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   Chapter 4
Linear Transformations

   4.1    Definitions and Basic Properties

Let V be a vector space over F with dim(V) = n. Also, let  be an ordered basis of V. Then, in the
last section of the previous chapter, it was shown that for each x ∈ V, the coordinate vector [x] is a
column vector of size n and has entries from F. So, in some sense, each element of V looks like
elements of Fn. In this chapter, we concretize this idea. We also show that matrices give rise to
functions between two finite dimensional vector spaces. To do so, we start with the definition of
functions over vector spaces that commute with the operations of vector addition and scalar
multiplication.
   



Definition 4.1.1.  [Linear Transformation, Linear Operator]   Let V and W be vector spaces
over F. A function (map) T : V → W is called a linear transformation if for all α ∈ F and
u,v ∈ V the function T satisfies
   

 where +,⋅ are binary operations in V and ⊕,⊙ are the binary operations in W. By (V, W), we
denote the set of all linear transformations from V to W. In particular, if W = V then the linear
transformation T is called a linear operator and the corresponding set of linear operators is
denoted by (V).
   

   


Definition 4.1.2.  [Equality of Linear Transformation]  Let S,T ∈(V, W). Then, S and T
are said to be equal if S(x) = T(x), for all x ∈ V.
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We now give examples of linear transformations.
   



Example 4.1.3.  
     
	
   1. 
	 Let V be a vector space. Then, the maps Id,0 ∈(V), where
          	
      (a) 
	Id(v) = v, for all v ∈ V, is commonly called the identity operator.  
          
	
      (b) 
	0(v) = 0, for all v ∈ V, is commonly called the zero operator. 


     
	
   2. 
	 Let V and W be two vector spaces over F. Then, 0 ∈(V, W), where 0(v) = 0, for all v ∈ V, is
     commonly called the zero transformation. 
     
	
   3. 
	 The map T(x) = x, for all x ∈ ℝ, is an element of (ℝ) as T(ax) = ax = aT(x) and
     T(x + y) = x + y = T(x) + T(y).
     
	
   4. 
	 The map T(x) = (x,3x)T , for all x ∈ ℝ, is an element of (ℝ, ℝ2) as T(λx) = (λx,3λx)T  = λ(x,3x)T  = λT(x)
     and T(x + y) = (x + y,3(x + y)T  = (x,3x)T  + (y,3y)T  = T(x) + T(y).
     
	
   5. 
	 Let V, W and ℤ be vector spaces over F. Then, for any T ∈(V, W) and S ∈(W, ℤ), the map
     S ∘T ∈(V, ℤ), where (S ∘T)(v) = ST(v), for all v ∈ V, is called the composition of maps.
     Observe that for each v ∈ V, 
     
     
     
and hence S ∘ T, in short ST, is an element of (V, ℤ).
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6. 
	 Fix a ∈ ℝn and define T(x) = aT x, for all x ∈ ℝn. Then T ∈(ℝn, ℝ). For example,
          	
      (a) 
	 if a = (1,…,1)T  then T(x) = ∑
  i=1nxi, for all x ∈ ℝn.
          
	
      (b) 
	 if a = ei, for a fixed i,1 ≤ i ≤ n, then Ti(x) = xi, for all x ∈ ℝn.


     
	
   7. 
	 Define T : ℝ2 → ℝ3 by T = (x + y,2x - y,x + 3y)T . Then T ∈(ℝ2, ℝ3) with
     T(e1) = (1,2,1)T  and T(e2) = (1,-1,3)T .
     
	
   8. 
	 Let A ∈ Mm×n(ℂ). Define TA(x) = Ax, for every x ∈ ℂn. Then, TA ∈(ℂn, ℂm). Thus, for
     each A ∈ Mm,n(ℂ), there exists a linear transformation TA ∈(ℂn, ℂm).
     
	
   9. 
	 Define T : ℝn+1 → ℝ[x;n] by T = a1 + a2x +  + an+1xn, for each
     (a1,…,an+1) ∈ ℝn+1. Then T is a linear transformation.
     
	
  10. 
	 Fix A ∈ Mn(ℂ). Now, define TA : Mn(ℂ) → Mn(ℂ) and SA : Mn(ℂ) → ℂ by TA(B) = AB and
     SA(B) = Tr(AB), for every B ∈ Mn(ℂ). Then, TA and SA are both linear transformations.
     What can you say about the maps f1(B) = A*B,f2(B) = BA,f3(B) = tr(A*B) and
     f4(B) = tr(BA), for every B ∈ Mn(ℂ)?
     
	
  11. 
	 Verify that the map T : ℝ[x;n] → ℝ[x;n + 1] defined by T(f(x)) = xf(x), for all f(x) ∈ ℝ[x;n]
     is a linear transformation.
     
	
  12. 
	 The maps T,S : ℝ[x] → ℝ[x] defined by T(f(x)) = f(x) and S(f(x)) = ∫
 0xf(t)dt, for
     all f(x) ∈ ℝ[x] are linear transformations. Is it true that TS = Id? What about
     ST?
     
	
  13. 
	 Recall the vector space ℝℕ  in Example 3.1.4.8. Now, define maps T,S : ℝℕ → ℝℕ  by
     T({a1,a2,…}) = {0,a1,a2,…} and S({a1,a2,…}) = {a2,a3,…}. Then, T and S, are commonly
     called the shift operators, are linear operators with exactly one of ST or TS as the Id
     map.
     
	
  14. 
	 Recall the vector space (ℝ, ℝ) (see Example 3.1.4.10). We now define a map
     T : (ℝ, ℝ) →(ℝ, ℝ) by T(f(x)) = ∫
 0xf(t)dt. For example, (T(sin(x)) = ∫
 0x sin(t)dt = 1 - cos(x),
     for all x ∈ ℝ. Then, verify that T is a linear transformation.
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Remark 4.1.4.   Let A ∈ Mn(ℂ) and define TA : ℂn → ℂn by TA(x) = Ax, for every x ∈ ℂn.
Then, verify that TAk(x) = k times(x) = Akx, for any positive integer k.

   Also,  for  any  two  linear  transformations  S  ∈ (V, W)  and  T  ∈ (W, ℤ),  we  will
interchangeably use T ∘ S and TS, for the corresponding linear transformation in (V, ℤ).
   


   We now prove that any linear transformation sends the zero vector to a zero vector.
   



Proposition 4.1.5.   Let T ∈(V, W). Suppose that 0

   V isthezerovectorinVand0˙WisthezerovectorofW.ThenT(0˙V) = 0˙W.
   


Proof. Since 0

   V = 0˙V + 0˙V,weget T(0˙V) = T(0˙V + 0˙V)= T(0˙V) + T(0˙V).AsT(0˙V) ∈ W,
   


Hence, T(0
   V) = 0˙W.                                                                                        _

   From now on 0 will be used as the zero vector of the domain and codomain. We now consider a
few more examples.
   



Example 4.1.6.  
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1. 
	Does there exist a linear transformation T : V → W such that T(v)≠0, for all v ∈ V? 
Solution: No, as T(0) = 0 (see Proposition 4.1.5).
     
	
   2. 
	Does there exist a linear transformation T : ℝ → ℝ such that T(x) = x2, for all x ∈ ℝ? 
Solution: No, as T(ax) = (ax)2 = a2x2 = a2T(x)≠aT(x), unless a = 0,1.
     
	
   3. 
	Does there exist a linear transformation T : ℝ → ℝ such that T(x) = , for all x ∈ ℝ?
     
Solution: No, as T(ax) =  = ≠a = aT(x), unless a = 0,1.
     
