UAU*, D = A2, and V* has orthonormal rows. Then
A = (UDU*)(UV™*). Notice that the matrix UV* also has orthonormal rows. Note that
UDU* = UN/2U* = (AA*)'/2. So, if we put P = UDU* and W = UV* then, we see that
A = PW with P = (AA*)'/? is positive semi-definite matrix with Rank P = RankA and a matrix

W having orthonormal rows. "

Corollary 6.6.3. [Singular value decomposition] Let A € M,, ,,(C) with m < n and RankA =
k<m. Then A=UDV™*, where

1. U is an m x m unitary matriz and is obtained from the spectral decomposition of AA* =
UAU* with A1 > -+ > A\pn > 0 are the eigenvalues of AA*,

2. D= [AW om,n_m], and

3. V* is formed by taking the first k rows of U*A and adding n — k new rows so that V is

an n X n unitary matriz.
If A is real, then U and V' may be chosen to have real entries.

Proof. Follows from Lemma 6.6.1. "
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Definition 6.6.4. Let A € M,,,,. In view of Corollary 6.6.3, the values \/A11,..., VA, where
r = min{m,n}, are called the singular values of A. (Sometimes only the nonzero \;;’s are

understood to be the singular values of A).

Let A € M, ,(C). Then, by the singular value decomposition of A we mean writing
A =UXV* where U € M,,(C),V € M,,(C) are unitary matrices and ¥ € M, ,(R) with X;; as
the singular values of A, for 1 < i < RankA and the remaining entries of ¥ being 0.

In Corollary 6.6.3, we saw that the matrix U is obtained as the unitary matrix in the spectral
decomposition of AA*, the ¥;;’s are the square-root of the eigenvalues of AA*, and V* is formed
by taking the first » = RankA rows of U*A and adding n — k new rows so that V* is a unitary
matrix.

Now, let us go back to matrix multiplication and try to understand A = UXV*. So, let

U=|u uw um] and V = {vl Vo vm}. Then,
VA 0 0 0 0]r .7
v
0 VAsz 0 0 !
v
A = USV* = [ul - um} 0 0 s 0 2
Vi
0 0 0O -0 0]t ™
= VAnwvi 4 vV Auavi + -+ VAU v (6.6.10)

Now, recall that if A is an m x n matrix then we can associate a linear transformation
T : C* — C™ such that T'(x) = Ax, for all x € C". Thus, the singular value decomposition
states that there exist unitary matrices (rotation or reflection matrices) in both the domain
(C™, corresponds to V*) and co-domain (C™, corresponds to U) such that the matrix of A with
respect to these ordered bases is a diagonal matrix and the diagonal entries consist of just the
singular values, including zeros.

We also note that if 7 = RankA then A = v/ Aj1u1vi + v Ageuavy + - -+ + v/ Apu, v Thus,
A = U2, V)", where U; is a submatrix of U consisting of the first » orthonormal columns, ¥;
is a diagonal matrix of non-zero singular values and V|* is a submatrix of V* consisting of the

first r orthonormal rows. More specifically,

vV )\11 0 0 VT
0 AV AQQ 0 V;
A= [u1 uy ur] .
0 0 : :
| 0 0 Arr | V7]
2 1 1 |6 . .
Example 6.6.5. Let A = Then, AA* = Thus, AA* = UDU", where
1 (1 1 9 3 0 0
U=— and D = . Hence, > = Here,
V2|1 -1 0 0 V3 0
1 1
V2([1 -1 2 0 V3l|l% ~% &
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1 1
5 0 5 4 1
Thus, VT = % —% % and it’s rows are the eigenvectors of ATA= |4 5 —1].
1 -1 -1 1 -1 2
V3 V3 VB

In actual computations, the values of m and n could be very large. Also, the largest and
the smallest eigenvalues or the rows and columns of A that are of interest to us may be very
small. So, in such cases, we compute the singular value decomposition to relate the above ideas
or to find clusters which have maximum influence on the problem being looked. For example,
in the above computation, the singular value 3 is the larger of the two singular values. So, if
we are looking at the largest deviation or movement etc. then we need to concentrate on the
singular value 3. Then, using equation (6.6.10), note that 3 is associated with the first column
of U and the first row of VT Similarly, v/3 is associated with the second column of U and the
second row of V7T,

Note that in any computation, we need to decompose our problem into sub-problems. If
the decomposition into sub-problems is possible through orthogonal decomposition then in some
sense the sub-problems can be handled separately. That’s how the singular value decomposition
helps us in applications. This is the reason, that with slight change, SVD is also called “factor

analysis” or “principal component analysis” and so on.

EXERCISE 6.6.6. 1. Let A € M, ,(C) with m > n. Then A = WQ, for some positive

semi-definite matriz QQ and a matriz W of orthonormal columns.

2. Let A € ML, 1 (C). Illustrate the polar decomposition and the singular value decompositions
for A =e; and for A =e1 + 2e3 + -+ ne,.

3. Let A € M, ,(C) with RankA = r. If di,...,d, are the non-zero singular values of A
then, there ezxist ¥ € My, n(R), and unitary matrices U € M, (C) and V' € M,,(C) such

X

0
that A = UXV™*, where ¥ = [0 0] with ¥1 = diag(dy,...,d;). Then, prove that

>7to

G =VDU*, for D =
0o o0

] € M, 1, (C) is the pseudo-inverse of A.



Chapter 7

Jordan canonical form

7.1 Jordan canonical form theorem

We start this chapter with the following theorem which generalizes the Schur Upper triangu-

larization theorem.

Theorem 7.1.1. [Generalized Schur’s theorem] Let A € M, (C). Suppose \1,..., A\, are
the distinct eigenvalues of A with multiplicities mq, ..., my, respectively. Then, there exists a

non-singular matrix W such that

2
WAW = @ T, where, T; € My, (C), for1<i <k
i=1
and T;’s are upper triangular matrices with constant diagonal A;. If A has real entries with real

etgenvalues then W can be chosen to have real entries.

Proof. By Schur Upper Triangularization (see Lemma 6.4.1), there exists a unitary matrix U
such that U*AU = T, an upper triangular matrix with diag(7) = (A1, .., A1, vy Ay v oy Ak)-

Now, for any upper triangular matrix B, a real number « and i < j, consider the matrix
F(B,i,j,a) = E;jj(—a)BE;j(a), where the matrix E;j(c) is defined in Definition 2.2.5. Then,
for 1 <k, /<n,

Bij - aBjj + aBj;,  whenever k=i, =j

By — aB; h L+ 7

(F(B,i,j,a)), =4 ¢ @7t whenever £ j (7.1.1)
Byj + aBy;, whenever k # i
By, otherwise.

Now, using Equation (7.1.1), the diagonal entries of F(T,i,j,a) and T are equal and

T;;, whenever Tj; = Tj;

(F(T727]7a)):{ Tij
K 0, whenever Tj; 7 Ty and o = 727

Thus, if we denote the matrix F(T,i,j,«) by Ti then (F(T1,i— 1,7, «))

choice of c, whenever (11);—1,,—1 # T};. Moreover, this operation also preserves the 0 created by

i—1j = 0, for some

189
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F(T,i,j,«a) at (i,j)-th place. Similarly, F/(11,1,j + 1, ) preserves the 0 created by F(T,1,j, )

at (i,7)-th place. So, we can successively apply the following sequence of operations to get
T — F(T, ml,ml—{—l,a) =T, — F(Tl,ml—l,ml—l—l,ﬁ) — s — F(Tmlfl, 1,m1—|—1,'y) = Tml,

where «, 3,...,7 are appropriately chosen and T,,,[:,m1 + 1] = A2ey,,+1. Thus, observe that
the above operation can be applied for different choices of ¢ and j with ¢ < j to get the required

result. n

PRACTICE 7.1.2. Apply Theorem 7.1.1 to the matriz given below for better understanding.

O O OO O O N W
O OO O NN W
O OO N W|W = ot
S O W k|- ot O
S W|[W = ot &
W kx| Ot Y| N
= Ottt O NI o ©

O O Ol O oo o =
O OO0 O OO0 = N

0 0 00 0[]0 0 3]
Definition 7.1.3. 1. Let A € C and k be a positive integer. Then, by the Jordan block
Jk(A) € M (C), we understand the matrix

A1

A1
A

2. A Jordan matrix is a direct sum of Jordan blocks. That is, if A is a Jordan matrix
having r blocks then there exist positive integers k;’s and complex numbers \;’s (not

necessarily distinct), for 1 <4 < r such that
A=Jg, (/\1) ®---bD Jkr(/\r)~

We now give some examples of Jordan matrices with diagonal entries 0.

Example 7.1.4. 1. J;(0) = [0} is the only Jordan matrix of size 1.

2. J1(0) @ J1(0) = [g

01
and J2(0) = [O O] are Jordan matrices of size 2.

3. Even though , J1(0) & J2(0) and J2(0) & J1(0) are two Jordan matrices of size 3, we do

not differentiate between them as they are similar (use permutations).

000 010 010
4. J1(0) ® J1(0) @ J1(0) = [0 0 Of, J2(0)® J1(0) = |0 0 0| and J3(0) = {0 O 1
000 000 000

are Jordan matrices of size 3.
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5. Observe that the number of Jordan matrices of size 4 with 0 on the diagonal are 5.

We now give some properties of the Jordan blocks. The proofs are immediate and hence left

for the reader. They will be used in the proof of subsequent results.

Remark 7.1.5. [Jordan blocks] Fix a positive integer k. Then,
1. Ji(N) is an upper triangular matriz with X\ as an eigenvalue.
2. Jk(A) = M + Ji(0).
3. ALc.MuLy (Jx(X)) = k.

4. The matriz Ji(0) satisfies the following properties.

(a) Rank((Jk(0)") =k —1i, for 1 <i<k.
0 0

(b) Ji (0)Jx(0) = [O I,“]'

(¢) Ji(0)P =0 whenever p > k.

(d) Jk(O)el = €;—1 fOT’i = 2, e ,k.

(e) (1= TF(0)Jk(0) )x = [;‘

= (x,ej)e;.

5. Thus, using Remark 7.1.5.4d GEO.MUL)(Jk(N\)) = 1.
EXERCISE 7.1.6. 1. Fiz a positive integer k and. a complex number A. Then, prove that
(a) Rank(Jx(A) — M) =k — 1.
(b) Rank(Ji(N\) — aly) = k, whenever ac# X. Or equivalently, for all o # X\ the matriz
Jk(X) — ady, is invertible.
(c) for 1 <i <k, Rank((Jr(\) — Ap)") = k — 1.
(d) for a# X\, Rank((Jx(\) — aly)’) = k, for all i.

2. Let J be a Jordan matrix that contains £ Jordan blocks for \. Then, prove that
(a) Rank(J —AXI) =n —£.
(b) J has ¢ linearly independent eigenvectors for X.
(c) Rank(J — AI) > Rank((J — AI)?) > Rank((J — AXI)3) > ---.

3. Let A € M,(C). Then, prove that AJp(\) = Jo(N)A if and only if AJ,(0) = J,(0)A.

Definition 7.1.7. Let J be a Jordan matrix containing Jy(\), for some positive integer ¢
and some complex number . Then, the smallest value of k for which Rank((J — AI)¥) stops
decreasing is the order of the largest Jordan block Ji(A) in J. This number k is called the

index of the eigenvalue ).

Lemma 7.1.8. Let A € M,,(C) be strictly upper triangular. Then, A is similar to a direct sum
of Jordan blocks. Or equivalently, there exists integers ny > ... > ny, > 1 and a non-singular

matriz S such that
A=g5"1 (Jm 0@ Jnm(O))S.

If A € M,(R) then S can be chosen to have real entries.
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Proof. We will prove the result by induction on n. For n = 1, the statement is trivial. So, let

the result be true for matrices of size <n — 1 and let A € M,,(C) be strictly upper triangular.

T
Then, A = : . By induction hypothesis there exists an invertible matrix S such that
1
Ay = S;l(Jm(o) @ Jnm(o))s1 with Y ny=n - 1.
i=1
Thus,
0 al a
1 o] 1 o0 1 0 ]fo a”|[1 o 0 a’s b
A = . = . =10 J,(0) 0|,
0 5] 0 S 0 5] 0 A0 S 0 ST A5 0 0

where S (Jm 0)® - & Jn,, (O))Sl = Jn, (0)® J and al'S; = [af aﬂ. Now, writing J,, to

mean Jp, (0) and using Remark 7.1.5.4e, we have
1 —alJl 0|0 af af| |1 a{Jl 0 0
0 I, ol|lo J, ollo I, ol=10o ., 0
0 0 I{fo o0 J]]0 0 1 0

So, we now need to consider two cases depending on whether (a;,e;) =0 or (a;,e;) # 0. In the
0 0 al Joy 00

first case, A is similar to {0 J,, 0 |. This in turn is similar to | 0 0 al| by permuting
o 0 J 0o 0 J

the first row and column. At this stage, one can apply induction and if necessary do a block
permutation, in order to keep the block sizes in decreasing order.

So, let us now assume that (a;,e;) # 0. Then, writing o = (a;, e;), we have

10 0|0 ael al||la 0 0O 0 e al -

_ |t eray
0 1 00 Ju 0|0 I 0 =10 Jy 0)=}" Sl
00 7|0 0 J||0 0 af 0 0

Now, using Remark 7.1.5.4c, verify that

[I ei+1agﬂ1] [Jnﬁ-l eiagjill [I —e¢+1a2TJi1] B [Jnﬁ-l ei+1a2TJi

, for ¢ > 1.
0 1 0 J 0 1 0 J

Hence, for p =n —ny — 1, we have

I epHaQTJp_1 I exa’l Jni+1 ejal | |[I —epal I —eerlaTﬂ’_1 B Jni+1 0
0 I 0 I 0 J |lo I 0 I 0o J|

If necessary, we need to do a block permutation, in order to keep the block sizes in decreasing

order. Hence, the required result follows. n
01 1 01 2

PRACTICE 7.1.9. Convert [0 0 1| to J3(0) and [0 0 0| to J2(0) @ Ji(0).
0 00 0 00
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Corollary 7.1.10. A € M,,(C). Then, A is similar to J, a Jordan matriz.

Proof. Let A1,..., Ax be the distinct eigenvalues of A with algebraic multiplicities myq, ..., my.

k
By Theorem 7.1.1, there exists a non-singular matrix S such that S™'AS = @ T;, where T}
i=1

is upper triangular with diagonal (\;,...,\;). Thus T; — \;I,,,, is a strictly upper triangular

matrix. Thus, by Theorem 7.1.8, there exist a non-singular matrix 5; such that

1

5-1 (T _ /\iImi>SZ~ = J(0),

a Jordan matrix with 0 on the diagonal and the size of the Jordan blocks decreases as we move
down the diagonal. So, S; s, =J (A\;) is a Jordan matrix with A\; on the diagonal and the
size of the Jordan blocks decreases as we move down the diagonal.
Now, take W = S é S; |. Then, verify that W~'AW is a Jordan matrix. "
Let A € M,,(C). Su[q)i)se A € 0(A) and J is a Jordan matrix that is similar to A. Then, for
each fixed i,1 < i < n, by ¢;(\), we denote the number of Jordan blocks Ji(\) in J for which

k > i. Then, the next result uses Exercise 7.1.6 to determine the number ¢;()\).

Remark 7.1.11. Let A € M,,(C). Suppose A € o(A) and J is a Jordan matriz that is similar
to A. Then, for1 <k <n,

(1(\) = Rank(A — XI)*~1 — Rank(A4 — AI)*.

Proof. In view of Exercise 7.1.6, we need to consider only the Jordan blocks Ji(A), for different
n

values of k. Hence, without loss of generality, let us assume that J = € a;J;(\), where a;’s are
i=1

non-negative integers and J contains exactly a; copies of the Jordan block J;(\), for 1 < i < n.

Then, by definition and Exercise 7.1.6, we observe the following:

1. n=">1ia,.

i>1
2. Rank(J — M) = > (i — 1)a,.
i>2
3. Rank((J — A1)?) = >_(i — 2)a;.
>3
4. In general, for 1 <k < n, Rank((J — AD¥) = > (i — k)a;.

i>k+1

Thus, writing ¢; in place of ¢;(\), we get

0 = Y ai=) da;— Y (i—1)a; =n— Rank(J — AI),

1>1 1>1 1>2
by = Y ai=>» (i—1a;— Y (i —2)a; = Rank(J — \I) — Rank((J — AI)?),
1>2 1>2 >3

b = Y ai=)Y (i—(k=1))ai— > (i —k)a; = Rank((J — AI)*~") — Rank((J — AI)¥).

i>k i>k i>k+1
Now, the required result follows as rank is invariant under similarity operation and the matrices

J and A are similar. n
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Lemma 7.1.12. [Similar Jordan matrices] Let J and J' be two similar Jordan matrices of

size n. Then, J is a block permutation of J'.

