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   Chapter 2
System of Linear Equations

   2.1    Introduction

   


Example 2.1.1.   Let us look at some examples of linear systems.
     
	
   1. 
	 Suppose a,b ∈ ℝ. Consider the system ax = b in the variable x. If
          	
      (a) 
	a≠0 then the system has a unique solution x = .
          
	
      (b) 
	a = 0 and
              	
            i. 
	b≠0 then the system has no solution.
              
	
           ii. 
	b = 0 then the system has infinite number of solutions, namely all x ∈ ℝ.


          


     
	
   2. 
	 Consider a linear system with 2 equations in 2 variables. The equation ax + by = c in the
     variables x and y represents a line in ℝ2 if either a≠0 or b≠0. Thus the solution set of the
     system
     
     
     is given by the points of intersection of the two lines (see Figure 2.1 for illustration of different
     cases). 
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Figure 2.1: Examples in 2 dimension.



     



     
          
	
      (a) 
	 Unique Solution 
x - y = 3 and 2x + 3y = 11. The unique solution is [x,y]T  = [4,1]T . 
Observe that in this case, a1b2 - a2b1≠0.
          
	
      (b) 
	Infinite Number of Solutions 
x + 2y = 1 and 2x + 4y = 2. As both equations represent the same line, the
          solution set is [x,y]T  = [1 - 2y,y]T  = [1,0]T  + y[-2,1]T  with y arbitrary. Observe
          that
              	
            i. 
	a1b2 - a2b1 = 0,a1c2 - a2c1 = 0 and b1c2 - b2c1 = 0.
              
	
           ii. 
	the vector [1,0]T  corresponds to the solution x = 1,y = 0 of the given system.
              
	
          iii. 
	the vector [-2,1]T  corresponds to the solution x = -2,y = 1 of the system
              x + 2y = 0,2x + 4y = 0.


          
	
      (c) 
	No Solution 
x + 2y = 1 and 2x + 4y = 3. The equations represent a pair of parallel lines and hence
          there is no point of intersection. Observe that in this case, a1b2 - a2b1 = 0 but
          a1c2 - a2c1≠0.


     
	
   3. 
	 As a last example, consider 3 equations in 3 variables. 
A linear equation ax + by + cz = d represents a plane in ℝ3 provided [a,b,c]≠[0,0,0]. Here, we
     have to look at the points of intersection of the three given planes. It turns out that there are
     seven different ways in which the three planes can intersect. We present only three ways which
     correspond to different cases.
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(a) 
	 Unique Solution 
Consider the system x+y+z = 3,x+4y+2z = 7 and 4x+10y-z = 13. The unique
          solution to this system is [x,y,z]T  = [1,1,1]T , i.e., the three planes intersect
          at a point.
          
	
      (b) 
	Infinite Number of Solutions 
Consider the system x + y + z = 3,x + 2y + 2z = 5 and 3x + 4y + 4z = 11. The solution set
          is [x,y,z]T  = [1,2 - z,z]T  = [1,2,0]T  + z[0,-1,1]T , with z arbitrary. Observe the
          following:
              	
            i. 
	Here, the three planes intersect in a line.
              
	
           ii. 
	The vector [1,2,0]T  corresponds to the solution x = 1,y = 2 and z = 0 of the
              linear system x + y + z = 3,x + 2y + 2z = 5 and 3x + 4y + 4z = 11. Also, the
              vector [0,-1,1]T  corresponds to the solution x = 0,y = -1 and z = 1 of the
              linear system x + y + z = 0,x + 2y + 2z = 0 and 3x + 4y + 4z = 0.


          
	
      (c) 
	No Solution 
The system x + y + z = 3,2x + 2y + 2z = 5 and 3x + 3y + 3z = 3 has no solution. In
          this case, we have three parallel planes. The readers are advised to supply the
          proof.


     


   

Before we start with the general set up for the linear system of equations, we give different
interpretations of the examples considered above.
   



Example 2.1.2.  
     
	
   1. 
	Recall Example 2.1.1.2a, where we have verified that the solution of the linear system x-y = 3
     and 2x + 3y = 11 equals [4,1]T . Now, observe the following:
          	
      (a) 
	The solution [4,1]T  corresponds to the point of intersection of the corresponding two
          lines.
          
	
      (b) 
	Using matrix multiplication the linear system equals Ax = b, where A = ,
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          x =  and b = . So, the solution is x = A-1b =  = .
          
	
      (c) 
	Re-writing Ax = b as x+y =  gives us 4⋅(1,2)+1⋅(-1,3) = (3,11).
          This corresponds to addition of vectors in the Euclidean plane.


     
	
   2. 
	Recall Example 3.3a, where the point of intersection of the three planes is the point (1,1,1) in
     the Euclidean space. Note that in matrix notation, the system reduces to Ax = b,
     where
     
     
     Then
          	
      (a) 
	x =  = A-1
    b =  = .
          
	
      (b) 
	1 ⋅ (1,1,4) + 1 ⋅ (1,4,10) + 1 ⋅ (1,2,-1) = (3,5,13). This corresponds to addition of
          vectors in the Euclidean space.


     


Thus, there are three ways of looking at the linear system Ax = b, where, as the name suggests, one of
the ways is looking at the point of intersection of planes, the other is the vector sum approach and the
third is the matrix multiplication approach. All of three approaches are important as they give
different insight to the study of matrices. After this chapter, we will see that the last two
interpretations form the fundamentals of linear algebra.
   


   


Definition 2.1.3.  [Linear System]   A system of m linear equations in n variables x1,x2,…,xn
is a set of equations of the form
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where for 1 ≤ i ≤ m and 1 ≤ j ≤ n;aij,bi ∈ ℝ. Linear System (2.1.1) is called homogeneous if
b1 = 0 = b2 =  = bm and non-homogeneous, otherwise.
   

   


Definition 2.1.4.  [Coefficient and Augmented Matrices]   Let A = ,
x =  and b = . Then, (2.1.1) can be re-written as Ax = b. In this setup, the matrix
A is called the coefficient matrix and the block matrix  is called the augmented  matrix
of the linear system (2.1.1).
   


   


Remark 2.1.5.   Consider the linear system Ax = b, where A ∈ Mm,n(ℂ), b ∈ Mm,1(ℂ) and
x ∈ Mn,1(ℂ). If [Ab] is the augmented matrix and xT  = [x1,…,xn] then,
     
	
  1. 
	 for j = 1,2,…,n, the variable xj corresponds to the column ([Ab])[:,j].
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2. 
	 the vector b = ([Ab])[:,n + 1].
     
	
  3. 
	 for i = 1,2,…,m, the ith equation corresponds to the row ([Ab])[i,:].


   

   


Definition 2.1.6.  [Solution of a Linear System]   A solution of Ax = b is a vector y such
that Ay indeed equals b. The set of all solutions is called the solution set of the system. For
example, the solution set of Ax = b, with A =  and b =  equals .
   


   


Definition 2.1.7.  [Consistent, Inconsistent]  Consider a linear system Ax = b. Then, this
linear system is called consistent if it admits a solution and is called inconsistent if it admits
no solution. For example, the homogeneous system Ax = 0 is always consistent as 0 is a solution
whereas, verify that the system x + y = 2,2x + 2y = 3 is inconsistent.
   


   


Definition 2.1.8.  [Associated Homogeneous System]    Consider a linear system Ax = b.
Then, the corresponding linear system Ax = 0 is called the associated homogeneous system.
0 is always a solution of the associated homogeneous system.
   


   The readers are advised to supply the proof of the next theorem that gives information about the
solution set of a homogeneous system.
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Theorem 2.1.9.    Consider a homogeneous linear system Ax = 0.
     
	
  1. 
	 Then, x = 0, the zero vector, is always a solution, called the trivial solution.
     
	
  2. 
	 Let u≠0 be a solution of Ax = 0. Then, y = cu is also a solution, for all c ∈ ℂ. A nonzero
     solution is called a non-trivial solution. Note that, in this case, the system Ax = 0 has
     an infinite number of solutions.
     
	
  3. 
	 Let u1,…,uk be solutions of Ax = 0. Then, ∑
  i=1kaiui is also a solution of Ax = 0, for
     each choice of ai ∈ ℂ,1 ≤ i ≤ k.


   

   


Remark 2.1.10.  
     
	
  1. 
	 Let A = . Then, x =  is a non-trivial solution of Ax = 0.
     
	
  2. 
	 Let u≠v be solutions of a non-homogeneous system Ax = b. Then, xh = u-v is a solution
     of the associated homogeneous system Ax =  0. That is, any two distinct solutions of
     Ax = b differ by a solution of the associated homogeneous system Ax = 0. Or equivalently,
     the solution set of Ax = b is of the form, {x0 + xh}, where x0 is a particular solution of
     Ax = b and xh is a solution of the associated homogeneous system Ax = 0.
     


