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   Chapter 7
Jordan Canonical form

   7.1    Jordan Canonical form theorem

We start this chapter with the following theorem which generalizes the Schur Upper triangularization
theorem.
   



Theorem 7.1.1.  [Generalized  Schur’s  Theorem]   Let A  ∈ Mn(ℂ).  Suppose λ1,…,λk  are
the distinct eigenvalues of A with multiplicities m1,…,mk, respectively. Then, there exists a
non-singular matrix W such that
   

 and Ti’s are upper triangular matrices with constant diagonal λi. If A has real entries with real
eigenvalues then W can be chosen to have real entries.
   

Proof. By Schur Upper Triangularization (see Lemma 6.2.12), there exists a unitary matrix U such
that U*AU = T, an upper triangular matrix with  diag(T) = (λ1,…,λ1,…,λk,…,λk).

   Now, for any upper triangular matrix B, a real number α and i < j, consider the matrix
F(B,i,j,α) = Eij(-α)BEij(α), where the matrix Eij(α) is defined in Definition 2.1.13. Then, for
1 ≤ k,ℓ ≤ n,
   	
   
	(7.1.1)





   Now, using Equation (7.1.1), the diagonal entries of F(T,i,j,α) and T are equal and
   


Thus, if we denote the matrix F(T,i,j,α) by T1 then i-1,j = 0, for some choice of
α, whenever (T1)i-1,i-1≠Tjj. Moreover, this operation also preserves the 0 created by
F(T,i,j,α) at (i,j)-th place. Similarly, F(T1,i,j + 1,α) preserves the 0 created by F(T,i,j,α)
at (i,j)-th place. So, we can successively apply the following sequence of operations to
get
   

where α,β,…,γ are appropriately chosen and Tm1[:,m1 + 1] = λ2em1+1. Thus, observe that the above
operation can be applied for different choices of i and j with i < j to get the required
result.                                                                                                                   _
   


Exercise 7.1.2.  Apply Theorem 7.1.1 to the matrix given below for better understanding.
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Definition 7.1.3.  [Jordan Block and Jordan Matrix]   
     
	
   1. 
	 Let λ ∈ ℂ and k be a positive integer. Then, by the Jordan block Jk(λ) ∈ Mk(ℂ), we
     understand the matrix
     
     
     
	
   2. 
	A Jordan matrix is a direct sum of Jordan blocks. That is, if A is a Jordan matrix having
     r blocks then there exist positive integers ki’s and complex numbers λi’s (not necessarily
     distinct), for 1 ≤ i ≤ r such that
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   We now give some examples of Jordan matrices with diagonal entries 0.
   



Example 7.1.4.  
     
	
   1. 
	J1(0) =  is the only Jordan matrix of size 1.
     
	
   2. 
	J1(0) ⊕ J1(0) =  and J2(0) =  are Jordan matrices of size 2.
     
	
   3. 
	Even though , J1(0) ⊕ J2(0) and J2(0) ⊕ J1(0) are two Jordan matrices of size 3, we do
     not differentiate between them as they are similar (use permutations).
     
	
   4. 
	J1(0) ⊕J1(0) ⊕J1(0) = , J
2(0) ⊕J1(0) =  and J
3(0) = 
     are Jordan matrices of size 3.
     
	
   5. 
	Observe that the number of Jordan matrices of size 4 with 0 on the diagonal are 5.


   

   We now give some properties of the Jordan blocks. The proofs are immediate and hence left for the
reader. They will be used in the proof of subsequent results.
   



Remark 7.1.5.  [Jordan blocks]  Fix a positive integer k. Then,
     
	
  1. 
	 Jk(λ) is an upper triangular matrix with λ as an eigenvalue.
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2. 
	 Jk(λ) = λIk + Jk(0).
     
	
  3. 
	 Alg.Mulλ(Jk(λ)) = k.
     
	
  4. 
	 The matrix Jk(0) satisfies the following properties.
          	
      (a) 
	 Rank((Jk(0)i) = k - i, for 1 ≤ i ≤ k.
          