	
   4. 
	Does there exist a linear transformation T : ℝ → ℝ such that T(x) = sin(x), for all x ∈ ℝ?
     
Solution: No, as T(ax)≠aT(x).
     
	
   5. 
	Does there exist a linear transformation T : ℝ → ℝ such that T(5) = 10 and T(10) = 5?
     
Solution: No, as T(10) = T(5 + 5) = T(5) + t(5) = 10 + 10 = 20≠5.
     
	
   6. 
	Does there exist a linear transformation T : ℝ → ℝ such that T(5) = π and T(e) = π? 
Solution: No, as 5T(1) = T(5) = π implies that T(1) = . So, T(e) = eT(1) = .
     
	
   7. 
	Does there exist a linear transformation T : ℝ2 → ℝ2 such that T((x,y)T ) = (x + y,2)T ?
     
Solution: No, as T(0)≠0.
     
	
   8. 
	Does there exist a linear transformation T : ℝ2 → ℝ2 such that T((x,y)T ) = (x+y,xy)T ?
     
Solution: No, as T((2,2)T ) = (4,4)T ≠2(2,1)T  = 2T((1,1)T ).
     
	
   9. 
	Define a map T : ℂ → ℂ by T(z) = z, the complex conjugate of z. Is T a linear operator
     over the real vector space ℂ? 
Solution: Yes, as for any α ∈ ℝ, T(αz) = αz = αz = αT(z).


   

   The next result states that a linear transformation is known if we know its image on a basis of the
domain space.
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Lemma 4.1.7.   Let V and W be two vector spaces over F and let T ∈ (V, W). Then T is
known, if the image of T on basis vectors of V are known. In particular, if V is finite dimensional
and  = (v1,…,vn) is an ordered basis of V over F then, T(v) = [v].
   


Proof. Let  be a basis of V over F. Then, for each v ∈ V, there exist vectors u1,…,uk in  and scalars
c1,…,ck ∈ F such that v = ∑
  i=1kciui. Thus, by definition T(v) = ∑
  i=1kciT(ui). Or equivalently,
whenever
   	
   
	(4.1.1)




Thus, the image of T on v just depends on where the basis vectors are mapped. In particular, if
[v] =  then, T(v) = [v]. Hence, the required result follows.        _

   As another application of Lemma 4.1.7, we have the following result. The proof is left for the
reader.
   



Corollary 4.1.8.   Let V  and W  be vector spaces over F  and let T  :  V  → W  be a linear
transformation. If  is a basis of V then, Rng(T) = LS(T(x)|x ∈).
   


   Recall that by Example 4.1.3.6, for each a ∈ Fn, the map T(x) = aT x, for each x ∈ Fn, is a linear
transformation. We now show that these are the only ones.
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Corollary 4.1.9.  [Reisz Representation Theorem]  Let T  ∈ (ℝn, ℝ). Then, there exists
a ∈ ℝn such that T(x) = aT x.
   


Proof. By Lemma 4.1.7, T is known if we know the image of T on {e1,…,en}, the standard basis of
ℝn. As T is given, for 1 ≤ i ≤ n, T(ei) = ai, for some ai ∈ ℝ. So, consider the vector a = [a1,…,an]T .
Then, for x = [x1,…,xn]T  ∈ ℝn, we see that
   


Thus, the required result follows.                                                                                _
   Before proceeding further, we define two spaces related with a linear transformation.
   



Definition 4.1.10.  [Range and Kernel of a Linear Transformation]    Let V and W be vector
spaces over F and let T : V → W be a linear transformation. Then,
     
	
   1. 
	the set {T(v)|v ∈ V} is called the range space  of T, denoted Rng(T).
     
	
   2. 
	the set {v ∈ V|T(v) = 0} is called the kernel  of T, denoted Ker(T). In certain books,
     it is also called the null space of T.


   

   


Example 4.1.11.   Determine Rng(T) and Ker(T) of the following linear transformations.
     
	
   1. 
	 T ∈(ℝ3, ℝ4), where T((x,y,z)T ) = (x - y + z,y - z,x,2x - 5y + 5z)T . 
Solution: Consider the standard basis {e1,e2,e3} of ℝ3. Then 
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and 
     
     
     

     
	
   2. 
	 Let B ∈ M2(ℝ). Now, define a map T : M2(ℝ) → M2(ℝ) by T(A) = BA - AB, for all
     A ∈ M2(ℝ). Determine Rng(T) and Ker(T). 
Solution: Note that A ∈ Ker(T) if and only if A commutes with B. In particular,
     {I,B,B2,…}⊆ Ker(T). For example, if B is a scalar matrix then, Ker(T) = M2(ℝ).
     For computing, Rng(T), recall that {ij|1 ≤ i,j ≤ 2} is a basis of M2(ℝ). So, for example,
          
	
      (a) 
	for B = cI2, verify that Rng(T) = {0}.
          
	
      (b) 
	for B = , verify that
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      (c) 
	for B = , verify that
          
          


     


   

   


Exercise 4.1.12.  
     
	
  1. 
	 Let V and W be two vector spaces over F. If {v1,…,vn} is a basis of V and w1,…,wn ∈ W
     then prove that there exists a unique T ∈(V, W) such that T(vi) = wi, for i = 1,…,n.
     
	
  2. 
	 Let V and W be two vector spaces over F and let T ∈(V, W). Then
          	
      (a) 
	 Rng(T) is a subspace of W.
          
	
      (b) 
	 Ker(T) is a subspace of V.


     Furthermore, if V is finite dimensional then
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(a) 
	 dim(Ker(T)) ≤ dim(V).
          
	
      (b) 
	dim(Rng(T)) is finite and whenever dim(W) is finite dim(Rng(T)) ≤ dim(W).


     
	
  3. 
	 Describe Ker(D) and Rng(D), where D ∈(ℝ[x;n]) and is defined by D(f(x)) = f′(x). Note
     that Rng(D) ⊆ ℝ[x;n - 1].
     
	
  4. 
	Define T ∈(ℝ[x]) by T(f(x)) = xf(x), for all f(x) ∈(ℝ[x]). What can you say about Ker(T)
     and Rng(T)?
     
	
  5. 
	Determine the dimension of Ker(T) and Rng(T), for the linear transformation T, given in
     Example 4.1.11.2. What can you say if B is skew-symmetric?_________________________
       
	
   6. 
	 Define T ∈(ℝ3) by T(e1) = e1 + e3, T(e2) = e2 + e3 and T(e3) = -e3.
             	
        (a) 
	 Then, determine T((x,y,z)T ), for x,y,z ∈ ℝ.
             
	
        (b) 
	 Then, determine Null(T) and Rng(T).
             
	
        (c) 
	Then, is it true that T2 =  Id?


       
	
   7. 
	 Find T ∈(ℝ3) for which Rng(T) = LS(1,2,0)T ,(0,1,1)T ,(1,3,1)T .


    

    


Example 4.1.13.   In each of the examples given below, state whether a linear transformation exists
or not. If yes, give at least one linear transformation. If not, then give the condition due to which a
linear transformation doesn’t exist.
        
