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   Chapter 3
Vector Spaces

In this chapter, we will mainly be concerned with finite dimensional vector spaces over ℝ or ℂ. Please
note that the real and complex numbers have the property that any pair of elements can be added,
subtracted or multiplied. Also, division is allowed by a nonzero element. Such sets in mathematics are
called field. So, ℝ and ℂ are examples of field. The fields ℝ and ℂ have infinite number of elements.
But, in mathematics, we do have fields that have only finitely many elements. For example,
consider the set ℤ5 = {0,1,2,3,4}. In ℤ5, we respectively, define addition and multiplication,
as
   


Then, we see that the elements of ℤ5 can be added, subtracted and multiplied. Note that 4 behaves as
-1 and 3 behaves as -2. Thus, 1 behaves as -4 and 2 behaves as -3. Also, we see that in this
multiplication 2 ⋅ 3 = 1 and 4 ⋅ 4 = 1. Hence,
     	
   1. 
	the division by 2 is similar to multiplying by 3,
     
	
   2. 
	the division by 3 is similar to multiplying by 2, and
     
	
   3. 
	the division by 4 is similar to multiplying by 4.


Thus, ℤ5 indeed behaves like a field. So, in this chapter, F will represent a field.
   
3.1    Vector Spaces: Definition and Examples 

Let A ∈ Mm,n(F) and let V denote the solution set of the homogeneous system Ax = 0. Then, by
Theorem 2.1.9, V satisfies:
     
	
   1. 
	0 ∈ V as A0 = 0.
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2. 
	if x ∈ V then αx ∈ V, for all α ∈ F. In particular, for α = -1, -x ∈ V.
     
	
   3. 
	if x,y ∈ V then, for any α,β ∈ F, αx + βy ∈ V.


That is, the solution set of a homogeneous linear system satisfies some nice properties. The Euclidean
plane, ℝ2, and the Euclidean space, ℝ3, also satisfy the above properties. In this chapter,
our aim is to understand sets that satisfy such properties. We start with the following
definition.
   



Definition 3.1.1.  [Vector Space]  A vector space V over F, denoted V(F) or in short
V (if the field F is clear from the context), is a non-empty set, satisfying the following
conditions:
     
	
   1. 
	 Vector Addition: To every pair u,v ∈ V there corresponds a unique element u ⊕ v ∈ V
     (called the addition of vectors) such that
          	
      (a) 
	 u ⊕ v = v ⊕ u (Commutative law).
          
	
      (b) 
	 (u ⊕ v) ⊕ w = u ⊕ (v ⊕ w) (Associative law).
          
	
      (c) 
	 V has a unique element, denoted 0, called the zero vector that satisfies u⊕0 = u,
          for every u ∈ V (called the additive identity).
          
	
      (d) 
	 for every u ∈ V there is an element w ∈ V that satisfies u ⊕ w = 0.


     
	
   2. 
	 Scalar Multiplication: For each u ∈ V and α ∈ F, there corresponds a unique element α⊙ u
     in V (called the scalar multiplication) such that
          	
      (a) 
	 α ⋅ (β ⊙ u) = (αβ) ⊙ u for every α,β ∈ F and u ∈ V (⋅ is multiplication in F).
          
	
      (b) 
	 1 ⊙ u = u for every u ∈ V, where 1 ∈ F.


     
	
   3. 
	 Distributive Laws: relating vector addition with scalar multiplication
     
For any α,β ∈ F and u,v ∈ V, the following distributive laws hold:
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(a) 
	 α ⊙ (u ⊕ v) = (α ⊙ u) ⊕(α ⊙ v).
          
	
      (b) 
	 (α + β) ⊙ u = (α ⊙ u) ⊕(β ⊙ u) (+ is addition in F).


     


   

   


Remark 3.1.2.  [Real / Complex Vector Space]    
     
	
  1. 
	The elements of F are called scalars.
     
	
  2. 
	The elements of V are called vectors.
     
	
  3. 
	We denote the zero element of F by 0, whereas the zero element of V will be denoted by
     0.
     
	
  4. 
	Observe that Condition 3.1.1.1d implies that for every u ∈ V, the vector w ∈ V such that
     u + w = 0 holds, is unique. For if, w1,w2  ∈ V with u + wi = 0, for i = 1,2 then by
     commutativity of vector addition, we see that
     
      Hence, we represent this unique vector by -u and call it the additive inverse.
     
	
  5. 
	If V is a vector space over ℝ then, V is called a real vector space.
     
	
  6. 
	If V is a vector space over ℂ then V is called a complex vector space.
     
	
  7. 
	In general, a vector space over ℝ or ℂ is called a linear space.
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Some interesting consequences of Definition 3.1.1 is stated next. Intuitively, they seem
obvious but for better understanding of the given conditions, it is desirable to go through the
proof.
   



Theorem 3.1.3.   Let V be a vector space over F. Then,
     
	
  1. 
	 u ⊕ v = u implies v = 0.
     
	
  2. 
	 α ⊙ u = 0 if and only if either u = 0 or α = 0.
     
	
  3. 
	(-1) ⊙ u = -u, for every u ∈ V.


   

Proof. Part 1: By Condition 3.1.1.1d, for each u ∈ V there exists -u ∈ V such that -u ⊕ u = 0.
Hence, u ⊕ v = u is equivalent to
   


   Part 2: As 0 = 0 ⊕ 0, using Condition 3.1.1.3, we have
   


Thus, using Part 1, α ⊙ 0 = 0 for any α ∈ F. In the same way, using Condition 3.1.1.3b,
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Hence, using Part 1, one has 0 ⊙ u = 0 for any u ∈ V.
   Now suppose α⊙u = 0. If α = 0 then the proof is over. Therefore, assume that α≠0,α ∈ F. Then,
(α)-1 ∈ F and
   

 as
1 ⊙ u = u for every vector u ∈ V (see Condition 2.2b). Thus, if α≠0 and α ⊙ u = 0 then
u = 0.
   Part 3: As 0 = 0 ⋅ u = (1 + (-1))u = u ⊕ (-1) ⋅ u, one has (-1) ⋅ u = -u.                     _
   



Example 3.1.4.   The readers are advised to justify the statements given below.
     
	
   1. 
	 Let A ∈ Mm,n(F) with Rank(A) = r ≤ n. Then, using Theorem 2.2.40, the solution set
     of the homogeneous system Ax = 0 is a vector space over F.
     
	
   2. 
	 Consider ℝ  with the usual addition and multiplication. That is, a ⊕ b =  a + b and
     a ⊙ b = a ⋅ b. Then, ℝ forms a real vector space.
     
	
   3. 
	 Let ℝ2 = {(x1,x2)T |x1,x2 ∈ ℝ} Then, for x1,x2,y1,y2 ∈ ℝ and α ∈ ℝ, define
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      Verify that ℝ2 is a real vector space.
     
	
   4. 
	 Let ℝn = {(a1,…,an)T |ai ∈ ℝ,1 ≤ i ≤ n}. For u = (a1,…,an)T ,v = (b1,…,bn)T  ∈ V and
     α ∈ ℝ, define
     
      (called component wise operations). Then, V is a real vector space. The vector
     space ℝn is called the real vector space of n-tuples.
     Recall that the symbol i represents the complex number .
     

	
   5. 
	 Consider ℂ = {x + iy|x,y ∈ ℝ}, the set of complex numbers. Let z1 = x1 + iy1 and
     z2 = x2 + iy2 and define z1 ⊕ z2 = (x1 + x2) + i(y1 + y2). For scalar multiplication,
          	
      (a) 
	 let α ∈ ℝ and define, α ⊙ z1 = (αx1) + i(αy1). Then, ℂ is a vector space over ℝ
          (called the real vector space).
          
	
      (b) 
	 let α +iβ ∈ ℂ and define, (α +iβ)⊙(x1 +iy1) = (αx1 -βy1)+i(αy1 +βx1). Then,
          ℂ forms a vector space over ℂ (called the complex vector space).


     
	
   6. 
	 Let ℂn = {(z1,…,zn)T |zi ∈ ℂ,1 ≤ i ≤ n}. For z = (z1,…,zn),w = (w1,…,wn)T  ∈ ℂn and α ∈ F,
     define
     
     
     Then, verify that ℂn forms a vector space over ℂ (called the complex vector space) as well as
     over ℝ (called the real vector space). Unless specified otherwise, ℂn will be considered a
     complex vector space.
     
     

    Remark 3.1.5.   If F = ℂ then i(1,0) = (i,0) is allowed. Whereas, if F = ℝ then i(1,0)
     doesn’t make sense as i ⁄∈ ℝ.
     


     
	
   7. 
	 Fix m,n ∈ ℕ and let Mm,n(ℂ) = {Am×n = [aij]|aij ∈ ℂ}. For A,B ∈ Mm,n(ℂ) and α ∈ ℂ, define
     (A + αB)ij = aij + αbij. Then, Mm,n(ℂ) is a complex vector space. If m = n, the vector space
     Mm,n(ℂ) is denoted by Mn(ℂ).
     
	
   8. 
	 Let S be a non-empty set and let ℝS = {f|f is a function from S to ℝ}. For f,g ∈ ℝS and
     α ∈ ℝ, define (f + αg)(x) = f(x) + αg(x), for all x ∈ S. Then, ℝS is a real vector space. In
     particular,
          	
      (a) 
	 for S = ℕ, observe that ℝℕ  consists of all real sequences and forms a real vector
          space.
          
	
      (b) 
	Let V be the set of all bounded real sequences. Then, V is a real vector space.
          
	
      (c) 
	Let V be the set of all real sequences that converge to 0. Then, V is a real vector
          space.
          
	
      (d) 
	Let S be the set of all real sequences that converge to 1. Then, check that S is not
          a vector space. Determine the conditions that fail.


     
	
   9. 
	 Fix a,b ∈ ℝ with a < b and let ([a,b], ℝ) = {f : [a,b] → ℝ|f is continuous}. Then, ([a,b], ℝ)
     with (f + αg)(x) = f(x) + αg(x), for all x ∈ [a,b], is a real vector space.
     
	
  10. 
	 Let (ℝ, ℝ) = {f : ℝ → ℝ|f is continuous}. Then, (ℝ, ℝ) is a real vector space, where
     (f + αg)(x) = f(x) + αg(x), for all x ∈ ℝ.
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11. 
	 Fix a < b ∈ ℝ and let 2((a,b), ℝ) = {f : (a,b) → ℝ|f′′ is continuous}. Then, 2((a,b), ℝ) with
     (f + αg)(x) = f(x) + αg(x), for all x ∈ (a,b), is a real vector space.
     
	
  12. 
	 Fix a < b ∈ ℝ and let ∞((a,b), ℝ) = {f : (a,b) → ℝ|f is infinitely differentiable}.
     Then, ∞((a,b), ℝ) with (f + αg)(x) = f(x) + αg(x), for all x ∈ (a,b) is a real vector
     space.
     
	
  13. 
	 Fix a < b ∈ ℝ. Then, V = {f : (a,b) → ℝ|f′′ + f′ + 2f = 0} is a real vector space.
     Note that the in the last few examples we can replace ℝ by ℂ to get corresponding complex
     vector spaces.
     

	
  14. 
	 Let ℝ[x] = {a0 + a1x +  + anxn|ai ∈ ℝ, for 0 ≤ i ≤ n}. Now, let p(x),q(x) ∈ ℝ[x]. Then, we
     can choose m such that p(x) = a0 + a1x +  + amxm and q(x) = b0 + b1x +  + bmxm, where
     some of the ai’s or bj’s may be zero. Then, we define
     
     
     and αp(x) = (αa0) + (αa1)x +  + (αam)xm, for α ∈ ℝ. With the operations defined above
     (called component wise addition and multiplication), it can be easily verified that ℝ[x] forms a
     real vector space.
     