Proof. For 1 < i < n, let ¢; and ¢} be, respectively, the number of Jordan blocks of J and J’
of size at least i corresponding to A. Since J and J’ are similar, the matrices (J — AI)* and
(J' — M) are similar for all 4,1 < i < n. Therefore, their ranks are equal for all i > 1 and
hence, ¢; = ¢} for all 4 > 1. Thus the required result follows. .

We now state the main result of this section which directly follows from Lemma 6.4.1,

Theorem 7.1.1 and Corollary 7.1.10 and hence the proof is omitted.

Theorem 7.1.13. [Jordan canonical form theorem] Let A € M,,(C). Then, A is similar to
a Jordan matrixz J, which is unique up to permutation of Jordan blocks. If A € M,,(R) and has
real eigenvalues then the similarity transformation matriz S may be chosen to have real entries.

This matriz J is called the the Jordan canonical form of A, denoted JORDAN CF(A).
We now start with a few examples and observations.

Example 7.1.14. Let us use the idea from Lemma 7.1.11 to find the Jordan Canonical Form

of the following matrices.

o o O

1. Let A = J4(0)% =

o O o O
o O = O

1
0
0
0

@)

Solution: Note that ¢; =4 — Rank(A — 0]) = 2. So, there are two Jordan blocks.
Also, ¢5 = Rank(A — 0I) — Rank((A — 0I)?) = 2. So, there are at least 2 Jordan blocks of

size 2. As there are exactly two Jordan blocks, both the blocks must have size 2. Hence,
JORDAN CF(A) = J2(0) & J2(0).

1101

0111
2. Let A1 = .

0 011

0 0 01

Solution: Let B = A; — I. Then, ¢; = 4 — Rank(B) = 1. So, B has exactly one Jordan

block and hence A; is similar to Js(1).

11 01
0111
3. Ay = .
0010
0 0 01

Solution: Let C' = Ay — I. Then, ¢; = 4 — Rank(C) = 2. So, C has exactly two Jordan
blocks. Also, /5 = Rank(C) — Rank(C?) = 1 and /3 = Rank(C?) — Rank(C?3) = 1. So, there

is at least 1 Jordan blocks of size 3.

Thus, we see that there are two Jordan blocks and one of them is of size 3. Also, the size
of the matrix is 4. Thus, Aj is similar to J3(1) & J1(1).
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4. Let A= Jy(1)2® A; @ As, where A1 and A, are given in the previous exercises.

Solution: One can directly get the answer from the previous exercises as the matrix A is

already in the block diagonal form. But, we compute it again for better understanding.
Let B = A —I. Then, ¢; = 16 — Rank(B) = 5, f2 = Rank(B) — Rank(B?) = 11 — 7 = 4,
¢35 = Rank(B?) — Rank(B3) = 7 — 3 = 4 and ¢4 = Rank(B3) — Rank(B*) =3 — 0 = 3.
Hence, Jy4(1) appears thrice (as ¢4 = 3 and ¢5 = 0), J3(1) also appears once (as f3—£4 = 1),
J2(1) does not appear as (as ¢ — ¢3 = 0) and J;(1) appears once (as {; — {2 = 1). Thus,

the required result follows.

Remark 7.1.15. [Observations about JORDAN CF(A)]

1.

What are the steps to find JORDAN CFA?

Ans: Let \i,..., ; be the distinct eigenvalues of A. Now, apply the Schur Upper Tri-
angularization Lemma (see Lemma 6.4.1) to get an upper triangular matriz, say T such

that the diagonal entries of T are Ai,..., A1, 2, ..., A2,y Ay, Ag. Now, apply sim-

k

ilarity transformations (see Theorem 7.1.1) to get T = @ T;, where each diagonal entry
i=1

of T; is N;. Then, for each i,1 < i < k, use Theorem 7.1.8 to get an invertible matriz

S; such that S[l(Ti - NS = ji, a Jordan matriz. Thus, we obtain a Jordan matriz

- k
Ji=Ji+NI = Si_lT,-Si, where each diagonal-entry of J; is A;. Hence, S = € S; converts
i=1
k
T = @ T; into the required Jordan matriz.
i=1

Let A € M, (C) be a diagonalizable matriz. Then, by definition, A is similar to € A,
=1

1=

where \; € o(A), for 1 <i <n. Thus, JORDAN CF(A) =
)\i ’s.

n
Ai, up to a permutation of

i=1
In general, the computation of JORDAN CF(A) is not numerically stable. To understand

€
this, let A = [1 Then, Ae is diagonalizable as A has distinct eigenvalues. So,

e O

JORDAN CF(A,) = .
0 0

0

0 1
Whereas, for A = 0] , we know that JORDAN CF(A) = 0 0 # lin% JOrRDAN CF(A,).
€E—

Thus, a small change in the entries of A may change JORDAN CF(A) significantly.

. Let A € M,,(C) and ¢ > 0 be given. Then, there exists an invertible matriz S such

k
that STYAS = @ Jn,(Nis€), where Jn, (N, €) is obtained from Jp,(\;) by replacing each
i=1

off diagonal entry 1 by an e. To get this, define Di(e) = diag(1l,¢,€2,...,e% 1), for
k
1 <i < k. Now compute @ ((Di(e))™ Jn,(Xi)Di(e)) .

1=1
Let JORDAN CF(A) contain € Jordan blocks for . Then, A has { linearly independent

etgenvectors for \.
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For if, A has at least £ + 1 linearly independent eigenvectors for X\, then dim(NULL(A —
Al)) > L. So, Rank(A — AI) < n — £. But, the number of Jordan blocks for X in A is L.

Thus, we must have Rank(J — X) =n — ¢, a contradiction.

Let A € 0(A). Then, by Remark 7.1.5.5, GEO.MUL)(A) = the number of Jordan blocks
Jr(A) in JORDAN CF(A).

Let X € o(A). Then, by Remark 7.1.5.3, ALG.MUL)(A) = the sum of the sizes of all
Jordan blocks Ji(\) in JORDAN CF(A).

Let A € o(A). Then, JORDAN CF(A) does not get determined by ALG.MUL)(A) and

010

01 01 0 1

® |0 0 1| and 5] S5
00 00 0 0

0 00

are different JORDAN CF's but they have the same algebraic and geometric multiplicities.

0
GEO.MULy)(A). For ezample, [O] @ 0

Let A € M,(C). Suppose that, for each N\ € o(A), the values of Rank(A — AI)*, for
kE=1,...,n are known. Then, using Remark 7.1.11, JORDAN CF(A) can be computed.

But, note here that finding rank is numerically unstable as [e] has rank 1 but it converges

to [O] which has a different rank.

Theorem 7.1.16. [A is similar to A”] Let A € M,(C). Then, A is similar to AT.

1

Proof. Let K,, = . Then, observe that K~! = K and K.J,(a)K = J,(a)”, as the

1

(i,7)-th entry of A goes to (n —i+ 1,n — 4+ 1)-th position in K AK. Hence,

@] [ 0] [ ] = [ D]

Thus, J is similar to J?. But, A is similar to J and hence A7 is similar to J? and finally we

get A is similar to AT. Therefore, the required result follows. =

EXERCISE 7.1.17. 1. Let M = 10 2 0 -1, NullM—-2I)=1LS

-2 0 -1 2 2
-2 2 -1 1 1

-3 0 -1 4 1

-4 0 -1 2 4
and o(M) = {2,2,2,2,2}. Then determine the Jordan canonical form of M.

== 0 O =
"o o o — o©

2. Fix k € N and let A # 0.

(1N —1/A2 1A% oo (=1)RFL/AR]
0 1/)\ (71)k/)\k—1
a en prove that Jp(A\)™" = . , for a > 1.
(a) Th hJ()\)1 0 0 : forallk > 1
0 0 1/ —1/X2
| 0 0 1/A |

1
(b) Show that (Jk()\)_l - )\Ik> is a nilpotent matriz of index k.
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1
(c) Use the previous part to conclude JORDAN CF (Jk()\)_l - )\Ik> = Ji(0).

1
(d) Therefore, prove that JORDAN CF (Jy(A)™1) = Ji <)\>

k
(e) Further, let JORDAN CF(A) = @ Jp,(\) for some integers ny > --- > ny > 1. Then
i=1
JORDAN CF(A™Y) = @ J,,(1/).
i=1
k

(f) Let JORDAN CF(A) = @ Jn,(\i) for some integers ng > --- > ni > 1 and \; # 0
i=1

k
for 1 <i <k. Then prove that JORDAN CF(A™1) = @ J,,(1/\;).
i=1

7.2 Minimal polynomial

Recall that a polynomial p(x) = ag+ a1z +- - -+ a,z™ with a,, = 1 is called a monic polynomial.

We now have the following definition.

Definition 7.2.1. Let P(t) = t" 4+ a,_1t" "' + --- + ag be a monic polynomial in ¢ of degree

0 0 O - 0 —ag
1 0 0 RN —aq
0 1 O - 0 —as
n. Then, the n X n matrix A = - , denoted A(n : ag,...,ap—1) or
0 0 O - 0 —an—o
0 0 0 —

COMPANION(P), is called the companion matrix of P(t).

Remark 7.2.2. Let A € M,(C) and let f(x) = 2" +ap—12" "+ - +arx+ag be its characteristic
polynomial. Then by the Cayley Hamilton Theorem, A" + ap_1 A" ' + - + a1 A + agl = 0.
Hence A" = —(ap—1 A" 1 + -+ a1 A+ apl).

Suppose, there exists a vector u € C" such that B = [u, Au, A?u, . .. ,A”flu] is an ordered
basis of C". Then, A™u = —(a,_1 A" 'u+---+ajAu+agu) and hence the matriz of A in the

basis B equals

AB.B] = [[Aus [A(Aw)]s - [A(A)]s| = [[Au]s [A%uls o [Amu]g)
[0 0 —ao |
1 —al
B 0 —a
~lo oo !
0 0 O oo 0 —ap—9
0 0 0 ——

the companion matriz of A.

Definition 7.2.3. Let A € M,,(C). Then, the polynomial P(¢) is said to annihilate (destroy)
Aif P(A)=0.
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Let P(x) be the characteristic polynomial of A. Then, by the Cayley-Hamilton Theorem,
P(A) =0. So, if f(z) = P(z)g(x), for any multiple of g(z), then f(A) = P(A)g(A) = 0g(A4) =
0. Thus, there are infinitely many polynomials which annihilate A. In this section, we will

concentrate on a monic polynomial of least positive degree that annihilates A.

Definition 7.2.4. Let A € M,,(C). Then, the minimal polynomial of A, denoted m4(x), is

a monic polynomial of least positive degree satisfying m4(A) = 0.

Theorem 7.2.5. Let A be the companion matriz of the monic polynomial P(t) = t"+a,_1t" '+
-+ 4ag. Then, P(t) is both the characteristic and the minimal polynomial of A.

Proof. Expanding det(tl, — COMPANION(P)) along the first row, we have

det(tl, — A(n:ag,...,apn_1)) = tdet(tl,_; —A(n—1:a1,...,an_1))+ (—=1)"ag(—1)""1
t? det(tl,—o — A(n —2:ag,...,an—1)) +ap + ait

= P(t).

Thus, P(t) is the characteristic polynomial of A and hence P(A) = 0.
We will now show that P(t) is the minimal polynomial of A. To do so, we first observe that

Aey =eg,...,Ae,_1 = e,. Thus,
Afe; = ey, for 1 <k <n—1. (7.2.1)

Now, Suppose we have a monic polynomial Q(t) = t™ + b, _1t™ ! + ... + by, with m < n,
such that Q(A) = 0. Then, using Equation (7.2.1), we get

0=Q(A)e; = A™e; + by 1A™ ey + - + boler = epi1 + bn1€m + -+ + boe,

a contradiction to the linear independence of {e1,...,en+1} C {e1,...,e,}. "
The next result gives us the existence of such a polynomial for every matrix A. To do so,
recall that the well-ordering principle implies that if S is a subset of natural numbers then it

contains a least element.

Lemma 7.2.6. [Existence of the minimal polynomial] Let A € M,,(C). Then, there exists a
unique monic polynomial m(x) of minimum (positive) degree such that m(A) = 0. Further, if
f(x) is any polynomial with f(A) = 0 then m(zx) divides f(x).

Proof. Let P(x) be the characteristic polynomial of A. Then, deg(P(x)) = n and by the
Cayley-Hamilton Theorem, P(A) = 0. So, consider the set

S = {deg(f(x)) : f(x) is a nonzero polynomial, f(A) = 0}.

Then, S is a non-empty subset of N as n € S. Thus, by well-ordering principle there ex-
ists a smallest positive integer, say M, and a corresponding polynomial, say m(z), such that
deg(m(z)) = M, m(A) = 0.
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Also, without loss of generality, we can assume that m(z) is monic and unique (non-
uniqueness will lead to a polynomial of smaller degree in S).
Now, suppose there is a polynomial f(z) such that f(A) = 0. Then, by division algorithm,

there exist polynomials ¢(z) and r(x) such that f(z) = m(x)q(z) + r(x), where either r(z) is

identically the zero polynomial of deg(r(x)) < M = deg(m(z)). As
0= f(A) =m(A)q(A) +1r(A) = 0g(A) + r(A) = r(A),

we get 7(A) = 0. But, m(z) was the least degree polynomial with m(A) = 0 and hence r(zx) is
the zero polynomial. That is, m(z) divides f(z). n

As an immediate corollary, we have the following result.
Corollary 7.2.7. [Minimal polynomial divides the characteristic polynomial] Let m(x)
and Py(x) be, respectively, the minimal and the characteristic polynomials of A € M, (C).

1. Then, my(x) divides Py(x).

2. Further, if X is an eigenvalue of A then ma(\) = 0.

Proof. The first part following directly from Lemma 7.2.6. For the second part, let (A, x) be an
eigen-pair. Then, f(A)x = f(\)x, for any polynomial of f, implies that

ma(A)x =ma(A)x =0x=0.

But, x # 0 and hence m4(A) = 0. Thus, the required result follows. "

we also have the following result.

Lemma 7.2.8. Let A and B be two similar matrices. Then, they have the same minimal

polynomaal.

Proof. Since A and B are similar, there exists an invertible matrix S such that A = S™'BS.
Hence, f(A) = F(S7'BS) = S71f(B)S, for any polynomial f. Hence, ma(A) = 0 if and only
if ma(B) = 0 and thus the required result follows. n

Theorem 7.2.9. Let A € M,,(C) and let A1, ..., be the distinct eigenvalues of A. If n; is
the size of the largest Jordan block for \; in J = JORDAN CF A then

k
Proof. Using 7.2.7, we see that m4(z) = [ (z—X\;)®, for some a;’s with 1 < a; < ALG.MULy, (A).
i=1

k
As my(A) = 0, using Lemma 7.2.8 we have ma(J) = [ (J — \I)* = 0. But, observe that

i=1
for the Jordan block J,,();), one has
L. (Jn,(N) = AI)® = 0 if and only if «; > n;, and
2. (Jn,, Am) — NiI)™ is invertible, for all m # i.
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k k k k
Thus [[(J —AI)™ =0 and [[(x — X\;)™ divides [][(z — X)) = ma(z) and [](z — A;)™
i=1 i=1 =1 =1
is a monic polynomial, the result follows. "
As an immediate consequence, we also have the following result which corresponds to the

converse of the above theorem.

Theorem 7.2.10. Let A € M,(C) and let \i,...,\; be the distinct eigenvalues of A. If the
k
minimal polynomial of A equals [] (x — ;)™ then n; is the size of the largest Jordan block for

=1
A; in J = JORDAN CFA.

Proof. 1t directly follows from Theorem 7.2.9. "

We now give equivalent conditions for a square matrix to be diagonalizable.

Theorem 7.2.11. Let A € M,,(C). Then, the following statements are equivalent.
1. A is diagonalizable.

2. Every zero of ma(x) has multiplicity 1.
d
3. Whenever ma(a) = 0, for some «, then %mA(x)|$:a #0.

Proof. Part 1 = Part 2. If A is diagonalizable, then each Jordan block in J = JORDAN CFA

k
has size 1. Hence, by Theorem 7.2.9, m4(x) = [ (x—\;), where \;’s are the distinct eigenvalues
=1
of A. '
k

Part 2 = Part 3. Let ma(z) = [[(z — A\i); where \;’s are the distinct eigenvalues of A.
i=1
Then, ma(z) = 0 if and only if x = \;, for some 7,1 < i < k. In that case, it is easy to verify

d
that @m,q(x) # 0, for each \;.