	
    1. 
	T : ℝ2 → ℝ2 such that T((1,1)T ) = (1,2)T  and T((1,-1)T ) = (5,10)T ? 
Solution: Yes, as the set {(1,1),(1,-1)} is a basis of ℝ2, the matrix  is invertible.
        Also, T = T = a + b = . So,
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   2. 
	T : ℝ2 → ℝ2 such that T((1,1)T ) = (1,2)T  and T((5,5)T ) = (5,10)T ? 
Solution: Yes, as (5,10)T  = T((5,5)T ) = 5T((1,1)T ) = 5(1,2)T  = (5,10)T .
     To construct one such linear transformation, let {(1,1)T ,u} be a basis of ℝ2 and define
     T(u) = v = (v1,v2)T , for some v ∈ ℝ2. For example, if u = (1,0)T  then
     

     
     
	
   3. 
	T : ℝ2 → ℝ2 such that T((1,1)T ) = (1,2)T  and T((5,5)T ) = (5,11)T ? 
Solution: No, as (5,11)T  = T((5,5)T ) = 5T((1,1)T )5(1,2)T  = (5,10)T , a contradiction.
     
	
   4. 
	T : ℝ2 → ℝ2 such that Rng(T) = {T(x)|x ∈ ℝ2} = LS{(1,π)T }? 
Solution: Yes. Define T(e1) = (1,π)T  and T(e2) = 0 or T(e1) = (1,π)T  and T(e2) = a(1,π)T ,
     for some a ∈ ℝ.
     
	
   5. 
	T : ℝ2 → ℝ2 such that Rng(T) = {T(x)|x ∈ ℝ2} = ℝ2? 
Solution: Yes. Define T(e1) = (1,π)T  and T(e2) = (π,e)T . Or, let {u,v} be a basis of ℝ2 and
     define T(e1) = u and T(e2) = v.
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6. 
	T : ℝ2 → ℝ2 such that Rng(T) = {T(x)|x ∈ ℝ2} = {0}? 
Solution: Yes. Define T(e1) = 0 and T(e2) = 0.
     
	
   7. 
	T : ℝ2 → ℝ2 such that Ker(T) = {x ∈ ℝ2|T(x) = 0} = LS{(1,π)T }? 
Solution: Yes. Let a basis of ℝ2 = {(1,π)T ,(1,0)T } and define T((1,π)T ) = 0 and
     T((1,0)T ) = u≠0.


   

   


Exercise 4.1.14.  
     
	
  1. 
	 Which result gives the statement “Prove that a map T : ℝ → ℝ is a linear transformation
     if and only if there exists a unique c ∈ ℝ such that T(x) = cx, for every x ∈ ℝ”?
     
	
  2. 
	 Use matrices to give examples of linear operators T,S : ℝ3 → ℝ3 that satisfy:
          	
      (a) 
	 T≠0,T ∘ T = T2≠0,T ∘ T ∘ T = T3 = 0.
          
	
      (b) 
	 T≠0,S≠0,S ∘ T = ST≠0,T ∘ S = TS = 0.
          
	
      (c) 
	 S ∘ S = S2 = T2 = T ∘ T,S≠T.
          
	
      (d) 
	 T ∘ T = T2 =  Id,T≠ Id.


     From now on, we will just write
     

	
  3. 
	 Let T : ℝn → ℝn be a linear operator with T≠0 and T2 = 0. Prove that there exists a vector
     x ∈ ℝn such that the set {x,T(x)} is linearly independent.
     
	
  4. 
	 Fix a positive integer p and let T : ℝn → ℝn be a linear operator with Tk≠0 for 1 ≤ k ≤ p and
     Tp+1 = 0. Then prove that there exists a vector x ∈ ℝn such that the set {x,T(x),…,Tp(x)} is
     linearly independent.
     
	
  5. 
	 Let T : ℝn → ℝm be a linear transformation with T(x0) = y0, for some x0 ∈ ℝn and y0 ∈ ℝm.
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     Define T-1(y0) = {x ∈ ℝn : T(x) = y0}. Then prove that for every x ∈ T-1(y0) there exists
     z ∈ T-1(0) such that x = x0 + z. Also, prove that T-1(y0) is a subspace of ℝn if and only if
     0 = y0.__________________________________________________________________________
       
	
   6. 
	 Prove that there exists infinitely many linear transformations T : ℝ3 → ℝ2 such that
       T((1,-1,1)T ) = (1,2)T  and T((-1,1,2)T ) = (1,0)T ?
       
	
   7. 
	 Let V be a vector space and let a ∈ V. Then the map Ta : V → V defined by Ta(x) = x + a,
       for all x ∈ V is called the translation map. Prove that Ta ∈(V) if and only if
       a = 0.
       
	
   8. 
	 Are the maps T : V → W given below, linear transformations? In case, T is a linear
       transformation, determine Rng(T) and Ker(T).
             	
        (a) 
	 Let V = ℝ2 and W = ℝ3 with T((x,y)T ) = (x + y + 1,2x - y,x + 3y)T .
             
	
        (b) 
	 Let V = W = ℝ2 with T((x,y)T ) = (x - y,x2 - y2)T .
             
	
        (c) 
	 Let V = W = ℝ2 with T((x,y)T ) = (x - y,|x|)T .
             
	
        (d) 
	 Let V = ℝ2 and W = ℝ4 with T((x,y)T ) = (x + y,x - y,2x + y,3x - 4y)T .
             
	
        (e) 
	 Let V = W = ℝ4 with T((x,y,z,w)T ) = (z,x,w,y)T .


       
	
   9. 
	 Which of the following maps T : M2(ℝ) → M2(ℝ) are linear operators? In case, T is a linear
       operator, determine Rng(T) and Ker(T).
             	
        (a) 
	 T(A) = AT .
             
	
        (b) 
	T(A) = I + A.
             
	
        (c) 
	T(A) = A2.
             
	
        (d) 
	 T(A) = BAB-1, for some fixed B ∈ M2(ℝ).


       
	
  10. 
	 Does there exist a linear transformation T : ℝ3 → ℝ2 such that
             	
        (a) 
	 T((1,0,1)T ) = (1,2)T , T((0,1,1)T ) = (1,0)T  and T((1,1,1)T ) = (2,3)T ?
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(b) 
	 T((1,0,1)T ) = (1,2)T , T((0,1,1)T ) = (1,0)T  and T((1,1,2)T ) = (2,3)T ?


     
	
 11. 
	 Let T : ℝ3 → ℝ3 be defined by T((x,y,z)T ) = (2x + 3y + 4z,x + y + z,x + y + 3z)T . Find the
     value of k for which there exists a vector x ∈ ℝ3 such that T(x) = (9,3,k)T .
     
	
 12. 
	 Let T : ℝ3 → ℝ3 be defined by T((x,y,z)T ) = (2x- 2y + 2z,-2x + 5y + 2z,8x + y + 4z)T . Find
     x ∈ ℝ3 such that T(x) = (1,1,-1)T .
     
	
 13. 
	 Let T : ℝ3 → ℝ3 be defined by T((x,y,z)T ) = (2x + y + 3z,4x - y + 3z,3x - 2y + 5z)T .
     Determine x,y,z ∈ ℝ3 \{0} such that T(x) = 6x, T(y) = 2y and T(z) = -2z. Is the set
     {x,y,z} linearly independent?
     
	
 14. 
	 Let T : ℝ3 → ℝ3 be defined by T((x,y,z)T ) = (2x + 3y + 4z,-y,-3y + 4z)T . Determine
     x,y,z ∈ ℝ3 \{0} such that T(x) = 2x, T(y) = 4y and T(z) = -z. Is the set {x,y,z} linearly
     independent?
     