	
  15. 
	 Fix n ∈ ℕ and let ℝ[x;n] = {p(x) ∈ ℝ[x]|p(x) has degree  ≤ n}. Then, with component wise
     addition and multiplication, the set ℝ[x;n] forms a real vector space.
     
	
  16. 
	 Let ℂ[x] = {a0 + a1x +  + anxn|ai ∈ ℂ, for 0 ≤ i ≤ n}. Then, component wise addition and
     multiplication, the set ℂ[x] forms a complex vector space. One can also look at ℂ[x;n], the set of
     complex polynomials of degree less than or equal to n. Then, ℂ[x;n] forms a complex vector
     space.
     
	
  17. 
	 Let V = {0}. Then, V is a real as well as a complex vector space.
     
	
  18. 
	 Let ℝ+ = {x ∈ ℝ|x > 0}. Then,
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(a) 
	ℝ+ is not a vector space under usual operations of addition and scalar multiplication.
          
	
      (b) 
	ℝ+ is a real vector space with 1 as the additive identity if we define
          
          


     
	
  19. 
	 For any α ∈ ℝ and x = (x1,x2)T ,y = (y1,y2)T  ∈ ℝ2, define
     
     
     Then, ℝ2 is a real vector space with (-1,3)T  as the additive identity.
     
	
  20. 
	 Let V = {A = [aij] ∈ Mn(ℂ)|a11 = 0}. Then, V is a complex vector space.
     
	
  21. 
	 Let V = {A = [aij] ∈ Mn(ℂ)|A = A*}. Then, verify that V is a real vector space but not a
     complex vector space.
     
	
  22. 
	Let V and W be vector spaces over F, with operations (+,∙) and (⊕,⊙), respectively. Let
     V × W = {(v,w)|v ∈ V,w ∈ W}. Then, V × W forms a vector space over F, if for every
     (v1,w1),(v2,w2) ∈ V × W and α ∈ ℝ, we define 
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v1 + v2 and w1 ⊕ w2 on the right hand side mean vector addition in V and W, respectively.
     Similarly, α ∙ v1 and α ⊙ w1 correspond to scalar multiplication in V and W, respectively.
     
	
  23. 
	Let ℚ be the set of scalars. Then, ℝ is a vector space over ℚ. As e,π,π - ⁄∈ ℚ, these real
     numbers are vectors but not scalars in this space.
     
	
  24. 
	Similarly, ℂ is a vector space over ℚ. Since e - π,i + ,i ⁄∈ ℚ, these complex numbers are
     vectors but not scalars in this space.
     
	
  25. 
	Recall the field ℤ5 = {0,1,2,3,4} given on the first page of this chapter. Then, V = {(a,b)|a,b ∈ ℤ5}
     is a vector space over ℤ5 having 25 vectors.


Note that all our vector spaces, except the last three, are linear spaces.
   


   From now on, we will use ‘u + v’ for ‘u ⊕ v’ and ‘αu or α ⋅ u’ for ‘α ⊙ u’.
   



Exercise 3.1.6.  
     
	
  1. 
	 Verify that the vectors spaces mentioned in Example 3.1.4 do satisfy all the conditions
     for vector spaces.
     
	
  2. 
	 Does the set V given below form a real/complex or both real and complex vector space? Give
     reasons for your answer.
          	
      (a) 
	For x =  (x1,x2)T ,y =  (y1,y2)T   ∈ ℝ2, define x + y =  (x1 + y1,x2 + y2)T   and
          αx = (αx1,0)T  for all α ∈ ℝ.
          
	
      (b) 
	Let V = .
          
	
      (c) 
	Let V = .
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(d) 
	Let V = {(x,y,z)T |x + y + z = 1}.
          
	
      (e) 
	Let V = {(x,y)T  ∈ ℝ2|x ⋅ y = 0}.
          
	
      (f) 
	Let V = {(x,y)T  ∈ ℝ2|x = y2}.
          
	
      (g) 
	Let V = {α(1,1,1)T  + β(1,1,-1)T |α,β ∈ ℝ}.
          
	
      (h) 
	Let V = ℝ with x ⊕ y = x - y and α ⊙ x = -αx, for all x,y ∈ V and α ∈ ℝ.
          
	
      (i) 
	Let V = ℝ2. Define (x1,y1)T ⊕(x2,y2)T  = (x1+x2,0)T  and α⊙(x1,y1)T  = (αx1,0)T ,
          for α,x1,x2,y1,y2 ∈ ℝ.


     


   


   
3.1.1    Subspaces

   


Definition 3.1.7.  [Vector Subspace]   Let V be a vector space over F. Then, a non-empty
subset S of V is called a subspace of V if S is also a vector space with vector addition and
scalar multiplication inherited from V.
   


   


Example 3.1.8.  
     
	
   1. 
	 If V is a vector space then V and {0} are subspaces, called trivial subspaces.
     
	
   2. 
	The  real  vector  space  ℝ  has  no  non-trivial  subspace.  To  check  this,  let  V≠{0} be  a
     vector subspace of ℝ. Then, there exists x ∈ ℝ,x≠0 such that x ∈ V. Now, using scalar
     multiplication, we see that {αx|α ∈ ℝ}⊆ V. As, x≠0, the set {αx|α ∈ ℝ} = ℝ. This in
     turn implies that V = ℝ.
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3. 
	 W = {x ∈ ℝ3|[1,2,-1]x = 0} is a plane in ℝ3 containing 0 (hence a subspace).
     
	
   4. 
	 W = {x ∈ ℝ3|x = 0} is a line in ℝ3 containing 0 (hence a subspace).
     
	
   5. 
	 The vector space ℝ[x;n] is a subspace of ℝ[x].
     
	
   6. 
	Is V = {xp(x)|p(x) ∈ ℝ[x]} a subspace of ℝ[x]?
     
	
   7. 
	 Verify that 2(a,b) is a subspace of (a,b).
     
	
   8. 
	 Verify that W = {(x,0)T  ∈ ℝ2|x ∈ ℝ} is a subspace of ℝ2.
     
	
   9. 
	 Is the set of sequences converging to 0 a subspace of the set of all bounded sequences?
     
	
  10. 
	 Let V be the vector space of Example 3.1.4.19. Then,
          	
      (a) 
	S = {(x,0)T |x ∈ ℝ} is not a subspace of V as (x,0)T ⊕(y,0)T  = (x+y+1,-3)T  ⁄∈ S.
          
	
      (b) 
	Verify that W = {(x,3)T |x ∈ ℝ} is a subspace of V.


     
	
  11. 
	 The vector space ℝ+ defined in Example 3.1.4.18 is not a subspace of ℝ.


   

Let V(F) be a vector space and W ⊆ V, W≠∅. We now prove a result which implies that to check W to
be a subspace, we need to verify only one condition.
   



Theorem 3.1.9.   Let V(F) be a vector space and W ⊆ V, W≠∅. Then, W is a subspace of V if
and only if αu + βv ∈ W whenever α,β ∈ F and u,v ∈ W.
   


Proof. Let W be a subspace of V and let u,v ∈ W. Then, for every α,β ∈ F, αu,βv ∈ W and hence
αu + βv ∈ W.

   Now, we assume that αu + βv ∈ W, whenever α,β ∈ F and u,v ∈ W. To show, W is a subspace of
V:
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1. 
	Taking α = 1 and β = 1, we see that u + v ∈ W, for every u,v ∈ W.
     
	
   2. 
	Taking α = 0 and β = 0, we see that 0 ∈ W.
     
	
   3. 
	Taking  β  =  0,  we  see  that  αu  ∈ W,  for  every  α  ∈ F  and  u  ∈ W.  Hence,  using
     Theorem 3.1.3.3, -u = (-1)u ∈ W as well.
     
	
   4. 
	The commutative and associative laws of vector addition hold as they hold in V.
     
	
   5. 
	The conditions related with scalar multiplication and the distributive laws also hold as
     they hold in V.


Thus, one obtains the required result.                                                                              _
   



Exercise 3.1.10.  
     
	
  1. 
	 Determine all the subspaces of ℝ and ℝ2.
     
	
  2. 
	 Prove that a line in ℝ2 is a subspace if and only if it passes through (0,0) ∈ ℝ2.
     
	
  3. 
	 Fix n ∈ ℕ. Then, is W a subspace of Mn(ℝ), where
          	
      (a) 
	 W = {A ∈ Mn(ℝ)|A is upper triangular}?
          
	
      (b) 
	 W = {A ∈ Mn(ℝ)|A is symmetric}?
          
	
      (c) 
	 W = {A ∈ Mn(ℝ)|A is skew-symmetric}?
          
	
      (d) 
	 W = {A|A is a diagonal matrix}?
          
	
      (e) 
	 W = {A|trace(A) = 0}?
          
	
      (f) 
	 W = {A ∈ Mn(ℝ)|AT  = 2A}?
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(g) 
	 W = {A = [aij]|a11 + a21 + a34 = 0}?


     
	
  4. 
	 Fix n ∈ ℕ. Then, is W = {A = [aij]|a11 + a22 = 0} a subspace of the complex vector space
     Mn(ℂ)? What if Mn(ℂ) is a real vector space?______________________________________
       
	
   5. 
	 Are all the sets given below subspaces of ([-1,1])?
             	
        (a) 
	 W = {f ∈ C([-1,1])|f(1∕2) = 0}.
             
	
        (b) 
	 W = {f ∈ C([-1,1])|f(-1∕2) = 0,f(1∕2) = 0}.


       
	
   6. 
	 Are all the sets given below subspaces of ℝ[x]? Recall that the degree of the zero polynomial is
       assumed to be -∞.
             	
        (a) 
	 W = {f(x) ∈ ℝ[x]|deg(f(x)) = 3}.
             
	
        (b) 
	 W = {f(x) ∈ ℝ[x]|deg(f(x)) ≤ 0}.
             
	
        (c) 
	 W = {f(x) ∈ ℝ[x]|f(0) = 0}.


       
	
   7. 
	 Which of the following are subspaces of ℝn(ℝ)?
             	
        (a) 
	 {(x1,x2,…,xn)T |x1 ≥ 0}.
             
	
        (b) 
	 {(x1,x2,…,xn)T |x1 is rational}.
             
	
        (c) 
	 {(x1,x2,…,xn)T ||x1|≤ 1}.


       
	
   8. 
	 Among the following, determine the subspaces of the complex vector space ℂn?
             	
        (a) 
	 {(z1,z2,…,zn)T |z1 is real }.
             
	
        (b) 
	 {(z1,z2,…,zn)T |z1 + z2 = z3}.
             
	
        (c) 
	 {(z1,z2,…,zn)T |∣z1∣ = ∣z2∣}.
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9. 
	 Prove that the following sets are not subspaces of Mn(ℝ).
          	
      (a) 
	 G = {A ∈ Mn(ℝ)|det(A) = 0}.
          
	
      (b) 
	 G = {A ∈ Mn(ℝ)|det(A) = 1}.


     


   


   
3.1.2    Linear Span

   


Definition 3.1.11.  [Linear Combination]  Let V  be a vector space over F. Then, for any
u1,…,un ∈ V and α1,…,αn ∈ F, the vector α1u1 +  + αnun = ∑
  i=1nαiui is said to be a
linear combination of the vectors u1,…,un.
   


   


Example 3.1.12.  
     
	
   1. 
	(3,4,3) is a linear combination of (1,1,1) and (1,2,1) as (3,4,3) = 2(1,1,1) + (1,2,1).
     
	
   2. 
	(3,4,5) is not a linear combination of (1,1,1) and (1,2,1) as the linear system (3,4,5) =
     a(1,1,1) + b(1,2,1), in the variables a and b has no solution.
     
	
   3. 
	 Is (4,5,5) a linear combination of e1T  = (1,0,0), e2T  = (0,1,0) and e3T  = (3,3,1)? 
Solution: (4,5,5) is a linear combination as (4,5,5) = 4e1T  + 5e2T  + 5e3T .
     