   

   


Exercise 2.1.11.  
     
	
  1. 
	Consider a system of 2 equations in 3 variables. If this system is consistent then how many
     solutions does it have?
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2. 
	Give a linear system of 3 equations in 2 variables such that the system is inconsistent
     whereas it has 2 equations which form a consistent system.
     
	
  3. 
	Give a linear system of 4 equations in 3 variables such that the system is inconsistent
     whereas it has three equations which form a consistent system.
     
	
  4. 
	Let Ax = b be a system of m equations in n variables, where A ∈ Mm,n(ℂ).
          	
      (a) 
	Can the system, Ax = b have exactly two distinct solutions for any choice of m and
          n? Give reasons for your answer. Give reasons for your answer.
          
	
      (b) 
	Can the system, Ax = b have only a finitely many (greater than 1) solutions for any
          choice of m and n? Give reasons for your answer.


     


   


   
2.1.1    Elementary Row Operations

   


Example 2.1.12.   Solve the linear system y + z = 2,2x + 3z = 5,x + y + z = 3.
   


Solution: Let B0 = [Ab], the augmented matrix. Then, B0 = . We now systematically
proceed to get the solution.
     
	
   1. 
	Interchange 1-st and 2-nd equations (interchange B0[1,:] and B0[2,:] to get B1).
     
     
     
	
   2. 
	In the new system, multiply 1-st equation by  (multiply B1[1,:] by  to get B2).
     
     
     
	
   3. 
	In the new system, replace 3-rd equation by 3-rd equation minus 1-st equation (replace
     B2[3,:] by B2[3,:] - B2[1,:] to get B3).
     
     
     
	
   4. 
	In the new system, replace 3-rd equation by 3-rd equation minus 2-nd equation (replace
     B3[3,:] by B3[3,:] - B3[2,:] to get B4).
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   5. 
	 In the new system, multiply 3-rd equation by  (multiply B4[3,:] by  to get B5).
     
     


   The last equation gives z = 1. Using this, the second equation gives y = 1. Finally, the first
equation gives x = 1. Hence, the solution set is {[x,y,z]T |[x,y,z] = [1,1,1]}, a unique
solution.

   In Example 2.1.12, observe how each operation on the linear system corresponds to a similar
operation on the rows of the augmented matrix. We use this idea to define elementary row operations
and the equivalence of two linear systems.
   



Definition 2.1.13.  [Elementary Row Operations]  Let A ∈ Mm,n(ℂ). Then, the elementary row
operations are
     
	
   1. 
	Eij: Interchange the i-th and j-th rows, namely, interchange A[i,:] and A[j,:].
     
	
   2. 
	Ek(c) for c≠0: Multiply the k-th row by c, namely, multiply A[k,:] by c.
     
	
   3. 
	Eij(c) for c≠0: Replace the i-th row by i-th row plus c-times the j-th row, namely, replace
     A[i,:] by A[i,:] + cA[j,:].
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Definition 2.1.14.  [Row Equivalent Matrices]  Two matrices are said to be row equivalent
if one can be obtained from the other by a finite number of elementary row operations.
   


   


Definition 2.1.15.  [Row Equivalent Linear Systems]    The linear systems Ax =  b and
Cx = d are said to be row equivalent if their respective augmented matrices, [Ab] and [Cd],
are row equivalent.
   


   Thus, note that the linear systems at each step in Example 2.1.12 are row equivalent to
each other. We now prove that the solution set of two row equivalent linear systems are
same.
   



Lemma 2.1.16.   Let Cx = d be the linear system obtained from Ax = b by application of a
single elementary row operation. Then, Ax = b and Cx = d have the same solution set.
   


Proof. We prove the result for the elementary row operation Ejk(c) with c≠0. The reader is advised to
prove the result for the other two elementary operations.

   In this case, the systems Ax = b and Cx = d vary only in the jth equation. So, we
need to show that y satisfies the jth equation of Ax = b if and only if y satisfies the jth
equation of Cx = d. So, let yT  = [α1,…,αn]. Then, the jth and kth equations of Ax = b are
aj1α1 +  + ajnαn = bj and ak1α1 +  + aknαn = bk. Therefore, we see that αi’s satisfy
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Also, by definition the jth equation of Cx = d equals 
   


Therefore, using Equation (2.1.2), we see that yT  = [α1,…,αn] is also a solution for Equation (2.1.3).
Now, use a similar argument to show that if zT  = [β1,…,βn] is a solution of Cx = d then it is also a
solution of Ax = b. Hence, the required result follows.                                                    _
   The readers are advised to use Lemma 2.1.16 as an induction step to prove the next
result.
   



Theorem 2.1.17.   Let Ax = b and Cx = d be two row equivalent linear systems. Then, they
have the same solution set.
   



   
2.2    Main Ideas of Linear Systems

In the previous section, we saw that two row equivalent linear systems have the same solution set.
Sometimes it helps to imagine an elementary row operation as left multiplication by a suitable matrix.
In this section, we will try to understand this relationship and use them to obtain results for linear
system. As special cases, we also obtain results that are very useful in the study of square
matrices.
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2.2.1    Elementary Matrices and the Row-Reduced Echelon Form (RREF)

   


Definition 2.2.1.  [Elementary Matrix]    A matrix E ∈ Mn(ℂ) is called an elementary
matrix if it is obtained by applying exactly one elementary row operation to the identity matrix
In.
   


   


Remark 2.2.2.   The elementary matrices are of three types and they correspond to elementary row
operations.
     
	
  1. 
	 Eij: Matrix obtained by applying elementary row operation Eij to In.
     
	
  2. 
	 Ek(c) for c≠0: Matrix obtained by applying elementary row operation Ek(c) to In.
     
	
  3. 
	 Eij(c) for c≠0: Matrix obtained by applying elementary row operation Eij(c) to In.


When an elementary matrix is multiplied on the left of a matrix A, it gives the same result as that of
applying the corresponding elementary row operation on A.
   


   


Example 2.2.3.  
     
	
   1. 
	 In particular, for n = 3 and c ∈ ℂ,c≠0, one has 
E23 = , E
1(c) = , E
31(c) =  and E
23(c) = .
     
	
   2. 
	 Verify that the transpose of an elementary matrix is again an elementary matrix of similar
     type (see the above examples).
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   3. 
	 Let A = . Then, verify that E
31(-2)E13E31(-1)A = .


   

   


Exercise 2.2.4.  
     
	
  1. 
	 Which of the following matrices are elementary?
     
     
     
	
  2. 
	 Find some elementary matrices E1,…,Ek such that EkE1 = I2.
     
	
  3. 
	 Find some elementary matrices F1,…,Fℓ such that FℓF1 = I
3.
     


   

   


Remark 2.2.5.   Observe that
     
	
  1. 
	 (Eij)-1 = Eij as EijEij = I = EijEij.
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2. 
	 Let c≠0. Then, (Ek(c))-1 = Ek(1∕c) as Ek(c)Ek(1∕c) = I = Ek(1∕c)Ek(c).
     
	
  3. 
	 Let c≠0. Then, (Eij(c))-1 = Eij(-c) as Eij(c)Eij(-c) = I = Eij(-c)Eij(c).
     Thus, each elementary matrix is invertible. Also, the inverse is an elementary matrix of
     the same type.



   

   


Proposition 2.2.6.   Let A and B be two row equivalent matrices. Then, prove that B  =
E1EkA, for some elementary matrices E1,…,Ek.
   


Proof. By definition of row equivalence, the matrix B can be obtained from A by a finite number of
elementary row operations. But by Remark 2.2.2, each elementary row operation on A
corresponds to left multiplication by an elementary matrix to A. Thus, the required result
follows.                                                                                                                 _

   We now give an alternate prove of Theorem 2.1.17. To do so, we state the theorem once
again.
   



Theorem 2.2.7.   Let Ax = b and Cx = d be two row equivalent linear systems. Then, they
have the same solution set.
   


Proof. Let E1,…,Ek be the elementary matrices such that E1Ek[Ab] = [Cd]. Put E = E1Ek.
Then, by Remark 2.2.5
   	
   
	(2.2.1)
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   Now assume that Ay = b holds. Then, by Equation (2.2.1)
   	
   
	(2.2.2)





   On the other hand if Cz = d holds then using Equation (2.2.1), we have
   	
   
	(2.2.3)




Therefore, using Equations (2.2.2) and (2.2.3) the required result follows.                          _

   The following result is a particular case of Theorem 2.2.7.
   



Corollary 2.2.8.   Let A and B be two row equivalent matrices. Then, the systems Ax = 0 and
Bx = 0 have the same solution set.
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Example 2.2.9.  Are the matrices A =  and B =  row equivalent? 
Solution: No, as  is a solution of Bx = 0 but it isn’t a solution of Ax = 0.
   