	
 15. 
	 Let n ∈ ℕ. Does there exist a linear transformation T : ℝ3 → ℝn such that T((1,1,-2)T ) = x,
     T((-1,2,3)T ) = y and T((1,10,1)T ) = z
          	
      (a) 
	with z = x + y?
          
	
      (b) 
	with z = cx + dy, for some c,d ∈ ℝ?


     
	
 16. 
	 For each matrix A given below, define T ∈(ℝ2) by T(x) = Ax. What do these linear operators
     signify geometrically?
          	
      (a) 
	A                                                                                          ∈
          .
          
	
      (b) 
	A ∈.
          
	
      (c) 
	A ∈.


     
	
 17. 
	 Find all functions f : ℝ2 → ℝ2 that fixes the line y = x and sends (x1,y1) for x1≠y1 to its
     mirror image along the line y = x. Or equivalently, f satisfies
          	
      (a) 
	f(x,x) = (x,x) and
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(b) 
	f(x,y) = (y,x) for all (x,y) ∈ ℝ2.


     
	
 18. 
	 Consider the space ℂ3 over ℂ. If f ∈(ℂ3) with f(x) = x,f(y) = (1 + i)y and
     f(z) = (2 + 3i)z, for x,y,z ∈ ℂ3 \{0} then prove that {x,y,z} form a basis of ℂ3.


   


   
4.2    Rank-Nullity Theorem

The readers are advised to see Exercise 3.3.13.9 and Theorem 3.5.9 for clarity and similarity with the
results in this section. We start with the following result.
   



Theorem 4.2.1.   Let V and W be two vector spaces over F and let T ∈(V, W).
     
	
  1. 
	If S ⊆ V is linearly dependent then T(S) = {T(v)|v ∈ V} is linearly dependent.
     
	
  2. 
	Suppose S ⊆ V such that T(S) is linearly independent then S is linearly independent.


   

Proof. As S is linearly dependent, there exist k ∈ ℕ and vi ∈ S, for 1 ≤ i ≤ k, such that the system
∑
  i=1kxivi = 0, in the variable xi’s, has a non-trivial solution, say xi = ai ∈ F,1 ≤ i ≤ k.
Thus, ∑
  i=1kaivi = 0. Now, consider the system ∑
  i=1kyiT(vi) = 0, in the variable yi’s.
Then,
   


Thus, ai’s give a non-trivial solution of ∑
  i=1kyiT(vi) = 0 and hence the required result
follows.
   The second part is left as an exercise for the reader.                                                  _
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Definition 4.2.2.  [Rank  and  Nullity]     Let  V  and  W  be  two  vector  spaces  over  F.  If
T   ∈ (V, W)  and  dim(V)  is  finite  then  we  define  Rank(T)   =   dim(Rng(T))  and
Nullity(T) = dim(Ker(T)).
   


   We now prove the rank-nullity Theorem. The proof of this result is similar to the proof of
Theorem 3.5.9. We give it again for the sake of completeness.
   



Theorem 4.2.3 (Rank-Nullity Theorem).   Let V and W be two vector spaces over F. If dim(V)
is finite and T ∈(V, W) then,
   


   

Proof. By Exercise 4.1.12.2.2a, dim(Ker(T)) ≤ dim(V). Let  be a basis of Ker(T). We
extend it to form a basis  of V. As, T(v) = 0, for all v ∈, using Corollary 4.1.8, we
get
   

 We
claim that {T(v)|v ∈\$ is linearly independent subset of W.
   Let, if possible, the claim be false. Then, there exists v1,…,vk ∈\ and a = [a1,…,ak]T  such
that a≠0 and ∑
  i=1kaiT(vi) = 0. Thus, we see that
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That is, ∑
  i=1kaivi ∈ Ker(T). Hence, there exists b1,…,bℓ ∈ F and u1,…,uℓ ∈ such that
∑
  i=1kaivi = ∑
  j=1kbjuj. Or equivalently, the system ∑
  i=1kxivi + ∑
  j=1kyjuj = 0, in the variables
xi’s and yj’s, has a non-trivial solution [a1,…,ak,-b1,…,-bℓ]T  (non-trivial as a≠0). Hence,
S = {v1,…,vk,u1,…,uℓ} is linearly dependent subset in V. A contradiction to S ⊆. That
is,
   

Thus, we have proved the required result.                                                                    _
   As an immediate corollary, we have the following result. The proof is left for the reader.
   



Corollary 4.2.4.   Let V and W be vector spaces over F and let T ∈(V, W). If dim(V) = dim(W)
then, the following statements are equivalent.
     
	
  1. 
	T is one-one.
     
	
  2. 
	Ker(T) = {0}.
     
	
  3. 
	T is onto.
     
	
  4. 
	dim(Rng(T)) = dim(V).
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Corollary 4.2.5.   Let V be a vector space over F with dim(V) = n. If S,T ∈(V). Then
     
	
  1. 
	 Nullity(T) + Nullity(S) ≥ Nullity(ST) ≥ max{Nullity(T),Nullity(S)}.
     
	
  2. 
	 min{Rank(S),Rank(T)}≥Rank(ST) ≥ n -Rank(S) -Rank(T).


   

Proof. The prove of Part 2 is omitted as it directly follows from Part 1 and Theorem 4.2.3.

Part 1: We first prove the second inequality. Suppose v ∈ Ker(T). Then
   


implies Ker(T) ⊆ Ker(ST). Thus, Nullity(T) ≤ Nullity(ST).
   By Theorem 4.2.3, Nullity(S) ≤ Nullity(ST) is equivalent to Rng(ST) ⊆ Rng(S). And this
holds as Rng(T) ⊆ V implies Rng(ST) = S(Rng(T)) ⊆ S(V) = Rng(S).

   To prove the first inequality, let {v1,…,vk} be a basis of Ker(T). Then {v1,…,vk}⊆ Ker(ST).
So, let us extend it to get a basis {v1,…,vk,u1,…,uℓ} of Ker(ST).

   Claim: {T(u1),T(u2),…,T(uℓ)} is a linearly independent subset of Ker(S).

   Clearly, {T(u1),…,T(uℓ)}⊆ Ker(S). Now, consider the system c1T(u1) +  + cℓT(uℓ) = 0 in the
variables c1,…,cℓ. As T ∈(V), we get T = 0. Thus, ∑
  i=1ℓciui ∈ Ker(T). Hence,
∑
  i=1ℓciui is a unique linear combination of v1,…,vk, a basis of Ker(T). Therefore,
   	
   
	(4.2.1)




for some scalars α1,…,αk. But by assumption, {v1,…,vk,u1,…,uℓ} is a basis of Ker(ST) and hence
linearly independent. Therefore, the only solution of Equation (4.2.1) is given by ci = 0, for 1 ≤ i ≤ ℓ
and αj = 0, for 1 ≤ j ≤ k. Thus, we have proved the claim. Hence, Nullity(S) ≥ ℓ and
Nullity(ST) = k + ℓ ≤ Nullity(T) + Nullity(S).                                                     _
   



Exercise 4.2.6.  
     
	
  1. 
	 Let A ∈ Mn(ℝ) with A2 = A. Define T ∈(ℝn, ℝn) by T(v) = Av, for all v ∈ ℝn.
          	
      (a) 
	  Then,  prove  that  T2  =  T.  Equivalently,  T(Id - T)  =  0.  That  is,  prove  that
          (T(Id - T))(x) = 0, for all x ∈ ℝn.
          
	
      (b) 
	 Then, prove that Null(T) ∩ Rng(T) = {0}.
          
	
      (c) 
	 Then, prove that ℝn = Rng(T) + Null(T).