Part 3 = Part 1. Suppose that for each « satisfying m4(a) = 0, one has %mA(a) # 0.
Then, it follows that each zero of m4(x) has multiplicity 1. Also, using Corollary 7.2.7, each
zero of m4(x) is an eigenvalue of A and hence by Theorem 7.2.9, the size of each Jordan block
is 1. Thus, A is diagonalizable. .

We now have the following remarks and observations.

Remark 7.2.12. 1. Let f(x) be a monic polynomial and A = COMPANION(f) be the com-
panion matriz of f. Then, by Theorem 7.2.5) f(A) = 0 and no monic polynomial of
smaller degree annihilates A. Thus Pa(x) = ma(x) = f(x), where Pa(x) is the charac-

teristic polynomial and ma(z), the minimal polynomial of A.

2. Let A € M,,(C). Then, A is similar to COMPANION(f), for some monic polynomial f if
and only if ma(x) = f(z).
Proof. Let B = COMPANION (f). Then, using Lemma 7.2.8, we see that ma(z) = mp(x).
But, by Remark 7.2.12.1, we get mp(z) = f(x) and hence the required result follows.
Conversely, assume that ma(z) = f(x). But, by Remark 7.2.12.1, mp(x) = f(z) =
Pg(z), the characteristic polynomial of B. Since ma(x) = mp(x), the matrices A and
B have the same largest Jordan blocks for each eigenvalue \. As Pg = mp, we know

that for each X, there is only one Jordan block in JORDAN CFB. Thus, JORDAN CFA =
JORDAN CFB and hence A is similar to COMPANION (f). .
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EXERCISE 7.2.13. The following are some facts and questions.

1. Let A € M,(C). If Pa(x) is the minimal polynomial of A then A is similar to COMPANION (Pj)
if and only if A is nonderogatory. T/F?

2. Let A, B € M3(C) with eigenvalues 1,2,3. Is it necessary that A is similar to B?

3. Let A, B € M3(C) with eigenvalues 1,1,3. Is it necessary that A is similar to B?

4. Let A, B € My (C) with the same minimal polynomial. Is it necessary that A is similar to
B?

5. Let A, B € M3(C) with the same minimal polynomial. Is it necessary that A is similar to
B?

6. Let A € M, (C) be idempotent and let J = JORDAN CFA. Thus, J*> = J and hence con-
clude that J must be a diagonal matrix. Hence, every idempotent matriz is diagonalizable.

7. Let A € M,,(C). Suppose that ma(z)|z(x —1)(z — 2)(x — 3). Must A be diagonalizable?

8. Let A € My(C) be a nilpotent matrix such that A®> # 0 but A® = 0. Determine Pa(x) and
ma(x).

9. Recall that for A, B € M,,(C), the characteristic polynomial of AB and BA are the same.

That is, Pap(x) = Ppa(x). However, they need not have the same minimal polynomial.

0

Take A = and B =

0

1] to verify that map(z) # mpa(x).

10. Let A € M,,(C) be an invertible matriz. Then prove that if the minimal polynomial of A
equals m(z, M1, ..., \x) then the minimal polynomial of A= equals m(x, 1/ 1,...,1/ ).

11. Let A an eigenvalue of A € M, (C) with two linearly independent eigenvectors. Show that
there does not exist a vector u € C" such that LS (u,Au, Au, .. ) =C".

We end this section with a method to compute the minimal polynomial of a given matrix.

Example 7.2.14. [Computing the minimal polynomial] Let \1,..., Ax be the distinct eigen-
values of A € M,,(C).

7.3 Applications of Jordan Canonical Form

In the last section, we say that the matrices if A is a square matrix then A and AT are similar.

In this section, we look at some more applications of the Jordan Canonical Form.

7.3.1 Coupled system of linear differential equations

Consider the first order Initial Value Problem (IVP) x/(¢) = : =A| : = Ax(t),
X5, (1) Xn(t)

with x(0) = 0. If A is not a diagonal matrix then the system is called COUPLED and is hard

to solve. Note that if A can be transformed to a nearly diagonal matrix, then the amount of

coupling among x;’s can be reduced. So, let us look at J = JORDAN CF(A) = S~'AS. Then,
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using S7'A = JSL. verify that the initial problem x’(t) = Ax(t) is equivalent to the equation
S=x/(t) = S~1Ax(t) which in turn is equivalent to y'(t) = Jy(t), where S™'x(t) = y(t) with
y(0) = S7!x(0) = 0. Therefore, if y is a solution to the second equation then x(t) = Sy is a
solution to the initial problem.

When J is diagonalizable then solving the second is as easy as solving y.(t) = \;y;(t) for
which the required solution is given by y;(t) = y;(0)eM.

If J is not diagonal, then for each Jordan block, the system reduces to

Yi(t) = Ay1(t) +y2(t), - ¥h-1 (8) = Ayr-1(t) + yr(t), yi(t) = Ayx(t).

This problem can also be solved as in this case the solution is given by yi = coe™; yr_1 =

(cot + c1)e* and so on.

7.3.2 Commuting matrices

Let P(z) be a polynomial and A € M,,(C). Then, P(A)A = AP(A). What about the converse?
That is, suppose we are given that AB = BA for some B € M,,(C). Does it necessarily imply
that B = P(A), for some nonzero polynomial P(z)? The answer is No as I commutes with A

for every A. We start with a set of remarks.

Theorem 7.3.1. Let A € M,(C) and B € M,,,(C). Then, the linear system AX — XB =0, in
the variable matriz X of size n x m, has a unique solution, namely X = 0 (the trivial solution),

if and only if o(A) and o(B) are disjoint.

Proof. Let us assume that 0(A) and o(B) are disjoint.

Since o(A) and o(B) are disjoint, the matrix Pgp(A) = < [T [M — A] |, obtained by
A€o (B)
evaluating A at the characteristic polynomial, Pgp(t), of B, is invertible. So, let us look at

the implication of the condition AX = XB. This condition implies that A2X = AXB =
XBB = X B? and hence, P(A)X = X P(B), for any polynomial P(t). In particular, Pg(A4)X =
XPp(B)=X0=0. As Pg(A) is invertible, we get X = 0.

Now, conversely assume that AX — X B = 0 has only the trivial solution X = 0. Suppose
on the contrary A is a common eigenvalue of both A and B. So, choose nonzero vectors x € C™
and y € C™ such that (A, x) is an eigen-pair of A and (\,y) is a left eigen-pair of B. Now,

define X = xy”. Then, Xj is an n x m nonzero matrix and
AX — XB = AxyT — xyTB = )\xyT — )\XyT =0.

Thus, we see that if A is a common eigenvalue of A and B then the system AX — X B = 0 has

a nonzero solution Xy, a contradiction. Hence, the required result follows. n

Corollary 7.3.2. Let A € M, (C), B € M,,,(C) and C be an n x m matriz. Also, assume that
o(A) and o(B) are disjoint. Then, it can be easily verified that the system AX — XB = C, in

the variable matriz X of size n x m, has a unique solution, for any given C.
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Proof. Consider the linear transformation 7' : M, ,,(C) — M, ,(C), defined by T(X) =
AX — XB. Then, by Theorem 7.3.1, NULL(T") = {0}. Hence, by the rank-nullity theorem, T’

is a bijection and the required result follows. "

Definition 7.3.3. A square matrix A is said to be of Toeplitz type if each (super/sub)-
b1 by by by
. . ap b1 by b3| .
diagonal of A consists of the same element. For example, A = isadx4
as ap bl bg

az ag ai b1

bi by by by
. . : 0 b1 by bs| . : :
Toeplitz type matrix. and the matrix B = 00 bb is an upper triangular Toeplitz
1 02
0 0 0 b

type matrix.

EXERCISE 7.3.4. Let J,(0) € M,,(C) be the Jordan block with O on the diagonal.
1. Further, if A € M,(C) such that AJy,(0) = J,(0)A then prove that A is an upper Toeplitz

type matrix.
2. Further, if A, B € M,,(C) are two upper Toeplitz type matrices then prove that
(a) there erists a; € C,1 <i < n, such that A= agl + a1J,(0) + - + a,Jp(0)" L.
(b) P(A) is a Toeplitz matriz for any polynomial P(t).
(¢) AB is a Toeplitz matriz.
(d) if A is invertible then A~ is also an upper Toeplitz type matriz.

To proceed further, recall that a matrix A € M,,(C) is called non-derogatory if GEO.MUL,(A) =
1, for each a € o(A) (see Definition 6.3.9).

Theorem 7.3.5. Let A € M,,(C) be a non-derogatory matriz. Then, the matrices A and B
commute if and only if B = P(A), for some polynomial P(t) of degree at most n — 1.

Proof. If B = P(A), for some polynomial P(t), then A and B commute. Conversely, suppose
that AB = BA, 0(A) = {\1,..., \} and let J = JORDAN CFA = S~ AS be the Jordan matrix
Ini (A1) By -+ B
of A. Then, J = . Now, write B = S7'BS = S ‘|, where
Iy, (k) Bri -+ B
B is partitioned conformally with J. Note that AB = BA gives JB = BJ. Thus, verify that

Jny (M) Bia = [JBli2 = [BJ]12 = Bi2Jn,(A\2),

and hence Bis = 0. A similar argument gives Pij =0, for all ¢ # j. Hence, JB = BJ implies
Jnl()\z)Eu = Ezanl()\z)a for 1 < ) < k. Or equivalently, Jnl(O)Bu = BanZ(O), for 1 < 7 < k
(using Exercise 7.1.6.3). Now, using Exercise 7.3.4.1, we see that B;; is an upper triangular

Toeplitz type matrix.
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To proceed further, for 1 <14 <k, define Fj(t) = [[(t — A;)™. Then, Fj(t) is a polynomial
J#i

with deg(F;(t)) = n —n; and F;(Jn,(A;)) = 0 if j # 4. Also, note that F;(J,,(N\;)) is a

nonsingular upper triangular Toeplitz type matrix. Hence, its inverse has the same form and

using Exercise 7.3.4.1, the matrix F;(J,,(\;)) 1By is also a Toeplitz type upper triangular

matrix. Hence,

FZ(JnZ()\z))_IEH =cl+ CQJnZ(O) + -+ CniJni (O)ni_l = Rz(an()\z))a (say).

Thus, Bi; = Fi(Jn; (X)) Ri(Jn;(A:)). Putting P;(t) = F;(t)Ri(t), for 1 < i < k, we see that P;(t)
is a polynomial of degree at most n — 1 with P;((J,;();)) = 0, for j # i and P;((Jn, (X)) = B
Taking, P = P} + - - - 4+ P, we have
Iy ()‘1> Iy O‘l)
P(J) = P +--+ Py .

Hence, B = SBS~! = SP(J)S™! = P(SJS™!) = P(A) and the required result follows. .



Chapter 8

Advanced Topics on
Diagonalizability and

Triangularization™

8.1 More on the Spectrum of a Matrix

We start this subsection with a few definitions and examples. So, it will be nice to recall the

notations used in Section 1.5 and a few results from Appendix 9.2.

Definition 8.1.1. [Principal Minor] Let A € M,,(C).

1. Also, let S C [n]. Then, det (A[S, S]) is called the Principal minor of A corresponding
to S.

2. By EMj(A), we denote the sum of all k£ x k principal minors of A.

Definition 8.1.2. [Elementary Symmetric Functions] Let k be a positive integer. Then,

the kth elementary symmetric function of the numbers r,...,7, is Sg(r1,...,r,) and is
defined as
Sk(T], 7rn) = Z Tiy Ty,
i< <ip

1 2 3 4

5 6 7 8
Example 8.1.3. Let A = . Then, note that

9 8 7

5 4 3 2

1. EMy(A) = 146+ 7+2 = 16 and EMy(A) = det A({1,2}, {1,2}) + det A({1,3},{1,3}) +
det A({1,4}, {1,4}) + det A({2,3},{2,3}) + det A({2,4},{2,4}) + det A({3,4},{3,4}) =
—80.

2. 81(1,2,3,4) = 10 and S5(1,2,3,4) = 1-(2+3+4) +2-(3+4)+3-4=9414+12 = 35.

Theorem 8.1.4. Let A € M,,(C) and let o(A) = {A1,...,\n}. Then,

205
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3

1. the coefficient of t"~F in Ps(t) = [[(t — \;), the characteristic polynomial of A, is
i=1
D% Y A A = (FDFSE (L ) (8.1.1)
i< <ig

2. EMy(A) = Sk, .. ).

Proof. Note that by definition,

Pa(t)y = Jt=X)=t"=S1(A, ... A"
i=1

+89( A1y s A2 = (= 1)"S (M, M) (8.1.2)
= " — EMy(A)t" ' + EMy(A)t" 2 — - + (=1)"EM,(A). (8.1.3)
As the second part is just a re-writing of the first, we will just prove the first part. To do so,

t—apn -+ —ap
let B=tI—A= . Then, using Definition 9.2.2 in Appendix, note that

—Gnp1 o t—apy

det B = ) sgno [] bis(;) and hence each S C [n] with |S| = n — k has a contribution to the
o =1

coefficient of "% in the following way:

For all i € S, consider all permutations o such that o(i) = ¢. Our idea is to select a ‘¢’ from
these b, (;). Since we do not want any more ‘t’, we set ¢ = 0 for any other diagonal position. So
the contribution from S to the coefficient of "~ is det[—A(S|S)] = (—1)* det A(S|S). Hence
the coefficient of "% in P4(t) is

(DF ) det A(SIS) = (-1)F > det A[T,T] = (—1)FE(A).
SCln], |S|=n—k TCn), |T|=k

The proof is complete in view of Equation (8.1.2). n

As a direct application, we obtain Theorem 6.1.17 which we state again.

Corollary 8.1.5. Let A € M, (C) and let 0(A) = {A1,...,\n}. Then tr(A) = Y1 \i and
det A = H? N

Let A and B be similar matrices. Then, by Theorem 6.2.3, we know that ¢(A) = o(B).

Thus, as a direct consequence of Part 2 of Theorem 8.1.4 gives the following result.

Corollary 8.1.6. Let A and B be two similar matrices of order n. Then, EMy(A) = EMy(B)
for1<k<n.

So, the sum of principal minors of similar matrices are equal. Or in other words, the sum

of principal minors are invariant under similarity.

Corollary 8.1.7. [Derivative of Characteristic Polynomial] Let A € M,,(C). Then

%PA(t) = P)(t) = Z P (1)
=1
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Proof. For 1 < i < n, let us denote A(i|]i) by A;. Then, using Equation (8.1.3), we have

znj Pa(t) = D "= EMi(AN" T 4 (=1 D EM, 1 (A))
=1 7 A

%

= nt" ' — (n— D)EM(A)t" 2+ (n — 2)EMy(A)t" 3 — . 4 (=1)""LEM,_,(A)
= PL(1).
Which gives us the desired result. "
Corollary 8.1.8. Let A € M,,(C). If ALG.MULy(A) =1 then Rank[A — ] =n — 1.

Proof. As ALG.MULy(A) = 1, Pa(t) = (t — N)q(t), where ¢(t) is a polynomial with g(\) #
0. Thus P)(t) = q(t) + (t — N\)¢'(t). Hence, P}(\) = ¢q(\) # 0. Thus, by Corollary 8.1.7,
> i Pagjiy(A) = P4(X) # 0. Hence, there exists i,1 < i < n such that Py(p;)(A) # 0. That is,
det[A(i|i) — M| # 0 or Rank[A — AI] =n — 1. n

0 1
Remark 8.1.9. Converse of Corollary 8.1.8 is false. Note that for the matriz A = 0 0] ,

Rank[A —0I]=1=2—-1=n—1, but 0 has multiplicity 2 as a root of Pa(t) = 0.

As an application of Corollary 8.1.7, we have the following result.

We now relate the multiplicity of an eigenvalue with the spectrum of a principal sub-matrix.