   


Definition 2.2.10.  [Pivot/Leading Entry]   Let A be a nonzero matrix. Then, in each nonzero
row of A, the left most nonzero entry is called a pivot/leading entry. The column containing
the pivot is called a pivotal column. If aij is a pivot then we denote it by aij. For example,
the entries a12 and a23 are pivots in A = . Thus, columns 2 and 3 are pivotal
columns.
   


   


Definition 2.2.11.  [Row Echelon Form]   A matrix is in row echelon form (REF) (ladder
like)
     
	
   1. 
	 if the zero rows are at the bottom;
     
	
   2. 
	 if the pivot of the (i + 1)-th row, if it exists, comes to the right of the pivot of the i-th
     row.
     
	
   3. 
	 if the entries below the pivot in a pivotal column are 0.


   

   


Example 2.2.12.  
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1. 
	The following matrices are in echelon form. 
, ,  and .
     
	
   2. 
	The following matrices are not in echelon form (determine the rule(s) that fail). 
 and .


   

   


Definition 2.2.13.  [Row-Reduced Echelon Form (RREF)]   A matrix C is said to be in
row-reduced echelon form (RREF)
     
	
   1. 
	 if C is already in echelon form,
     
	
   2. 
	 if the pivot of each nonzero row is 1,
     
	
   3. 
	 if every other entry in each pivotal column is zero.


A matrix in RREF is also called a row-reduced echelon matrix.
   


   


Example 2.2.14.  
     
	
   1. 
	The following matrices are in RREF. 
, ,  and .
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2. 
	The following matrices are not in RREF (determine the rule(s) that fail). 
, , .


   

   Let A ∈ Mm,n(ℂ). We now present an algorithm, commonly known as the Gauss-Jordan
Elimination (GJE), to compute the RREF of A.
     
	
   1. 
	Input: A.
     
	
   2. 
	Output: a matrix B in RREF such that A is row equivalent to B.
     
	
   3. 
	Step 1: Put ‘Region’ = A.
     
	
   4. 
	Step 2: If all entries in the Region are 0, STOP. Else, in the Region, find the leftmost
     nonzero column and find its topmost nonzero entry. Suppose this nonzero entry is aij = c
     (say). Box it. This is a pivot.
     
	
   5. 
	Step 3: Interchange the row containing the pivot with the top row of the region. Also,
     make the pivot entry 1 by dividing this top row by c. Use this pivot to make other entries
     in the pivotal column as 0.
     
	
   6. 
	Step 4: Put Region = the submatrix below and to the right of the current pivot. Now,
     go to step 2.
     Important: The process will stop, as we can get at most min{m,n} pivots.



   


Example 2.2.15.  Apply GJE to 
     
	
   1. 
	Region = A as A≠0.
     
	
   2. 
	Then, E12A = . Also, E31(-1)E12A =  = B (say).
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   3. 
	Now,  Region  =  ≠0.  Then,  E
2()B  =   =  C(say).  Then,
     E12(-1)E32(-2)C =  = D(say).
     
	
   4. 
	Now, Region = . Then, E34D = . Now, multiply on the left
     by E13() and E23() to get , a matrix in RREF. Thus, A is row
     equivalent to F, where F = RREF(A) = .


   

   


Exercise 2.2.16.  
     
	
  1. 
	 Let Ax = b be a linear system of m equations in 2 variables. What are the possible choices
     for RREF([Ab]), if m ≥ 1?
     
	
  2. 
	Let A =  and B =  be two matrices, where x1,x2,x3  are any
     three row vectors of the same size. Then, prove that RREF(A) = RREF(B).____________
       
	
   3. 
	 Find the row-reduced echelon form of the following matrices:
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   The proof of the next result is beyond the scope of this book and hence is omitted.
   



Theorem 2.2.17.   Let A and B be two row equivalent matrices in RREF. Then A = B.
   


   As an immediate corollary, we obtain the following important result.
   



Corollary 2.2.18.   The RREF of a matrix A is unique.
   


Proof. Suppose there exists a matrix A with two different RREFs, say B and C. As the RREFs are
obtained by left multiplication of elementary matrices, there exist elementary matrices E1,…,Ek and
F1,…,Fℓ such that B = E1EkA and C = F1FℓA. Let E = E1Ek and F = F1Fℓ. Thus,
B = EA = EF-1C.

   As inverse of an elementary matrix is an elementary matrix, F-1 is a product of elementary
matrices and hence, B and C are row equivalent. As B and C are in RREF, using Theorem 2.2.17,
B = C.                                                                                                                 _
   



Remark 2.2.19.   Let A ∈ Mm,n(ℂ).
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1. 
	 Then, by Corollary 2.2.18, it’s RREF is unique.
     
	
  2. 
	 Let A ∈ Mm,n(ℂ). Then, the uniqueness of RREF implies that RREF(A) is independent
     of the choice of the row operations used to get the final matrix which is in RREF.
     
	
  3. 
	 Let B = EA, for some elementary matrix E. Then, RREF(A) = RREF(B).
     Proof.  Let  E1,…,Ek  and  F1,…,Fℓ  be  elementary  matrices  such  that  RREF(A)   =
     E1EkA and RREF(B) = F1FℓB. Then,
     

      Thus, the matrices RREF(A) and RREF(B) are row equivalent. Since they are also in
     RREF by Theorem 2.2.17, RREF(A) = RREF(B).                                             _
     
	
  4. 
	 Then, there exists an invertible matrix P, a product of elementary matrices, such that
     PA = RREF(A).
     Proof. By definition, RREF(A) = E1EkA, for certain elementary matrices E1,…,Ek.
     Take P = E1Ek. Then, P is invertible (product of invertible matrices is invertible) and
     PA = RREF(A).                                                                                       _
     

	
  5. 
	 Let F = RREF(A) and B = [A[:,1],…,A[:,s]], for some s ≤ n. Then,
     
     
     Proof. By Remark 2.2.19.4, there exist an invertible matrix P, such that
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 Thus, PB =  [PA[:,1],…,PA[:,s]]  =  [F[:,1],…,F[:,s]]. As F  is in RREF, it’s first s
     columns are also in RREF. Hence, by Corollary 2.2.18, RREF(PB) = [F[:,1],…,F[:,s]].
     Now, a repeated use of Remark 2.2.19.3 gives RREF(B) = [F[:,1],…,F[:,s]]. Thus, the
     required result follows.                                                                                _


   

   


Example 2.2.20.   Consider a linear system Ax = b, where A ∈ M3(ℂ) and A[:,1]≠0
(recall Example 2.1.1.3). Then, verify that the 7 different choices for [Cd] = RREF([Ab])
are
     
	
   1. 
	 . Here, Ax = b is consistent. The unique solution equals  = .
     
	
   2. 
	  , or  .  Here,  Ax  =  b is  inconsistent  for
     any  choice  of  α,β  as  RREF([Ab])  has  a  row  of  [0001].  This  corresponds  to  solving
     0 ⋅ x + 0 ⋅ y + 0 ⋅ z = 1, an equation which has no solution.
     
	
   3. 
	 , or . Here, Ax = b is consistent and has
     infinite number of solutions for every choice of α,β as RREF([Ab]) has no row of
     the form [0001].
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Proposition 2.2.21.   Let A ∈ Mn(ℂ). Then, A is invertible if and only if RREF(A) = In.
That is, every invertible matrix is a product of elementary matrices.
   


Proof. If RREF(A) = In then In = E1EkA, for some elementary matrices E1,…,Ek. As Ei’s are
invertible, E1-1 = E2EkA, E2-1E1-1 = E3EkA and so on. Finally, one obtains
A = Ek-1E1-1. A similar calculation now gives AE1Ek = In. Hence, by definition of
invertibility A-1 = E1Ek.

   Now, let A be invertible with B = RREF(A) = E1EkA, for some elementary matrices E1,…,Ek.
As A and Ei’s are invertible, the matrix B is invertible. Hence, B doesn’t have any zero row. Thus, all
the n rows of B have pivots. Therefore, B has n pivotal columns. As B has exactly n
columns, each column is a pivotal column and hence B = In. Thus, the required result
follows.                                                                                                                 _

   As a direct application of Proposition 2.2.21 and Remark 2.2.19.3 one obtains the
following.
   



Theorem 2.2.22.   Let  A  ∈ Mm,n(ℂ).  Then,  for  any  invertible  matrix  S,  RREF(SA)  =
RREF(A).
   


   


Proposition 2.2.23.   Let A ∈ Mn(ℂ) be an invertible matrix. Then, for any matrix B, define
C =  and D = . Then, RREF(C) =  and RREF(D) = .
   