____________________________________ 
	
   2. 
	 Define T ∈(ℝ3, ℝ2) by T = . Find a basis and the dimension of Rng(T)
        and Ker(T).
       
	
   3. 
	 Let zi ∈ ℂ, for 1 ≤ i ≤ k. Define T ∈(ℂ[x;n], ℂk) by TP(z) = P(z1),…,P(zk). If zi’s are
       distinct then for each k ≥ 1, determine Rank(T).


    


    
4.2.1    Algebra of Linear Transformations

We start with the following definition.
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Definition 4.2.7.  [Sum and Scalar Multiplication of Linear Transformations]   Let V, W be vector
spaces over F and let S,T ∈(V, W). Then, we define the point-wise
     
	
   1. 
	 sum of S and T, denoted S + T, by (S + T)(v) = S(v) + T(v), for all v ∈ V.
     
	
   2. 
	 scalar multiplication, denoted cT for c ∈ F, by (cT)(v) = c, for all v ∈ V.


   

   


Theorem 4.2.8.   Let V and W be vector spaces over F. Then (V, W) is a vector space over
F. Furthermore, if dim V = n and dim W = m, then dim(V, W) = mn.
   


Proof. It can be easily verified that for S,T ∈(V, W), if we define (S + αT)(v) = S(v) + αT(v)
(point-wise addition and scalar multiplication) then (V, W) is indeed a vector space over F. We now
prove the other part. So, let us assume that  = {v1,…,vn} and  = {w1,…,wm} are bases of V and
W, respectively. For 1 ≤ i ≤ n,1 ≤ j ≤ m, we define the functions fij on the basis vectors of V
by
   


For other vectors of V, we extend the definition by linearity. That is, if v = ∑
  s=1nαsvs
then,
   	
   
	(4.2.2)



Thus, fij ∈(V, W).

   Claim: {fij|1 ≤ i ≤ n,1 ≤ j ≤ m} is a basis of (V, W).

   So, consider the linear system ∑
  i=1n ∑
  j=1mcijfij = 0, in the variables cij’s, for 1 ≤ i ≤ n,1 ≤ j ≤ m.
Using the point-wise addition and scalar multiplication, we get
   

 But,
the set {w1,…,wm} is linearly independent and hence the only solution equals ckj = 0, for 1 ≤ j ≤ m.
Now, as we vary vk from v1 to vn, we see that cij = 0, for 1 ≤ j ≤ m and 1 ≤ i ≤ n. Thus, we have
proved the linear independence.
   Now, let us prove that LS = (V, W). So, let f ∈(V, W). Then, for
1 ≤ s ≤ n, f(vs) ∈ W and hence there exists βst’s such that f(vs) = ∑
  t=1mβstwt. So, if
v = ∑
  s=1nαsvs ∈ V then, using Equation (4.2.2), we get 

   


Since the above is true for every v ∈ V, LS = (V, W) and thus the
required result follows.                                                                                             _
   Before proceeding further, recall the following definition about a function.
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Definition 4.2.9.  [Inverse of a Function]    Let f : S → T be any function.
     
	
   1. 
	Then, a function g : T → S is called a left inverse of f if (g ∘ f)(x) = x, for all x ∈ S.
     That is, g ∘ f = Id, the identity function on S.
     
	
   2. 
	Then, a function h : T → S is called a right inverse of f if (f ∘ h)(y) = y, for all y ∈ T.
     That is, f ∘ h = Id, the identity function on T.
     
	
   3. 
	Then f is said to be invertible if it has a right inverse and a left inverse.


   

   


Remark 4.2.10.   Let f : S → T be invertible. Then, it can be easily shown that any right
inverse and any left inverse are the same. Thus, the inverse function is unique and is denoted
by f-1. It is well known that f is invertible if and only if f is both one-one and onto.
   


   


Lemma 4.2.11.    Let V and W be vector spaces over F and let T ∈(V, W). If T is one-one
and onto then, the map T-1 : W → V is also a linear transformation. The map T-1  is called
the inverse linear transform of T and is defined by T-1(w) = v, whenever T(v) = w.
   


Proof. Part 1: As T is one-one and onto, by Theorem 4.2.3, dim(V) = dim(W). So, by
Corollary 4.2.4, for each w ∈ W there exists a unique v ∈ V such that T(v) = w. Thus, one defines
T-1(w) = v.

   We need to show that T-1(α1w1 + α2w2) = α1T-1(w1) + α2T-1(w2), for all α1,α2 ∈ F and
w1,w2 ∈ W. Note that by previous paragraph, there exist unique vectors v1,v2 ∈ V such
that T-1(w1) = v1 and T-1(w2) = v2. Or equivalently, T(v1) = w1 and T(v2) = w2. So,
T(α1v1 + α2v2) = α1w1 + α2w2, for all α1,α2 ∈ F. Hence, for all α1,α2 ∈ F, we get
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Thus, the required result follows.                                                                                _
   


Example 4.2.12.  
     
	
   1. 
	 Let T : ℝ2 → ℝ2 be given by (x,y) ⇝ (x + y,x - y). Then, verify that T-1 is given by
     ⇝.
     
	
   2. 
	 Let T ∈(ℝn, ℝ[x;n - 1]) be given by (a1,…,an) ⇝∑
  i=1naixi-1, for (a1,…,an) ∈ ℝn.
     Then, T-1 maps ∑
  i=1naixi-1 ⇝ (a1,…,an), for each polynomial ∑
  i=1naixi-1 ∈ ℝ[x;n-
     1]. Verify that T-1 ∈(ℝ[x;n - 1], ℝn).


   

   


Definition 4.2.13.  [Singular, Non-singular Transformations]   Let V and W be vector spaces
over F and let T ∈(V, W). Then, T is said to be singular if 0 ⊊ Ker(T). That is, Ker(T)
contains a non-zero vector. If Ker(T) = {0} then, T is called non-singular.
   


   


Example 4.2.14.   Let T ∈(ℝ2, ℝ3) be defined by T = . Then, verify that T is
non-singular. Is T invertible?
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We now prove a result that relates non-singularity with linear independence.
   



Theorem 4.2.15.   Let V and W be vector spaces over F and let T ∈(V, W). Then the following
statements are equivalent.
     
	
  1. 
	 T is one-one.
     
	
  2. 
	 T is non-singular.
     
	
  3. 
	 Whenever S ⊆ V is linearly independent then T(S) is necessarily linearly independent.


   

Proof. 1⇒2     Let T be singular. Then, there exists v≠0 such that T(v) = 0 = T(0). This implies that
T is not one-one, a contradiction.

   2⇒3     Let S ⊆ V be linearly independent. Let if possible T(S) be linearly dependent. Then, there
exists v1,…,vk ∈ S and α = (α1,…,αk)T ≠0 such that ∑
  i=1kαiT(vi) = 0. Thus, T = 0. But
T is nonsingular and hence we get ∑
  i=1kαivi = 0 with α≠0, a contradiction to S being a linearly
independent set.

   3⇒1     Suppose that T is not one-one. Then, there exists x,y ∈ V such that x≠y but
T(x) = T(y). Thus, we have obtained S = {x - y}, a linearly independent subset of V with
T(S) = {0}, a linearly dependent set. A contradiction to our assumption. Thus, the required result
follows.                                                                                                                 _
   



Definition 4.2.16.  [Isomorphism of Vector Spaces]   Let V and W be two vector spaces over
F and let T ∈(V, W). Then, T is said to be an isomorphism if T is one-one and onto. The
vector spaces V and W are said to be isomorphic, denoted VW, if there is an isomorphism
from V to W.
   