	
      (b) 
	 JkT (0)Jk(0) = .
          
	
      (c) 
	 Jk(0)p = 0 whenever p ≥ k.
          
	
      (d) 
	 Jk(0)ei = ei-1 for i = 2,…,k.
          
	
      (e) 
	 I - JkT (0)Jk(0)x =  = ⟨x,e1⟩e1.


     
	
  5. 
	 Thus, using Remark 7.1.5.4d Geo.Mulλ(Jk(λ)) = 1.


   

   


Exercise 7.1.6.  
     
	
  1. 
	 Fix a positive integer k and a complex number λ. Then, prove that
          	
      (a) 
	Rank(Jk(λ) - λIk) = k - 1.
          
	
      (b) 
	Rank(Jk(λ) - αIk)  =  k, whenever α≠λ. Or equivalently, for all α≠λ the matrix
          Jk(λ) - αIk is invertible.
          
	
      (c) 
	for 1 ≤ i ≤ k, Rank((Jk(λ) - λIk)i) = k - i.
          
	
      (d) 
	for α≠λ, Rank((Jk(λ) - αIk)i) = k, for all i.


     
	
  2. 
	 Let J be a Jordan matrix that contains ℓ Jordan blocks for λ. Then, prove that
                                                                                      

                                       DRAFT                               
          	
(a) 
	Rank(J - λI) = n - ℓ.
          
	
      (b) 
	J has ℓ linearly independent eigenvectors for λ.
          
	
      (c) 
	Rank(J - λI) ≥Rank((J - λI)2) ≥Rank((J - λI)3) ≥.


     
	
  3. 
	 Let A ∈ Mn(ℂ). Then, prove that AJn(λ) = Jn(λ)A if and only if AJn(0) = Jn(0)A.


   

   


Definition 7.1.7.  [Index of an Eigenvalue]   Let J be a Jordan matrix containing Jt(λ), for
some positive integer t and some complex number λ. Then, the smallest value of k for which
Rank((J - λI)k) stops decreasing is the order of the largest Jordan block Jk(λ) in J. This
number k is called the index of the eigenvalue λ.
   


   


Lemma 7.1.8.   Let A ∈ Mn(ℂ) be strictly upper triangular. Then, A is similar to a direct sum
of Jordan blocks. That is, there exists a non-singular matrix S and integers n1 ≥… ≥ nm ≥ 1
such that
   

 If A ∈ Mn(ℝ) then S can be chosen to have real entries.
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Proof. We will prove the result by induction on n. For n = 1, the statement is trivial. So, let the
result be true for matrices of size ≤ n - 1 and let A ∈ Mn(ℂ) be strictly upper triangular.
Then, A = . By induction hypothesis there exists an invertible matrix S1 such
that
   


Thus,
   

where S1-1Jn1(0) ⊕⊕ Jnm(0)S1 = Jn1(0) ⊕ J and aT S1 = . Now, writing Jn1 to
mean Jn1(0) and using Remark 7.1.5.4e, we have
   
 So,
we now need to consider two cases depending on whether ⟨a1,e1⟩ = 0 or ⟨a1,e1⟩≠0. In the first case, A
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is similar to . This in turn is similar to  by permuting the first row and
column. At this stage, one can apply induction and if necessary do a block permutation, in order to
keep the block sizes in decreasing order.
   So, let us now assume that ⟨a1,e1⟩≠0. Then, writing α = ⟨a1,e1⟩, we have
   

 Now,
using Remark 7.1.5.4c, verify that
   

Hence, for p = n - n1 - 1, we have
   
If
necessary, we need to do a block permutation, in order to keep the block sizes in decreasing order.
Hence, the required result follows.                                                                              _
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Exercise 7.1.9.  Convert  to J
3(0) and  to J
2(0) ⊕ J1(0).
   


   


Corollary 7.1.10.   A ∈ Mn(ℂ). Then, A is similar to J, a Jordan matrix.
   