Proof. Using matrix product,
   

 As
 is in RREF, by Remark 2.2.19.1, RREF(C) = .
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   For the second part, note that the matrix X =  is an invertible matrix.
Thus, by Proposition 2.2.21, X is a product of elementary matrices. Now, verify that
XD = . As  is in RREF, a repeated application of Remark 2.2.19.1 gives the required
result.                                                                                                                   _

   As an application of Proposition 2.2.23, we have the following observation. 
Let A ∈ Mn(ℂ). Suppose we start with C = [AIn] and compute RREF(C). If RREF(C) = [GH] then,
either G = In or G≠In. Thus, if G = In then we must have F = A-1. If G≠In then, A is not
invertible. We explain this with an example.
   



Example 2.2.24.   Use GJE to find the inverse of A = . 
Solution: Applying GJE to [A|I3] =  gives 

   


Thus, A-1 = .
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Exercise 2.2.25.  Find the inverse of the following matrices using GJE.
(i) (ii) (iii)(iv).
   



   
2.2.2    Rank of a Matrix

   


Definition 2.2.26.  [Rank of a Matrix]  Let A ∈ Mm,n(ℂ). Then, the rank of A, denoted
Rank(A), is the number of pivots in the RREF(A). For example, Rank(In) = n and Rank(0) = 0.
   


   


Remark 2.2.27.   Before proceeding further, for A ∈ Mm,n(ℂ), we observe the following.
     
	
  1. 
	 The number of pivots in the RREF(A) is same as the number of pivots in REF of A.
     Hence, we need not compute the RREF(A) to determine the rank of A.
     
	
  2. 
	 Since, the number of pivots cannot be more than the number of rows or the number of
     columns, one has Rank(A) ≤ min{m,n}.
     
	
  3. 
	If B =  then Rank(B) = Rank(A) as RREF(B) = .
     
	
  4. 
	 If A =  then, by definition
     
     
     Further, using Remark 2.2.19,
          	
      (a) 
	Rank(A) ≥Rank.
          
	
      (b) 
	Rank(A) ≥Rank.
          
	
      (c) 
	Rank(A) ≥Rank.


     


   

We now illustrate the calculation of the rank by giving a few examples.
   



Example 2.2.28.   Determine the rank of the following matrices.
     
	
   1. 
	Let A =  and B = . Then, Rank(A) = Rank(B) = 1. Also, verify that
     AB = 0 and BA = . So, Rank(AB) = 0≠1 = Rank(BA).
     
	
   2. 
	Let A =  diag(d1,…,dn). Then, Rank(A) equals the number of nonzero di’s.
     
	
   3. 
	 Let A = . Then, Rank(A) = 2 as it’s REF has two pivots.


   

   We now show that the rank doesn’t change if a matrix is multiplied on the left by an invertible
matrix.
   



Lemma 2.2.29.   Let A ∈ Mm,n(ℂ). If S is an invertible matrix then Rank(SA) = Rank(A).
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Proof. By Theorem 2.2.22, RREF(A) = RREF(SA). Hence, Rank(SA) = Rank(A).              _

   We now have the following result.
   



Corollary 2.2.30.   Let A ∈ Mm,n(ℂ) and B ∈ Mn,q(ℂ). Then, Rank(AB) ≤Rank(A).

   In particular, if B ∈ Mn(ℂ) is invertible then Rank(AB) = Rank(A).
   


Proof. Let Rank(A) = r. Then, there exists an invertible matrix P and A1 ∈ Mr,n(ℂ) such that
PA = RREF(A) = . Then, PAB = B = . So, using Lemma 2.2.29 and
Remark 2.2.27.2, we get
   	
   
	(2.2.4)




In particular, if B is invertible then, using Equation (2.2.4), we get
   

 and
hence the required result follows.                                                                                _
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Theorem 2.2.31.   Let A ∈ Mm,n(ℂ). If Rank(A) = r then, there exist invertible matrices P
and Q such that
   


   

Proof. Let C = RREF(A). Then, by Remark 2.2.19.4 there exists as invertible matrix P such that
C = PA. Note that C has r pivots and they appear in columns, say i1 < i2 <  < ir.

   Now, let D = CE1i1E2i2Erir. As Ejij’s are elementary matrices that interchange the columns of
C, one has D = , where B ∈ Mr,n-r(ℂ).

   Put Q1 = E1i1E2i2Erir. Then, Q1 is invertible. Let Q2 = . Then, verify that Q2 is
invertible and
   


Thus, if we put Q = Q1Q2 then Q is invertible and PAQ = CQ = CQ1Q2 =  and hence, the
required result follows.                                                                                             _
   We now prove the following result.
   



Proposition 2.2.32.   Let A ∈ Mn(ℂ) be an invertible matrix.
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1. 
	If A =   with A1  ∈ Mn,r(ℂ) and A2  ∈ Mn,n-r(ℂ) then Rank(A1)  =  r and
     Rank(A2) = n - r.
     
	
  2. 
	If  A  =   with  B1   ∈ Ms,n(ℂ)  and  B2   ∈ Mn-s,n(ℂ)  then  Rank(B1)  =  s and
     Rank(B2) = n - s.


In particular, if B = A[S,:] and C = A[:,T], for some subsets S,T of [n] then Rank(B) = |S| and
Rank(C) = |T|.
   


Proof. Since A is invertible, RREF(A) = In. Hence, by Remark 2.2.19.4, there exists an invertible
matrix P such that PA = In. Thus,
   


Thus, PA1 =  and PA2 = . So, using Corollary 2.2.30, Rank(A1) = r. Also, note that
 is an invertible matrix and
   

So, again by using Corollary 2.2.30, Rank(A2) = n - r, completing the proof of the first
part.
   For the second part, let us assume that Rank(B1) = t < s. Then, by Remark 2.2.19.4, there exists
an invertible matrix Q such that
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   	(2.2.5)




for some matrix C, where C is in RREF and has exactly t pivots. Since t < s, QB1 has at least one
zero row.

   As PA = In, one has AP = In. Hence,  = P = AP = In = .
Thus,
   	
   
	(2.2.6)





   Further, using Equations (2.2.5) and (2.2.6), we see that
   


Thus, Q has a zero row, contradicting the assumption that Q is invertible. Hence, Rank(B1) = s.
Similarly, Rank(B2) = n - s and thus, the required result follows.                                     _
   As a direct corollary of Theorem 2.2.31 and Proposition 2.2.32, we have the following result which
improves Corollary 2.2.30.
   

                                                                                      

                                       DRAFT                               

Corollary 2.2.33.   Let A ∈ Mm,n(ℂ). If Rank(A) = r < n then, there exists an invertible
matrix Q and B ∈ Mm,r(ℂ) such that AQ = , where Rank(B) = r.
   


Proof. By Theorem 2.2.31, there exist invertible matrices P and Q such that PAQ = . If
P-1 = , where B ∈ Mm,r(ℂ) and C ∈ Mm,m-r(ℂ) then,
   

 Now,
by Proposition 2.2.32, Rank(B) = r = Rank(A) as the matrix P-1 =  is an invertible matrix.
Thus, the required result follows.                                                                                _
   As an application of Corollary 2.2.33, we have the following result.
   



Corollary 2.2.34.   Let A ∈ Mm,n(ℂ) and B ∈ Mn,p(ℂ). Then, Rank(AB) ≤Rank(B).
   


Proof. Let Rank(B) = r. Then, by Corollary 2.2.33, there exists an invertible matrix Q and a matrix
C ∈ Mn,r(ℂ) such that BQ =  and Rank(C) = r. Hence, ABQ = A = . Thus,
using Corollary 2.2.30 and Remark 2.2.27.2, we get
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   We end this section by relating the rank of the sum of two matrices with sum of their
ranks.
   



Proposition 2.2.35.   Let A,B  ∈ Mm,n(ℂ). Then, prove that Rank(A + B)  ≤ Rank(A) +
Rank(B).  In  particular,  if  A  =  ∑
  i=1kxiyi*,  for  some  xi,yi  ∈ ℂ,  for  1  ≤ i  ≤ k,  then
Rank(A) ≤ k.
   


Proof. Let Rank(A) = r. Then, there exists an invertible matrix P and a matrix A1 ∈ Mr,n(ℂ) such
that PA = RREF(A) = . Then,
   

 Now
using Corollary 2.2.30, Remark 2.2.27.4 and the condition Rank(A) = Rank(A1) = r, the number of
rows of A1, we have
   

Thus, the required result follows. The other part follows, as Rank(xiyi*) = 1, for 1 ≤ i ≤ k.   _
   


Exercise 2.2.36.  
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  1. 
	 Let A =  and B = . Find P and Q such that B = PAQ.
     
	
  2. 
	 Let A ∈ Mm,n(ℂ). If Rank(A) = r then, prove that A = BC, where Rank(B) = Rank(C) =
     r, B ∈ Mm,r(ℂ) and C ∈ Mr,n(ℂ). Now, use matrix product to give the existence of
     xi ∈ ℂm and yi ∈ ℂn such that A = ∑
  i=1rxiyi*.
     