	
   4. 
	Is (4,5,5) a linear combination of (1,0,0), (2,1,0) and (3,3,1)? 
Solution: (4,5,5) is a linear combination if the linear system
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     	(3.1.1)


     
     in the variables a,b,c ∈ ℝ has a solution. Clearly, Equation (3.1.1) has solution a = 9,b = -10
     and c = 5.
     

	
   5. 
	 Is 4 + 5x + 5x2 + x3 a linear combination of the polynomials p1(x) = 1, p2(x) = 2 + x2 and
     p3(x) = 3 + 3x + x2 + x3? 
Solution: The polynomial 4 + 5x + 5x2 + x3 is a linear combination if the linear
     system
     	
     
     	(3.1.2)


     
     in the variables a,b,c ∈ ℝ has a solution. Verify that the system has no solution. Thus,
     4 + 5x + 5x2 + x3 is not a linear combination of the given set of polynomials.
     

	
   6. 
	 Is  a linear combination of the vectors I
3, and ?
     
Solution: Verify that  = I
3 + 2 + . Hence, it is indeed a linear
     combination of given vectors of M3(ℝ).
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Exercise 3.1.13.  
     
	
  1. 
	 Let x ∈ ℝ3. Prove that xT   is a linear combination of (1,0,0), (2,1,0) and (3,3,1).
     Is this linear combination unique? That is, does there exist (a,b,c)≠(e,f,g) with xT  =
     a(1,0,0) + b(2,1,0) + c(3,3,1) = e(1,0,0) + f(2,1,0) + g(3,3,1)?
     
	
  2. 
	 Find condition(s) on x,y,z ∈ ℝ such that
          	
      (a) 
	(x,y,z) is a linear combination of (1,2,3),(-1,1,4) and (3,3,2).
          
	
      (b) 
	(x,y,z) is a linear combination of (1,2,1),(1,0,-1) and (1,1,0).
          
	
      (c) 
	(x,y,z) is a linear combination of (1,1,1),(1,1,0) and (1,-1,0).


     


   

   


Definition 3.1.14.  [Linear Span]  Let V be a vector space over F and S ⊆ V. Then, the linear span
of S, denoted LS(S), is defined as 

   


That is, LS(S) is the set of all possible linear combinations of finitely many vectors of S. If S is an
empty set, we define LS(S) = {0}.
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Example 3.1.15.   For the set S given below, determine LS(S).
     
	
   1. 
	 S = {(1,0)T ,(0,1)T }⊆ ℝ2. 
Solution: LS(S) = {a(1,0)T  + b(0,1)T |a,b ∈ ℝ} = {(a,b)T |a,b ∈ ℝ} = ℝ2.
     
	
   2. 
	 S = {(1,1,1)T ,(2,1,3)T }. What does LS(S) represent in ℝ3? 
Solution: LS(S) = {a(1,1,1)T  + b(2,1,3)T |a,b ∈ ℝ} = {(a + 2b,a + b,a + 3b)T |a,b ∈ ℝ}.
     Note that LS(S) represents a plane passing through the points (0,0,0)T ,(1,1,1)T  and
     (2,1,3)T . To get he equation of the plane, we proceed as follows: 
Find conditions on x,y and z such that (a + 2b,a + b,a + 3b) = (x,y,z). Or equivalently,
     find conditions on x,y and z such that a + 2b = x,a + b = y and a + 3b = z has a solution
     for all a,b ∈ ℝ. The RREF of the augmented matrix equals . Thus,
     the required condition on x,y and z is given by z + y - 2x = 0. Hence,
     
     
     
	
   3. 
	 S = {(1,2,1)T ,(1,0,-1)T ,(1,1,0)T }. What does LS(S) represent? 
Solution: As above, LS(S) is a plane passing through the given points and (0,0,0)T . To get the
     equation of the plane, we need to find condition(s) on x,y,z such that the linear
     system
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     	(3.1.3)


     
     in the variables a,b,c is always consistent. An application of GJE to Equation (3.1.3) gives
     . Thus, LS(S) = {(x,y,z)T
   ∈ ℝ3|x - y + z = 0}.
     

	
   4. 
	 S = {1 + 2x + 3x2,1 + x + 2x2,1 + 2x + x3}. 
Solution: To understand LS(S), we need to find condition(s) on α,β,γ,δ such that the linear
     system
     
      in the variables a,b,c is always consistent. An application of GJE method gives
     α + β - γ - 3δ = 0 as the required condition. Thus,
     
     
     
	
   5. 
	 S = ⊆ M3(ℝ). 
Solution: To get the equation, we need to find conditions of aij’s such that the
     system
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     in the variables α,β,γ is always consistent. Now, verify that the required condition equals
     
     
     
     



   

   


Exercise 3.1.16.   For each S, determine the equation of the geometrical object that LS(S)
represents?
     
	
  1. 
	 S = {-1}⊆ ℝ.
     
	
  2. 
	 S = {π}⊆ ℝ.
     
	
  3. 
	S = {(x,y)T  : x,y < 0}⊆ ℝ2.
     
	
  4. 
	S = {(x,y)T  : either x≠0 or y≠0}⊆ ℝ2.
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5. 
	 S = {(1,0,1)T ,(0,1,0)T ,(2,0,2)T } ⊆ ℝ3. Give two examples of vectors u,v different
     from the given set such that LS(S) = LS(u,v).
     
	
  6. 
	S = {(x,y,z)T  : x,y,z > 0}⊆ ℝ3.
     
	
  7. 
	S = ⊆ M3(ℝ).
     
	
  8. 
	S = {(1,2,3,4)T ,(-1,1,4,5)T ,(3,3,2,3)T }⊆ ℝ4.
     
	
  9. 
	 S = {1+2x+x2,x,1+x2}⊆ ℂ[x;2]. Give two examples of polynomial p(x),q(x) different
     from the given set such that LS(S) = LS(p(x),q(x)).
     
	
 10. 
	 S = {1 + 2x + 3x2,-1 + x + 4x2,3 + 3x + 2x2}⊆ ℂ[x;2].
     
	
 11. 
	 S = {1,x,x2,…}⊆ ℂ[x].


   

   


Definition 3.1.17.  [Finite Dimensional Vector Space]   Let V be a vector space over F. Then,
V is called finite dimensional if there exists S ⊆ V, such that S has finite number of elements
and V = LS(S). If such an S does not exist then V is called infinite dimensional. 
   


   


Example 3.1.18.  
     
	
   1. 
	 {(1,2)T ,(2,1)T } spans ℝ2. Thus, ℝ2 is finite dimensional.
     
	
   2. 
	 {1,1 + x,1 - x + x2,x3,x4,x5} spans ℂ[x;5]. Thus, ℂ[x;5] is finite dimensional.
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3. 
	 Fix n ∈ ℕ. Then, ℂ[x;n] is finite dimensional as ℂ[x;n] = LS({1,x,x2,…,xn}).
     
	
   4. 
	 ℂ[x] is not finite dimensional as the degree of a polynomial can be any large positive
     integer. Indeed, verify that ℂ[x] = LS({1,x,x2,…,xn,…}).
     
	
   5. 
	 The vector space ℝ  over ℚ  is infinite dimensional. An argument to justify it will be
     given later. The same argument also implies that the vector space ℂ over ℚ is infinite
     dimensional.


   

   


Lemma 3.1.19 (Linear Span is a Subspace).   Let V be a vector space over F and S ⊆ V. Then,
LS(S) is a subspace of V.
   


Proof. By definition, 0 ∈ LS(S). So, LS(S) is non-empty. Let u,v ∈ LS(S). To show,
au + bv ∈ LS(S) for all a,b ∈ F. As u,v ∈ LS(S), there exist n ∈ ℕ, vectors wi ∈ S and scalars
αi,βi ∈ F such that u = α1w1 +  + αnwn and v = β1w1 +  + βnwn. Hence,
   

 as
aαi + bβi ∈ F for 1 ≤ i ≤ n. Thus, by Theorem 3.1.9, LS(S) is a vector subspace.               _
   


Exercise 3.1.20.   Let V be a vector space over F and W ⊆ V.
     
	
  1. 
	Then, LS(W) = W if and only if W is a subspace of V.
     
	
  2. 
	If W is a subspace of V and S ⊆ W then LS(S) is a subspace of W as well.
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Theorem 3.1.21.   Let V be a vector space over F and S ⊆ V. Then, LS(S) is the smallest
subspace of V containing S.
   


Proof. For every u ∈ S, u = 1 ⋅u ∈ LS(S). Thus, S ⊆ LS(S). Need to show that LS(S) is the smallest
subspace of V containing S. So, let W be any subspace of V containing S. Then, by Exercise 3.1.20,
LS(S) ⊆ W and hence the result follows.                                                                     _
   



Definition 3.1.22.  [Sum of two subsets]   Let V be a vector space over F.
     
	
   1. 
	Let S and T be two subsets of V. Then, the sum of S and T, denoted S + T equals
     {s + t|s ∈ S,t ∈ T}. For example,
          	
      (a) 
	if V = ℝ, S = {0,1,2,3,4,5,6} and T = {5,10,15} then S + T = {5,6,…,21}.
          
	
      (b) 
	if V = ℝ2, S =  and T =  then S + T = .
          
	
      (c) 
	if V = ℝ2, S =  and T = LS then S +T = .


     
	
   2. 
	Let P and Q be two subspaces of ℝ2. Then, P + Q = ℝ2, if
          	
      (a) 
	P = {(x,0)T |x ∈ ℝ} and Q = {(0,x)T |x ∈ ℝ} as (x,y) = (x,0) + (0,y).
          
	
      (b) 
	P = {(x,0)T |x ∈ ℝ} and Q = {(x,x)T |x ∈ ℝ} as (x,y) = (x - y,0) + (y,y).
          
	
      (c) 
	P = LS((1,2)T ) and Q = LS((2,1)T ) as (x,y) = (1,2) + (2,1).


     


   

   We leave the proof of the next result for readers.
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Lemma 3.1.23.   Let P and Q be two subspaces of a vector space V over F. Then, P + Q is a
subspace of V. Furthermore, P + Q is the smallest subspace of V containing both P and Q.
   


   


Exercise 3.1.24.  
     
	
  1. 
	 Let a ∈ ℝ2,a≠0. Then, show that {x ∈ ℝ2|aT x = 0} is a non-trivial subspace of ℝ2.
     Geometrically, what does this set represent in ℝ2?
     
	
  2. 
	 Find all subspaces of ℝ3.
     
	
  3. 
	Let U  =   and W  =   be subspaces of M2(ℝ).
     Determine U ∩ W. Is M2(ℝ) = U ∪ W? What is U + W?
     
	
  4. 
	 Let W and U be two subspaces of a vector space V over F.
          	
      (a) 
	 Prove that W ∩ U is a subspace of V.
          
	
      (b) 
	 Give examples of W and U such that W ∪ U is not a subspace of V.
          
	
      (c) 
	 Determine conditions on W and U such that W ∪ U a subspace of V?
          
	
      (d) 
	 Prove that LS(W ∪ U) = W + U.


______________________________________________
       
	
   5. 
	 Prove that {(x,y,z)T  ∈ ℝ3|ax + by + cz = d} is a subspace of ℝ3 if and only if
       d = 0.
       
	
   6. 
	 Determine all subspaces of the vector space in Example 3.1.4.19.
       
	
   7. 
	 Let S = {x1,x2,x3,x4}, where x1 = (1,0,0)T ,x2 = (1,1,0)T ,x3 = (1,2,0)T  and x4 = (1,1,1)T .
       Then, determine all xi such that LS(S) = LS(S \{xi}).
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8. 
	 Let W = LS((1,0,0)T ,(1,1,0)T ) and U = LS((1,1,1)T ). Prove that W + U = ℝ3 and
     W ∩ U = {0}. If v ∈ ℝ3, determine w ∈ W and u ∈ U such that v = w + u. Is it necessary that
     w and u are unique?
     