Theorem 8.1.10. [Multiplicity and Spectrum of a Principal Sub-Matrix] Let A € M, (C)
and k be a positive integer. Then 1 = 2 = 3, where

1. GEO.MULy(A) > k.
2. If B is a principal sub-matriz of A of size m > n — k then A € o(B).
3. ALG.MUL)(A) > k.

Proof. Part 1= Part 2. Let {x1,...,Xx} be linearly independent eigenvectors for A and let B

B x*
be a principal sub-matrix of A of size m > n — k. Without loss, we may write A = .
* %
. , Xi1
Let us partition the x;’s , say x; = [ ] , such that
Xi2
B | | |x; Z;
i = A i , for 1 <i<k.
* * X2 )
As m > n — k, the size of x;o is less than k. Thus, the set {xi2,...,Xx2} is linearly dependent
(see Corollary 3.3.9). So, there is a nonzero linear combination y = [m] of x1,...,X; such
y2

that yo = 0. Notice that y; # 0 and By; = \y1.
n
Part 2= Part 3. By Corollary 8.1.7, we know that P)(t) = > Pags(t). As A(ili) is of size
i=1

n —1, we get Py()(A) =0, for all i = 1,2,...,n. Thus, P}(A\) = 0. A similar argument now

d
applied to each of the A(i]i)’s, gives Pf)()\) = 0, where Pf)(t) = £P1’4(t). Proceeding on above

lines, we finally get P{’(\) =0, for i = 0,1,...,% — 1. This implies that ALG.MULy(A) > k. =
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Definition 8.1.11. [Moments] Fix a positive integer n and let a1,...,a, be n complex
n

numbers. Then, for a positive integer k, the sum ) af is called the k-th moment of the
i=1

numbers aji, ..., Q.

Theorem 8.1.12. [Newton’s identities] Let P(t) = t" + a, 1t"" ' + - + ag have zeros
n

ALy -y A, counted with multiplicities. Put p = > )\f‘. Then, for 1 <k <mn,
i=1

kan_+ p1ap_pe1 + -+ pr—10n-1 + pp = 0. (8.1.4)
That is, the first n moments of the zeros determine the coefficients of P(t).

Proof. For simplicity of expression, let a, = 1. Then, using Equation (8.1.4), we see that
k = 1 gives us ap—1 = —p1. To compute a,—2, put & = 2 in Equation (8.1.4) to verify that
Op—o = —uzT-ﬂ-uf This process can be continued to get all the coefficients of P(t). Now, let us
prove the n given equations.

Define f(t) = Zt N = /(( )) and take [t| > max])\ |. Then, the left hand side can be

re-written as

n
:Zt
i=1

n

) Z[ +t2 ]:%+%+ (8.1.5)

=1

e

Thus, using P'(t) = f(t)P(t), we get

nat" t+ (n— Dap_1t" 2+ +ap =P(t) = [ _|_&_|_ }[ant”—i—---—f—ag ]

Now, equating the coefficient of t”"%~1 on both sides, we get
(n—k)an—k =nap_k + p1ap_gt1 + -+ + pran, for 0 <k <n-—1
which is the required Newton’s identity. "

Remark 8.1.13. Let P(t) = ant™ + - -+ + a1t + ag with a, = 1. Thus, we see that we need not
find the zeros of P(t) to find the k-th moments of the zeros of P(t). It can directly be computed

recursively using the Newton’s identities.

EXERCISE 8.1.14. Let A, B € M,,(C). Then, prove that A and B have the same eigenvalues if
and only if tr(A¥) = tr(B¥), fork =1,...,n

8.2 Methods for Tridiagonalization and Diagonalization

Let G = {A € M,(C) : A*A = I}. Then, using Exercise 5.8.8, we see that
1. for every A, B € G, AB € G.
2. for every A,B,C € G, (AB)C = A(BC).
3. I, is the identity element of G. That is, for any A € G, AL, = A = I, A.
4. for every Ac G, A"l €G.
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Thus, the set G forms a group with respect to multiplication. We now define this group.

Definition 8.2.1. [Unitary Group] Let G = {A € M,,(C) : A*A = I}. Then, G forms a

multiplicative group. This group is called the unitary group.

Proposition 8.2.2. [Selection Principle of Unitary Matrices] Let {Uy : k > 1} be a sequence
of unitary matrices. Viewing them as elements of C"2, let us assume that “for any e > 0, there
exists a positive integer N such that |[Uy — U|| <€, for all k > N”. That is, the matrices Uy’s
converge to U as elements in cr. Then, U is also a unitary matriz.
n
Proof. Let A = [a;j] € M,(C) be an unitary matrix. Then Y |a;;|* = tr(A*A) = n. Thus, the
ij=1

set of unitary matrices is a compact subset of cr’. Hence, any sequence of unitary matrices has
a convergent subsequence (Bolzano-Weierstrass Theorem), whose limit is again unitary. Thus,
the required result follows. n

For a unitary matrix U, we know that U~! = U*. Our next result gives a necessary and

sufficient condition on an invertible matrix A so that the matrix A~1 is similar to A*.

Theorem 8.2.3. [Generalizing a Unitary Matrix] Let A be an invertible matriz. Then A~!

is similar to A* if and only if there exists an invertible matriz B such that A = B~'B*.
Proof. Suppose A = B~'B*, for some invertible matrix B. Then
A*=BB Y =BB YBB!'=BB'B)'B!'=BA'B.

Conversely, let A* = SA~1S~!, for some invertible matrix S. Need to show, A = S~15*.

We first show that there exists a nonsingular Hermitian Hy such that A= = H 0 L A*Hy, for
some 6 € R.

Note that for any 0 € R, if we put Sy = €S then

SpATrS,; 1 = A* and Sy = A*SpA.

Now, define Hy = Sp + Sj. Then, Hp is a Hermitian matrix and Hy = A*HpA. Furthermore,
there are infinitely many choices of 8 € R such that det Hy = 0. To see this, let us choose a
f € R such that Hy is singular. Hence, there exists x # 0 such that Hyx = 0. So,

Sex = —Spx = —e % 8*x. Or equivalently, — ¢*¥x = §715*x.

That is, —e*? € ¢(S~18*). Thus, if we choose f € R such that —e? (%) ¢ 5(S~15*) then H o)
is nonsingular.

To get our result, we finally choose B = B(al — A*)H#) such that § # 0 and a = €7 ¢
o(A*).

Note that with o and 3 chosen as above, B is invertible. Furthermore,

As we need, BA = B*, we get BH(th)(aA —1) = BH(QO)(aI — A) and thus, we need § = —fa,
which holds true if 8 = ("=7)/2, Thus, the required result follows. "

EXERCISE 8.2.4. Suppose that A is similar to a unitary matriz. Then, prove that A~ is similar
to A*.
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8.2.1 Plane Rotations

Definition 8.2.5. [Plane Rotations] For a fixed positive integer n, consider the vector space
R™ with standard basis {e1,...,e,}. Also, for 1 <i,j < n,let E;; = eie]T. Then, for § € R
and 1 <i,j < n, a plane rotation, denoted U(0;1, j), is defined as

U(0;i,j) =1 —E;; —

1

cosf
That is, U(6;1,75) =

sin 6

EjJ‘ + [Ez,z + Ej,j] cos 6 — E@j sin 6 + Ejﬂ' sin 6.

—sin6

cos

1

< i-th row
, where the unmentioned

< j-th row

diagonal entries are 1 and the unmentioned off-diagonal entries are 0.

Remark 8.2.6. Note the following about the matriz U(0;1i,7), where 0 € R and 1 <i,j < n.

1. U(0;1i,7) are orthogonal.

2. Geometrically U(60;1,j)x rotates x by the angle.0 in the ij-plane.

3. Geometrically (U(6; i,j))Tx rotates x by the angle —0 in the ij-plane.

4. If y =U(6;1,7)x then the coordinates of y are given by

(a) yi = x;cosf —x;siné,

(b) y;j = x;sin6 + x;cosf, and

(C) fOTl?éZ',j, Yy = Xy.

5. Thus, for x € R", the choice of 0 for which y; =0, where y = U(0;1,j)x equals

(a) 0 =0, whenever x; = 0. That is, U(0;4,5) = 1.

Xj

(b) 6 = cot™? ( xi), whenever x; # 0.

6. [Geometry] Imagine standing at 1 = (1,1, 1)T € R3. We want to apply a plane rotation
U, so that v.=UT1 with vo = 0. That is, the final point is on the xz-plane.

Then, we can either apply a plane rotation along the xy-plane or the yz-plane. For the

xy-plane, we need the plane z =1 (zy plane lifted by 1). This plane contains the vector 1.

Imagine moving the tip of 1 on this plane. Then this locus corresponds to a circle that lies

on the plane z = 1, has radius /2 and is centred at (0,0,1). That is, we draw the circle

x24y% = 1 on the xy-plane and then lifted it up by so that it lies on the plane z = 1. Thus,

note that the xz-plane cuts this circle at two points. These two points of intersections give

us the two choices for the vector v (see Figure 8.1). A similar calculation can be done for

the yz-plane.
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Figure 8.1: Geometry of plane rotations in R?

7. In general, in R™, suppose that we want to apply plane rotation to a along the r1xo-plane

so that the resulting vector has 0 in the 2-nd coordinate. In that case, our circle on x1xs-

T
plane has radius r = /a3 + a3 and it gets translated by [O, 0, as, --- an} . So, there
T
are two points x on this circle with xo = 0 and they are {ir, 0, as, --- an] .

8. Consider three mutually orthogonal unit vectors, say x,y,z. Then, X can be brought to ey

by two plane rotations, namely by an appropriate U(01;1,3) and U(62;1,2). Thus,
U(602;1,2)U(01;1,3)x = €.
In this process, the unit vectors'y and z, get shifted to say,
y=U(02;1,2)U(01;1,3)y and z = U(02;1,2)U(01; 1, 3)z.

As unitary transformations preserve angles, note that y(1) = z(1) = 0. Now, we can apply
an appropriate plane rotation U(0s;2,3) so that U(603;2,3)y = ey. Since es is the only
unit vector in R3 orthogonal to both e; and es, it follows that U(63;2,3)z = e3. Thus,

1= [el e eg] — U(63;2,3)U(02: 1,2)U (613 1,3) [x y z}.
Hence, any real orthogonal matriz A € M3(R) is a product of three plane rotations.

We are now ready to give another method to get the QR-decomposition of a square matrix

(see Theorem 4.6.1 that uses the Gram-Schmidt Orthonormalization Process).

Proposition 8.2.7. [QR Factorization Revisited: Square Matrix] Let A € M, (R). Then

there exists a real orthogonal matriz (Q and an upper triangular matriz R such that A = QR.

Proof. We start by applying the plane rotations to A so that the positions (2,1),(3,1),...,(n,1)
of A become zero. This means, if as; = 0, we multiply by I. Otherwise, we use the plane rotation

U(6;1,2), where § = cot™'(—a11/as1). Then, we apply a similar technique to A so that the
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(3,1) entry of A becomes 0. Note that this plane rotation doesn’t change the (2, 1) entry of A.
We continue this process till all the entry in the first column of A, except possibly the (1,1)
entry, is zero.

We then apply the plane rotations to make positions (3,2),(4,2),...,(n,2) zero. Observe
that this does not disturb the zeros in the first column. Thus, continuing the above process a

finite number of times give us the required result. "

Lemma 8.2.8. [QR Factorization Revisited: Rectangular Matrix] Let A € M, ,(R). Then
there exists a real orthogonal matriz Q and a matrizc R € My, ,(R) in upper triangular form

such that A = QR.

Proof. If RankA < m, add some columns to A to get a matrix, say A such that RankA = m. Now
suppose that A has k columns. For 1 < i < k, let v; = fl[:,z’}. Now, apply the Gram-Schmidt
Orthonormalization Process to {vi,...,vy}. For example, suppose the result is a sequence of k
vectors wi,0,ws,0,0,...,0,w,,,0,...,0, where Q = |w; .- w,,| is real orthogonal. Then
A[:,1] is a linear combination of wy, A[:,2] is also a linear combination of wy, A[:, 3] is a linear
combination of wy,ws and so on. In general, for 1 < s < k, the column fl[:,s] is a linear

~ m
combination of w;-s in the list that appear up to the s-th position. Thus, A[:,s] = > w;rs,
i=1

where r;s = 0 for all ¢ > s. That is, A= QR, where R = [r;j]. Now, remove the extra columns
of A and the corresponding columns in R to get the required result. "
Note that Proposition 8.2.7 is also valid for any complex matrix. In this case the matrix @
will be unitary. This can also be seen from Theorem 4.6.1 as we need to apply the Gram-Schmidt
Orthonormalization Process to vectors in C".
To proceed further recall that a matrix A = [a;;] € M, (C) is called a tri-diagonal matrix

if a;; = 0, whenever |i —j| > 1,1 <14,j <n.

Proposition 8.2.9. [Tridiagonalization of a Real Symmetric Matrix: Given’s Method]
Let A be a real symmetric. Then, there exists a real orthogonal matriz Q such that QAQ" is a

tri-diagonal matriz.

Proof. If ag; # 0, then put Uy = U(61;2,3), where 6 = cot™!(—as1/az1). Notice that U{[:
,1] = e; and so
(UL AUT)[:, 1] = (U1 A)[:, 1.

We already know that U;A[3,1] = 0. Hence, U AU is a real symmetric matrix with (3,1)-
th entry 0. Now, proceed to make the (4,1)-th entry of U;A equal to 0. To do so, take
Us = U(69;2,4). Notice that U] (:,1) = e; and so

(U2(U1 AU ) U )1, 1) = (U2U1 AUT [, 1.

But by our choice of the plane rotation Us, we have Us(UAU{ )(4,1) = 0. Furthermore, as

Us[3,:] = el, we have

(U2U1 AU ) [3,1] = Ua[3,:) (U1 AUY [, 1] = (U1 AUY)[3,1] = 0.
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That is, the previous zeros are preserved.
Continuing this way, we can find a real orthogonal matrix @ such that QAQ” is tri-

diagonal. "

Proposition 8.2.10. [Almost Diagonalization of a Real Symmetric Matrix: Jacobi method]
Let A € M,(R) be real symmetric. Then there exists a real orthogonal matrixz S, a product of

plane rotations, such that SAST is almost a diagonal matriz.

Proof. The idea is to reduce the off-diagonal entries of A to 0 as much as possible. So, we start

with choosing i # j) such that ¢ < j and |a;;| is maximum. Now, put

1 i — jj .
9:fcot_1w, U=U(;i,j), and B=UTAU.

by = UT[l,:JAU[:, k] = e] Aey, = ay,
b = UT[i,:]JAU[:, k] = (COSHeT+81n9e )Aej, = aji, cos 0 + aji, sin O
by = UT|

[i

(cos el + sin Hej )A(— sin fe; + cos fe;)

JAUT:
JAUT:
1,:JAU[:, j] = e] A(—sinfe; + cosfe;) = —ay; sin ) + a;; cos 0
JAUL, 5] =
= sin(260) 2% + g, cos(20) =0

Thus, using the above, we see that whenever [, k' 1,7, alzk = bl2k: and for [ # i, j, we have
b + blj = azl + al]
As U is unitary and B = UT AU, we get > |a;;|> = " |bi;|?. Further, b;; = 0 implies that
af; + 2a; + a3; = by + 2b7; + b3; = by + b5

As the rest of the diagonal entries have not changed, we observe that the sum of the squares of
the off-diagonal entries have reduced by 2a?j. Thus, a repeated application of the above process

makes the matrix “close to diagonal”. "

8.2.2 Householder Matrices

We will now look at another class of unitary matrices, commonly called the Householder matrices
(see Exercise 1.5.5.8).

Definition 8.2.11. [Householder Matrix] Let w € C" be a unit vector. Then, the matrix
Uw = I — 2ww™ is called a Householder matrix.

Remark 8.2.12. We observe the following about the Householder matriz Us,.

1. Uy = I —2ww" is the sum of two Hermitian matrices and hence is also Hermitian.

2. UyU: = (I —2ww*)(I — 2ww*)T = I — 2ww* — 2ww* + dww* = . Or equivalently,
verify that ||[Uwx|| = ||x]||, for all x € C™. So Uy, is unitary.

3. Ifx € wh then Uyx = x.
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4. If x = cw, for some c € C, then Uypx = —X.

5. Thus, if v.€ C" then we know that v .= x +y, where x € w- and y = cw, for some

c € C. In this case, Uyv = Uy (x+y) =x —y.

6. Geometrically, Uwv reflects the vector v along the vector wr. Thus, Uy is a reflection
matriz along wt (see Definition 1.4.1.7).
2 1o . 1
Example 8.2.13. In R”, let w = e2. Then w— is the z-axis. The vector v = ) = e1 + 2ey,
where e; € wt and 2e; € LS(w). So
Uw(e1+2e2) =Upyv=Uy (x+y)=x—y =€ — 2es.

That is, the reflection of v along the z-axis (w).

Recall that if x,y € R" with x # y and ||x|| = ||y|| then, (x +y) L (x —y). This is not

1
true in C™ as can be seen from the following example. Take x = 1] and y = [ . Then
144 |1—1 o . _ . .
( ol ) ) = (1414)* # 0. Thus, to pick the right choice for the matrix Uy, we need to

be observant of the choice of the inner product space.