	
  3. 
	Let  A  =  ∑
  i=1kxiyi*,  for  some  xi  ∈ ℂm  and  yi  ∈ ℂn.  Then  does  it  imply  that
     Rank(A) ≤ k?
     
	
  4. 
	                                                                                                         Let
     A be a matrix of rank r. Then, prove that there exist invertible matrices Bi,Ci such that
     B1A = ,AC1 =  and B2AC2 = , where the (1,1) block of
     each matrix has size r × r. Also, prove that A1 is an invertible matrix.
     
	
  5. 
	 Prove that if Rank(A) = Rank(AB) then A = ABX, for some matrix X. Similarly,
     if Rank(A) = Rank(BA) then A = Y BA, for some matrix Y . [Hint: Choose invertible
     matrices P,Q satisfying PAQ = , P(AB) = (PAQ)(Q-1B) = . Now,
     find an invertible matrix R such that P(AB)R = . Use the above result to show
     that C is invertible. Then X = RQ-1 gives the required result.]
     
	
  6. 
	 Let P and Q be invertible matrices. Then, prove that Rank(PAQ) = Rank(A).
     
	
  7. 
	Let A be an m × n matrix with m ≤ n.
          	
      (a) 
	If P is an invertible matrix such that PA = RREF(A) =  then verify that
          P(AAT )PT  = (PA)(PA)T  = Im and hence prove that Rank(A) = Rank(AAT ).
          
	
      (b) 
	If  Q is  an  invertible  matrix  such  that  QAT   =  RREF(A)  =   then  verify
          that Q(AT A)QT   =  (QAT )(QAT )T   =   and hence prove that Rank(A)  =
          Rank(AT A).
          
	
      (c) 
	Generalize  the  above  ideas  to  prove  that  if  Rank(A)   =   m  then  Rank(A)   =
          Rank(AT A) = Rank(AAT ).
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2.2.3    Solution set of a Linear System

   


Definition 2.2.37.  [Basic,  Free  Variables]      Consider  the  linear  system  Ax  =  b.  If
 RREF([Ab]) = [Cd]. Then, the variables corresponding to the pivotal columns of C are called
the basic variables and the variables that are not basic are called free variables.
   


   


Example 2.2.38.  
     
	
   1. 
	 If the system Ax = b in n variables is consistent and RREF(A) has r nonzero rows then,
     Ax = b has r basic variables and n - r free variables.
     
	
   2. 
	 Let RREF([Ab]) = . Hence, x and y are basic variables and z is the free
     variable. Thus, the solution set of Ax = b is given by
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   3. 
	  Let  RREF([Ab])  =  .  Then,  the  system  Ax  =  b has  no  solution  as
     (RREF([Ab]))[3,:] = [0001].


   

We now prove the main result in the theory of linear systems. Before doing so, we look at the following
example.
   



Example 2.2.39.  Consider a linear system Ax = b. Suppose RREF([Ab]) = [Cd], where
   

 Then
to get the solution set, we observe the following. 

     	
   1. 
	C has 4 pivotal columns, namely, the columns 1,2,5 and 6. Thus, x1,x2,x5  and x6  are
     basic variables.
     
	
   2. 
	Hence, the remaining variables, x3,x4 and x7 are free variables.


Therefore, the solution set is given by
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where x3,x4 and x7 are arbitrary. 
Let x0 = ,u1 = ,u2 =  and u3 = . In this example, verify that
Cx0 = d, and for 1 ≤ i ≤ 3, Cui = 0. Hence, it follows that Ax0 = d, and for 1 ≤ i ≤ 3,
Aui = 0.
   

   


Theorem 2.2.40.   Let Ax = b be a linear system in n variables with RREF([Ab]) = [Cd] with
Rank(A) = r and Rank([Ab]) = ra.
     
	
  1. 
	 Then, the system Ax = b is inconsistent if r < ra
     
	
  2. 
	 Then, the system Ax = b is consistent if r = ra.
          	
      (a) 
	 Further, Ax = b has a unique solution if r = n.
          
	
      (b) 
	 Further, Ax = b has infinite number of solutions if r < n. In this case, there
          exist vectors x0,u1,…,un-r ∈ ℝn with Ax0  = b and Aui = 0, for 1 ≤ i ≤ n - r.
          Furthermore, the solution set is given by
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Proof. Part 1: As r < ra, by Remark 2.2.19.5 ([Cd])[r + 1,:] = [0T 1]. Note that this row corresponds
to the linear equation
   


which clearly has no solution. Thus, by definition and Theorem 2.1.17, Ax = b is inconsistent.
   Part 2: As r = ra, by Remark 2.2.19.5, [Cd] doesn’t have a row of the form [0T 1]. Further, the
number of pivots in [Cd] and that in C is same, namely, r pivots. Suppose the pivots appear in
columns i1,…,ir with 1 ≤ i1 <  < ir ≤ n. Thus, the variables xij, for 1 ≤ j ≤ r, are basic variables
and the remaining n-r variables, say xt1,…,xtn-r, are free variables with t1 <  < tn-r. Since C is
in RREF, in terms of the free variables and basic variables, the ℓ-th row of [Cd], for 1 ≤ ℓ ≤ r,
corresponds to the equation
   


Thus, the system Cx = d is consistent. Hence, by Theorem 2.1.17 the system Ax = b is consistent
and the solution set of the system Ax = b and Cx = d are the same. Therefore, the solution set of the
system Cx = d (or equivalently Ax = b) is given by
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   	(2.2.7)




   Part 2a: As r = n, there are no free variables. Hence, xi = di, for 1 ≤ i ≤ n, is the unique
solution.

   Part 2b: Define x0 =  and u1 = ,…,un-r = . Then, it can be easily verified
that Ax0 = b and, for 1 ≤ i ≤ n - r, Aui = 0. Also, by Equation (2.2.7) the solution set has indeed
the required form, where ki corresponds to the free variable xti. As there is at least one free
variable the system has infinite number of solutions. Thus, the proof of the theorem is
complete.                                                                                                               _
   



Exercise 2.2.41.   Consider the linear system given below. Use GJE to find the RREF of it’s
augmented matrix. Now, use the technique used in the previous theorem to find the solution of
the linear system
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   Let A ∈ Mm,n(ℂ). Then, Rank(A) ≤ m. Thus, using Theorem 2.2.40 the next result
follows.
   



Corollary 2.2.42.   Let A ∈ Mm,n(ℂ). If Rank(A) = r < min{m,n} then Ax = 0 has infinitely
many solutions. In particular, if m < n, then Ax = 0 has infinitely many solutions. Hence, in
either case, the homogeneous system Ax = 0 has at least one non-trivial solution.
   


   


Remark 2.2.43.   Let A ∈ Mm,n(ℂ). Then, Theorem 2.2.40 implies that Ax = b is consistent
if and only if Rank(A) = Rank([Ab]). Further, the vectors associated to the free variables in
Equation (2.2.7) are solutions to the associated homogeneous system Ax = 0.
   


   We end this subsection with some applications.
   



Example 2.2.44.  
     
	
   1. 
	 Determine the equation of the line/circle that passes through the points (-1,4),(0,1)
     and (1,4). 
Solution: The general equation of a line/circle in Euclidean plane is given by a(x2 +
     y2) + bx + cy + d  =  0,  where  a,b,c  and  d  are  variables.  Since  this  curve  passes
     through the given points, we get a homogeneous system in 3 equations and 4 variables,
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     namely   =  0.  Solving  this  system,  we  get  [a,b,c,d]  =
     [d,0,-d,d]. Hence, choosing d = 13, the required circle is given by 3(x2 +y2)-16y +
     13 = 0.
     
	
   2. 
	  Determine  the  equation  of  the  plane  that  contains  the  points  (1,1,1),(1,3,2)  and
     (2,-1,2). 
Solution: The general equation of a plane in space is given by ax + by + cz + d = 0,
     where a,b,c and d are variables. Since this plane passes through the 3 given points, we
     get a homogeneous system in 3 equations and 4 variables. So, it has a non-trivial solution,
     namely [a,b,c,d] = [-d,-,-d,d]. Hence, choosing d = 3, the required plane is given
     by -4x - y + 2z + 3 = 0.
     
	
   3. 
	 Let A = . Then, find a non-trivial solution of Ax = 2x. Does there exist a
     nonzero vector y ∈ ℝ3 such that Ay = 4y? 
Solution: Solving for Ax = 2x is equivalent to solving (A - 2I)x = 0. The augmented
     matrix of this system equals . Verify that xT
    =  [1,0,0] is a nonzero
     solution. For the other part, the augmented matrix for solving (A - 4I)y = 0 equals
     . Thus, verify that yT
   = [2,0,1] is a nonzero solution.


   

   


Exercise 2.2.45.  
     