	
  9. 
	 Let W = LS((1,-1,0),(1,1,0)) and U = LS((1,1,1),(1,2,1)). Prove that W + U = ℝ3 and
     W ∩ U≠{0}. Find v ∈ ℝ3 such that v = w + u, for 2 different choices of w ∈ W and u ∈ U. That
     is, the choice of vectors w and u is not unique.


   

   Let V be a vector space over either ℝ or ℂ. Then, we have learnt the following:
     
	
   1. 
	for any S ⊆ V, LS(S) is again a vector space. Moreover, LS(S) is the smallest subspace
     containing S.
     
	
   2. 
	if S = ∅ then LS(S) = {0}.
     
	
   3. 
	if S has at least one non zero vector then LS(S) contains infinite number of vectors.


   Therefore, the following questions arise:
     
	
   1. 
	Are there conditions under which LS(S1) = LS(S2), for S1≠S2?
     
	
   2. 
	Is it always possible to find S so that LS(S) = V?
     
	
   3. 
	Suppose we have found S ⊆ V such that LS(S) = V. Can we find S such that no proper
     subset of S spans V?


We try to answer these questions in the subsequent sections. Before doing so, we give a short section on
fundamental subspaces associated with a matrix.


   
3.2    Fundamental Subspaces Associated with a Matrix

   


Definition 3.2.1.  [Fundamental Subspaces]    Let A ∈ Mm,n(ℂ). Then, we define the four
fundamental subspaces associated with A as
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1. 
	Col(A) = {Ax|x ∈ ℂn}⊆ ℂm, called the Column space. Observe that Col(A) is the
     linear span of the columns of A.
     
	
   2. 
	Row(A) = {xT A|x ∈ ℂm}, called the row space of A. Observe that Row(A) is the
     linear span of the rows of A.
     
	
   3. 
	Null(A) = {x ∈ ℂn|Ax = 0}, called the Null space of A.
     
	
   4. 
	Null(A*) = {x ∈ ℂm|A*x = 0}.


   

   


Remark 3.2.2.  Let A ∈ Mm,n(ℂ).
     
	
  1. 
	Then, Col(A) is a subspace of ℂm and Col(A*) is a subspace of ℂn.
     
	
  2. 
	Then, Null(A) is a subspace of ℂn and Null(A*) is a subspace of ℂm.
     


   

   


Example 3.2.3.  
     
	
   1. 
	Let A = . Then, verify that
          	
      (a) 
	Col(A) = {x = (x1,x2,x3)T  ∈ ℝ3|x1 + x2 - x3 = 0}.
          
	
      (b) 
	Row(A) = {x = (x1,x2,x3,x4)T  ∈ ℝ4|x1 - x2 - 2x3 = 0,x1 - 3x2 - 2x4 = 0}.
          
	
      (c) 
	Null(A) = LS({(1,-1,-2,0)T ,(1,-3,0,-2)T }).
                                                                                      

                                       DRAFT                               
          
	
(d) 
	Null(AT ) = LS((1,1,-1)T ).


     
	
   2. 
	Let A = . Then,
          	
      (a) 
	Col(A) = {(x1,x2,x3) ∈ ℂ3|(2 + i)x1 - (1 - i)x2 - x3 = 0}.
          
	
      (b) 
	Col(A*) = {(x1,x2,x3) ∈ ℂ3|ix1 - x2 + x3 = 0}.
          
	
      (c) 
	Null(A) = LS((i,1,-1)T ).
          
	
      (d) 
	Null(A*) = LS((-2 + i,1 + i,1)T ).


     


   

   


Remark 3.2.4.   Let A ∈ Mm,n(ℝ). Then, in Example 3.2.3, observe that the direction ratios
of normal vectors of Col(A) matches with vector in Null(AT ). Similarly, the direction ratios
of normal vectors of Row(A) matches with vectors in Null(A). Are these true in the general
setting? Do similar relations hold if A ∈ Mm,n(ℂ)? We will come back to these spaces again
and again.
   


   


Exercise 3.2.5.  
     
	
  1. 
	Let A = [BC]. Then, determine the condition under which Col(A) = Col(C).
     
	
  2. 
	Let A = . Then, determine Col(A), Row(A), Null(A) and Null(AT
  ).
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3.3    Linear Independence

   


Definition 3.3.1.  [Linear Independence and Dependence]    Let S = {u1,…,um} be a non-empty
subset of a vector space V over F. Then, S is said to be linearly independent if the linear
system
   	
   
	(3.3.1)




in the variables αi’s, 1 ≤ i ≤ m, has only the trivial solution. If Equation (3.3.1) has a non-trivial
solution then S is said to be linearly dependent.

   If S has infinitely many vectors then S is said to be linearly independent if for every finite
subset T of S, T is linearly independent.
   


Observe that we are solving a linear system over F. Hence, linear independence and dependence
depend on F, the set of scalars.
   



Example 3.3.2.  
     
	
   1. 
	 Is the set S a linear independent set? Give reasons.
          	
      (a) 
	 Let S = {1 + 2x + x2,2 + x + 4x2,3 + 3x + 5x2}⊆ ℝ[x;2]. 
Solution: Consider the system  = 0,
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          or equivalently a(1 + 2x + x2) + b(2 + x + 4x2) + c(3 + 3x + 5x2) = 0, in the variables
          a,b and c. As two polynomials are equal if and only if their coefficients are equal,
          the above system reduces to the homogeneous system a + 2b + 3c = 0,2a + b + 3c =
          0,a+4b+5c = 0. The corresponding coefficient matrix has rank 2 < 3, the number of
          variables. Hence, the system has a non-trivial solution. Thus, S is a linearly dependent
          subset of ℝ[x;2].
          
	
      (b) 
	S = {1,sin(x),cos(x)} is a linearly independent subset of ([-π,π], ℝ) over ℝ as the
          system
          	
          
          	(3.3.2)


          
          in the variables a,b and c has only the trivial solution. To verify this, evaluate Equation (3.3.2)
          at -,0 and  to get the homogeneous system a-b = 0,a + c = 0,a + b = 0. Clearly, this
          system has only the trivial solution.
          

	
      (c) 
	 Let S = {(0,1,1)T ,(1,1,0)T ,(1,0,1)T }. 
Solution: Consider the system  = (0,0,0) in the variables
          a,b and c. As rank of coefficient matrix is 3 = the number of variables, the
          system has only the trivial solution. Hence, S is a linearly independent subset of
          ℝ3.
          
	
      (d) 
	Consider ℂ as a complex vector space and let S = {1,i}. 
Solution: Since ℂ is a complex vector space, i ⋅ 1 + (-1)i = i - i = 0. So, S is a linear
          dependent subset of the complex vector space ℂ.
          
	
      (e) 
	Consider ℂ as a real vector space and let S = {1,i}. 
Solution: Consider the linear system a ⋅ 1 + b ⋅ i = 0, in the variables a,b ∈ ℝ. Since
          a,b ∈ ℝ, equating real and imaginary parts, we get a = b = 0. So, S is a linear independent
          subset of the real vector space ℂ.
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2. 
	 Let A ∈ Mm,n(ℂ). If Rank(A) < m then, the rows of A are linearly dependent.
     
Solution: As Rank(A) < m, there exists an invertible matrix P such that PA = . Thus,
     0T  = (PA)[m,:] = ∑
  i=1mpmiA[i,:]. As P is invertible, at least one pmi≠0. Thus, the required
     result follows.
     
	
   3. 
	 Let A ∈ Mm,n(ℂ). If Rank(A) < n then, the columns of A are linearly dependent.
     
Solution: As Rank(A) < n, by Corollary 2.2.33, there exists an invertible matrix Q such that
     AQ = . Thus, 0 = (AQ)[:,n] = ∑
  i=1nqinA[:,i]. As Q is invertible, at least one qin≠0.
     Thus, the required result follows.


   


   
3.3.1    Basic Results on Linear Independence

The reader is expected to supply the proof of parts that are not given.
   



Proposition 3.3.3.   Let V be a vector space over F.
     
	
  1. 
	 Then, 0, the zero-vector, cannot belong to a linearly independent set.
     
	
  2. 
	 Then, every subset of a linearly independent set in V is also linearly independent.
     
	
  3. 
	 Then, a set containing a linearly dependent set of V is also linearly dependent.


   

Proof. Let 0 ∈ S. Then, 1 ⋅ 0 = 0. That is, a non-trivial linear combination of some vectors in S is 0.
Thus, the set S is linearly dependent.                                                                          _

   We now prove a couple of results which will be very useful in the next section.
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Proposition 3.3.4.   Let S be a linearly independent subset of a vector space V  over F. If
T1,T2  are two subsets of S such that T1 ∩ T2 = ∅ then, LS(T1) ∩ LS(T2) = {0}. That is, if
v ∈ LS(T1) ∩ LS(T2) then v = 0.
   


Proof. Let v ∈ LS(T1) ∩LS(T2). Then, there exist vectors u1,…,uk ∈ T1, w1,…,wℓ ∈ T2 and scalars
αi’s and βj’s (not all zero) such that v = ∑
  i=1kαiui and v = ∑
  j=1ℓβjwj . Thus, we see that
∑
  i=1kαiui + ∑
  j=1ℓ(-βj)wj = 0. As the scalars αi’s and βj’s are not all zero, we see that a
non-trivial linear combination of some vectors in T1 ∪ T2 ⊆ S is 0. This contradicts the assumption
that S is a linearly independent subset of V. Hence, each of α’s and βj’s is zero. That is
v = 0.                                                                                                                   _

   We now prove another useful result.
   



Theorem 3.3.5.   Let S = {u1,…,uk} be a non-empty subset of a vector space V over F. If
T ⊆ LS(S) having more than k vectors then, T is a linearly dependent subset in V.
   


Proof. Let T = {w1,…,wm}. As wi ∈ LS(S), there exist aij ∈ F such that
   


So,
   
 As
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m > k, using Corollary 2.2.42, the linear system xT A = 0T  has a non-trivial solution, say Y≠0T . That
is, YT A = 0T . Thus,
   
 As
Y≠0, a non-trivial linear combination of vectors in T is 0. Thus, the set T is linearly dependent subset
of V.                                                                                                                     _
   


Corollary 3.3.6.   Fix n ∈ ℕ. Then, any subset S of ℝn with |S|≥ n+1 is linearly dependent.
   


Proof. Observe that ℝn = LS({e1,…,en}), where ei = In[:,i], is the i-th column of In. Hence, using
Theorem 3.3.5, the required result follows.                                                                   _
   



Theorem 3.3.7.   Let S be a linearly independent subset of a vector space V over F. Then, for
any v ∈ V the set S ∪{v} is linearly dependent if and only if v ∈ LS(S).
   


Proof. Let us assume that S ∪{v} is linearly dependent. Then, there exist vi’s in S such that the
linear system
   	
   
	(3.3.3)




in the variables αi’s has a non-trivial solution, say αi = ci, for 1 ≤ i ≤ p + 1. We claim that
cp+1≠0.

   For, if cp+1 = 0 then, Equation (3.3.3) has a non-trivial solution corresponds to having a
non-trivial solution of the linear system α1v1 +  + αpvp = 0 in the variables α1,…,αp. This
contradicts Proposition 3.3.3.2 as {v1,…,vp}⊆ S, a linearly independent set. Thus, cp+1≠0 and we
get
   

 as
- ∈ F, for 1 ≤ i ≤ p. That is, v is a linear combination of v1,…,vp.
   Now, assume that v ∈ LS(S). Then, there exists vi ∈ S and ci ∈ F, not all zero, such that
v = ∑
  i=1pcivi. Thus, the linear system α1v1 +  + αpvp + αp+1v = 0 in the variables αi’s has a
non-trivial solution [c1,…,cp,-1]. Hence, S ∪{v} is linearly dependent.                              _

   We now state a very important corollary of Theorem 3.3.7 without proof. This result can also be
used as an alternative definition of linear independence and dependence.
   