   We now give a formal proof of the statement in Remark 3.6.9.
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Theorem 4.2.17.   Let V be an n-dimensional vector space over F. Then VFn.
   


Proof. Let {v1,…,vn} be a basis of V and {e1,…,en}, the standard basis of Fn. Now define T(vi) = ei,
for 1 ≤ i ≤ n and T = ∑
  i=1nαiei, for α1,…,αn ∈ F. Then, it is easy to observe that
T ∈(V, Fn), T is one-one and onto. Hence, T is an isomorphism.                                    _

   As a direct application using the countability argument, one obtains the following result
   



Corollary 4.2.18.   The vector space ℝ over ℚ is not finite dimensional. Similarly, the vector
space ℂ over ℚ is not finite dimensional.
   


   We now summarize the different definitions related with a linear operator on a finite dimensional
vector space. The proof basically uses the rank-nullity theorem and they appear in some form in
previous results. Hence, we leave the proof for the reader.
   



Theorem 4.2.19.   Let V be a vector space over F with dim V = n. Then the following statements are
equivalent for T ∈(V).
     
	
  1. 
	 T is one-one.
     
	
  2. 
	 Ker(T) = {0}.
     
	
  3. 
	 Rank(T) = n.
     
	
  4. 
	 T is onto.
     
	
  5. 
	 T is an isomorphism.
     
	
  6. 
	 If {v1,…,vn} is a basis for V then so is {T(v1),…,T(vn)}.
     
	
  7. 
	 T is non-singular.
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8. 
	 T is invertible.


   

   


Exercise 4.2.20.   Let V and W be two vector spaces over F and let T ∈(V, W). If dim(V) is finite
then prove that
     
	
  1. 
	 T cannot be onto if dim(V) < dim(W).
     
	
  2. 
	 T cannot be one-one if dim(V) > dim(W).


   


   
4.3    Matrix of a linear transformation

In Example 4.1.3.8, we saw that for each A ∈ Mm×n(ℂ) there exists a linear transformation
T ∈(ℂn, ℂm) given by T(x) = Ax, for each x ∈ ℂn. In this section, we prove that if V and W are
vector spaces over F with dimensions n and m, respectively, then any T ∈(V, W) corresponds to a
set of m×n matrices. Before proceeding further, the readers should recall the results on ordered basis
(see Section 3.6).

   So, let  =  and  =  be ordered bases of V and W, respectively.
Also, let A = [v1,…,vn] and B = [w1,…,wm] be the basis matrix of  and , respectively.
Then, using Equation (3.6.1), v = A[v] and w = B[w], for all v ∈ V and w ∈ W. Thus,
using the above discussion and Equation (4.1.1), we see that for T ∈(V, W) and v ∈ V,
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   Therefore, [T(v)] = [v] as a vector in W has a unique expansion in
terms of basis elements. Note that the matrix , denoted T[,], is an m×n
matrix and is unique with respect to the ordered basis  as the i-th column equals [T(vi)], for
1 ≤ i ≤ n. So, we immediately have the following definition and result.
   



Definition 4.3.1.  [Matrix of a Linear Transformation]     Let  =  (v1,…,vn) and  =
(w1,…,wm) be ordered bases of V and W, respectively. If T ∈(V, W) then the matrix T[,]
is called the coordinate matrix of T or the matrix of the linear transformation T with
respect to the basis  and , respectively. When there is no mention of bases, we take it to be
the standard ordered bases and denote the corresponding matrix by [T].

   Note that if c is the coordinate vector of an element v ∈ V then, T[,]c is the coordinate
vector of T(v). That is, the matrix T[,] takes coordinate vector of the domain points to the
coordinate vector of its images.
   


   


Theorem 4.3.2.   Let  = (v1,…,vn) and  = (w1,…,wm) be ordered bases of V  and W,
respectively. If T ∈(V, W) then there exists a matrix S ∈ Mm×n(F) with
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Remark 4.3.3.  Let V  and W  be vector spaces over F  with ordered bases 1  =  (v1,…,vn)
and 1  = (w1,…,wm), respectively. Also, for α ∈ F  with α≠0, let 2  = (αv1,…,αvn) and
1 = (αw1,…,αwm) be another set of ordered bases of V and W, respectively. Then, for any
T ∈(V, W)
   

 Thus, we see that the same matrix can be the matrix representation of T for two different pairs
of bases.
   

   We now give a few examples to understand the above discussion and Theorem 4.3.2.
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Figure 4.1: Counter-clockwise Rotation by an angle θ
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Example 4.3.4.  
     
	
   1. 
	 Let T ∈(ℝ2) represent a counterclockwise rotation by an angle θ,0 ≤ θ < 2π. Then,
     using Figure 4.1, x = OP cosα and y = OP sinα, verify that
     
     
     Or equivalently, the matrix in the standard ordered basis of ℝ2 equals
     	
     
     	(4.3.1)


     
     

	
   2. 
	 Let T ∈(ℝ2) with T((x,y)T ) = (x + y,x - y)T .
          	
      (a) 
	Then [T] =  = .
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      (b) 
	On the image space take the ordered basis  = . Then 
[T] =  =  = .
          
	
      (c) 
	In the above, let the ordered basis of the domain space be  = . Then
          T[,] =  =  = .


     
	
   3. 
	 Let  = (e1,e2) and  = (e1 + e2,e1 -e2) be two ordered bases of ℝ2. Then Compute T[,]
     and T[,], where T((x,y)T ) = (x + y,x - 2y)T . 
Solution: Let A = Id2 and B = . Then, A-1 = Id2 and B-1 = .
     So,
     	T[,]	 =  =  =  and		
       
	T[,]	 =  =  = 		


     as  = B-1 and  = B-1. Also, verify that T[,] = B-1T[,]B.
     

	
   4. 
	 Let T ∈(ℝ3, ℝ2) be defined by T((x,y,z)T ) = (x + y - z,x + z)T . Determine [T].
     
By definition
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   5. 
	 Define T ∈(ℂ3) by T(x) = x, for all x ∈ ℂ3. Determine the coordinate matrix with
     respect to the ordered basis  = e1,e2,e3 and  = (1,0,0),(1,1,0),(1,1,1).
     
By definition, verify that
     
     
     and
     
     
     Thus, verify that T[,]-1 = T[,] and T[,] = T[,] = I3 as the given map is indeed the
     identity map.
     
	
   6. 
	 Fix S ∈ Mn(ℂ) and define T ∈(ℂn) by T(x) = Sx, for all x ∈ ℂn. If  is the standard basis
     of ℂn then [T] = S as
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   7. 
	 Fix S ∈ Mm,n(ℂ) and define T ∈(ℂn, ℂm) by T(x) = Sx, for all x ∈ ℂn. Let 
     and  be the standard ordered bases of ℂn and ℂm, respectively. Then T[,] = S
     as
     
     
     
	
   8. 
	 Fix S ∈ Mn(ℂ) and define T ∈(ℂn) by T(x) = Sx, for all x ∈ ℂn. Let  =  and
      =  be two ordered basses of ℂn with respective basis matrices A and B. Then
     
     
     
     
In particular, if
          	
      (a) 
	  =  then T[,] = A-1SA. Thus, if S = In so that T = Id then Id[,] = In.
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(b) 
	 S = In  so that T  = Id then Id[,] = B-1A, an invertible matrix. Similarly,
          Id[,] = A-1B. So, Id[,] ⋅Id[,] = (A-1B)(B-1A) = In.