Proof. Let λ1,…,λk be the distinct eigenvalues of A with algebraic multiplicities m1,…,mk.
By Theorem 7.1.1, there exists a non-singular matrix S such that S-1AS = ⊕
  i=1kTi,
where Ti is an upper triangular with diagonal (λi,…,λi). Thus Ti - λiImi is a strictly
upper triangular matrix. Thus, by Theorem 7.1.8, there exist a non-singular matrix Si such
that
   

 a
Jordan matrix with 0 on the diagonal and the size of the Jordan blocks decreases as we move down
the diagonal. So, Si-1TiSi = J(λi) is a Jordan matrix with λi on the diagonal and the size of the
Jordan blocks decreases as we move down the diagonal.
   Now, take W = S. Then, verify that W-1AW is a Jordan matrix.                    _

   Let A ∈ Mn(ℂ). Suppose λ ∈ σ(A) and J is a Jordan matrix that is similar to A. Then, for each
fixed i,1 ≤ i ≤ n, by ℓi(λ), we denote the number of Jordan blocks Jk(λ) in J for which k ≥ i. Then,
the next result uses Exercise 7.1.6 to determine the number ℓi(λ).
   



Remark 7.1.11.   Let A ∈ Mn(ℂ). Suppose λ ∈ σ(A) and J is a Jordan matrix that is similar
to A. Then, for 1 ≤ k ≤ n,
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Proof. In view of Exercise 7.1.6, we need to consider only the Jordan blocks Jk(λ), for
different values of k. Hence, without loss of generality, let us assume that J = ⊕
  i=1naiJi(λ),
where ai’s are non-negative integers and J contains exactly ai copies of the Jordan block
Ji(λ), for 1 ≤ i ≤ n. Then, by definition and Exercise 7.1.6, we observe the following:
     
	
   1. 
	n = ∑
  i≥1iai.
     
	
   2. 
	Rank(J - λI) = ∑
  i≥2(i - 1)ai.
     
	
   3. 
	Rank((J - λI)2) = ∑
  i≥3(i - 2)ai.
     
	
   4. 
	In general, for 1 ≤ k ≤ n, Rank((J - λI)k) = ∑
  i≥k+1(i - k)ai.


Thus, writing ℓi in place of ℓi(λ), we get 

   


Now, the required result follows as rank is invariant under similarity operation and the matrices J and
A are similar.                                                                                                         _
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Lemma 7.1.12.  [Similar Jordan Matrices] Let J and J′ be two similar Jordan matrices of
size n. Then, J is a block permutation of J′.
   


Proof. For 1 ≤ i ≤ n, let ℓi and ℓi′ be, respectively, the number of Jordan blocks of J and J′ of size at
least i corresponding to λ. Since J and J′ are similar, the matrices (J -λI)i and (J′-λI)i are similar
for all i,1 ≤ i ≤ n. Therefore, their ranks are equal for all i ≥ 1 and hence, ℓi = ℓi′ for all i ≥ 1. Thus
the required result follows.                                                                                        _

   We now state the main result of this section which directly follows from Lemma 6.2.12,
Theorem 7.1.1 and Corollary 7.1.10 and hence the proof is omitted.
   



Theorem 7.1.13.  [Jordan Canonical Form Theorem]  Let A ∈ Mn(ℂ). Then, A is similar to
a Jordan matrix J, which is unique up to permutation of Jordan blocks. If A ∈ Mn(ℝ) and has
real eigenvalues then the similarity transformation matrix S may be chosen to have real entries.
This matrix J is called the the Jordan canonical form of A, denoted Jordan CF(A).
   


   We now start with a few examples and observations.
   



Example 7.1.14.  Let us use the idea from Lemma 7.1.11 to find the Jordan Canonical Form of the
following matrices.
     
	
   1. 
	Let A = J4(0)2 = .
     Solution: Note that ℓ1 = 4 -Rank(A - 0I) = 2. So, there are two Jordan blocks.
     
Also, ℓ2 = Rank(A - 0I) -Rank((A - 0I)2) = 2. So, there are at least 2 Jordan blocks of
     size 2. As there are exactly two Jordan blocks, both the blocks must have size 2. Hence,
     Jordan CF(A) = J2(0) ⊕ J2(0).
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   2. 
	Let A1 = .
     Solution: Let B = A1 - I. Then, ℓ1 = 4 -Rank(B) = 1. So, B has exactly one Jordan
     block and hence A1 is similar to J4(1).
     