Corollary 3.3.8.   Let V be a vector space over F and let S be a subset of V containing a non-zero
vector u1.
     
	
  1. 
	 If S is linearly dependent then, there exists k such that LS(u1,…,uk) = LS(u1,…,uk-1).
     
	
  2. 
	 If S linearly independent then, v ∈ V \ LS(S) if and only if S ∪{v} is also a linearly
     independent subset of V.
     
	
  3. 
	 If S is linearly independent then, LS(S) = V if and only if each proper superset of S is
     linearly dependent.
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3.3.2    Application to Matrices

We start with our understanding of the RREF.
   



Theorem 3.3.9.   Let A ∈ Mm,n(ℂ). Then, the rows of A corresponding to the pivotal rows of
RREF(A) are linearly independent. Also, the columns of A corresponding to the pivotal columns
of RREF(A) are linearly independent.
   


Proof. Let RREF(A) = B. Then, the pivotal rows of B are linearly independent due to the pivotal 1’s.
Now, let B1 be the submatrix of B consisting of the pivotal rows of B. Also, let A1 be the submatrix
of A whose rows corresponds to the rows of B1. As the RREF of a matrix is unique (see
Corollary 2.2.18) there exists an invertible matrix Q such that QA1 = B1. So, if there exists c≠0 such
that cT A1 = 0T  then
   

 with
dT  = cT Q-1≠0T  as Q is an invertible matrix (see Theorem 2.3.1). This contradicts the linear
independence of the rows of B1.
   Let B[:,i1],…,B[:,ir] be the pivotal columns of B. Then, they are linearly independent due to
pivotal 1’s. As B = RREF(A), there exists an invertible matrix P such that B = PA. Then, the
corresponding columns of A satisfy
   

 As P
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is invertible, the systems [A[:,i1],…,A[:,ir]] = 0 and [B[:,i1],…,B[:,ir]] = 0 are
row-equivalent. Thus, they have the same solution set. Hence, {A[:,i1],…,A[:,ir]} is linearly
independent if and only if {B[:,i1],…,B[:,ir]} is linear independent. Thus, the required result
follows.                                                                                                                 _
   The next result follows directly from Theorem 3.3.9 and hence the proof is left to
readers.
   



Corollary 3.3.10.   The following statements are equivalent for A ∈ Mn(ℂ).
     
	
  1. 
	A is invertible.
     
	
  2. 
	The columns of A are linearly independent.
     
	
  3. 
	The rows of A are linearly independent.


   

   We give an example for better understanding.
   



Example 3.3.11.   Let A =  with RREF(A) = B = .
     
	
   1. 
	Then, B[:,3] = -B[:,1] + 2B[:,2]. Thus, A[:,3] = -A[:,1] + 2A[:,2].
     
	
   2. 
	As the 1-st, 2-nd and 4-th columns of B are linearly independent, the set {A[:,1],A[:
     ,2],A[:,4]} is linearly independent.
     
	
   3. 
	Also, note that during the application of GJE, the 3-rd and 4-th rows were interchanged.
     Hence, the rows A[1,:],A[2,:] and A[4,:] are linearly independent.
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3.3.3    Linear Independence and Uniqueness of Linear Combination

We end this section with a result that states that linear combination with respect to linearly
independent set is unique.
   



Lemma 3.3.12.   Let S be a linearly independent subset of a vector space V over F. Then, each
v ∈ LS(S) is a unique linear combination of vectors from S.
   


Proof. Suppose there exists v ∈ LS(S) with v ∈ LS(T1),LS(T2) with T1,T2 ⊆ S. Let
T1 = {v1,…,vk} and T2 = {w1,…,wℓ}, for some vi’s and wj’s in S. Define T = T1 ∪T2. Then, T is a
subset of S. Hence, using Proposition 3.3.3, the set T is linearly independent. Let T = {u1,…,up}.
Then, there exist αi’s and βj’s in F, not all zero, such that v = α1u1 +  + αpup as well as
v = β1u1 +  + βpup. Equating the two expressions for v gives
   	
   
	(3.3.4)




As T is a linearly independent subset of V, the system c1v1 +  + cpvp = 0, in the variables c1,…,cp,
has only the trivial solution. Thus, in Equation (3.3.4), αi -βi = 0, for 1 ≤ i ≤ p. Thus, for 1 ≤ i ≤ p,
αi = βi and the required result follows.                                                                        _
   



Exercise 3.3.13.  
     
	
  1. 
	 Prove that S = {1,i,x,x+x2} is a linearly independent subset of the vector space ℂ[x;2]
     over ℝ. Whereas, it is linearly dependent subset of the vector space ℂ[x;2] over ℂ.
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2. 
	 Suppose V is a vector space over ℝ as well as over ℂ. Then, prove that {u1,…,uk} is a
     linearly independent subset of V over ℂ if and only if {u1,…,uk,iu1,…,iuk} is a linearly
     independent subset of V over ℝ.
     
	
  3. 
	Is the set {1,x,x2,…} a linearly independent subset of the vector space ℂ[x] over ℂ?
     
	
  4. 
	Is the set {ij|1 ≤ i ≤ m,1 ≤ j ≤ n} a linearly independent subset of the vector space
     Mm,n(ℂ) over ℂ (see Definition 1.3.1.1)?
     
	
  5. 
	 Let W be a subspace of a vector space V over F. For u,v ∈ V \ W, define K = LS(W,u)
     and M = LS(W,v). Then, prove that v ∈ K if and only if u ∈ M.
     
	
  6. 
	 Prove that
          	
      (a) 
	 the rows/columns of A ∈ Mn(ℂ) are linearly independent if and only if det(A)≠0.
          
	
      (b) 
	 the rows/columns of A ∈ Mn(ℂ) span ℂn if and only if A is an invertible matrix.
          
	
      (c) 
	 the rows/columns of a skew-symmetric matrix A of odd order are linearly dependent.


     
	
  7. 
	 Let V and W be subspaces of ℝn such that V + W = ℝn and V ∩ W = {0}. Prove that each
     u ∈ ℝn is uniquely expressible as u = v + w, where v ∈ V and w ∈ W.
     
	
  8. 
	 Let S = {u1,…,un} and T = {w1,…,wn} be subsets of a complex vector space V. Also, let
      = A for some matrix A ∈ Mn(ℂ).
          	
      (a) 
	If A is invertible then prove that S is a linearly independent if and only if T  is
          linearly independent. Hint: Suppose T is linearly independent and consider the linear system
          ∑
            i=1nαiui = 0 in the variables αi’s. Then,
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          " class="math-display" > Since T is linearly independent, one has 0T = [α1,…,αn]A-1. But A is invertible and hence
          αi = 0, for all i.
          
	
      (b) 
	If T is linearly independent then prove that A is invertible. Further, in this case, the
          set S is necessarily linearly independent. Hint: Suppose A is not invertible. Then, there
          exists x0≠0 such that x0TA = 0T. Thus, we have obtained x0≠0 such that
          
           a contradiction to T being a linearly independent set. 


     
	
  9. 
	 Let S = {u1,…,un}⊆ ℂn and T = {Au1,…,Aun}, for some matrix A ∈ Mn(C).
          	
      (a) 
	If S is linearly dependent then prove that T is linear dependent.
          
	
      (b) 
	If S  is linearly independent then prove that T  is linearly independent for every
          invertible matrix A.
          
	
      (c) 
	If T is linearly independent then S is linearly independent. Further, in this case, the
          matrix A is necessarily invertible.


______________________________________________
       
	
  10. 
	 Consider the Euclidean plane ℝ2. Let u1 = (1,0)T . Determine condition on u2 such that
       {u1,u2} is a linearly independent subset of ℝ2.
       
	
  11. 
	 Let S = {(1,1,1,1)T ,(1,-1,1,2)T ,(1,1,-1,1)T }⊆ ℝ4. Does (1,1,2,1)T  ∈ LS(S)?
       Furthermore, determine conditions on x,y,z and u such that (x,y,z,u)T  ∈ LS(S).
       
	
  12. 
	 Show that S = {(1,2,3)T ,(-2,1,1)T ,(8,6,10)T }⊆ ℝ3 is linearly dependent.
       
	
  13. 
	 Find u,v,w ∈ ℝ4 such that {u,v,w} is linearly dependent whereas {u,v},{u,w} and {v,w}
   are linearly independent.
       
	
  14. 
	 Let A ∈ Mn(ℝ). Suppose x,y ∈ ℝn \{0} such that Ax = 3x and Ay = 2y. Then, prove that x
       and y are linearly independent.
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 15. 
	 Let A = . Determine x,y,z ∈ ℝ3
   \{0} such that Ax = 6x, Ay = 2y and
     Az = -2z. Use the vectors x,y and z obtained above to prove the following.
          	
      (a) 
	 A2v = 4v, where v = cy + dz for any c,d ∈ ℝ.
          
	
      (b) 
	 The set {x,y,z} is linearly independent.
          
	
      (c) 
	 Let P = [x,y,z] be a 3 × 3 matrix. Then, P is invertible.
          
	
      (d) 
	 Let D = . Then, AP = PD.


     


   


   
3.4    Basis of a Vector Space

   


Definition 3.4.1.  [Maximality]   Let S be a subset of a set T. Then, S is said to be a maximal
subset of T having property P if
     
	
   1. 
	S has property P and
     
	
   2. 
	no proper superset of S in T has property P.


   

   


Example 3.4.2.  Let  T  =  {2,3,4,7,8,10,12,13,14,15}.  Then,  a  maximal  subset  of  T  of
consecutive integers is S = {2,3,4}. Other maximal subsets are {7,8},{10} and {12,13,14,15}.
Note that {12,13} is not maximal. Why?
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Definition 3.4.3.  [Maximal linearly independent set]   Let V be a vector space over F. Then, S is
called a maximal linearly independent subset of V if
     
	
   1. 
	S is linearly independent and
     
	
   2. 
	no proper superset of S in V is linearly independent.


   

   


Example 3.4.4.  
     
	
   1. 
	 In ℝ3, the set S = {e1,e2} is linearly independent but not maximal as S ∪{(1,1,1)T } is
     a linearly independent set containing S.
     
	
   2. 
	 In ℝ3, S = {(1,0,0)T ,(1,1,0)T ,(1,1,-1)T } is a maximal linearly independent set as S is
     linearly independent and any collection of 4 or more vectors from ℝ3 is linearly dependent
     (see Corollary 3.3.6).
     
	
   3. 
	 Let S = {v1,…,vk}⊆ ℝn. Now, form the matrix A = [v1,…,vk] and let B = RREF(A).
     Then, using Theorem 3.3.9, we see that if B[:,i1],…,B[:,ir] are the pivotal columns of B
     then {vi1,…,vir} is a maximal linearly independent subset of S.
     
	
   4. 
	Is the set {1,x,x2,…} a maximal linearly independent subset of ℂ[x] over ℂ?
     
	
   5. 
	Is the set {ij|1 ≤ i ≤ m,1 ≤ j ≤ n} a maximal linearly independent subset of Mm,n(ℂ)
     over ℂ?
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Theorem 3.4.5.   Let V be a vector space over F and S a linearly independent set in V. Then,
S is maximal linearly independent if and only if LS(S) = V.
   


Proof. Let v ∈ V. As S is linearly independent, using Corollary 3.3.8.2, the set S ∪{v} is linearly
independent if and only if v ∈ V \ LS(S). Thus, the required result follows.                        _

   Let V = LS(S) for some set S with |S| = k. Then, using Theorem 3.3.5, we see that if T ⊆ V is
linearly independent then |T|≤ k. Hence, a maximal linearly independent subset of V can have at
most k vectors. Thus, we arrive at the following important result.
   