Example 8.2.14. Let x,y € C" with x # y and ||x|| = ||y||. Then, which Uy, should be used
to reflect y to x?

1. Solution in case of R": Imaginethe line segment joining x and y. Now, place a mirror
at the midpoint and perpendicular to the line segment. Then, the reflection of y on that

mirror is x. So, take w = ﬁ € R™. Then,

X—-Yy

=y )T
[x —yl?

Uwy = (I-2wwl)y=y-2ww'y=y—2 x-y)ly
x—y —lx—yl’ _

x—yl* 2

X.

2. Solution in case of C": Suppose there is a unit vector w € C" such that (I —2ww*)y =

x. Then y — x = 2ww™y and hence w*(y — x) = 2w*ww*y = 2w™*y. Thus,

w*(y +x) =0, that is, w L (y + x). (8.2.1)

Furthermore, again using w*(y + x) = 0, we get y — x = 2ww’y = —2ww*x. So,
2y —x) =2ww'(y —x) ory —x = ww™ (y — x).
On the other hand, using Equation (8.2.1), we get ww*(y + x) = 0. So,
0=I[y+x)'ww(y —x) = (y +x)"[ww'(y —x)] = (y +x)"(y —%).

Therefore, if such a w exists, then (y — x) L (y + x).
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But, in that case, w = ﬁ will work as using above ||x — y||? = 2(y — x)*y and

Uwy = (I-2wwi)y=y-2ww'y=y— QM(X ¥y

x—y —|x-yl? _

x—yl* 2

X.

Thus, in this case, if (x +y,x —y) # 0 then we will not find a w such that Uyy = x.

1 i
For example, taking x = [1] and y = [ 1] , we have (x +y,x —y) #0.
As an application, we now prove that any real symmetric matrix can be transformed into a

tri-diagonal matrix.

avT

v B
M, (R) be a real symmetric matriz. Then, there ezists a real orthogonal matriz Q, a product of

Proposition 8.2.15. [Householder’s Tri-Diagonalization] Letv € R"! and A =

Householder matrices, such that QT AQ is tri-diagonal.

Proof. If v = e; then we proceed to apply our technique to the matrix B, a matrix of lower
order. So, without loss of generality, we assume that v # e;.
As we want QT AQ to be tri-diagonal, we need to find a vector w € R”~! such that Uy v =

re; € R"1 where r = ||v|| = ||UwV||. Thus, using Example 8.2.14, choose the required vector

w € R"!. Then,
a r 0
a relT
ro ok k| = ,
0 rex S

k* ok

avT

v B

1 0
0 Uy

1 0
0 Ul

a viul

Uwv UwBUZL

where S € M,,_;(R) is a symmetric matrix. Now, use induction on the matrix S to get the

required result. -

8.2.3 Schur’s Upper Triangularization Revisited

Definition 8.2.16. Let s and ¢ be two symbols. Then, an expression of the form

W (s, t) = st ... s t"k where m;, n; are positive integers

k
is called a word in symbols s and ¢ of degree > (m; + n;).
i=1

Remark 8.2.17. [More on Unitary Equivalence] Let s and t be two symbols and W (s,t) be
a word in symbols s and t.
1. Suppose U is a unitary matriz such that B = U*AU. Then, W (A, A*) = U*W (B, B*)U.
Thus, tr]W(A, A*)] = tr]W(B, B*)].
2. Let A and B be two matrices such that tr[W(A, A*)] = tr[W(B, B*)], for each word W .

Then, does it imply that A and B are unitarily equivalent? The answer is ‘yes’ as provided

by the following result. The proof is outside the scope of this book.



216CHAPTER 8. ADVANCED TOPICS ON DIAGONALIZABILITY AND TRIANGULARIZATION*

Theorem 8.2.18. [Specht-Pearcy] Let A, B € M, (C) and suppose that tr[W(A, A*)] =
tr[W(B, B*)] holds for all words of degree less than or equal to 2n®. Then B = U* AU, for

some unitary matriz U.

EXERCISE 8.2.19. [Triangularization via Complex Orthogonal Matrix need not be Possi-
ble] Let A € M,(C) and A = QTQT, where Q is complex orthogonal matriz and T is upper

triangular. Then, prove that

1. A has an eigenvector x such that x'x # 0.

1
2. there is no orthogonal matriz Q such that QT [
i

i
1] Q is upper triangular.

Proposition 8.2.20. [Matrices with Distinct Eigenvalues are Dense in M, (C)] Let A €
M,,(C). Then, for each € > 0, there exists a matriz A(e) € M,,(C) such that A(e) = [a(€)i;] has

distinct eigenvalues and Y. |a;; — a(e€);|* < e.

Proof. By Schur Upper Triangularization (see Lemma 6.4.1), there exists a unitary matrix U
such that U*AU = T, an upper triangular matrix. Now, choose «;’s such that t;; + «; are
distinct and Y~ |a;|? < €. Now, consider the matrix A(e) = U (T + diag(az, ..., a,)) U*. Then,
B = A(e) — A=U diag(ay, ..., a,)|U* with

D " [bis|? = tr(B*B) = trU diag(|on >/ ., [an U =D foif* <.
2,] i

Thus, the required result follows. "
Before proceeding with our next result on almost diagonalizability, we look at the following

example.

Example 8.2.21. Let A =

] and € > 0 be given. Then, determine a diagonal matrix D

such that the non-diagonal entry of D™'AD is less than e.
Solution: Choose a < % and define D = diag(1, ). Then,

R | R

As a < %, the required result follows.

Proposition 8.2.22. [A matrix is Almost Diagonalizable] Let A € M,(C) and ¢ > 0 be
given. Then, there exists an invertible matriz S such that S-*AS. = T, an upper triangular

matriz with |t;;| <€, for all i # j.

Proof. By Schur Upper Triangularization (see Lemma 6.4.1), there exists a unitary matrix U

such that U*AU = T, an upper triangular matrix. Now, take t = 2 + max|t;;| and choose «
1<]

such that 0 < a < ¢/t. Then, if we take D, = diag(1,a,a?,...,a"!) and S = UD,, we have

S~YAS = D1TD, = F (say), an upper triangular. Furthermore, note that for i < j, we have

|fij| = |tijla?=" < e. Thus, the required result follows. .
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8.3 Commuting Matrices and Simultaneous Diagonalization

Definition 8.3.1. [Simultaneously Diagonalizable] Let A, B € M,,(C). Then, they are said
to be simultaneously diagonalizable if there exists an invertible matrix S such that S~1AS

and S~'BS are both diagonal matrices.
Since diagonal matrices commute, we have our next result.

Proposition 8.3.2. Let A,B € M, (C). If A and B are simultaneously diagonalizable then
AB = BA.

Proof. By definition, there exists an invertible matrix S such that S~'AS = A; and S~'BS =

As. Hence,
AB = (SA1S7Y) - (SA2S™1) = SA1AS ™ = SALA 87 = SALSTISA S = BA.
Thus, we have proved the required result. =

Theorem 8.3.3. Let A, B € M,,(C) be diagonalizable matrices. Then they are simultaneously

diagonalizable if and only if they commute.

Proof. One part of this theorem has already been proved in Proposition 8.3.2. For the other
part, let us assume that AB = BA. Since A is diagonalizable, there exists an invertible matrix
S such that

STTAS = A=MTD - ® NI, (8.3.1)
where Aq,..., A are the distinct eigenvalues of A. We now use the sub-matrix structure of
Cnn - Ci
S~1AS to decompose C = S™IBS as C = . Since AB = BA and S is
Cr1 -+ Ck
invertible, we have AC' = C'A. Thus,
AMCrp o MOy AMCiroo ARGy,
ACr1 o MG AMCr1 - ACrg

Since \; # A; for 1 < ¢ # j < k, we have C;; = 0, whenever ¢ # j. Thus, the matrix
C=Ci1® & Ci.
Since B is diagonalizable, the matrix C' is also diagonalizable and hence the matrices Cj;,

for 1 < i]lek, are diagonalizable. So, for 1 < i < k, there exists invertible matrices 7T;’s such
that T, *Cy;T; = Aj. Put T =T © --- @ Ty. Then,

Tl_l AT Ty AT
T 1S 1AST = = .
7! Al T AT
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and
1! Cu T Ay
T8~ 1BST = = .
T, ! Crk T Ay

Thus A and B are simultaneously diagonalizable and the required result follows. "

Definition 8.3.4. [Commuting Family of Matrices]
1. Let F € M,,(C). Then F is said to be a commuting family if each pair of matrices in

F commutes.

2. Let B € M, (C) and W be a subspace of C". Then, W is said to be a B-invariant
subspace if Bw € W, for all w € W (or equivalently, BW C W).

3. A subspace W of C" is said to be F-invariant if W is B-invariant for each B € F.

Example 8.3.5. Let A € M, (C) with (\,x) as an eigenpair. Then, W = {¢x : ¢ € C} is an
A-invariant subspace. Furthermore, if W is an A-invariant subspace with dim(WW) = 1 then

verify that any non-zero vector in W is an eigenvector of A.

Theorem 8.3.6. [An A-invariant Subspace Contains an Eigenvector of A] Let A € M,,(C)
and W C C"™ be an A-invariant subspace of dimension at least 1. Then W contains an eigen-

vector of A.

Proof. Let B = {f1,...,f;} C C" be an ordered basis for W. Define T : W — W as Tv = Av.
Then T'[B,B] = [[Tfl]g [Tfk]B} isa k X k matrix which satisfies [T'w|g = T[B, B] [w]3,
for all w € W. As T[B, B] € M(C), it has an eigenpair, say (), %) with x € C*. That is,

T[B, B|x = \%. (8.3.2)

k
Now, put x = > (x); f; € C". Then, verify that x € W and [x|g = %x. Thus, Tx € W and now

=1
using Equation (8.3.2), we get

k k k k k

Tx =) ([Tx|p);fi=> (T[B,Bl[x]s); £ = > _(T[B,BI%),f; = > (AX)ifi =AY _(%)if; = Ax.
i=1 i=1 i=1 i=1 i=1

So, A has an eigenvector x € W corresponding to the eigenvalue . "

Theorem 8.3.7. Let F C M,,(C) be a commuting family of matrices. Then, all the matrices

in F have a common eigenvector.

Proof. Note that C™ is F-invariant. Let W C C" be F-invariant with minimum positive
dimension. Let y € W such that y # 0. We claim that y is an eigenvector, for each A € F.
So, on the contrary assume y is not an eigenvector for some A € F. Then, by Theorem 8.3.6,
W contains an eigenvector x of A for some eigenvalue, say A. Define Wy = {z € W : Az = A\z}.
So Wy is a proper subspace of W asy € W\ Wy. Also, for z € Wy and C' € F, we note that
A(Cz) = CAz = \(Cz), so that Cz € Wy. So Wy is F-invariant and 1 < dim Wy < dim W, a

contradiction. n
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Theorem 8.3.8. Let F C M,,(C) be a family of diagonalizable matrices. Then F is commuting

if and only if F is simultaneously diagonalizable.

Proof. We prove the result by induction on n. The result is clearly true for n = 1. So, let us
assume the result to be valid for all n < m. Now, let us assume that 7 C M,,(C) is a family of
diagonalizable matrices.

If F is simultaneously diagonalizable, then by Proposition 8.3.2, the family F is commuting.
Conversely, let F be a commuting family. If each A € F is a scalar matrix then they are simul-
taneously diagonalizable via I. So, let A € F be a non-scalar matrix. As A is diagonalizable,

there exists an invertible matrix S such that
STAS=MI®--- NI, k> 2,

where \;’s are distinct. Now, consider the family ¢ = {X = S'XS | X € F}. As F is
a commuting family, the set G is also a commuting family. So, each X € G has the form
X =X, &---® X;. Note that H; = {X; | X € G} is a commuting family of diagonalizable
matrices of size < m. Thus, by induction hypothesis, H;’s are simultaneously diagonalizable,
say by the invertible matrices T;’s. That is, T;lXiTi = A;, a diagonal matrix, for 1 < i < k.
Thus, if =T, ® --- & T}, then

TISTIXST =T (X168 - @ X)T =T X111 @ - T X4 T = M @ -~ @ Ay,

a diagonal matrix, for all X € F. Thus the result holds by induction. "

We now give prove of some parts of Exercise 6.2.7.exe:eigen:1.

Remark 8.3.9. [0(AB) and o(BA)] Letm < n, A € My,xn(C), and B € My, xn(C). Then
0(BA) = 0(AB) with n —m extra 0’s. In particular, if A, B € M,,(C) then, Pap(t) = Ppa(t).

Proof. Note that

AB 0
B 0

I, A
0 I,

AB ABA
B BA

I, A
0 I,

0 0
B BA

Thus, the matrices
0 B

the same non-zero eigenvalues. Therefore, if they have the same size, they must have the same

0 0 0
] and BA are similar. Hence, AB and BA have precisely

characteristic polynomial. "

EXERCISE 8.3.10. [Miscellaneous Exercises]
1. Let A be nonsingular. Then, verify that A=*(AB)A = BA. Hence, AB and BA are
similar. Thus, Pap(t) = Ppa(t).
2. Fiz a positive integer k,0 < k < n. Now, define the function fr : M,,(C) — C by f(A) =
coefficient of t* in Pa(t). Prove that fy, is a continuous function.
3. For any matriz A, prove that there exists an € > 0 such that A, = A + ol is invertible,

for all o € (0,€). Thus, use the first part to conclude that for any given B, we have
P, p(t) = Pga,(t), for all a € (0,¢).
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4. Now, use continuity to argue that Pap(t) m Py, p(t) = lirgl+ Ppa,(t) = Ppa(t).
a—

= B
5. Let 0(A) = {A1,..., \n}, o(B) ={m1,. .., un} and suppose that AB = BA. Then,
(a) prove that there is a permutation m such that o(A+B) = {1+ pr(1)s - - s An+fha(n) }-
In particular, c(A+ B) C 0(A) + o(B).
(b) if we further assume that o(A) No(—B) = 0 then the matriz A+ B is nonsingular.

6. Let A and B be two non-commuting matrices. Then, give an example to show that it is

difficult to relate o(A + B) with o(A) and o(B).

01 0 0 00
7. Are the matrices A= [0 0 —1| and B= |1 0 0| simultaneously triangularizable?
00 O 010

8. Let F C M, (C) be a family of commuting normal matrices. Then, prove that each element

of F is simultaneously unitarily diagonalizable.

9. Let A € M,,(C) with A* = A and x*Ax > 0, for all x € C™. Then prove that o(A) C R,
and if tr(A) =0, then A= 0.

8.3.1 Diagonalization and Real Orthogonal Matrix

Proposition 8.3.11. [Triangularization: Real Matrix| Let A € M,,(R). Then, there exists a
real orthogonal matriz Q such that QT AQ is block upper triangular, where each diagonal block

1s of size either 1 or 2.

Proof. If all the eigenvalues of A are real then the corresponding eigenvectors have real entries
and hence, one can use induction to get the result in this case (see Lemma 6.4.1).

So, now let us assume that A has a complex eigenvalue, say A\ = a + i with § # 0 and
X = u + v as an eigenvector for A\. Thus, Ax = Ax and hence AX = MX. But, A\ # ) as
B # 0. Thus, the eigenvectors x,X are linearly independent and therefore, {u, v} is a linearly
independent set. By Gram-Schmidt Orthonormalization process, we get an ordered basis, say
{w1i,wa,...,wy} of R", where LS(wi,ws) = LS(u,v). Also, using the eigen-condition Ax =
AX gives

Awi = awy + bBwy, Awy = cwq + dwao,

for some real numbers a, b, ¢ and d.

Now, form a matrix X = [wy, wa,...,wy,]. Then, X is a real orthogonal matrix and
_WT_
W3

X*"AX = X'[Awy, Aws,...,Aw,] = | | [awy + bwa, cwy + dwa, ..., Aw,]
(W]

a b
*
= ¢ d (8.3.3)
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where B € M,,_2(R). Now, by induction hypothesis the required result follows. "

The next result is a direct application of Proposition 8.3.11 and hence the proof is omitted.

Corollary 8.3.12. [Simultaneous Triangularization: Real Matrices] Let F C M, (R) be a
commuting family. Then, there exists a real orthogonal matriz Q such that QT AQ is a block

upper triangular matriz, where each diagonal block is of size either 1 or 2, for all A € F.

Proposition 8.3.13. Let A € M,,(R). Then the following statements are equivalent.
1. A is normal.