	
  1. 
	 Let A ∈ Mn(ℂ). If A2x = 0 has a non trivial solution then show that Ax = 0 also has a
     non trivial solution.
     
	
  2. 
	 Prove that 5 distinct points are needed to specify a general conic, namely, ax2 + by2 +
     cxy + dx + ey + f = 0, in the Euclidean plane.
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3. 
	 Let u = (1,1,-2)T  and v = (-1,2,3)T . Find condition on x,y and z such that the system
     cu + dv = (x,y,z)T  in the variables c and d is consistent.
     
	
  4. 
	 For what values of c and k, the following systems have i) no solution, ii) a unique solution and
     iii) infinite number of solutions.
          	
      (a) 
	 x + y + z = 3,x + 2y + cz = 4,2x + 3y + 2cz = k.
          
	
      (b) 
	 x + y + z = 3,x + y + 2cz = 7,x + 2y + 3cz = k.
          
	
      (c) 
	 x + y + 2z = 3,x + 2y + cz = 5,x + 2y + 4z = k.


     
	
  5. 
	 Find the condition(s) on x,y,z so that the systems given below (in the variables a,b and c) is
     consistent?
          	
      (a) 
	 a + 2b - 3c = x,2a + 6b - 11c = y,a - 2b + 7c = z.
          
	
      (b) 
	 a + b + 5c = x,a + 3c = y,2a - b + 4c = z.


_____________________________________
       
	
   6. 
	 Determine the equation of the curve y = ax2 + bx + c that passes through the points
       (-1,4),(0,1) and (1,4).
       
	
   7. 
	 Solve the linear systems 
x + y + z + w = 0,x - y + z + w = 0 and -x + y + 3z + 3w = 0, and 
x + y + z = 3,x + y - z = 1,x + y + 4z = 6 and x + y - 4z = -1.
       
	
   8. 
	 For what values of a, does the following systems have i) no solution, ii) a unique solution and
       iii) infinite number of solutions.
             	
        (a) 
	 x + 2y + 3z = 4,2x + 5y + 5z = 6,2x + (a2 - 6)z = a + 20.
             
	
        (b) 
	 x + y + z = 3,2x + 5y + 4z = a,3x + (a2 - 8)z = 12.


       
	
   9. 
	 Consider the linear system Ax = b in m equations and 3 variables. Then, for each of the given
       solution set, determine the possible choices of m? Further, for each choice of m, determine a
       choice of A and b.
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(a) 
	 (1,1,1)T  is the only solution.
          
	
      (b) 
	 {(1,1,1)T  + c(1,2,1)T |c ∈ ℝ} as the solution set.
          
	
      (c) 
	 {c(1,2,1)T |c ∈ ℝ} as the solution set.
          
	
      (d) 
	 {(1,1,1)T  + c(1,2,1)T  + d(2,2,-1)T |c,d ∈ ℝ} as the solution set.
          
	
      (e) 
	 {c(1,2,1)T  + d(2,2,-1)T |c,d ∈ ℝ} as the solution set.


     


   


   
2.3    Square Matrices and Linear Systems

In this section the coefficient matrix of the linear system Ax = b will be a square matrix. We start
with proving a few equivalent conditions that relate different ideas.
   



Theorem 2.3.1.   Let A ∈ Mn(ℂ). Then, the following statements are equivalent.
     
	
  1. 
	 A is invertible.
     
	
  2. 
	 RREF(A) = In.
     
	
  3. 
	 A is a product of elementary matrices.
     
	
  4. 
	 The homogeneous system Ax = 0 has only the trivial solution.
     
	
  5. 
	 Rank(A) = n.


   

Proof. 1 ⇔2        Already done in Proposition 2.2.21.

   2 ⇔3        Again, done in Proposition 2.2.21.
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   3 4        Let A = E1Ek, for some elementary matrices E1,…,Ek. Then, by previous
equivalence A is invertible. So, A-1 exists and A-1A = In. Hence, if x0 is any solution of the
homogeneous system Ax = 0 then,
   


Thus, 0 is the only solution of the homogeneous system Ax = 0.
   4 5        Let if possible Rank(A) = r < n. Then, by Corollary 2.2.42, the homogeneous
system Ax = 0 has infinitely many solution. A contradiction. Thus, A has full rank.

   5 2        Suppose Rank(A) = n. So, RREF(A) has n pivotal columns. But, RREF(A) has
exactly n columns and hence each column is a pivotal column. Thus, RREF(A) = In.           _

   We end this section by giving two more equivalent conditions for a matrix to be invertible.
   



Theorem 2.3.2.   The following statements are equivalent for A ∈ Mn(ℂ).
     
	
  1. 
	 A is invertible.
     
	
  2. 
	 The system Ax = b has a unique solution for every b.
     
	
  3. 
	 The system Ax = b is consistent for every b.


   

Proof. 1 2       Note that x0 = A-1b is the unique solution of Ax = b.

   2 3        The system is consistent as Ax = b has a solution.

   3 1        For 1 ≤ i ≤ n, define eiT  = In[i,:]. By assumption, the linear system Ax = ei has a
solution, say xi, for 1 ≤ i ≤ n. Define a matrix B = [x1,…,xn]. Then,
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Therefore, n = Rank(In) = Rank(AB) ≤Rank(A) and hence Rank(A) = n. Thus, by Theorem 2.3.1, A
is invertible.                                                                                                           _
   We now give an immediate application of Theorem 2.3.2 and Theorem 2.3.1 without
proof.
   



Theorem 2.3.3.   The following two statements cannot hold together for A ∈ Mn(ℂ).
     
	
  1. 
	 The system Ax = b has a unique solution for every b.
     
	
  2. 
	 The system Ax = 0 has a non-trivial solution.


   

   As an immediate consequence of Theorem 2.3.1, the readers should prove that one needs to
compute either the left or the right inverse to prove invertibility of A ∈ Mn(ℂ).
   



Corollary 2.3.4.   Let A ∈ Mn(ℂ). Then, the following holds.
     
	
  1. 
	 Suppose there exists C such that CA = In. Then, A-1 exists.
     
	
  2. 
	 Suppose there exists B such that AB = In. Then, A-1 exists.


   

   


Exercise 2.3.5.  
     
	
  1. 
	 Let A be a square matrix. Then, prove that A is invertible ⇔ AT  is invertible ⇔ AT A is
     invertible ⇔ AAT  is invertible.
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2. 
	 [Theorem of the Alternative]  The following two statements cannot hold together for
     A ∈ Mn(ℂ) and b ∈ ℝn.
          	
      (a) 
	 The system Ax = b has a solution.
          
	
      (b) 
	 The system yT A = 0T ,yT b≠0 has a solution.

__________________________________
       
	
   3. 
	 Let A and B be two matrices having positive entries and of orders 1 ×n and n× 1, respectively.
       Which of BA or AB is invertible? Give reasons.
       
	
   4. 
	 Let A ∈ Mn,m(ℂ) and B ∈ Mn,m(ℂ).
             	
        (a) 
	 Then, prove that I - BA is invertible if and only if I - AB is invertible [use
             Theorem 2.3.1.4].
             
	
        (b) 
	 If I - AB is invertible then, prove that (I - BA)-1 = I + B(I - AB)-1A.
             
	
        (c) 
	 If I - AB is invertible then, prove that (I - BA)-1B = B(I - AB)-1.
             
	
        (d) 
	 If A,B and A + B are invertible then, prove that (A-1 + B-1)-1 = A(A + B)-1B.


       
	
   5. 
	 Let bT  = [1,2,-1,-2]. Suppose A is a 4 × 4 matrix such that the linear system Ax = b has no
       solution. Mark each of the statements given below as true or false?
             	
        (a) 
	 The homogeneous system Ax = 0 has only the trivial solution.
             
	
        (b) 
	 The matrix A is invertible.
             
	
        (c) 
	 Let cT  = [-1,-2,1,2]. Then, the system Ax = c has no solution.
             
	
        (d) 
	 Let B = RREF(A). Then,
                  	
               i. 
	 B[4,:] = [0,0,0,0].
                  
	
              ii. 
	 B[4,:] = [0,0,0,1].
                  
	
              iii. 
	 B[3,:] = [0,0,0,0].
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iv. 
	 B[3,:] = [0,0,0,1].
              
	
           v. 
	 B[3,:] = [0,0,1,α], where α is any real number.


          


     


   


   
2.3.1    Determinant

In this section, we associate a number with each square matrix. To start with, recall the notations
used in Section 1.3.1. Then, for A = , A(1|2) =  and A({1,2}|{1,3}) = [4].

   With the notations as above, we are ready to give an inductive definition of the determinant of a
square matrix. The advanced students can find an alternate definition of the determinant in
Appendix 9.2.22, where it is proved that the definition given below corresponds to the expansion of
determinant along the first row.
   



Definition 2.3.6.    Let A be a square matrix of order n. Then, the determinant of A, denoted
det(A) (or |A|) is defined by
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Example 2.3.7.  
     