Theorem 3.4.6.   Let V be a vector space over F and let S and T be two finite maximal linearly
independent subsets of V. Then, |S| = |T|.
   


Proof. By Theorem 3.4.5, S and T are maximal linearly independent if and only if LS(S) = V = LS(T).
Now, use the previous paragraph to get the required result.                                             _

   Let V be a finite dimensional vector space. Then, by Theorem 3.4.6, the number of vectors in any
two maximal linearly independent set is the same. We use this number to define the dimension of a
vector space. We do so now.
   



Definition 3.4.7.  [Dimension  of  a  finite  dimensional  vector  space]   Let  V  be  a  finite
dimensional  vector  space  over  F.  Then,  the  number  of  vectors  in  any  maximal  linearly
independent set is called the dimension of V, denoted dim(V). By convention, dim({0}) = 0.
   


   


Example 3.4.8.  
     
	
   1. 
	As {1} is a maximal linearly independent subset of ℝ, dim(ℝ) = 1.
     
	
   2. 
	As {e1,e2,e3}⊆ ℝ3 is maximal linearly independent, dim(ℝ3) = 3.
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3. 
	As {e1,…,en} is a maximal linearly independent subset in ℝn, dim(ℝn) = n.
     
	
   4. 
	As {e1,…,en} is a maximal linearly independent subset in ℂn over ℂ, dim(ℂn) = n.
     
	
   5. 
	Using Exercise 3.3.13.2, {e1,…,en,ie1,…,ien} is a maximal linearly independent subset in
     ℂn over ℝ. Thus, as a real vector space, dim(ℂn) = 2n.
     
	
   6. 
	As {ij|1 ≤ i ≤ m,1 ≤ j ≤ n} is a maximal linearly independent subset of Mm,n(ℂ) over
     ℂ, dim(Mm,n(ℂ)) = mn.


   

   


Definition 3.4.9.    Let V be a vector space over F. Then, a maximal linearly independent
subset of V is called a basis/Hamel basis of V. The vectors in a basis are called basis vectors.
By convention, a basis of {0} is the empty set.
   


   Existence of Hamel basis
   



Definition 3.4.10.  [Minimal Spanning Set]   Let V be a vector space over F. Then, a subset
S of V is called minimal spanning if LS(S) = V and no proper subset of S spans V.
   


   


Remark 3.4.11 (Standard Basis).   The readers should verify the statements given below.
     
	
  1. 
	 All the maximal linearly independent set given in Example 3.4.8 form the standard basis
     of the respective vector space.
     
	
  2. 
	 {1,x,x2,…} is the standard basis of ℝ[x] over ℝ.
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3. 
	 Fix a positive integer n. Then, {1,x,x2,…,xn} is the standard basis of ℝ[x;n] over ℝ.
     
	
  4. 
	 Let V = {A ∈ Mn(ℝ)|A = AT }. Then, V is a vector space over ℝ with standard basis
     {ii,ij + ji|1 ≤ i < j ≤ n}.
     
	
  5. 
	 Let V = {A ∈ Mn(ℝ)|AT  = -A}. Then, V is a vector space over ℝ with standard basis
     {ij -ji|1 ≤ i < j ≤ n}.
     


   

   


Example 3.4.12.  
     
	
   1. 
	 Note that {-2} is a basis and a minimal spanning subset in ℝ.
     
	
   2. 
	 Let u1,u2,u3 ∈ ℝ2. Then, {u1,u2,u3} can neither be a basis nor a minimal spanning
     subset of ℝ2.
     
	
   3. 
	 {(1,1,-1)T ,(1,-1,1)T ,(-1,1,1)T } is a basis and a minimal spanning subset of ℝ3.
     
	
   4. 
	 Let V = {(x,y,0)T |x,y ∈ ℝ}⊆ ℝ3. Then,  = {(1,0,0)T ,(1,3,0)T } is a basis of V.
     
	
   5. 
	 Let V = {(x,y,z)T  ∈ ℝ3|x + y - z = 0}⊆ ℝ3. As each element (x,y,z)T  ∈ V satisfies
     x + y - z = 0. Or equivalently z = x + y, we see that
     
      Hence, {(1,0,1)T ,(0,1,1)T } forms a basis of V.
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6. 
	 Let S = {a1,…,an}. Then, ℝS is a real vector space (see Example 3.1.4.8). For 1 ≤ i ≤ n,
     define the functions
     
      Then, prove that  = {e1,…,en} is a linearly independent subset of ℝS over ℝ. Is it a
     basis of ℝS over ℝ? What can you say if S is a countable set?
     
	
   7. 
	 Let S = ℝn and consider the vector space ℝS (see Example 3.1.4.8). For 1 ≤ i ≤ n,
     define the functions ei(x) = ei(x1,…,xn) = xi. Then, verify that {e1,…,en} is a linearly
     independent subset of ℝS over ℝ. Is it a basis of ℝS over ℝ?
     
	
   8. 
	  Let  S  =  {v1,…,vk} ⊆ ℝn.  Define  A  =  [v1,…,vk].  Then,  using  Example 3.4.4.3,
     we see that dim(LS(S)) = Rank(A). Further, using Theorem 3.3.9, the columns of A
     corresponding to the pivotal columns in RREF(A) form a basis of LS(S).
     
	
   9. 
	 Recall the vector space [a,b], where a < b ∈ ℝ. For each α ∈ [a,b], define
     
      Prove that the set {fα|α ∈ [a,b]} is linearly dependent.
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3.4.1    Main Results associated with Bases

   


Theorem 3.4.13.   Let V be a non-zero vector space over F. Then, the following statements are
equivalent.
     
	
  1. 
	 is a basis (maximal linearly independent subset) of V.
     
	
  2. 
	 is linearly independent and spans V.
     
	
  3. 
	 is a minimal spanning set in V.


   

Proof. 1 ⇒2        By definition, every basis is a maximal linearly independent subset of V. Thus,
using Corollary 3.3.8.2, we see that  spans V.

   2 ⇒3        Let S be a linearly independent set that spans V. As S is linearly independent, for any
x ∈ S, xLS. Hence LS ⊊ LS(S) = V.

   3 ⇒1        If  is linearly dependent then using Corollary 3.3.8.1,  is not minimal spanning. A
contradiction. Hence,  is linearly independent.

   We now need to show that  is a maximal linearly independent set. Since LS() = V, for any
x ∈ V \, using Corollary 3.3.8.2, the set ∪{x} is linearly dependent. That is, every proper
superset of  is linearly dependent. Hence, the required result follows.                               _

   Now, using Lemma 3.3.12, we get the following result.
   



Remark 3.4.14.   Let  be a basis of a vector space V over F. Then, for each v ∈ V, there
exist unique ui ∈ and unique αi ∈ F, for 1 ≤ i ≤ n, such that v = ∑
  i=1nαiui.
   


   The next result is generally known as “every linearly independent set can be extended to form a
basis of a finite dimensional vector space”.
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Theorem 3.4.15.  Let  V  be  a  vector  space  over  F  with  dim(V)  =  n.  If  S  is  a  linearly
independent subset of V then there exists a basis T of V such that S ⊆ T.
   


Proof. If LS(S) = V, done. Else, choose u1 ∈ V \LS(S). Thus, by Corollary 3.3.8.2, the set S ∪{u1}
is linearly independent. We repeat this process till we get n vectors in T as dim(V) = n. By
Theorem 3.4.13, this T is indeed a required basis.                                                         _


   
3.4.2    Constructing a Basis of a Finite Dimensional Vector Space

We end this section with an algorithm which is based on the proof of the previous theorem.
     
	
 
	Step 1: Let v1 ∈ V with v1≠0. Then, {v1} is linearly independent.
     
	
 
	Step 2: If V  = LS(v1), we have got a basis of V. Else, pick v2  ∈ V \ LS(v1). Then, by
     Corollary 3.3.8.2, {v1,v2} is linearly independent.
     
	
 
	Step i: Either V = LS(v1,…,vi) or LS(v1,…,vi) ⊊ V. In the first case, {v1,…,vi} is a basis
     of V. Else, pick vi+1 ∈ V \LS(v1,…,vi). Then, by Corollary 3.3.8.2, the set {v1,…,vi+1}
     is linearly independent.
     This process will finally end as V is a finite dimensional vector space.



   


Exercise 3.4.16.  
     
	
  1. 
	 Let  = {u1,…,un} be a basis of a vector space V  over F. Then, does the condition
     ∑
       i=1nαiui = 0 in αi’s imply that αi = 0, for 1 ≤ i ≤ n?
     
	
  2. 
	 Let S = {v1,…,vp} be a subset of a vector space V over F. Suppose LS(S) = V but S
     is not a linearly independent set. Then, does this imply that each v ∈ V is expressible in
     more than one way as a linear combination of vectors from S? Is it possible to get a subset
     T of S such that T is a basis of V over F? Give reasons for your answer.
     
	
  3. 
	 Let V be a vector space of dimension n. Then,
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(a) 
	 prove that any set consisting of n linearly independent vectors forms a basis of V.
          
	
      (b) 
	 prove that if S is a subset of V having n vectors with LS(S) = V then, S forms a
          basis of V.


     
	
  4. 
	 Let {v1,…,vn} be a basis of ℂn. Then, prove that the two matrices B = [v1,…,vn] and
     C =  are invertible.
     
	
  5. 
	Let A ∈ Mn(ℂ) be an invertible matrix. Then, prove that the rows/columns of A form a basis of
     ℂn over ℂ.
     
	
  6. 
	 Let W1 and W2 be two subspaces of a finite dimensional vector space V such that W1 ⊆ W2.
     Then, prove that W1 = W2 if and only if dim(W1) = dim(W2).
     
	
  7. 
	 Let W1 be a non-trivial subspace of a finite dimensional vector space V over F. Then, prove that
     there exists a subspace W2 of V such that
     
     
     Also, prove that for each v ∈ V there exist unique vectors w1 ∈ W1 and w2 ∈ W2 with
     v = w1 + w2. The subspace W2 is called the complementary subspace of W1 in
     V.
     
	
  8. 
	Let V be a finite dimensional vector space over F. If W1 and W2 are two subspaces of
     V such that W1 ∩ W2 = {0} and dim(W1) + dim(W2) = dim(V) then prove that
     W1 + W2 = V.
     
	
  9. 
	 Consider the vector space ([-π,π]) over ℝ. For each n ∈ ℕ, define en(x) = sin(nx). Then,
     prove that S = {en|n ∈ ℕ} is linearly independent. [Hint: Need to show that every finite subset of S
     is linearly independent. So, on the contrary assume that there exists ℓ ∈ℕ and functions ek1,…,ekℓ
     such that α1ek1 +  + αℓekℓ = 0, for some αt≠0 with 1 ≤ t ≤ ℓ. But, the above system is
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     equivalent to looking at α1 sin(k1x) +  + αℓ sin(kℓx) = 0 for all x ∈ [-π,π]. Now in the
     integral
     
     
     replace m with ki’s to show that αi = 0, for all i,1 ≤ i ≤ ℓ. This gives the required contradiction.]
     