2. There exists a real orthogonal matriz Q such that QT AQ = D, Ai, where A;’s are real

normal matrices of size either 1 or 2.

Proof. 2 = 1 is trivial. To prove 1 = 2, recall that Proposition 8.3.11 gives the existence of
a real orthogonal matrix Q such that QT AQ is upper triangular with diagonal blocks of size

either 1 or 2. So, we can write

A1k k| % * %
0 . % |x -
0 A R C

Q"4Q = A (say)
0 0 | A Aig 0 B
0 0|0 *
0 0 [0 A

R C||RT 0 RT 0 R C

As A is normal, = . Thus, tr(CCT) = tr(RRT = RTR) =
Bl|cT BT ct BT||0 (cCh) = )

0. Now, using Exercise 8.3.10.9, we get C = 0. Hence, RRT = RTR and therefore, R is a

diagonal matrix.

k
As BB = BBT, we have Y A;AT, = A11AT. So tr<z AliAIi) = 0. Now, using Exer-
2

k
cise 8.3.10.9 again, we have AliAiFi = 0 and so AliA{i =0,foralli=2,...,k. Thus, A;; =0,
2

for all ¢ = 2,..., k. Hence, the required result follows. "

EXERCISE 8.3.14. Let A € M,,(R). Then the following are true.

1. A = —AT if and only if A is real orthogonally similar to (D, 0] & [D; Ail, where A; =
0

2. AAT = I if and only if A is real orthogonally similar to [, \;] ® (D, Aj], where A; = £1

473 ,
] , for some real numbers a;’s.

and A, — cosf; sinb;

' , for some real numbers 0;’s.
—sinf; cosb;

8.3.2 Convergent and nilpotent matrices

Definition 8.3.15. [Convergent matrices] A matrix A is called a convergent matrix if

A™ — 0 as m — oo.
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Remark 8.3.16. 1. Let A be a diagonalizable matriz with p(A) < 1. Then, A is a convergent

matrix.

Proof. Let A = U* diag(A1,..., \)U. As p(A) < 1, for each i,1 < i < n, X" = 0 as
m — co. Thus, A™ = U* diag(\[",..., A" U — 0. "

r'n
2. Even if the matrix A is not diagonalizable, the above result holds. That is, whenever

p(A) < 1, the matriz A is convergent. The converse is also true.

Proof. Let Jip(\) = M + Nk be a Jordan block of J = JORDAN CFA. Then as N,f =0,
for each fixed k, we have

JeN)™ =A™+ C(m, DA™ INg + -+ C(my k — DA™ FINFL 0, as m — oo

As \™ — 0 as m — oo, the matriz J(A\)™ — 0 and hence J is convergent. Thus, A is a

convergent matriz.

Conversely, if A is convergent, then J must be convergent. Thus each Jordan block Ji(\)

must be convergent. Hence || < 1. .

Theorem 8.3.17. [Decomposition into Diagonalizable and Nilpotent Parts] Let A € M, (C).
Then A = B + C, where B is diagonalizable matrix and C' is nilpotent such that BC = CB.

Proof. Let J = JORDAN CFA. Then, J = D 4+ N, where D = diag(J) and N is clearly a
nilpotent matrix.

Now, note that DN = N D as for each Jordan block Ji(\) = Dy + N, we have Dy = AI and
Ny = Ji(0) so that Dy Ny = NiDy. As J = JORDAN CF A, there exists an invertible matrix
S, such that S™1AS = J. Hence, A = SJS~! = SDS~! + SNS~! = B + C, which satisfy the

required conditions. "
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Appendix

9.1 Uniqueness of RREF

Definition 9.1.1. Fix n € N. Then, for each f € §,,, we associate an n x n matrix, denoted

pl =

[pij], such that p;; = 1, whenver f(j) =i and 0, otherwise. The matrix P7 is called the

Permutation matrix corresponding to the permutation f. For example, I, corresponding

1

to Ids, and = Fj9, corresponding to the permutation (1,2), are the two permutation

matrices of order 2 x 2.

Remark 9.1.2. Recall that in Remark 9.2.16.1; it was observed that each permutation is a

product of n transpositions, (1,2),...,(1,n).

1.

Verify that the elementary matriz E;; is the permutation matriz corresponding to the

transposition (i,7) .

Thus, every permutation matriz is a product of elementary matrices F1;, 1 <j <n
1 00 010
Forn = 3, the permutation matrices are Is, |0 0 1| = Eo3 = F1oFE13E12, [1 0 0| =
010 0 01
010 0 0 1 0 0 1
Eiz, |0 0 1| =Ew2E13, |1 0 0| =E3E12and ([0 1 0| = Eng
1 00 010 1 00

Let f € S, and Pf = [pij] be the corresponding permutation matriz. Since p;j = 6; ; and
{f(1),...,f(n)} = [n], each entry of P/ is either 0 or 1. Furthermore, every row and
column of Pf has exactly one nonzero entry. This nonzero entry is a 1 and appears at
the position p; r(;)-
By the previous paragraph, we see that when a permutation matrixz is multiplied to A

(a) from left then it permutes the rows of A.

(b) from right then it permutes the columns of A.

P is a permutation matriz if and only if P has exactly one 1 in each row and column.

Solution: If P has exactly one 1 in each row and column, then P is a square matriz, say

223
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n X n. Now, apply GJE to P. The occurrence of exactly one 1 in each row and column
implies that these 1’s are the pivots in each column. We just need to interchange rows to
get it in RREF. So, we need to multiply by E;;. Thus, GJE of P is I, and P is indeed a

product of E;;’s. The other part has already been explained earlier.
We are now ready to prove Theorem 2.4.6.
Theorem 9.1.3. Let A and B be two matrices in RREF. If they are row equivalent then A = B.

Proof. Note that the matrix A = 0 if and only if B = 0. So, let us assume that the matrices
A, B # 0. Also, the row-equivalence of A and B implies that there exists an invertible matrix
C such that A = C'B, where C is product of elementary matrices.

Since B is in RREF, either B[:,1] = 07 or B[;,1] = (1,0,...,0)T. If B[;,1] = 07 then
A[;,1] = CB[;,1] = C0 = 0. If B[;,1] = (1,0,...,0)T then A[:,1] = CB[:;,1] = C[;,1]. As C'is
invertible, the first column of C' cannot be the zero vector. So, A[:, 1] cannot be the zero vector.
Further, A is in RREF implies that A[:,1] = (1,0,...,0)7. So, we have shown that if A and B
are row-equivalent then their first columns must be the same.

Now, let us assume that the first £k — 1 columns of A and B are equal and it contains r
pivotal columns. We will now show that the k-th column is also the same.

Define A, = [A[:,1],..., A[:, k]] and By, = [B]:,1],..., B[, k]]. Then, our assumption implies
that A[:,7] = B[:,i], for 1 <i <k — 1. Since, the first £ — 1 columns contain r pivotal columns,

there exists a permutation matrix P such that
I, W | Al K]

0

L. W
0

Bl:, k]

AkP = and BkP =

If the k-th columns of A and B are pivotal columns then by definition of RREF, A[:, k| =

0
[ = B[:, k], where 0 is a vector of size r and e; = (1,0,...,0)T. So, we need to consider two
€1
cases depending on whether both are non-pivotal or one is pivotal and the other is not.
As A= CB, we get A, = CBy and

I, Al k I, Bl k B[ k
W | Al k| _ AP=CB.P = Cy | Co W | B[, k] _ c, C1W | CB| ]
0 O C3|Cy4l O O C3 C3W
I | Gy
So, we see that C; = I, C3 = 0 and A[:;, k] = ° B, K].
0 04_
Case 1: Neither A[:, k| nor B[:, k| are pivotal. Then
X I | C || [Y] v
= Al k] = | B[, k] = g = |
0 0| Cy _0 Cy4| |0 0
Thus, X =Y and in this case the k-th columns are equal.
Case 2: A[:, k] is pivotal but B[:, k] in non-pivotal. Then
0 I | C L | Co| |Y Y
= A[:, k] = 2| B[:, k] = ? =1,
el 0| Cy 0|Cy| |0 0

a contradiction as e; # 0. Thus, this case cannot arise.

Therefore, combining both the cases, we get the required result. "
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9.2 Permutation/Symmetric Groups

Definition 9.2.1. For a positive integer n, denote [n] = {1,2,...,n}. A function f: A — B is
called

1. one-one/injective if f(z) = f(y) for some z,y € A necessarily implies that = = y.
2. onto/surjective if for each b € B there exists a € A such that f(a) = 0.
3. a bijection if f is both one-one and onto.

Example 9.2.2. Let A = {1,2,3}, B ={a,b,c,d} and C = {«, 3,7}. Then, the function
1. j: A — B defined by j(1) = a,j(2) = ¢ and j(3) = ¢ is neither one-one nor onto.

a, f(2) = c and f(3) = d is one-one but not onto.
a,9(b)
2,h(b) = 2,h(c) = 3 and h(d) =1 is onto.

f: A— B defined by f(1)

g : B — C defined by g(a)
h: B — A defined by h(a)

B,g(c) = a and g(d) =+ is onto but not one-one.

ho f: A— Ais a bijection.

A T o

go f: A— C is neither one-one not onto.

Remark 9.2.3. Let f : A — B and g : B — C be functions. Then, the composition of
functions, denoted g o f, is a function from A to C defined by (go f)(a) = g(f(a)). Also, if

1. f and g are one-one then go f is one-one.

2. f and g are onto then go f is onto.
Thus, if f and g are bijections then so is go f.

Definition 9.2.4. A function f : [n] — [n] is called a permutation on n elements if f is a
bijection. For example, f, g : [2] — [2] defined by f(1) =1, f(2) = 2 and g(1) = 2,¢(2) =1 are

permutations.

EXERCISE 9.2.5. Let S3 be the set consisting of all permutation on 3 elements. Then, prove
that Ss has 6 elements. Moreover, they are one of the 6 functions given below.

- 1) =1, f1(2) =2 and f1(3

~

2. f2(1) (2) (
3. f3(1) (2) (
4. fa(1) =2, f4(2) = 3 and f4(3
5. f5(1) (2) (
6. fo(1) (2) (

Remark 9.2.6. Let f : [n] — [n] be a bijection. Then, the inverse of f, denote f~!, is defined
by f~Y(m) = £ whenever f(£) = m for m € [n] is well defined and f~' is a bijection. For
example, in Exercise 9.2.5, note that fi_1 = f;, fori=1,2,3,6 and f4_1 = f5.

Remark 9.2.7. Let S,, = {f : [n] — [n] : o is a permutation}. Then, S,, has n! elements and

forms a group with respect to composition of functions, called product, due to the following.
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1. Let f €8S,. Then,
1 2
a can be written as f =
W ! ( ) 1
(b) f is one-one. Hence, {f(1), f(2),...,f(n)} = [n] and thus, f(1) € [n], f(2) € [n]\
{f(1)},... and finally f(n) = [n)]\{f(1),..., f(n—1)}. Therefore, there are n choices

]
for f(1), n — 1 choices for f(2) and so on. Hence, the number of elements in S,

n
, called a two row notation.
f(n)

equals n(n —1)---2-1=nl.
2. By Remark 9.2.3, fog e Sy, for any f,g € Sy,.
3. Also associativity holds as fo (goh) = (fog)oh for all functions f,g and h.

4. Sp has a special permutation called the identity permutation, denoted Id,, such that
Idy, (i) =1, for 1 <i<n.

5. For each f € S,,, f~' € S,, and is called the inverse of f as fo f~' = f~lo f=1Id,.
Lemma 9.2.8. Fiz a positive integer n. Then, the group Sy, satisfies the following:

1. Fiz an element f € S,,. Then, S, ={fog:9€ S} ={gof:9€S.}.

2. S, =1{9t:ge€8,}.

Proof. Part 1: Note that for each a € S, the functions f~toa,a0f~! € S, and a = fo(f toa)
as well as a = (o f71) o f.
Part 2: Note that for each f € S,,, by definition, (f~!)~! = f. Hence the result holds. [

Definition 9.2.9. Let f € S,,. Then, the number of inversions of f, denoted n(f), equals
n(f) = |[{04): i<j, fG) > () }|
= [{j:i4+1<j5<n,f(j) < f(@)}| using two row notation. (9.2.1)

Example 9.2.10. 1. For f — (; ; ‘Z’ i),n(f)— 1{(1,2),(1,3),(2,3)} | =3.

2. In Exercise 9.2.5, n(fs) =2+ 0= 2.

123 456 7 89

. Then, n(f) =34+14+1+14+0+3+2+1=12.
423519 876

3. Letfz(

Definition 9.2.11. [Cycle Notation] Let f € S,. Suppose there exist r,2 < r < n and
Ulyeenylp € [n] such that f(ll) = 19, f(’LQ) =13,..., f(lr) =11 and f(j) =jforall j £iy,...,0.

Then, we represent such a permutation by f = (i1,42,...,%,) and call it an r-cycle. For
1 2 3 45 1 2 3 45
example, f = = (1,4,5) and = (2,3).
pf<42351>( ) <13245>()
Remark 9.2.12. 1. One also write the r-cycle (i1,42,...,i;) as (i2,i3,...,ir,11) and so on.
For example, (1,4,5) = (4,5,1) = (5,1,4).

1 2 3 45

2. The permutation f =
P / (4 3 2 51

> s not a cycle.
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3. Let f = (1,3,5,4) and g = (2,4,1) be two cycles. Then, their product, denoted f o g or
(1,3,5,4)(2,4,1) equals (1,2)(3,5,4). The calculation proceeds as (the arrows indicate the
images):

1 — 2. Note (fog)(1) = f(g(1)
2—=4—>1as(fog)(2)=f(g(2

N~—
Il
~~
—~
)
N~—
Il
N

1. So, (1,2) forms a cycle.

~—~
—
~—
~—
I
-
—
iy
N~—
I

3—=5as (fog)(3) = f(9(3)) = f(3) = 5.
54 as (fog)(5) = f(9(5) = f(5) =4
4—1—3as(fog)4) = f(9(4) = f(1) = 3. So, the other cycle is (3,5,4).

4. Let f =(1,4,5) and g = (2,4, 1) be two permutations. Then, (1,4,5)(2,4,1) = (1,2,5)(4) =
(1,2,5) as1 -+ 2,2 -4 —55—1,4—1—4 and
(2,4,1)(1,4,5) = (1)(2,4,5) = (2,4,5) as 1 »4 > 1,2 54,4 555 > 1 = 2.
1 2 3 4 5

5. Even though L3 95 1) is not a cycle, verify that it is a product of the cycles

(1,4,5) and (2,3).
Definition 9.2.13. A permutation f € S, is called a transposition if there exist m,r € [n]
such that f = (m,r).

Remark 9.2.14. Verify that
1. (2,4,5) = (2,5)(2,4) = (4,2)(4,5) = (5,4)(5,2) = (1,2)(1,5)(1,4)(1,2).
2. in general, the r-cycle (i1,...,4,) = (1,41)(1,4,)(1,4p—1) - - (1,22)(1,41).
3. So, every r-cycle can be written as product of transpositions. Furthermore, they can be

written using the n transpositions (1,2),(1,3),...,(1,n).
With the above definitions, we state and prove two important results.
Theorem 9.2.15. Let f € S,,. Then, f can be written as product of transpositions.

Proof. Note that using use Remark 9.2.14, we just need to show that f can be written as
product of disjoint cycles.

Consider the set S = {1, f(1), f@(1) = (fo f)(1), fB Q) = (fo(fo f))(1),...}. As S is an
infinite set and each f()(1) € [n], there exist 4,5 with 0 <7 < j < n such that f®(1) = fU)(1).
Now, let j; be the least positive integer such that f()(1) = fU1)(1), for some i, 0 < i < j;.
Then, we claim that ¢ = 0.

For if, i — 1 > 0 then j; — 1 > 1 and the condition that f is one-one gives
FED) = (o fO) 1) = 7 (1O) = 17 (59 W) = (7 e s (W) = £ D).

Thus, we see that the repetition has occurred at the (j; — 1)-th instant, contradicting the
assumption that j; was the least such positive integer. Hence, we conclude that ¢ = 0. Thus,
(1, £(1), fA(1),..., fUr=1(1)) is one of the cycles in f.