	
   3. 
	A2 = .
     Solution: Let C = A2 - I. Then, ℓ1 = 4 -Rank(C) = 2. So, C has exactly two Jordan
     blocks. Also, ℓ2 = Rank(C) -Rank(C2) = 1 and ℓ3 = Rank(C2) -Rank(C3) = 1. So, there
     is at least 1 Jordan blocks of size 3.
     
Thus, we see that there are two Jordan blocks and one of them is of size 3. Also, the size
     of the matrix is 4. Thus, A2 is similar to J3(1) ⊕ J1(1).
     

	
   4. 
	Let A = J4(1)2 ⊕ A1 ⊕ A2, where A1 and A2 are given in the previous exercises.
     Solution: One can directly get the answer from the previous exercises as the matrix A is
     already in the block diagonal form. But, we compute it again for better understanding.
     
Let B = A - I. Then, ℓ1 = 16 -Rank(B) = 5, ℓ2 = Rank(B) -Rank(B2) = 11 - 7 = 4,
     ℓ3 = Rank(B2) -Rank(B3) = 7 - 3 = 4 and ℓ4 = Rank(B3) -Rank(B4) = 3 - 0 = 3.
     
Hence, J4(1) appears thrice (as ℓ4 = 3 and ℓ5 = 0), J3(1) also appears once (as ℓ3-ℓ4 = 1),
     J2(1) does not appear as (as ℓ2 - ℓ3 = 0) and J1(1) appears once (as ℓ1 - ℓ2 = 1). Thus,
     the required result follows.
     



   

   


Remark 7.1.15.  [Observations about Jordan CF(A)]
     
	
  1. 
	What are the steps to find Jordan CFA?
     Łet λ1,…,λk be the distinct eigenvalues of A. Now, apply the Schur Upper Triangularization
     Lemma (see Lemma 6.2.12) to get an upper triangular matrix, say T such that the diagonal
     entries of T are λ1,…,λ1,λ2,…,λ2,…,λk,…,λk. Now, apply similarity transformations (see
     Theorem 7.1.1) to get T = ⊕
  i=1kTi, where each diagonal entry of Ti is λi. Then, for each
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     i,1 ≤ i ≤ k, use Theorem 7.1.8 to get an invertible matrix Si such that Si-1(Ti-λiI)Si =
     , a Jordan matrix. Thus, we obtain a Jordan matrix Ji =  + λiI = Si-1TiSi, where
     each diagonal entry of Ji is λi. Hence, S = ⊕
  i=1kSi converts T = ⊕
  i=1kTi into the
     required Jordan matrix.
     

	
  2. 
	Let A ∈ Mn(ℂ) be a diagonalizable matrix. Then, by definition, A is similar to ⊕
  i=1nλi,
     where λi ∈ σ(A), for 1 ≤ i ≤ n. Thus, Jordan CF(A) = ⊕
  i=1nλi, up to a permutation
     of λi’s.
     
	
  3. 
	In general, the computation of Jordan CF(A) is not numerically stable. To understand
     this, let Aϵ  =  . Then, Aϵ  is diagonalizable as A has distinct eigenvalues. So,
     Jordan CF(Aϵ) = .
     Whereas,            for            A                   =                      ,            we
     know that Jordan CF(A) = ≠limϵ→0Jordan CF(Aϵ). Thus, a small change in
     the entries of A may change Jordan CF(A) significantly.
     

	
  4. 
	Let A ∈ Mn(ℂ) and ϵ > 0 be given. Then, there exists an invertible matrix S such that
     S-1AS = ⊕
  i=1kJni(λi,ϵ), where Jni(λi,ϵ) is obtained from Jni(λi) by replacing each off
     diagonal entry 1 by an ϵ. To get this, define Di(ϵ) =  diag(1,ϵ,ϵ2,…,ϵni-1), for 1 ≤ i ≤ k.
     Now compute ⊕
  i=1k.
     