	
 10. 
	Is the set {1,sin(x),cos(x),sin(2x),cos(2x),sin(3x),cos(3x),…} a linearly subset of the vector
     space ([-π,π], ℝ) over ℝ?________________________________________________________
       
	
  11. 
	 Find a basis of ℝ3 containing the vector (1,1,-2)T .
       
	
  12. 
	 Find a basis of ℝ3 containing the vector (1,1,-2)T  and (1,2,-1)T .
       
	
  13. 
	 Is it possible to find a basis of ℝ4 containing the vectors (1,1,1,-2)T , (1,2,-1,1)T  and
       (1,-2,7,-11)T ?
       
	
  14. 
	 Show that  = {(1,0,1)T ,(1,i,0)T ,(1,1,1 - i)T } is a basis of ℂ3 over ℂ.
       
	
  15. 
	 Find a basis of ℂ3 over ℝ containing the basis  given in Example 3.4.16.14.
       
	
  16. 
	 Determine a basis and dimension of W = {(x,y,z,w)T  ∈ ℝ4|x + y - z + w = 0}.
       
	
  17. 
	 Find a basis of V = {(x,y,z,u) ∈ ℝ4|x - y - z = 0,x + z - u = 0}.
       
	
  18. 
	 Let A = . Find a basis of V = {x ∈ ℝ5
  |Ax = 0}.
       
	
  19. 
	 Let uT  = (1,1,-2),vT  = (-1,2,3) and wT  = (1,10,1). Find a basis of LS(u,v,w). Determine
       a geometrical representation of LS(u,v,w).
       
	
  20. 
	 Is the set W = {p(x) ∈ ℝ[x;4]|p(-1) = p(1) = 0} a subspace of ℝ[x;4]? If yes, find its
       dimension.
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3.5    Application to the subspaces of ℂn

In this section, we will study results that are intrinsic to the understanding of linear algebra from the
point of view of matrices, especially the fundamental subspaces (see Definition 3.2.1) associated with
matrices. We start with an example.
   



Example 3.5.1.  
     
	
   1. 
	Compute the fundamental subspaces for A = . 
Solution: Verify the following
          	
      (a) 
	 Row(A) = {(x,y,z,u)T  ∈ ℂ4|3x - 2y = z,5x - 3y + u = 0}.
          
	
      (b) 
	 Col(A) = {(x,y,z)T  ∈ ℂ3|4x - 3y - z = 0}.
          
	
      (c) 
	 Null(A) = {(x,y,z,u)T  ∈ ℂ4|x + 3z - 5u = 0,y - 2z + 3u = 0}.
          
	
      (d) 
	 Null(AT ) = {(x,y,z)T  ∈ ℂ3|x + 4z = 0,y - 3z = 0}.


     
	
   2. 
	Let A = . Find a basis and dimension of Null(A). 
Solution: Writing the basic vairables x1,x3 and x6 in terms of the free variables x2,x4,x5 and
     x7, we get x1 = x7 -x2 -x4 -x5, x3 = 2x7 - 2x4 - 3x5 and x6 = -x7. Hence, the solution set
     has the form
     	
     
     	(3.5.1)


     
     
Now, let u1T  = , u2T  = , u3T  =  and
     u4T  = . Then, S = {u1,u2,u3,u4} is a basis of Null(A). The reasons for S
     to be a basis are as follows:
          
	
      (a) 
	By Equation (3.5.1) Null(A) = LS(S).
          
	
      (b) 
	For Linear independence, the homogeneous system c1u1 + c2u2 + c3u3 + c4u4 = 0 in the
          variables c1,c2,c3 and c4 has only the trivial solution as
              	
            i. 
	u4 is the only vector with a nonzero entry at the 7-th place (u4 corresponds to
              x7) and hence c4 = 0.
              
	
           ii. 
	u3 is the only vector with a nonzero entry at the 5-th place (u3 corresponds to
              x5) and hence c3 = 0.
              
	
          iii. 
	Similar arguments hold for the variables c2 and c1.


          


     


   

   


Exercise 3.5.2.   Let A =  and B = .
     
	
  1. 
	 Find RREF(A) and RREF(B).
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2. 
	 Find invertible matrices P1 and P2 such that P1A = RREF(A) and P2B = RREF(B).
     
	
  3. 
	 Find bases for Col(A), Row(A), Col(B) and Row(B).
     
	
  4. 
	 Find bases of Null(A), Null(AT ), Null(B) and Null(BT ).
     
	
  5. 
	 Find the dimensions of all the vector subspaces so obtained.


   

   The next result is a re-writing of the results on system of linear equations. We give the proof for
the sake of completeness.
   



Lemma 3.5.3.   Let A ∈ Mm×n(ℂ) and let E be an elementary matrix. If
     
	
  1. 
	 B = EA then
          	
      (a) 
	  Null(A)   =   Null(B),  Row(A)   =   Row(B).  Thus,  the  dimensions  of  the
          corresponding spaces are equal.
          
	
      (b) 
	  Null(A)   =   Null(B),  Row(A)   =   Row(B).  Thus,  the  dimensions  of  the
          corresponding spaces are equal.


     
	
  2. 
	 B = AE then
          	
      (a) 
	  Null(A*)  =  Null(B*),  Col(A)  =  Col(B).  Thus,  the  dimensions  of  the
          corresponding spaces are equal.
          
	
      (b) 
	  Null(AT )  =  Null(BT ),  Col(A)  =  Col(B).  Thus,  the  dimensions  of  the
          corresponding spaces are equal.


     


   

Proof. Part 1a: Let x ∈ Null(A). Then, Bx = EAx = E0 = 0. So, Null(A) ⊆ Null(B).
Further, if x ∈ Null(B), then Ax = (E-1E)Ax = E-1(EA)x = E-1Bx = E-10 = 0. Hence,
Null(B) ⊆ Null(A). Thus, Null(A) = Null(B).
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   Let us now prove Row(A) = Row(B). So, let xT  ∈ Row(A). Then, there exists y ∈ ℂm such that
xT  = yT A. Thus, xT  = EA = B and hence xG ∈ Row(B). That is,
Row(A) ⊆ Row(B). A similar argument gives Row(B) ⊆ Row(A) and hence the required result
follows.

   Part 1b: E is invertible implies E is invertible and B = EA. Thus, an argument similar to the
previous part gives us the required result.

   For Part 2, note that B* = E*A* and E* is invertible. Hence, an argument similar to the first part
gives the required result.                                                                                           _

   Let A ∈ Mm×n(ℂ) and let B = RREF(A). Then, as an immediate application of Lemma 3.5.3, we
get dim(Row(A)) = Row rank(A). We now prove that dim(Row(A)) = dim(Col(A)).
   



Theorem 3.5.4.   Let A ∈ Mm×n(ℂ). Then, dim(Row(A)) = dim(Col(A)).
   


Proof. Let dim(Row(A)) = r. Then, there exist i1,…,ir such that {A[i1,:],…,A[ir,:]} forms a basis of
Row(A). Then, B =  is an r × n matrix and it’s rows are a basis of Row(A). Therefore,
there exist αij ∈ ℂ,1 ≤ i ≤ m,1 ≤ j ≤ r such that A[t,:] = [αt1,…,αtr]B, for 1 ≤ t ≤ m. So, using
matrix multiplication
   


where C = [αij] is an m×r matrix. Thus, using matrix multiplication, we see that each column of A
is a linear combination of r columns of C. Hence, dim(Col(A)) ≤ r = dim(Row(A)).
A similar argument gives dim(Row(A)) ≤ dim(Col(A)). Hence, we have the required
result.                                                                                                                   _
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Remark 3.5.5.  The proof also shows that for every A ∈ Mm×n(ℂ)  of rank r there exists
matrices Br×n and Cm×r, each of rank r, such that A = CB.
   


   Let W1 and W1 be two subspaces of a vector space V over F. Then, recall that (see
Exercise 3.1.24.4d) W1 + W2 = {u + v|u ∈ W1,v ∈ W2} = LS(W1 ∪ W2) is the smallest subspace of
V containing both W1 and W2. We now state a result similar to a result in Venn diagram that
states |A| + |B| = |A ∪ B| + |A ∩ B|, whenever the sets A and B are finite (for a proof, see
Appendix 9.4.1).
   



Theorem 3.5.6.   Let V be a finite dimensional vector space over F. If W1 and W2 are two subspaces
of V then
   	
   
	(3.5.2)




   


   For better understanding, we give an example for finite subsets of ℝn. The example uses
Theorem 3.3.9 to obtain bases of LS(S), for different choices S. The readers are advised to see
Example 3.3.9 before proceeding further.
   



Example 3.5.7.   Let V and W be two spaces with V = {(v,w,x,y,z)T  ∈ ℝ5|v + x + z = 3y}
and W = {(v,w,x,y,z)T  ∈ ℝ5|w - x = z,v = y}. Find bases of V and W containing a basis of
V ∩ W. 
Solution: One can first find a basis of V ∩ W and then heuristically add a few vectors to get
bases for V and W, separately.
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   Alternatively, First find bases of V, W and V∩W, say V ,W  and . Now, consider
S = ∪V . This set is linearly dependent. So, obtain a linearly independent
subset of S that contains all the elements of . Similarly, do for T = ∪W .

   So, we first find a basis of V ∩ W. Note that (v,w,x,y,z)T  ∈ V ∩ W if v,w,x,y and z satisfy
v + x - 3y + z = 0,w - x - z = 0 and v = y. The solution of the system is given by
   


   Thus,  = {(1,2,0,1,2)T ,(0,0,1,0,-1)T } is a basis of V ∩ W. Similarly, a basis of V is given by
 = {(-1,0,1,0,0)T ,(0,1,0,0,0)T ,(3,0,0,1,0)T ,(-1,0,0,0,1)T } and that of W is given by
 = {(1,0,0,1,0)T ,(0,1,1,0,0)T ,(0,1,0,0,1)T }. To find the required basis form a matrix whose rows
are the vectors in , and  (see Equation(3.5.3)) and apply row operations other than Eij. Then,
after a few row operations, we get
   	
   
	(3.5.3)




Thus, a required basis of V is {(1,2,0,1,2)T ,(0,0,1,0,-1)T ,(0,1,0,0,0)T ,(0,0,0,1,3)T }. Similarly, a
required basis of W is {(1,2,0,1,2)T ,(0,0,1,0,-1)T ,(0,1,0,0,1)T }.
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Exercise 3.5.8.  
     
	
  1. 
	 Give an example to show that if A and B are equivalent then Col(A) need not equal
     Col(B).
     
	
  2. 
	 Let V = {(x,y,z,w)T  ∈ ℝ4|x + y - z + w = 0,x + y + z + w = 0,x + 2y = 0} and
     W = {(x,y,z,w)T  ∈ ℝ4|x-y -z + w = 0,x + 2y -w = 0} be two subspaces of ℝ4. Think
     of a method to find bases and dimensions of V, W, V ∩ W and V + W.
     
	
  3. 
	 Let W1 and W2 be two subspaces of a vector space V. If dim(W1) + dim(W2) > dim(V),
     then prove that dim(W1 ∩ W2) ≥ 1.
     
	
  4. 
	 Let A ∈ Mm×n(ℂ) with m < n. Prove that the columns of A are linearly dependent.


   

   We now prove the rank-nullity theorem and give some of it’s consequences.
   



Theorem 3.5.9 (Rank-Nullity Theorem).   Let A ∈ Mm×n(ℂ). Then,
   	
   
	(3.5.4)
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Proof. Let dim(Null(A)) = r ≤ n and let  = {u1,…,ur} be a basis of Null(A). Since  is a
linearly independent set in ℝn, extend it to get  = {u1,…,un} as a basis of ℝn. Then,


   


So,  = {Aur+1,…,Aun} spans Col(A). We further need to show that  is linearly independent. So,
consider the linear system
   	
   
	(3.5.5)



in the variables α1,…,αn-r. Thus, α1ur+1 +  + αn-run ∈ Null(A) = LS(). Therefore, there exist
scalars βi,1 ≤ i ≤ r, such that ∑
  i=1n-rαiur+i = ∑
  j=1rβjuj. Or equivalently,
   	
   
	(3.5.6)
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As  is a linearly independent set, the only solution of Equation (3.5.6) is
   

 In
other words, we have shown that the only solution of Equation (3.5.5) is the trivial solution. Hence,
{Aur+1,…,Aun} is a basis of Col(A). Thus, the required result follows.                             _
   Theorem 3.5.9 is part of what is known as the fundamental theorem of linear algebra (see
Theorem 5.2.16). The following are some of the consequences of the rank-nullity theorem. The proofs
are left as an exercise for the reader.
   