Now, choose i1 € [n] \ {1, f(1), fP(1),..., f9r=D(1)} and proceed as above to get another
cycle. Let the new cycle by (i1, f(i1),..., f9>~Y(i1)). Then, using f is one-one follows that

{lvf(l)vf(2)(1)7 : 'af(jl_l)(l)} N {ilaf(il)v e '7f(j2_1)(i1>} = @
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So, the above process needs to be repeated at most n times to get all the disjoint cycles. Thus,

the required result follows. O

Remark 9.2.16. Note that when one writes a permutation as product of disjoint cycles, cycles
of length 1 are suppressed so as to match Definition 9.2.11. For example, the algorithm in the
proof of Theorem 9.2.15 implies
1. Using Remark 9.2.14.8, we see that every permutation can be written as product of the n
transpositions (1,2),(1,3),...,(1,n).

1 2345
2. (1 L s 2)—(1)(2,4,5)(3)—(2,4,5).

4 2 3519 876
Note that Ids = (1,2)(1,2) = (1,2)(2,3)(1,2)(1,3), as well. The question arises, is it

possible to write Id, as a product of odd number of transpositions? The next lemma answers

5 (1 2345678 9):(1,4,5)(2)(3)(6,9)(7,8):(1,4,5)(6,9)(7,8)-

this question in negative.

Lemma 9.2.17. Suppose there exist transpositions f;, 1 < i <t, such that

Id, = fiofao---0fy

then t is even.

Proof. We will prove the result by mathematical induction. Observe that ¢ # 1 as Id, is not a
transposition. Hence, ¢t > 2. If t = 2, we are done. So, let us assume that the result holds for
all expressions in which the number of transpositions ¢ < k. Now, let t = k + 1.

Suppose fi1 = (m,r) and let ¢,s € [n] \ {m,r}. Then, the possible choices for the com-
position f1 o fa are (m,r)(m,r) = Id,, (m,r)(m,0) = (r,€)(r,m), (m,r)(r,0) = (£,7)(¢,m)
and (m,r)(¢,s) = (¢,s)(m,r). In the first case, fi and f can be removed to obtain Id, =
fso fao---0o fi, where the number of transpositions is t —2 = k — 1 < k. So, by mathematical
induction, ¢t — 2 is even and hence ¢ is also even.

In the remaining cases, the expression for fi o fo is replaced by their counterparts to obtain
another expression for Id,. But in the new expression for Id,, m doesn’t appear in the first
transposition, but appears in the second transposition. The shifting of m to the right can
continue till the number of transpositions reduces by 2 (which in turn gives the result by
mathematical induction). For if, the shifting of m to the right doesn’t reduce the number
of transpositions then m will get shifted to the right and will appear only in the right most
transposition. Then, this expression for Id,, does not fix m whereas Id,(m) = m. So, the later
case leads us to a contradiction. Hence, the shifting of m to the right will surely lead to an
expression in which the number of transpositions at some stage is t —2 = k — 1. At this stage,

one applies mathematical induction to get the required result. O
Theorem 9.2.18. Let f € S,,. If there exist transpositions gi,...,gr and hy, ..., hy with

f:gIOQQO'..ng:hloh’zo..'ohf

then, either k and £ are both even or both odd.
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Proof. As gyo---0gy =hjo---0hgand h~! = h for any transposition h € S,, we have

Id, =giogyo---og,ohyohy_10---0hj.
Hence by Lemma 9.2.17, k + £ is even. Thus, either k£ and £ are both even or both odd. ]
Definition 9.2.19. [Even and Odd Permutation] A permutation f € S, is called an

1. even permutation if f can be written as product of even number of transpositions.

2. odd permutation if f can be written as a product of odd number of transpositions.

Definition 9.2.20. Observe that if f and g are both even or both odd permutations, then fog
and go f are both even. Whereas, if one of them is odd and the other even then fog and go f
are both odd. We use this to define a function sgn : S, — {1, —1}, called the signature of a

permutation, by
1 if f is an even permutation

Example 9.2.21. Consider the set S,,. Then,

—1 if f is an odd permutation

1. by Lemma 9.2.17, Id,, is an even permutation and sgn(I/d,) = 1.
2. a transposition, say f, is an odd permutation and hence sgn(f) = —1

3. using Remark 9.2.20, sgn(f o g) = sgn(f) - sgn(g) for any two permutations f,g € S,,.
We are now ready to define determinant of a'square matrix A.

Definition 9.2.22. Let A = [a;;] be an n X n matrix with complex entries. Then, the deter-
minant of A, denoted det(A), is defined as

n

det(A) = Z sgn(g)a14(1)a2g(2) - - - Ong(n) = Z sgn(g) Haig(i)' (9.2.2)

gESH gES) i=1

For example, if Sy = {Id, f = (1,2)} then for A =

2
1], det(A) = sgn(Id) - airqn)azrae) +
sgn(f) - arpyazpz) = 1- anaz + (=1)azas =1 -4 = =3.

Observe that det(A) is a scalar quantity. Even though the expression for det(A) seems
complicated at first glance, it is very helpful in proving the results related with “properties of
determinant”. We will do so in the next section. As another examples, we verify that this
definition also matches for 3 x 3 matrices. So, let A = [a;;] be a 3 x 3 matrix. Then, using
Equation (9.2.2),

3
det(4) = Y sgn(o) [ aiwn
=1

geSy,

3 3 3
= sen(f1) [ ey + sen(f2) [ airoi) + senlfs) [ aigoci) +
i=1 =1 =1

3 3 3
sgn(f1) H i,y +sgn(fs) H aifs (i) +sgn(fe) H i o (i)
=1 =1 =1

= @11G22a33 — 011023032 — 12021033 + @12023a31 + Q130210432 — G13022031.
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9.3 Properties of Determinant

Theorem 9.3.1 (Properties of Determinant). Let A = [a;j] be an n X n matriz.

~

. If Afi,:] = 0T for some i then det(A) = 0.
2. If B= E;(c)A, for some ¢ # 0 and i € [n] then det(B) = cdet(A).
3. If B = E;;A, for some i # j then det(B) = —det(A).

4. If Ali,:]) = Alj,:] for some i # j then det(A) = 0.

5. Let B and C be two nxn matrices. If there exists m € [n| such that B[i,:] = C[i,:] = Ali,]

for all i #m and C[m,:] = Alm,:] + B[m,:] then det(C) = det(A) + det(B).

6. If B = E;j(c), for ¢ # 0 then det(B) = det(A).

7. If A is a triangular matriz then det(A) = ai1 - - - apn, the product of the diagonal entries.

8. If E is an n x n elementary matriz then det(EA) = det(E) det(A).
9. A is invertible if and only if det(A) # 0.
10. If B is an n x n matriz then det(AB) = det(A) det(B).

11. If AT denotes the transpose of the matriz-A then det(A) = det(AT).

Proof. Part 1: Note that each sum in det(A) contains one entry from each row. So, each sum

has an entry from A[i,:] = 07. Hence, each sum in itself is zero. Thus, det(A4) = 0.
Part 2: By assumption, Blk,:| = Alk,:] for k # ¢ and BJi,:] = cAl3,:]. So,

det(B) = Z sgn(o (Hb/w ) io(i) = Z sgn(o (HakU ) Qo (i)
0cESH k#i 0ESy k#i

n

= ¢ Z sgn(o) H Ao (k) = cdet(A).

ceS, k=1

Part 3: Let 7 = (4,). Then, sgn(7) = —1, by Lemma 9.2.8, S, = {oco7: 0 €S8,} and

n

det(B) = 3 sgn(o wa(l = Y sen(oor) [[bione

ocESH coTES, i=1
= Z sgn(7) - sgn(o H bro(k) | bi(oor)(i)bj(oor)(j)
ooTESy, k#£1,j
= SgIl(T) Z Sgn H bka U(’L) = Z Sgn H Ao (k)
oESH k#i,j ocESy
= —det(A).

Part 4: As Ali,:] = A[j,:], A = E;;A. Hence, by Part 3, det(A) = —det(A). Thus, det(A)

=0.
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Part 5: By assumption, C[i,:] = B[i,:] = Ali,:] for i # m and C[m,:] = B[m,:] + A[m,:]. So,

Cio(i) = Z Sgn H Cio(i) | Cmo(m)
1

::

det(C) = ngn( )

€S, = 0ESH i#m

= Z Sgn( ) Cio (i) (ama(m) + bma’(m))
0ESK i£m

= Z sgn(o H Qi (i) T Z sgn(o H (i) = det(A) + det(B).
oeSy i=1 oES, i=1

Part 6: By assumption, Blk,:] = Alk,:] for k # ¢ and B[i,:] = A[i,:] + cA[j,:]. So,

det(B) = Z sgn(o H by, Z sgn(o kua(k bio(i)
k=1

0ES 0ES, ki
= Sgn ko (k za(i) + Caja(j))
oSy k#i
= Sgn ko (k) | Fio(i) + c Z Sgn Hak’a(k) ajo(j))
0€SH ki 0c€SL k#i
n
= sgn H ko) + ¢+ 0 =det(A). UsePart 4
oceS, k=1

Part 7: Observe that if 0 € S, and o # Id; then n(o) > 1. Thus, for every o # Id,, there
exists m € [n] (depending on o) such that m > o(m) or m < o(m). So, if A is triangular,
Umo(m) = 0. So, for each o # Idn, [[;2; @is;) = 0. Hence, det(A) = [[;L; a;;. the result follows.
Part 8: Using Part 7, det(l,) = 1. By definition E;; = Ej;I, and E;(c) = Ej(c)l, and
Eij(c) = E;ij(c)I,, for ¢ # 0. Thus, using Parts 2, 3 and 6, we get det(E;(c)) = ¢, det(E;j) = —1
and det(E;;(k)) = 1. Also, again using Parts 2, 3 and 6, we get det(EA) = det(E) det(A).
Part 9: Suppose A is invertible. Then, by Theorem 2.7.1, A = F; - - - E}, for some elementary
matrices F1, ..., Eg. So, arepeated application of Part 8 implies det(A) = det(FE4) - - - det(Fy) #
0 as det(E;) #0 for 1 <i<k.

Now, suppose that det(A) # 0. We need to show that A is invertible. On the contrary, as-
sume that A is not invertible. Then, by Theorem 2.7.1, Rank(A) < n. So, by Proposition 2.4.9,

. Therefore, by Part 1

)

As det(E;) # 0, for 1 < i < k, we have det(A) = 0, a contradiction. Thus, A is invertible.
Part 10: Let A be invertible. Then, by Theorem 2.7.1, A = E; --- B}, for some elementary
matrices F1, ..., Ex. So, applying Part 8 repeatedly gives det(A) = det(E1) - - - det(Fy) and

there exist elementary matrices F1, ..., Et such that Fy --- BpA =

and a repeated application of Part 8 gives

det(Ey) - --det(Ey) det(A) = det(E; - - - EpA) = det (

det(AB) = det(E; - - - ExB) = det(E1) - - - det(Ey) det(B) = det(A) det(B).
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In case A is not invertible, by Part 9, det(A) = 0. Also, AB is not invertible (AB is invertible
will imply A is invertible using the rank argument). So, again by Part 9, det(AB) = 0. Thus,
det(AB) = det(A) det(B).

Part 11: Let B = [b;;] = AT. Then, b;; = aj;, for 1 <i,j < n. By Lemma 9.2.8, we know that
Sp={0c"':0¢€8,}. Asocoo ! =1Id,, sgn(c) =sgn(c~"'). Hence,

n n

det(B) = Z Sgn(U)Hbio(i) = Z Sgn(J)Haa(i),i = Z Sgn(a_l)Haia—l(i)
i=1

cES, =1 o€Sn i=1 o—1les,
= det(A).

O]

Remark 9.3.2. 1. As det(A) = det(AT), we observe that in Theorem 9.3.1, the condition

on “row” can be replaced by the condition on “column”.

2. Let A = [a;j] be a matriz satisfying a1; =0, for2 < j <n. Let B = A(1| 1), the submatriz
of A obtained by removing the first row and the first column. Then det(A) = aqq det(B).
Proof: Let 0 € S,, with o(1) = 1. Then, o has a cycle (1). So, a disjoint cycle represen-
tation of o only has numbers {2,3,...,n}. That is, we can think of o as an element of
Sn_1. Hence,

n

det(A) = Z sgn(o) Haia(i) = sgn(o) Haia(i)
=1

0ESn i=1 oESma(1)=1
n n—1

= an Y sg(o)[Jtiowy =an D sgn(o) [ ] biew) = arr det(B).
0ESn,0(1)=1 =2 0ESn 1 i=1

We now relate this definition of determinant with the one given in Definition 2.8.1.

Theorem 9.3.3. Let A be an nxn matriz. Then, det(A) = > (=1)"Jay; det(A(1 | j)), where
j=1

recall that A(1 | j) is the submatriz of A obtained by removing the 15t row and the jth column.
[ o 0 - ay - 0 |
az1 @G22 - Q5 ccc A2p
Proof. For 1 < j < n, define an n X n matrix B; = | | . ] | . Also, for
|nl An2 """ Gnj " Onp |
each matrix Bj, we define the n x n matrix C; by
1. Cj[i, 1] == Bj[:,j],
2. Cj[:,i) = Bj[:,i — 1], for 2 <i < j and
3. Cj[:, k] = Bj[:, k] for k > j + 1.
Also, observe that Bj’s have been defined to satisfy Bi[l,:] + --- + By[l,:] = A[l,:] and

Bjli,:] = Ali,:] for all i > 2 and 1 < j <n. Thus, by Theorem 9.3.1.5,

det(A) = En:det(Bj). (9.3.1)
j=1
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Let us now compute det(B;), for 1 < j <n. Note that C; = EjoFs3--- E;_1 jB;j, for 1 <j <mn.
Then, by Theorem 9.3.1.3, we get det(B;) = (—1)7"!det(C;). So, using Remark 9.3.2.2 and
Theorem 9.3.1.2 and Equation (9.3.1), we have

det(4) =Y (=1)7 " det(C;) =Y (—1)7ay; det(A(1 ] 5)).
j=1 j=1
Thus, we have shown that the determinant defined in Definition 2.8.1 is valid. ]

9.4 Dimension of W; + W,

Theorem 9.4.1. Let'V be a finite dimensional vector space over F and let W1 and Wy be two

subspaces of V. Then,
dim(W;) 4+ dim(Ws) = dim(W; + Wa) 4+ dim(W; N Wa). (9.4.1)

Proof. Since W1 N Wy is a vector subspace of V, let B = {uy,...,u,} be a basis of W; N Wj.
As, W1 N W5 is a subspace of both W; and Wy, let us extend the basis B to form a basis
Bi ={uy,...,u,,vy,...,vs} of Wy and a basis By = {uy,...,u,,wi,...,w;} of Wa.

We now prove that D = {uy,...,u,, Wi,...,Ws, Vi,Va,..., vy} is a basis of Wy + Wy, To
do this, we show that

1. D is linearly independent subset of V and
2. LS(D) = W; + W,.
The second part can be easily verified. For the first part, consider the linear system
ajur +- -+ aur + fiwr + -+ BswWs v+ -+ v =0 (9.4.2)
in the variables o;’s, 8;’s and ~y;’s. We re-write the system as

aug + - ey + fiwy + s+ BsWe = — (v eve).

S r T
Then, v =— > v, € LS(B1) = Wy. Also, v = > a,u, + > Bxwg. So, v € LS(By) = Ws.
i=1 Jj=1 k=1

T
Hence, v.€ Wi N Wy and therefore, there exists scalars d1,...,d; such that v = )" d;u;.
j=1
Substituting this representation of v in Equation (9.4.2), we get
(1 —=61)ur + -+ + (o — dp)up + rwr + - + Brwy = 0.

So, using Exercise 3.4.16.1, o; — 6; = 0, for 1 < i < 7 and fB; = 0, for 1 < j < ¢. Thus, the
system (9.4.2) reduces to

aquy + -+ apug v+ Ve =0

which has a; = 0 for 1 <4 <r and v; = 0 for 1 < j < s as the only solution. Hence, we see that
the linear system of Equations (9.4.2) has no nonzero solution. Therefore, the set D is linearly
independent and the set D is indeed a basis of W1 + W5. We now count the vectors in the sets
B, B1,B2 and D to get the required result. O
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9.5 When does Norm imply Inner Product

In this section, we prove the following result. A generalization of this result to complex vector

space is left as an exercise for the reader as it requires similar ideas.

Theorem 9.5.1. Let V be a real vector space. A norm || - || is induced by an inner product if

and only if, for all X,y € V, the norm satisfies
%+ yI1? + lIx = yII* = 2/ + 2]yl (PARALLELOGRAM LAW). (9.5.1)

Proof. Suppose that || - || is indeed induced by an inner product. Then, by Exercise 4.2.7.3 the
result follows.