	
  5. 
	Let Jordan CF(A) contain ℓ Jordan blocks for λ. Then, A has ℓ linearly independent
     eigenvectors for λ.
     For if, A has at least ℓ + 1 linearly independent eigenvectors for λ, then dim(Null(A -
     λI)) > ℓ. So, Rank(A - λI) < n - ℓ. But, the number of Jordan blocks for λ in A is ℓ.
     Thus, we must have Rank(J - λI) = n - ℓ, a contradiction.
     

	
  6. 
	Let λ ∈ σ(A). Then, by Remark 7.1.5.5, Geo.Mulλ(A) = the number of Jordan blocks
     Jk(λ) in Jordan CF(A).
     
	
  7. 
	Let λ ∈ σ(A). Then, by Remark 7.1.5.3, Alg.Mulλ(A) = the sum of the sizes of all
     Jordan blocks Jk(λ) in Jordan CF(A).
     
	
  8. 
	Let λ ∈ σ(A). Then, Jordan CF(A) does not get determined by Alg.Mulλ(A) and
     Geo.Mulλ(A). For example, ⊕⊕ and ⊕⊕
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     are different Jordan CFs but they have the same algebraic and geometric multiplicities.
     
	
  9. 
	Let A ∈ Mn(ℂ). Suppose that, for each λ ∈ σ(A), the values of Rank(A - λI)k, for
     k = 1,…,n are known. Then, using Remark 7.1.11, Jordan CF(A) can be computed.
     But, note here that finding rank is numerically unstable as  has rank 1 but it converges
     to  which has a different rank.


   

   


Theorem 7.1.16.  [A is similar to AT] Let A ∈ Mn(ℂ). Then, A is similar to AT .
   


Proof. Let Kn = . Then, observe that K-1 = K and KJn(a)K = Jn(a)T , as the (i,j)-th
entry of A goes to (n - i + 1,n - j + 1)-th position in KAK. Hence,
   


Thus, J is similar to JT . But, A is similar to J and hence AT  is similar to JT  and finally we get A is
similar to AT . Therefore, the required result follows.                                                      _

   
7.2    Minimal polynomial

We start this section with the following definition. Recall that a polynomial p(x) = a0 + a1x +  + anxn
with an = 1 is called a monic polynomial.
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Definition 7.2.1.  [Companion Matrix]  Let P(t) = tn + an-1tn-1 +  + a0  be a monic
polynomial in t of degree n. Then, the n×n matrix A = , denoted
A(n : a0,…,an-1) or Companion(P), is called the companion matrix of P(t).
   


   


Definition 7.2.2.  [Annihilating Polynomial]   Let A ∈ Mn(ℂ). Then, the polynomial P(t) is
said to annihilate (destroy) A if P(A) = 0.
   


   Let P(x) be the characteristic polynomial of A. Then, by the Cayley-Hamilton Theorem,
P(A) = 0. So, if f(x) = P(x)g(x), for any multiple of g(x), then f(A) = P(A)g(A) = 0g(A) = 0.
Thus, there are infinitely many polynomials which annihilate A. In this section, we will concentrate on
a monic polynomial of least positive degree that annihilates A.
   



Definition 7.2.3.  [Minimal polynomial]   Let A ∈ Mn(ℂ). Then, the minimal polynomial
of A, denoted mA(x), is a monic polynomial of least positive degree satisfying mA(A) = 0.
   


   


Theorem 7.2.4.   Let  A be  the  companion  matrix  of  the  monic  polynomial  P(t)  =  tn +
an-1tn-1 +  + a0. Then, P(t) is both the characteristic and the minimal polynomial of A.
   