     
	
   9. 
	Let T = (x + y,x-y)T  and  =  be the ordered basis of ℝ2. Then, using
     Example 4.3.4.8a we obtain
     
     


   

   


Example 4.3.5.  [Finding T from T[,]]
     
	
   1. 
	Let V and W be vector spaces over F with ordered bases  and , respectively. Suppose
     we are given the matrix S = T[,]. Then determine the corresponding T ∈(V, W).
     Solution: Let B be the basis matrix corresponding to the ordered basis . Then, using
     Equation (3.6.1) and Theorem 4.3.2, we see that
     

     
     
	
   2. 
	In particular, if V = W = Fn and  =  then we see that
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     	(4.3.2)


     
     



   

   


Exercise 4.3.6.  
     
	
  1. 
	 Let T ∈(ℝ2) represent the reflection about the line y = mx. Find [T].
     
	
  2. 
	 Let T ∈(ℝ3) represent the reflection about the X-axis. Find [T].
     
	
  3. 
	 Let T ∈(ℝ3) represent the counterclockwise rotation around the positive Z-axis by an
     angle θ,0 ≤ θ < 2π. Find its matrix with respect to the standard ordered basis of ℝ3.
     [Hint: Is  the required matrix?]
     
	
  4. 
	 Define a function D ∈(ℝ[x;n]) by D(f(x)) = f′(x). Find the matrix of D with respect
     to the standard ordered basis of ℝ[x;n]. Observe that Rng(D) ⊆ ℝ[x;n - 1].


   

   4.4    Similarity of Matrices

Let V be a vector space over F with dim(V) = n and ordered basis . Then any T ∈(V) corresponds
to a matrix in Mn(F). What happens if the ordered basis needs to change? We answer this in this
subsection.
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Figure 4.2: Composition of Linear Transformations
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Theorem 4.4.1 (Composition of Linear Transformations).      Let  V,  W   and  ℤ   be  finite
dimensional vector spaces over F  with ordered bases , and , respectively. Also, let T  ∈
(V, W) and S ∈(W, ℤ). Then S ∘ T = ST ∈(V, ℤ) (see Figure 4.2). Then
   


   

Proof. Let  = (u1,…,un), = (v1,…,vm) and  = (w1,…,wp) be the ordered bases of V, W and ℤ,
respectively. Then using Theorem 4.3.2, we have 

   


Hence, the proof of the theorem is complete.                                                                _
   As an immediate corollary of Theorem 4.4.1 we have the following result.
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Theorem 4.4.2 (Inverse of a Linear Transformation).   Let V is a vector space with dim(V) =
n. If T ∈(V) is invertible then for any ordered basis  and  of the domain and co-domain,
respectively, one has -1 = T-1[,]. That is, the inverse of the coordinate matrix of
T is the coordinate matrix of the inverse linear transform.
   


Proof. As T is invertible, TT-1 = Id. Thus, Example 4.3.4.8a and Theorem 4.4.1 imply
   


Hence, by definition of inverse, T-1[,] = -1 and the required result follows.        _
   


Exercise 4.4.3.   Find the matrix of the linear transformations given below.
     
	
  1. 
	 Let  = x1,x2,x3 be an ordered basis of ℝ3. Now, define T ∈(ℝ3) by T(x1) = x2,
     T(x2) = x3 and T(x3) = x1. Determine T[,]. Is T invertible?
     
	
  2. 
	 Let  = 1,x,x2,x3 be an ordered basis of ℝ[x;3] and define T ∈(ℝ[x;3]) by T(1) = 1,
     T(x) = 1 + x, T(x2) = (1 + x)2  and T(x3) = (1 + x)3. Prove that T is invertible. Also,
     find T[,] and T-1[,].


   

   Let V be a finite dimensional vector space. Then, the next result answers the question “what
happens to the matrix T[,] if the ordered basis  changes to ?”
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Figure 4.3: T[,] = Id[,] ⋅ T[,] ⋅ Id[,] - Similarity of Matrices
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Theorem 4.4.4.   Let  = (u1,…,un) and  = (v1,…,vn) be two ordered bases of V and Id the identity
operator. Then, for any linear operator T ∈(V)
   	
   
	(4.4.1)




   


Proof. As Id is an identity operator, T[,] as (Id ∘ T ∘ Id)[,] (see Figure 4.3 for clarity). Thus,
using Theorem 4.4.1, we get
   


Hence, using Theorem 4.4.2, the required result follows.                                                 _
   Let V be a vector space and let T ∈(V). If dim(V) = n then every ordered basis  of V gives an
n × n matrix T[,]. So, as we change the ordered basis, the coordinate matrix of T changes.
Theorem 4.4.4 tells us that all these matrices are related by an invertible matrix. Thus, we are led to
the following definitions.
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Definition 4.4.5.  [Change of Basis Matrix]   Let V be a vector space with ordered bases 
and . If T ∈(V) then, T[,] = Id[,] ⋅ T[,] ⋅ Id[,]. The matrix Id[,] is called the
change of basis matrix (also, see Theorem 3.6.7) from  to .
   


   


Definition 4.4.6.  [Similar Matrices]    Let X,Y  ∈ Mn(ℂ). Then, X and Y  are said to be
similar if there exists a non-singular matrix P such that P-1XP = Y ⇔ XP = PY .
   


   


Example 4.4.7.   Let  = 1 + x,1 + 2x + x2,2 + x and  = 1,1 + x,1 + x + x2 be ordered bases
of ℝ[x;2]. Then, verify that Id[,]-1 = Id[,], as 
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Exercise 4.4.8.  
     
	
  1. 
	 Let V be a vector space with dim(V) = n. Let T ∈(V) satisfy Tn-1≠0 but Tn = 0.
     Then, use Exercise 4.1.14.4 to get an ordered basis  = u,T(u),…,Tn-1(u) of V.
          	
      (a) 
	 Now, prove that T[,] = .
          
	
      (b) 
	 Let A ∈ Mn(ℂ) satisfy An-1≠0 but An = 0. Then, prove that A is similar to the
          matrix given in Part 1a.


     
	
  2. 
	 Let  be an ordered basis of a vector space V over F with dim(V) = n. Then prove that the set
     of all possible matrix representations of T is given by (also see Definition 4.4.5)
     
     
     
	
  3. 
	 Let B1(α,β) = {(x,y)T  ∈ ℝ2 : (x - α)2 + (y - β)2 ≤ 1}. Then, can we get a linear
     transformation T ∈(ℝ2) such that T(S) = W, where S and W are given below?
          	
      (a) 
	S = B1(0,0) and W = B1(1,1).
          
	
      (b) 
	S = B1(0,0) and W = B1(.3,0).
          
	
      (c) 
	S = B1(0,0) and W = hull(±e1,±e2), where hull means the convex hull.
          
	
      (d) 
	S = B1(0,0) and W = {(x,y)T  ∈ ℝ2 : x2 + y2∕4 = 1}.
          
	
      (e) 
	S = hull(±e1,±e2) and W is the interior of a pentagon.
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4. 
	 Let V, W be vector spaces over F with dim(V) = n and dim(W) = m and ordered bases  and ,
     respectively. Define , : (V, W) → Mm,n(F) by ,(T) = T[,]. Show that , is an
     isomorphism. Thus, when bases are fixed, the number of m × n matrices is same as the number
     of linear transformations.__________________________________________________________
       
	
   5. 
	 Define T ∈(ℝ3) by T((x,y,z)T ) = (x + y + 2z,x-y - 3z,2x + 3y + z)T . Let  be the standard
       ordered basis and  = (1,1,1),(1,-1,1),(1,1,2) be another ordered basis of ℝ3. Then
       find
             	
        (a) 
	 matrices T[,] and T[,].
             