	
   1. 
	 Let A = [-2]. Then, det(A) = |A| = -2.
     
	
   2. 
	 Let A = . Then, det(A) = |A| = adet(A(1|1)) - bdet(A(1|2)) = ad - bc. For
     example, if A =  then det(A) =  = 1 ⋅ 5 - 2 ⋅ 3 = -1.
     
	
   3. 
	 Let A = [aij] be a 3 × 3 matrix. Then, 
     
     
     
For A = , |A| = 1 ⋅ - 2 ⋅ + 3 ⋅ = 4 - 2(3) + 3(1) = 1.


   

   


Exercise 2.3.8.   Find the determinant of the following matrices.
i)ii)iii).
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Definition 2.3.9.  [Singular, Non-Singular Matrices]   A matrix A is said to be a singular
if det(A) = 0 and is called non-singular if det(A)≠0.
   


   The next result relates the determinant with row operations. For proof, see Appendix 9.3.
   



Theorem 2.3.10.   Let A be an n × n matrix.
     
	
  1. 
	 If B = EijA, for 1 ≤ i≠j ≤ n, then det(B) = -det(A).
     
	
  2. 
	 If B = Ei(c)A, for c≠0,1 ≤ i ≤ n, then det(B) = cdet(A).
     
	
  3. 
	 If B = Eij(c)A, for c≠0 and 1 ≤ i≠j ≤ n, then det(B) = det(A).
     
	
  4. 
	 If A[i,:]T  = 0, for 1 ≤ i,j ≤ n then det(A) = 0.
     
	
  5. 
	 If A[i,:] = A[j,:] for 1 ≤ i≠j ≤ n then det(A) = 0.
     
	
  6. 
	 If A is a triangular matrix with d1,…,dn on the diagonal then det(A) = d1dn.


   

   As det(In) = 1, we have the following result.
   



Corollary 2.3.11.   Fix a positive integer n.
     
	
  1. 
	 Then, det(Eij) = -1.
     
	
  2. 
	 If c≠0 then, det(Ek(c)) = c.
     
	
  3. 
	 If c≠0 then, det(Eij(c)) = 1.
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Example 2.3.12.            Since            ,
using Theorem 2.3.10, we see that, for A = , det(A) = 2 ⋅ (1 ⋅ 2 ⋅ (-1)) = -4, where
the first 2 appears from the elementary matrix E1().
   


   


Exercise 2.3.13.   Prove the following without computing the determinant (use Theorem 2.3.10).
     
	
  1. 
	 Let A = , where u,v ∈ ℂ3. Then, det(A) = 0.
     
	
  2. 
	 Let A = ,B =  and CT
   =  for some
     complex numbers α and β. Then, det(B) = α det(A) and det(C) = det(A).
     


   

   By Theorem 2.3.10.6 det(In) = 1. The next result about the determinant of elementary matrices is
an immediate consequence of Theorem 2.3.10 and hence the proof is omitted.
   



Remark 2.3.14.    Theorem 2.3.10.1  implies  that  the  determinant  can  be  calculated  by
expanding along any row. Hence, the readers are advised to verify that
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Example 2.3.15.   Using Remark 2.3.14, one has 
 = (-1)2+3 ⋅ 2 ⋅ + (-1)2+4 ⋅ = -2 ⋅ 1 + (-8) = -10.
   



   
2.3.2    Adjugate (classical Adjoint) of a Matrix

   


Definition 2.3.16.     Let A ∈ Mn(ℂ). Then, the cofactor matrix, denoted Cof(A), is an
Mn(ℂ) matrix with Cof(A) = [Cij], where
   

 And, the Adjugate (classical Adjoint) of A, denoted Adj(A), equals CofT (A).
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Example 2.3.17.  Let A = .
     
	
   1. 
	Then, 
     
     
     
Now, verify that AAdj(A) =  =  = Adj(A)A.
     
	
   2. 
	Consider xI3 - A = . Then, 
     
     
     
Hence, we observe that Adj(xI - A) = x2I + Bx + C is a polynomial in x with coefficients as
     matrices. Also, note that (xI - A)Adj(xI - A) = (x3 - 8x2 + 10x - det(A))I3. Thus, we see
     that
     
     
     That is, we have obtained a matrix equality and hence, replacing x by A makes sense. But, then
     the LHS is 0. So, for the RHS to be zero, we must have A3 - 8A2 + 10A - det(A)I = 0 (this
     equality is famously known as the Cayley-Hamilton Theorem).


   

The next result relates adjugate matrix with the inverse, in case det(A)≠0.
   



Theorem 2.3.18.   Let A ∈ Mn(ℂ).
     
	
  1. 
	 Then, ∑
  j=1naijCij = ∑
  j=1naij(-1)i+j det(A(i|j)) = det(A), for 1 ≤ i ≤ n.
     
	
  2. 
	 Then, ∑
  j=1naijCℓj = ∑
  j=1naij(-1)i+j det(A(ℓ|j)) = 0, for i≠ℓ.
     
	
  3. 
	 Thus, A(Adj(A)) = det(A)In. Hence,
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     	(2.3.1)


     
     



   

Proof. Part 1: It follows directly from Remark 2.3.14 and the definition of the cofactor.

   Part 2: Fix positive integers i,ℓ with 1 ≤ i≠ℓ ≤ n and let B = [bij] be a square matrix with
B[ℓ,:] = A[i,:] and B[t,:] = A[t,:], for t≠ℓ. As ℓ≠i, B[ℓ,:] = B[i,:] and thus, by Theorem 2.3.10.5,
det(B) = 0. As A(ℓ|j) = B(ℓ|j), for 1 ≤ j ≤ n, using Remark 2.3.14 

   


This completes the proof of Part 2.
   Part 3: Using Equation (2.3.2) and Remark 2.3.14, observe that 
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Thus, A(Adj(A)) = det(A)In. Therefore, if det(A)≠0 then A = In. Hence, by
Proposition 2.2.21, A-1 = Adj(A).                                                                      _
   


Example 2.3.19.   For A = , Adj(A) =  and det(A) = -2. Thus,
by Theorem 2.3.18.3, A-1 = .
   


   Let A be a non-singular matrix. Then, by Theorem 2.3.18.3, A-1 = Adj(A). Thus
AAdj(A) = Adj(A)A = det(A)In and this completes the proof of the next result
   



Corollary 2.3.20.   Let A be a non-singular matrix. Then,
   


   

   The next result gives another equivalent condition for a square matrix to be invertible.
   



Theorem 2.3.21.   A square matrix A is non-singular if and only if A is invertible.
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Proof. Let A be non-singular. Then, det(A)≠0 and hence A-1 = Adj(A).

   Now, let us assume that A is invertible. Then, using Theorem 2.3.1, A = E1Ek, a product of
elementary matrices. Also, by Corollary 2.3.11, det(Ei)≠0, for 1 ≤ i ≤ k. Thus, a repeated application
of Parts 1,2 and 3 of Theorem 2.3.10 gives det(A)≠0.                                                    _

   The next result relates the determinant of a matrix with the determinant of its transpose. Thus,
the determinant can be computed by expanding along any column as well.
   



Theorem 2.3.22.   Let A be a square matrix. Then, det(A) = det(AT ).
   


Proof. If A is a non-singular, Corollary 2.3.20 gives det(A) = det(AT ).

   If A is singular then, by Theorem 2.3.21, A is not invertible. So, AT  is also not invertible and
hence by Theorem 2.3.21, det(AT ) = 0 = det(A).                                                          _

   The next result relates the determinant of product of two matrices with their determinants.
   



Theorem 2.3.23.   Let A and B be square matrices of order n. Then,
   


   

Proof. Case 1: Let A be non-singular. Then, by Theorem 2.3.18.3, A is invertible and by
Theorem 2.3.1, A = E1Ek, a product of elementary matrices. Thus, a repeated application of Parts
1,2 and 3 of Theorem 2.3.10 gives the desired result as 
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   Case 2: Let A be singular. Then, by Theorem 2.3.21 A is not invertible. So, by Proposition 2.2.21
there exists an invertible matrix P such that PA = . So, A = P-1. As P is invertible,
using Part 1, we have 

   


Thus, the proof of the theorem is complete.                                                                  _
   


Example 2.3.24.  Let A be an orthogonal matrix then, by definition, AAT   =  I. Thus, by
Theorems 2.3.23 and 2.3.22
   


Hence detA = ±1. In particular, if A =  then I = AAT  = .
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1. 
	Thus, a2 + b2 = 1 and hence there exists θ ∈ [-pi,π) such that a = cosθ and b = sinθ.
     
	
   2. 
	As ac + bd = 0, we get c = r sinθ and d = -r cosθ, for some r ∈ ℝ. But, c2 + d2 = 1
     implies that either c = sinθ and d = -cosθ or c = -sinθ and d = cosθ.
     