So, let us assume that || - || satisfies the parallelogram law. So, we need to define an inner
product. We claim that the function f:V x V — R defined by

1
fooy) =7 (Ix+yl* =[x =y|?), forallxyeV

satisfies the required conditions for an inner product. So, let us proceed to do so.

1
STEP 1: Clearly, for each x € V, f(x,0) = 0 and f(x,x) = ZHx—i—XH2 = ||x||?. Thus,
f(x,x) > 0. Further, f(x,x) = 0 if and only if x = 0.

STEP 2: By definition f(x,y) = f(y,x) for all x,y € V.
STEP 3: Now note that [|x + y||* — [x — y[2 =2 (|x + y[|* = |x]|* — [ly]|*). Or equivalently,
2f(x,y) = [Ix +y]I> = |x]|* = |y|*, for x,y € V. (9.5.2)
Thus, for x,y,z € V, we have

4(fxy) + f(zy) = Ix+yllP=Ix=yl*>+lz+y|>~ |z -y
= 2(Ix+yl*+llz + yI* = lIx]? = llz1* - 2lly]?)
= |x+z+2y|° +x —zl® = (Ix +2|* + |x —2*) - 4l|y|
= |x+z+2y|° — [x+2|* - [2y]?
= 2f(x+ 2,2y) using Equation (9.5.2). (9.5.3)

Now, substituting z = 0 in Equation (9.5.3) and using Equation (9.5.2), we get 2f(x,y) =
f(x,2y) and hence 4f(x + z,y) = 2f(x +z,2y) =4 (f(x,y) + f(2,y)). Thus,

f(x+2z,y)=f(xy)+ f(z,y), forall x,y € V. (9.5.4)

STEP 4: Using Equation (9.5.4), f(x,y) = f(y,x) and the principle of mathematical induction,
it follows that nf(x,y) = f(nx,y), for all x,y € V and n € N. Another application of
Equation (9.5.4) with f(0,y) = 0 implies that nf(x,y) = f(nx,y), for all x,y € V and
n € Z. Also, for m # 0,

mf (2 xy) = fm-x,y) = f(nx,y) = nf(x.¥).

Hence, we see that for all x,y € Vand a € Q, f (ax,y) = af(x,y).
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STEP 5: Fix u,v € V and define a function g : R — R by

gx) = flzu,v)—zf(u,v)

1 T
= 3 (lzu+ v|]* = [Jzal® — [[v]*) — 5 (la+vI* = faf* = [v]) .

Then, by previous step g(z) = 0, for all z € Q. So, if g is a continuous function then

continuity implies g(x) = 0, for all € R. Hence, f(zu,v) = zf(u,v), for all z € R.

Note that the second term of g(z) is a constant multiple of z and hence continuous. Using
a similar reason, it is enough to show that gi(z) = ||zu + v||, for certain fixed vectors

u,v €V, is continuous. To do so, note that

lz1u + v| = ||[(z1 — z2)u + zou+ v|| < [[(x1 — x2)ul| + [[z2u+ v|.
Thus, |[|ziu+ v|| — ||xzau + v||| < |[(z1 — x2)u]||. Hence, taking the limit as 1 — z2, we
get lim |[zju+ v|| = |zo2u+v|.
Tr1—T2
Thus, we have proved the continuity of g and hence the prove of the required result. "

9.6 Roots of a Polynomials

The main aim of this subsection is to prove the continuous dependence of the zeros of a poly-

nomial on its coefficients and to recall Descartes’s rule of signs.
Definition 9.6.1. [Jordan Curves] A curve in C is a continuous function f : [a,b] — C,
where [a, b] C R.

1. If the function f is one-one on [a,b) and also on (a, b], then it is called a simple curve.
2. If f(b) = f(a), then it is called a closed curve.
3. A closed simple curve is called a Jordan curve.

4. The derivative (integral) of a curve f = u-+iv is defined component wise. If f’ is continuous
on [a,b], we say f is a Cl-curve (at end points we consider one sided derivatives and

continuity).
5. A Cl-curve on [a,b] is called a smooth curve, if f’ is never zero on (a,b).
6. A piecewise smooth curve is called a contour.

7. A positively oriented simple closed curve is called a simple closed curve such that
while traveling on it the interior of the curve always stays to the left. (Camille Jordan
has proved that such a curve always divides the plane into two connected regions, one of
which is called the bounded region and the other is called the unbounded region. The

one which is bounded is considered as the interior of the curve.)
We state the famous Rouche Theorem of complex analysis without proof.

Theorem 9.6.2. [Rouche’s Theorem] Let C be a positively oriented simple closed contour.
Also, let f and g be two analytic functions on Reo, the union of the interior of C and the curve
C itself. Assume also that |f(x)| > |g(z)|, for all x € C. Then, f and f + g have the same

number of zeros in the interior of C.
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Corollary 9.6.3. [Alen Alexanderian, The University of Texas at Austin, USA.] Let P(t) =

" a1tV 4+ - -+ ag have distinct roots A1, . .., Ay with multiplicities o, . . ., oy, Tespectively.

Take any € > 0 for which the balls Bc()\;) are disjoint. Then, there exists a 6 > 0 such that the
polynomial q(t) = t" +al,_t"" ' + -+ af, has ezactly o; roots (counting with multiplicities) in

Be(\i), whenever |a; — a);| <.

Proof. For an € >0 and 1 <i <m, let C; = {z € C: |z — \;j| = ¢}. Now, for each 7,1 <i < m,
take v; = mgl Ip(2)], pi = m%x[l + 2| +---+|2/"71] and choose 6 > 0 such that p;§ < v;. Then,
ze(C; zel;

for a fixed j and z € C}, we have
|a(2) = P(2)] = (a1 — an—1)2""" 4+ (ag — ao)| < dp; < vj < [p(2)].

Hence, by Rouche’s theorem, p(z) and ¢(z) have the same number of zeros inside Cj, for each
j=1,...,m. That is, the zeros of ¢(t) are within the e-neighborhood of the zeros of P(¢). =

As a direct application, we obtain the following corollary.
Corollary 9.6.4. Eigenvalues of a matriz are continuous functions of its entries.

Proof. Follows from Corollary 9.6.3. "

Remark 9.6.5. 1. [Sign changes in a polynomial] Let P(z) =) a;x" " be a real polyno-
mial, with ag # 0. Read the coefficient from the left ag, a1,.... We say the SIGN CHANGCES
OF a; OCCUR AT mj < mg < --- < my to mean that an, s the first after ag with sign
opposite to ap; am, s the first after a,, with sign opposite to ap,; and so on.

2. [Descartes’ Rule of Signs] Let P(x) = > 7a;z"" be a real polynomial. Then, the
mazimum number of positive roots of P(x) = 0 is the number of changes in sign of the
coefficients and that the mazimum number of negative roots is the number of sign changes
in P(—z) = 0.

Proof. Assume that ag, a1, ,a, has k > 0 sign changes. Let b > 0. Then, the coeffi-
cients of (x — b)P(x) are

ag, a1 — ba/07a/2 - bala o, 0p — ban_l, _ban'

This list has at least k + 1 changes of signs. To see this, assume that ag > 0 and a, # 0.

Let the sign changes of a; occur at mi < mg < --- < my. Then, setting
Co = 0, C1 = Qmy — bAmy—1,C2 = Ay — bAmy—1,°++ , Ck = Ay, — bAm, -1, Cky1 = —banp,

we see that ¢; > 0 when i is even and ¢; < 0, when i is odd. That proves the claim.

Now, assume that P(x) = 0 has k positive roots by, ba,--- ,bx. Then,
P(z)=(z—b1)(x —ba) - (x — bg)Q(x),

where Q(x) is a real polynomial. By the previous observation, the coefficients of (v —
br)Q(x) has at least one change of signs, coefficients of (x —bx_1)(x —bg)Q(x) has at least
two, and so on. Thus coefficients of P(x) has at least k change of signs. The rest of the

proof is similar. "
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9.7 Variational characterizations of Hermitian Matrices

Let A € M,(C) be a Hermitian matrix. Then, by Theorem 6.4.10, we know that all the
eigenvalues of A are real. So, we write \;(A) to mean the i-th smallest eigenvalue of A. That
is, the i-th from the left in the list A\j(A4) < A2(A4) < -+ < A (A).
Lemma 9.7.1. [Rayleigh-Ritz Ratio] Let A € M,,(C) be a Hermitian matriz. Then,

1. M(A)x*x < x*Ax < A\, (A)x*x, for each x € C™.

2. M(A) = min X;:ix = min x*Ax.
x#£0 lix||=1

3. An(A) = max x;f;x = max X*Ax.
x#0 [Ix[I=1

Proof. Proof of Part 1: By spectral theorem (see Theorem 6.4.10, there exists a unitary matrix
U such that A = UDU*, where D = diag(A1(A),..., A, (A)) is a real diagonal matrix. Thus,
the set {U[:,1],...,U[:,n]} is a basis of C". Hence, for each x € C", there exists Ans :;’s
(scalar) such that x = Y a;U[:,i]. So, note that x*x = |o;|? and

A(A)xx =M (A)) foul* <D el Ai(A) = x*Ax <A ) e’ = Aax*x.

For Part 2 and Part 3, take x = U[:, 1] and x = U(:, n), respectively. .

As an immediate corollary, we state the following result.

x*Ax

Corollary 9.7.2. Let A € M,,(C) be a Hermitian matriz and o = Then, A has an

eigenvalue in the interval (—oo, ] and has.an eigenvalue in the interval [a, 00).
We now generalize the second and third parts of Theorem 9.7.2.

Proposition 9.7.3. Let A € M, (C) be a Hermitian matriz with A = UDU*, where U is a
unitary matrix and D is a diagonal matriz consisting of the eigenvalues Ay < Ao < -+ < Ay

Then, for any positive integer k,1 < k < mn,

AL = min x*Ax = max x*Ax.
x||=1 x||=1
xLU[:,{I],.l!.,U[:,kfl] zLU[:,?L‘],.”..,U[:,k#»l]
Proof. Let x € C" such that x is orthogonal to U[,1],...,U][:,k — 1]. Then, we can write
n

x = », o;U[:, 1], for some scalars a;’s. In that case,
i=k

n n
XX = )\kz o |2 < Z loi |2\ = x* Ax
i=k i=k

and the equality occurs for x = U[:, k]. Thus, the required result follows. =

Theorem 9.7.4. [Courant-Fischer] Let A € M,,(C) be a Hermitian matriz with eigenvalues
)\1 S)\Q <. SAn Then,

A= max min x*Ax = min max X Ax.
Wi1,..,Wg—1 llx]|=1 Wy, Wh 1 [I=[[=1
xlwi,..., Wi _1 xlwn,..., WEi1
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Proof. Let A =UDU*, where U is a unitary matrix and D = diag(\y,...,A,). Now, choose a

set of k — 1 linearly independent vectors from C”, say S = {wy,...,wy_1}. Then, some of the
eigenvectors {U[:,1],...,U[:,k — 1]} may be an element of S*. Thus, using Proposition 9.7.3,
we see that
AL = min x*Ax > min x*Ax.
x||=1, x||=1
xJ_U[:,ll‘],l.l..,U[:,kfl] l,LEH_QJ_
Hence, Ay > max ”m”inl x*Ax, for each choice of k — 1 linearly independent vectors.
Wi,...,.WE_1 X||=
xlwy,..., W1
But, by Proposition 9.7.3, the equality holds for the linearly independent set {U[:, 1],...,U[:

, k — 1]} which proves the first equality. A similar argument gives the second equality and hence

the proof is omitted. =

Theorem 9.7.5. [Weyl Interlacing Theorem] Let A, B € M,,(C) be a Hermitian matrices.
Then, \p(A) + M\ (B) < M(A+ B) < M(A) + M\o(B). In particular, if B = P*P, for some
matriz P, then A\p(A+ B) > M\ (A). In particular, for z € C", \(A + 2z*) < A\p11(A).

Proof. As A and B are Hermitian matrices, the matrix A 4+ B is also Hermitian. Hence, by

Courant-Fischer theorem and Lemma 9.7.1.1,

M(A+B) = o, nax H111”1111 x"(A+ B)x
LWkl xiwl,..:wk71
< max min [x"Ax + M\ (B)] = M (A) + M\ (B)
Wi,...,.WE_1 x||=

and

M(A+B) = , nax ”mHila1 x"(A+ B)x
L k=1 xlwiy,..., W1
> max min  [x"Ax + A\ (B)] = A\ (A4) + A\ (B).
Wi, W1 [[x[|=1
xlwy,..., Wi _1

If B = P*P, then \{(B) = thin x*(P*P)x = thin | Px||? > 0. Thus,
x||=1 x||=1

Me(A+ B) > Me(A) + M(B) > M\ (4).

In particular, for z € C", we have

Ae(A+2zz") = max min  [x*Ax + |[x*z|?]
Wi,y Wh—1 lIx[[=1
xlwiy,..., WE_1
< max min [x*Ax + |[x*z|%]
Wi,y Wh—1 [Ix][=1
xlwq,..., W _ 1,2
= max in x*Ax
Wi,y Wi—1 [lzll=1
xlwiy,..., WE_ 1,2
< max min X"Ax = M11(4A).
Wi,...,Wg_1,Wg lz]|=1

xlwiy,..., Wi _1,W
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Theorem 9.7.6. [Cauchy Interlacing Theorem] Let A € M,(C) be a Hermitian matriz.

Define A =

Y , for some a € R andy € C". Then,
a

y*
M(A) < Me(A) < Mg (A).

Proof. Note that

Aer1(A) = max min  x*Ax < ax mi x* Ax
w1,...,weCntl [I=<[l=1 W1,...,WECntH1 [Ix[|=1 Xpy1=0
xlwy,..., Wi xlwy,..., Wi
= max min  X*Ax = \gy1(A)
wi,...,WEC? lIxll=1
xlwy,..., Wi,
and
Aer1(A) = min max X Ax > min max x* Ax
Wiy Wy g €CPHL xl|=1 WieWa g €CPHT k=1 g
xlwiy,..., Wk xlwiy,..., Wk
= min max X Ax = \p(A4)
W1,y Wy, ECT lI=[l=1
xlwy,..., Wk

As an immediate corollary, one has the following result.

Corollary 9.7.7. [Inclusion principle] Let A € M, (C) be a Hermitian matriz and v be a
positive integer with 1 < r < n. If Byyx, is a principal submatriz of A then, Ap(A) < \g(B) <
)‘k+n—r(A)'

Theorem 9.7.8. [Poincare Separation Theorem] Let A € M, (C) be a Hermitian matriz and
{ui,...,u,} € C" be an orthonormal set for some positive integer r,1 < r < n. If further
B = [bi;] is an v x r matriz with bjj = ufAu;, 1 <1i,j5 <r then, Ag(A) < Ap(B) < Apn—r(4).

Proof. Let us extend the orthonormal set {uy, ..., u,} to an orthonormal basis, say {ui,...,u,}
of C™ and write U = {ul e un} . Then, B is a r x r principal submatrix of U*AU. Thus, by
inclusion principle, Ay (U*AU) < A\g(B) < Men—r(U*AU). But, we know that o (U*AU) = o(A)
and hence the required result follows. =

The proof of the next result is left for the reader.

Corollary 9.7.9. Let A € M, (C) be a Hermitian matriz and r be a positive integer with
1 <r<n. Then,

MA) + -+ M (A) = UP(}EI trtU*AU  and  Aq—r11(A) 4+ -+ A(A) = max trU*AU.

Corollary 9.7.10. Let A € M,,(C) be a Hermitian matriz and W be a k-dimensional subspace

of C™. Suppose, there exists a real number ¢ such that Xx*Ax > cx*x, for each x € W. Then,
An—k+1(A) > c. In particular, if x*Ax > 0, for each nonzero x € W, then A\,_r11 > 0. | Note

that, a k-dimensional subspace need not contain an eigenvector of A. For example, the line

10
y = 2x does not contain an eigenvector of [O 2] )
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Proof. Let {x1,...,%X,_x} be a basis of W. Then,

A—k+1(A) = max min x"Ax > min x*Ax > c.
Wi, ;sWn [Ix[|=1 [Ix)|=1
xlwiy,..., Wk x1xq,..., Xn_k

Now assume that x*Ax > 0 holds for each nonzero x € W and that A\,,_x4+1 = 0. Then, it
follows that min  z*Az = 0. Now, define f : C" — C by f(x) = x*Ax.

[I=[[=1
xlxq,..., Xn_k
Then, f is a continuous function and HmHin f(x) = 0. Thus, f must attain its bound on the
x||=1
xeWw

unit sphere. That is, there exists y € W with |ly|| = 1 such that y*Ay = 0, a contradiction.

Thus, the required result follows. "
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