	
        (b) 
	 the matrix P such that P-1T[,]P = T[,].


       


    

    4.5    Dual Space*

     


Definition 4.5.1.  [linear Functional]  Let V be a vector space over F. Then a map T ∈(V, F)
is called a linear functional on V.
     


     


Example 4.5.2.  
       
	
   1. 
	Let a ∈ ℂn be fixed. Then, T(x) = a*x is a linear function from ℂn to ℂ.
        
	
    2. 
	Define T(A) = tr(A), for all A ∈ Mn(ℝ). Then, T is a linear functional from Mn(ℝ) to
        ℝ.
        
	
    3. 
	Define T(f) = ∫
  abf(t)dt, for all f  ∈ ([a,b], ℝ). Then, T  is a linear functional from
        (([a,b], ℝ) to ℝ.
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4. 
	Define T(f) = ∫
 abt2f(t)dt, , for all f ∈([a,b], ℝ). Then, T is a linear functional from
     (([a,b], ℝ) to ℝ.
     
	
   5. 
	Define T : ℂ3 → ℂ by T((x,y,z)T ) = x. Is it a linear functional?
     
	
   6. 
	 Let  be a basis of a vector space V over F. For a fixed element u ∈, define
     
      Now, extend T linearly to all of V. Does, T give rise to a linear functional?


   

   


Definition 4.5.3.  [Dual Space]   Let V be a vector space over F. Then (V, F) is called the
dual space of V and is denoted by V*. The double dual space of V, denoted V**, is the dual
space of V*.
   


We first give an immediate corollary of Theorem 4.2.17.
   



Corollary 4.5.4.   Let V and W be vector spaces over F with dim V = n and dim W = m.
     
	
  1. 
	 Then (V, W)Fmn. Moreover, {fij|1 ≤ i ≤ n,1 ≤ j ≤ m} is a basis of (V, W).
     
	
  2. 
	 In particular, if W = F then (V, F) = V*Fn. Moreover, if {v1,…,vn} is a basis of V
     then the set {fi|1 ≤ i ≤ n} is a basis of V*, where fi(vk) =  The basis
     {fi|1 ≤ i ≤ n} is called the dual basis of Fn. 
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Exercise 4.5.5.   Let V be a vector space. Suppose there exists v ∈ V such that f(v) = 0, for
all f ∈ V*. Then prove that v = 0.
   


   So, we see that V* can be understood through a basis of V. Thus, one can understand V** again
via a basis of V*. But, the question arises “can we understand it directly via the vector space V
itself?” We answer this in affirmative by giving a canonical isomorphism from V to V**. To do so, for
each v ∈ V, we define a map Lv : V*→ F by Lv(f) = f(v), for each f ∈ V*. Then Lv is a linear
functional as
   

 So,
for each v ∈ V, we have obtained a linear functional Lv ∈ V**. Note that, if v≠w then, Lv≠Lw.
Indeed, if Lv = Lw then, Lv(f) = Lw(f), for all f ∈ V*. Thus, f(v) = f(w), for all f ∈ V*. That is,
f(v - w) = 0, for each f ∈ V*. Hence, using Exercise 4.5.5, we get v - w = 0, or equivalently,
v = w.
   We use the above argument to give the required canonical isomorphism.
   



Theorem 4.5.6.   Let V  be a vector space over F. If dim(V)  =  n then the canonical map
T : V → V** defined by T(v) = Lv is an isomorphism.
   


Proof. Note that for each f ∈ V*,
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Thus, Lαv+u = αLv + Lu. Hence, T(αv + u) = αT(v) + T(u). Thus, T is a linear transformation. For
verifying T is one-one, assume that T(v) = T(u), for some u,v ∈ V. Then, Lv = Lu. Now, use the
argument just before this theorem to get v = u. Therefore, T is one-one.
   Thus, T gives an inclusion (one-one) map from V to V**. Further, applying Corollary 4.5.4.2 to
V*, gives dim(V**) = dim(V*) = n. Hence, the required result follows.                               _

   We now give a few immediate consequences of Theorem 4.5.6.
   



Corollary 4.5.7.   Let V be a vector space of dimension n with basis  = {v1,…,vn}.
     
	
  1. 
	 Then, a basis of V**, the double dual of V, equals  = {Lv1,…,Lvn}. Thus, for each
     T ∈ V** there exists x ∈ V such that T(f) = f(x), for all f ∈ V*. Or equivalently, there
     exists x ∈ V such that T = T
x.IfC = {f˙1, …, f˙n}isthedualbasisofVˆ*definedusingthebasisB(seeCorollary 4.5.4.2)thenDisindeedthedualbasisofVˆ**obtainedusingthebasisCofVˆ*.Thus,eachbasisofVˆ*isthedualbasisofsomebasisofV.





   

Proof. Part 1 is direct as T : V → V** was a canonical inclusion map. For Part 2, we need to show
that
   


which indeed holds true using Corollary 4.5.4.2.                                                            _
   Let V be a finite dimensional vector space. Then Corollary 4.5.7 implies that the spaces V and V*
are naturally dual to each other.

   We are now ready to prove the main result of this subsection. To start with, let V and W be vector
spaces over F. Then, for each T ∈(V, W), we want to define a map  : W*→ V*. So, if g ∈ W* then,
(g) a linear functional from V to F. So, we need to be evaluate (g) at an element of V. Thus, we
define (v) = g, for all v ∈ V. Now, we note that  ∈(W*, V*), as for every
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g,h ∈ W*,
   

 for
all v ∈ V implies that (αg + h) = α(g) + (h).
   


2.
Theorem 4.5.8.   Let V and W be two vector spaces over F with ordered bases  = (v1,…,vn)
and  =  (w1,…,wm), respectively. Also, let * =  (f1,…,fn)  and * =  (g1,…,gm)  be the
corresponding ordered bases of the dual spaces V* and W*, respectively. Then,
   

 the transpose of the coordinate matrix T.
   

Proof. Note that we need to compute [*,*] =  and prove that it
equals the transpose of the matrix T[,]. So, let
   


Thus, to prove the required result, we need to show that
   	
   
	(4.5.1)



Now, recall that the functionals fi’s and gj’s satisfy (vt) = ∑
  k=1nαk = αt, for
1 ≤ t ≤ n and  = ejT , a row vector with 1 at the j-th place and
0, elsewhere. So, let B =  and evaluate (gj) at vt’s, the elements of .


   


Thus, the linear functional (gj) and ∑
  k=1najkfk are equal at vt, for 1 ≤ t ≤ n, the basis vectors of
V. Hence (gj) = ∑
  k=1najkfk which gives Equation (4.5.1).                                          _
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Remark 4.5.9.  The proof of Theorem 4.5.8 also shows the following.
     
	
  1. 
	For each T ∈(V, W) there exists a unique map  ∈(W*, V*) such that
     
     
     
	
  2. 
	The coordinate matrices T[,] and [*,*] are transpose of each other, where the
     ordered bases * of V* and * of W* correspond, respectively, to the ordered bases  of
     V and  of W.
     
	
  3. 
	Thus, the results on matrices and its transpose can be re-written in the language a vector
     space and its dual space.


   


   
4.6    Summary
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