	
   3. 
	Thus, A =  or A = .
     
	
   4. 
	For A = , det(A) = -1. Then A represents a reflection across the line
     y = mx. Determine m? (see Exercise 2.2b).
     
	
   5. 
	For A = , det(A) = 1. Then A represents a rotation through the angle α.
     Determine α? (see Exercise 2.2a).


   

   


Exercise 2.3.25.  
     
	
  1. 
	 Let A ∈ Mn(ℂ) be an upper triangular matrix with nonzero entries on the diagonal. Then,
     prove that A-1 is also an upper triangular matrix.___________________________________ 
	
   2. 
	Let A ∈ Mn(ℂ). Then, det(A) = 0 if
             	
        (a) 
	either A[i,:]T  = 0T  or A[:,i] = 0, for some i,1 ≤ i ≤ n,
             
	
        (b) 
	or A[i,:] = cA[j,:], for some c ∈ ℂ and for some i≠j,
             
	
        (c) 
	or A[:,i] = cA[:,j], for some c ∈ ℂ and for some i≠j,
             
	
        (d) 
	or A[i,:] = c1A[j1,:] + c2A[j2,:] +  + ckA[jk,:], for some rows i,j1,…,jk of A and
             some ci’s in ℂ,
             
	
        (e) 
	or A[:,i] = c1A[:,j1] + c2A[:,j2] +  + ckA[:,jk], for some columns i,j1,…,jk of A
            and some ci’s in ℂ.
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  3. 
	 Let A =  and B = , where a,b…,ℓ ∈ ℂ. Without computing
     deduce that det(A) = det(B). Hence, conclude that 17 divides .
     


   


   
2.3.3    Cramer’s Rule

Let A be a square matrix. Then, combining Theorem 2.3.2 and Theorem 2.3.21, one has the following
result.
   



Corollary 2.3.26.   Let A be a square matrix. Then, the following statements are equivalent:
     
	
  1. 
	 A is invertible.
     
	
  2. 
	 The linear system Ax = b has a unique solution for every b.
     
	
  3. 
	 det(A)≠0.


   

   Thus, Ax = b has a unique solution for every b if and only if det(A)≠0. The next
theorem gives a direct method of finding the solution of the linear system Ax = b when
det(A)≠0.
   



Theorem 2.3.27 (Cramer’s Rule).   Let A be an n × n non-singular matrix. Then, the unique
solution of the linear system Ax = b with xT  = [x1,…,xn] is given by
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 where Aj is the matrix obtained from A by replacing A[:,j] by b.
   

Proof. Since det(A)≠0, A is invertible. Thus, there exists an invertible matrix P such that PA = In
and P[A|b] = [I|Pb]. Then A-1 = P. Let d = Pb = A-1b. Then, Ax = b has the unique
solution xj = dj, for 1 ≤ j ≤ n. Also, [e1,…,en] = I = PA = [PA[:,1],…,PA[:,n]]. Thus,


   


Thus, det(PAj) = dj, for 1 ≤ j ≤ n. Also, dj =  =  =  = . Hence,
xj =  and the required result follows.                                                                _
   


Example 2.3.28.   Solve Ax = b using Cramer’s rule, where A =  and b = .

Solution: Check that det(A) = 1 and xT  = [-1,1,0] as
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2.4    Miscellaneous Exercises

   


Exercise 2.4.1.  
     
	
  1. 
	 Let A be a unitary matrix then what can you say about ∣det(A)∣?
     
	
  2. 
	 Let A ∈ Mn(ℂ). Prove that the following statements are equivalent:
          	
      (a) 
	 A is not invertible.
          
	
      (b) 
	 Rank(A)≠n.
          
	
      (c) 
	 det(A) = 0.
          
	
      (d) 
	 A is not row-equivalent to In.
          
	
      (e) 
	 The homogeneous system Ax = 0 has a non-trivial solution.
          
	
      (f) 
	 The system Ax = b is either inconsistent or it has an infinite number of solutions.
          
	
      (g) 
	 A is not a product of elementary matrices.


     
	
  3. 
	 Let A be a Hermitian matrix. Prove that detA is a real number.
     
	
  4. 
	 Let A ∈ Mn(ℂ). Then, A is invertible if and only if Adj(A) is invertible.
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5. 
	 Let A and B be invertible matrices. Prove that Adj(AB) = Adj(B)Adj(A).
     
	
  6. 
	 Let A be an invertible matrix and let P = . Then, show that Rank(P) = n if and only if
     D = CA-1B._____________________________________________________________________ 
	
   7. 
	 Let A be a 2 × 2 matrix with tr(A) = 0 and det(A) = 0. Then, A is a nilpotent
       matrix.
       
	
   8. 
	 Determine necessary and sufficient condition for a triangular matrix to be invertible.
       
	
   9. 
	 Suppose A-1 = B with A =  and B = . Also, assume that A11 is
       invertible and define P = A22 - A21A11-1A12. Then, prove that
             	
        (a) 
	  = ,
             
	
        (b) 
	 P is invertible and B = .


       
	
  10. 
	 Let A and B be two non-singular matrices. Are the matrices A + B and A - B non-singular?
       Justify your answer.
       
	
  11. 
	 For what value(s) of λ does the following systems have non-trivial solutions? Also, for each
       value of λ, determine a non-trivial solution.
             	
        (a) 
	 (λ - 2)x + y = 0,x + (λ + 2)y = 0.
             
	
        (b) 
	 λx + 3y = 0,(λ + 6)y = 0.


       
	
  12. 
	 Let a1,…,an ∈ ℂ and define A = [aij]n×n with aij = aij-1. Prove that det(A) = ∏
  1≤i<j≤n(aj -ai).
       This matrix is usually called the van der monde matrix.
       
	
  13. 
	 Let A = [aij] ∈ Mn(ℂ) with aij = max{i,j}. Prove that detA = (-1)n-1n.
       
	
  14. 
	 Solve the following linear system by Cramer’s rule. 
i)x + y + z - w = 1,x + y - z + w = 2, 2x + y + z - w = 7,x + y + z + w = 3.
       
ii)x - y + z - w = 1,x + y - z + w = 2, 2x + y - z - w = 7,x - y - z + w = 3.
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15. 
	 Let p ∈ ℂ,p≠0. Let A = [aij],B = [bij] ∈ Mn(ℂ) with bij = pi-jaij, for 1 ≤ i,j ≤ n. Then,
     compute det(B) in terms of det(A).
     
	
 16. 
	 The position of an element aij of a determinant is called even or odd according as i + j is even
     or odd. Prove that if all the entries in
          	
      (a) 
	 odd positions are multiplied with -1 then the value of determinant doesn’t change.
          
	
      (b) 
	 even positions are multiplied with -1 then the value of determinant
              	
           i. 
	 does not change if the matrix is of even order.
              
	
           ii. 
	 is multiplied by -1 if the matrix is of odd order.


          


     


   


   
2.5    Summary

In this chapter, we started with a system of m linear equations in n variables and formally wrote it as
Ax = b and in turn to the augmented matrix [A|b]. Then, the basic operations on equations led to
multiplication by elementary matrices on the right of [A|b]. These elementary matrices are
invertible and applying the GJE on a matrix A, resulted in getting the RREF of A. We
used the pivots in RREF matrix to define the rank of a matrix. So, if Rank(A) = r and
Rank([A|b]) = ra
     
	
   1. 
	then, r < ra implied the linear system Ax = b is inconsistent.
     
	
   2. 
	then, r = ra implied the linear system Ax = b is consistent. Further,
          	
      (a) 
	if r = n then the system Ax = b has a unique solution.
          
	
      (b) 
	if r < n then the system Ax = b has an infinite number of solutions.


     


   We have also seen that the following conditions are equivalent for A ∈ Mn(ℂ).
                                                                                      

                                       DRAFT                               
     
	
1. 
	A is invertible.
     
	
   2. 
	The homogeneous system Ax = 0 has only the trivial solution.
     
	
   3. 
	The row reduced echelon form of A is I.
     
	
   4. 
	A is a product of elementary matrices.
     
	
   5. 
	The system Ax = b has a unique solution for every b.
     
	
   6. 
	The system Ax = b has a solution for every b.
     
	
   7. 
	Rank(A) = n.
     
	
   8. 
	det(A)≠0.


   So, overall we have learnt to solve the following type of problems:
     
	
   1. 
	Solving the linear system Ax = b. This idea will lead to the question “is the vector b a
     linear combination of the columns of A”?
     
	
   2. 
	Solving the linear system Ax = 0. This will lead to the question “are the columns of A linearly
     independent/dependent”? In particular, we will see that
          	
      (a) 
	if Ax = 0 has a unique solution then the columns of A are linear independent.
          
	
      (b) 
	if Ax = 0 has a non-trivial solution then the columns of A are linearly dependent.
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