Exercise 3.5.10.  
     
	
  1. 
	 Let A ∈ Mm,n(ℂ).
          	
      (a) 
	 If n > m then the system Ax = 0 has infinitely many solutions,
          
	
      (b) 
	 If n < m then there exists b ∈ ℝm \{0} such that Ax = b is inconsistent.


     
	
  2. 
	 The following statements are equivalent for an m × n matrix A.
          	
      (a) 
	  Rank (A) = k.
          
	
      (b) 
	 There exist a set of k rows of A that are linearly independent.
          
	
      (c) 
	 There exist a set of k columns of A that are linearly independent.
          
	
      (d) 
	 dim(Col(A)) = k.
          
	
      (e) 
	 There exists a k × k submatrix B of A with det(B)≠0. Further, the determinant of
          every (k + 1) × (k + 1) submatrix of A is zero.
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(f) 
	 There exists a linearly independent subset {b1,…,bk} of ℝm such that the system
          Ax = bi, for 1 ≤ i ≤ k, is consistent.
          
	
      (g) 
	 dim(Null(A)) = n - k.


     


   


   
3.6    Ordered Bases

Let V be a vector space over ℂ with dim(V) = n, for some positive integer n. Also, let W be a
subspace of V with dim(W) = k. Then, a basis of W may not look like a standard basis. Our problem
may force us to look for some other basis. In such a case, it is always helpful to fix the vectors in a
particular order and then concentrate only on the coefficients of the vectors as was done for the system
of linear equations where we didn’t worry about the variables. It may also happen that k is very-very
small as compared to n in which case it is better to work with k vectors in place of n
vectors.
   



Definition 3.6.1.  [Ordered Basis, Basis Matrix]  Let W be a vector space over F with a
basis  = {u1,…,um}. Then, an ordered basis for W is a basis  together with a one-to-one
correspondence between  and {1,2,…,m}. Since there is an order among the elements of ,
we write  = . The vector B = [u1,…,um] is an element of Wm and is generally
called the basis matrix.
   


   


Example 3.6.2.  
     
	
   1. 
	Consider the ordered basis  = (e1,e2,e3) of ℝ3. Then, B = .
     
	
   2. 
	Consider the ordered basis  = (1,x,x2,x3) of ℝ[x;3]. Then, B = .
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3. 
	Consider the ordered basis  =  (12 -21,13 -31,23 -32) of the set of 3 × 3
     skew-symmetric matrices. Then, B = .


   

   Thus,  = (u1,u2,…,um) is different from  = (u2,u3,…,um,u1) and both of them are
different from  = (um,um-1,…,u2,u1) even though they have the same set of vectors as
elements. We now define the notion of coordinates of a vector with respect to an ordered
basis.
   



Definition 3.6.3.  [Coordinate Vector]   Let B = [v1,…,vm] be the basis matrix corresponding to an
ordered basis  of W. Since  is a basis of W, for each v ∈ W, there exist βi,1 ≤ i ≤ m, such that
v = ∑
  i=1mβivi = B. The vector , denoted [v], is called the coordinate vector of v
with respect to . Thus,
   	
   
	(3.6.1)




The last expression is generally viewed as a symbolic expression.
   


   


Example 3.6.4.  
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1. 
	Let f(x) = 1 + x + x3 ∈ ℝ[x;3]. If  = (1,x,x2,x3) is an ordered basis of ℝ[x;3] then,
     
     
     
	
   2. 
	 Consider the Bessel polynomials
     
     
     Then,  = (u0(x),u1(x),u2(x)) forms an ordered basis of ℝ[x;2]. Note that these polynomials
     satisfy the following conditions:
          	
      (a) 
	deg(ui(x)) = i, for 0 ≤ i ≤ 2;
          
	
      (b) 
	ui(1) = 1, for 0 ≤ i ≤ 2; and
          
	
      (c) 
	∫
 -11ui(x)uj(x)dx = 0, whenever 0 ≤ i≠j ≤ 2.


     Verify that
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   3. 
	 We know that
     
     
     If A =  then, A = X + Y , where X =  and Y = .
          	
      (a) 
	If  =  is an ordered basis of M3(ℝ) then
          
          
          
	
      (b) 
	If  =   is an ordered basis of U  then,
          [X]T  = .
          
	
      (c) 
	If   =    is  an  ordered  basis  of  W  then,  [Y ]T   =
          .


     Thus, in general, any matrix A ∈ Mm,n(ℝ) can be mapped to ℝmn with respect to the ordered
     basis  =  and vise-versa.
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4. 
	Let V = {(v,w,x,y,z)T  ∈ ℝ5|w - x = z,v = y,v + x + z = 3y}. Then, verify that
      =  can be taken as an ordered basis of V. In this case,
     [(3,6,0,3,1)] = .


   

   


Remark 3.6.5.  [Basis representation of v]
     
	
  1. 
	 Let  be an ordered basis of a vector space V over F of dimension n.
          	
      (a) 
	Then,
          
          
          
	
      (b) 
	Further, let S = {w1,…,wm}⊆ V. Then, observe that S is linearly independent if
          and only if {[w1],…,[wm]} is linearly independent in Fn.


     
	
  2. 
	 Suppose V = Fn in Definition 3.6.3. Then, B = [v1,…,vn] is an n × n invertible matrix (see
     Exercise 3.4.16.4). Thus, using Equation (3.6.1), we have
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     " class="math-display" >	(3.6.2)


     
     As B is invertible, [v] = B-1v, for every v ∈ V.



   

   


Definition 3.6.6.  [Change of Basis Matrix] Let V be a vector space over F with dim(V) = n.
Let A = [v1,…,vn] and B = [u1,…,un] be basis matrices corresponding to the ordered bases 
and , respectively, of V. Thus, using Equation (3.6.1), we have
   


where [] = . Or equivalently, verify the symbolic equality
   	
   
	(3.6.3)



The matrix [] is called the matrix of  with respect to the ordered basis  or the change of
basis matrix from  to .
   


   We now summarize the above discussion.
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Theorem 3.6.7.   Let V be a vector space over F with dim(V) = n. Further, let  = (v1,…,vn) and
 = (u1,…,un) be two ordered bases of V
     
	
  1. 
	Then, the matrix [] is invertible.
     
	
  2. 
	Similarly, the matrix [] is invertible.
     
	
  3. 
	Moreover, [x] = [][x], for all x ∈ V. Thus, again note that the matrix [] takes
     coordinate vector of x with respect to  to the coordinate vector of x with respect to .
     Hence, [] was called the change of basis matrix from  to .
     
	
  4. 
	Similarly, [x] = [][x], for all x ∈ V.
     
	
  5. 
	Furthermore, ([])-1 = [].


   

Proof. Part 1: Note that using Equation (3.6.3), we have  = []T  and hence by
Exercise 3.3.13.8, the matrix []T  or equivalently [] is invertible, which proves Part 1. A similar
argument gives Part 2.

   Part 3: Using Equations (3.6.1) and (3.6.3). for any x ∈ V, we have
   

 Since
the basis representation of an element is unique, we get [x]T  = [x]T []T . Or equivalently,
[x] = [][x]. This completes the proof of Part 3. We leave the proof of other parts to the
reader.                                                                                                                  _
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Example 3.6.8.  
     
	
   1. 
	Let V = ℂn and  = (e1,…,en) be the standard ordered basis. Then
     
     
     
	
   2. 
	Let  =  be an ordered basis of ℝ2. Then, by Remark 3.6.5.2, B = 
     is an invertible matrix. Thus, verify that  = -1.
     
	
   3. 
	Suppose  = (1,0,0)T ,(1,1,0)T ,(1,1,1)T  and  = (1,1,1)T ,(1,-1,1)T ,(1,1,0)T  are two
     ordered bases of ℝ3. Then, we verify the statements in the previous result.
          	
      (a) 
	  = 
. Thus, 
 = -1
     = .
          
	
      (b) 
	 
 = -1
     =  = .
          
	
      (c) 
	Finally check that [] = , []
 =  and []
[] = I3.
          


     


   

   


Remark 3.6.9.   Let V be a vector space over F with  = (v1,…,vn) as an ordered basis. Then, by
Theorem 3.6.7, [v] is an element of Fn, for each v ∈ V. Therefore,
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1. 
	if F = ℝ then, the elements of V correspond to vectors in ℝn.
     
	
  2. 
	if F = ℂ then, the elements of V correspond to vectors in ℂn.


   

   


Exercise 3.6.10.   Let  = (1,2,0)T ,(1,3,2)T ,(0,1,3)T  and  = (1,2,1)T ,(0,1,2)T ,(1,4,6)T  be
two ordered bases of ℝ3.
     
	
  1. 
	 Find the change of basis matrix P from  to .
     
	
  2. 
	 Find the change of basis matrix Q from  to .
     
	
  3. 
	 Find the change of basis matrix R from the standard basis of ℝ3  to . What do you
     notice?


Is it true that PQ = I = QP? Give reasons for your answer.
   



   
3.7    Summary

In this chapter, we defined vector spaces over F. The set F was either ℝ or ℂ. To define a vector space,
we start with a non-empty set V of vectors and F the set of scalars. We also needed to do the
following:
     
	
   1. 
	first define vector addition and scalar multiplication and
     
	
   2. 
	then verify the conditions in Definition 3.1.1.


If all conditions in Definition 3.1.1 are satisfied then V is a vector space over F. If W was a
non-empty subset of a vector space V over F then for W to be a space, we only need to check
whether the vector addition and scalar multiplication inherited from that in V hold in
W.
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   We then learnt linear combination of vectors and the linear span of vectors. It was also
shown that the linear span of a subset S of a vector space V is the smallest subspace of V
containing S. Also, to check whether a given vector v is a linear combination of u1,…,un,
we needed to solve the linear system c1u1 +  + cnun = v in the variables c1,…,cn. Or
equivalently, the system Ax = b, where in some sense A[:,i] = ui, 1 ≤ i ≤ n, xT  = [c1,…,cn]
and b = v. It was also shown that the geometrical representation of the linear span of
S = {u1,…,un} is equivalent to finding conditions in the entries of b such that Ax = b was always
consistent.

   Then, we learnt linear independence and dependence. A set S = {u1,…,un} is linearly independent
set in the vector space V over F if the homogeneous system Ax = 0 has only the trivial solution in F.
Else S is linearly dependent, where as before the columns of A correspond to the vectors
ui’s.

   We then talked about the maximal linearly independent set (coming from the homogeneous
system) and the minimal spanning set (coming from the non-homogeneous system) and culminating in
the notion of the basis of a finite dimensional vector space V over F. The following important results
were proved.
     
	
   1. 
	A linearly independent set can be extended to form a basis of V.
     
	
   2. 
	Any two bases of V have the same number of elements.


This number was defined as the dimension of V, denoted dim(V).

   Now let A ∈ Mn(ℝ). Then, combining a few results from the previous chapter, we have the
following equivalent conditions.
     
	
   1. 
	A is invertible.
     
	
   2. 
	The homogeneous system Ax = 0 has only the trivial solution.
     
	
   3. 
	RREF(A) = In.
     
	
   4. 
	A is a product of elementary matrices.
     
	
   5. 
	The system Ax = b has a unique solution for every b.
     
	
   6. 
	The system Ax = b has a solution for every b.
     
	
   7. 
	Rank(A) = n.
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8. 
	det(A)≠0.
     
	
   9. 
	Col(AT ) = Row(A) = ℝn.
     
	
  10. 
	Rows of A form a basis of ℝn.
     
	
  11. 
	Col(A) = ℝn.
     
	
  12. 
	Columns of A form a basis of ℝn.
     
	
  13. 
	Null(A) = {0}.
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