Proof. Expanding det(tIn - Companion(P)) along the first row, we have 
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Thus, P(t) is the characteristic polynomial of A and hence P(A) = 0.
   We will now show that P(t) is the minimal polynomial of A. To do so, we first observe that
Ae1 = e2,…,Aen-1 = en. That is,
   	
   
	(7.2.1)





   Now, Suppose we have a monic polynomial Q(t) = tm + bm-1tm-1 +  + b0, with m < n, such
that Q(A) = 0. Then, using Equation (7.2.1), we get
   

 a
contradiction to the linear independence of {e1,…,em+1}⊆{e1,…,en}.                              _
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   The next result gives us the existence of such a polynomial for every matrix A. To do so, recall
that the well-ordering principle implies that if S is a subset of natural numbers then it contains a least
element.
   



Lemma 7.2.5.  [Existence of the Minimal Polynomial]  Let A ∈ Mn(ℂ). Then, there exists a
unique monic polynomial m(x) of minimum (positive) degree such that m(A) = 0. Further, if
f(x) is any polynomial with f(A) = 0 then m(x) divides f(x).
   


Proof. Let P(x) be the characteristic polynomial of A. Then, deg(P(x)) = n and by the
Cayley-Hamilton Theorem, P(A) = 0. So, consider the set
   


Then, S is a non-empty subset of ℕ as n ∈ S. Thus, by well-ordering principle there exists a smallest
positive integer, say M, and a corresponding polynomial, say m(x), such that deg(m(x)) = M,
m(A) = 0.
   Also, without loss of generality, we can assume that m(x) is monic and unique (non-uniqueness
will lead to a polynomial of smaller degree in S).

   Now, suppose there is a polynomial f(x) such that f(A) = 0. Then, by division algorithm, there
exist polynomials q(x) and r(x) such that f(x) = m(x)q(x) + r(x), where either r(x) is identically the
zero polynomial of deg(r(x)) < M = deg(m(x)). As
   

 we
get r(A) = 0. But, m(x) was the least degree polynomial with m(A) = 0 and hence r(x) is the zero
polynomial. That is, m(x) divides f(x).                                                                       _
   As an immediate corollary, we have the following result.
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Corollary 7.2.6.  [Minimal polynomial divides the Characteristic Polynomial]  Let mA(x)
and PA(x) be, respectively, the minimal and the characteristic polynomials of A ∈ Mn(ℂ).
     
	
  1. 
	Then, mA(x) divides PA(x).
     
	
  2. 
	Further, if λ is an eigenvalue of A then mA(λ) = 0.


   

Proof. The first part following directly from Lemma 7.2.5. For the second part, let (λ,x) be an
eigen-pair. Then, f(A)x = f(λ)x, for any polynomial of f, implies that
   

 But,
x≠0 and hence mA(λ) = 0. Thus, the required result follows.                                           _
   we also have the following result.
   



Lemma 7.2.7.   Let A and B be two similar matrices. Then, they have the same minimal
polynomial.
   


Proof. Since A and B are similar, there exists an invertible matrix S such that A = S-1BS. Hence,
f(A) = F(S-1BS) = S-1f(B)S, for any polynomial f. Hence, mA(A) = 0 if and only if mA(B) = 0
and thus the required result follows.                                                                            _
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Theorem 7.2.8.   Let A ∈ Mn(ℂ) and let λ1,…,λk be the distinct eigenvalues of A. If ni is the
size of the largest Jordan block for λi in J = Jordan CFA then
   


   

Proof. Using 7.2.6, we see that mA(x) = ∏
  i=1k(x-λi)αi, for some αi’s with 1 ≤ αi ≤ Alg.Mulλ
i(A).
As mA(A) = 0, using Lemma 7.2.7 we have mA(J) = ∏
  i=1kαi = 0. But, observe that for
the Jordan block Jni(λi), one has
     
	
   1. 
	αi = 0 if and only if αi ≥ ni, and
     
	
   2. 
	αi is invertible, for all m≠i.


   Thus ∏
  i=1k(J - λiI)ni = 0 and ∏i=1k(x - λi)ni divides ∏i=1k(x - λi)αi = mA(x) and
∏
  i=1k(x - λi)ni is a monic polynomial, the result follows.                                               _

   As an immediate consequence, we also have the following result which corresponds to the converse
of the above theorem.
   



Theorem 7.2.9.  Let A ∈ Mn(ℂ)  and let λ1,…,λk  be the distinct eigenvalues of A. If the
minimal polynomial of A equals ∏
  i=1k(x - λi)ni then ni is the size of the largest Jordan block
for λi in J = Jordan CFA.
   


Proof. It directly follows from Theorem 7.2.8.                                                               _

   We now give equivalent conditions for a square matrix to be diagonalizable.
   



Theorem 7.2.10.   Let A ∈ Mn(ℂ). Then, the following statements are equivalent.
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1. 
	 A is diagonalizable.
     
	
  2. 
	 Every zero of mA(x) has multiplicity 1.
     
	
  3. 
	 Whenever mA(α) = 0, for some α, then mA(x)x=α≠0.


   

Proof. Part 1 ⇒ Part 2. If A is diagonalizable, then each Jordan block in J = Jordan CFA has size
1. Hence, by Theorem 7.2.8, mA(x) = ∏
  i=1k(x - λi), where λi’s are the distinct eigenvalues of
A.

   Part 2 ⇒ Part 3. Let mA(x) = ∏
  i=1k(x-λi), where λi’s are the distinct eigenvalues of A. Then,
mA(x) = 0 if and only if x = λi, for some i,1 ≤ i ≤ k. In that case, it is easy to verify that
mA(x)≠0, for each λi.

   Part 3 ⇒ Part 1. Suppose that for each α satisfying mA(α) = 0, one has mA(α)≠0. Then, it
follows that each zero of mA(x) has multiplicity 1. Also, using Corollary 7.2.6, each zero of mA(x) is
an eigenvalue of A and hence by Theorem 7.2.8, the size of each Jordan block is 1. Thus, A is
diagonalizable.                                                                                                        _

   We now have the following remarks and observations.
   



Remark 7.2.11.  
     
	
  1. 
	 Let f(x) be a monic polynomial and A = Companion(f) be the companion matrix of f.
     Then, by Theorem 7.2.4) f(A) = 0 and no monic polynomial of smaller degree annihilates
     A. Thus PA(x) = mA(x) = f(x), where PA(x) is the characteristic polynomial and mA(x),
     the minimal polynomial of A.
     
	
  2. 
	 Let A ∈ Mn(ℂ). Then, A is similar to Companion(f), for some monic polynomial f if
     and only if mA(x) = f(x).
     Proof. Let B = Companion (f). Then, using Lemma 7.2.7, we see that mA(x) = mB(x).
     But, by Remark 7.2.11.1, we get mB(x) = f(x) and hence the required result follows.
     
Conversely, assume that mA(x)  =  f(x). But, by Remark 7.2.11.1, mB(x)  =  f(x)  =
     PB(x), the characteristic polynomial of B. Since mA(x) = mB(x), the matrices A and
     B have the same largest Jordan blocks for each eigenvalue λ. As PB = mB, we know
     that for each λ, there is only one Jordan block in Jordan CFB. Thus, Jordan CFA =
     Jordan CFB and hence A is similar to Companion (f).                                    _
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Exercise 7.2.12.  The following are some facts and questions.
     
	
  1. 
	Let  A  ∈ Mn(ℂ).  If  PA(x)  is  the  minimal  polynomial  of  A  then  A  is  similar  to
     Companion (PA) if and only if A is nonderogatory. T/F?
     
	
  2. 
	Let A,B ∈ M3(ℂ) with eigenvalues 1,2,3. Is it necessary that A is similar to B?
     
	
  3. 
	Let A,B ∈ M3(ℂ) with eigenvalues 1,1,3. Is it necessary that A is similar to B?
     
	
  4. 
	Let A,B ∈ M4(ℂ) with the same minimal polynomial. Is it necessary that A is similar to
     B?
     
	
  5. 
	Let A,B ∈ M3(ℂ) with the same minimal polynomial. Is it necessary that A is similar to
     B?
     
	
  6. 
	Let  A  ∈ Mn(ℂ)  be  idempotent  and  let  J  =  Jordan CFA.  Thus,  J2   =  J  and
     hence conclude that J  must be a diagonal matrix. Hence, every idempotent matrix is
     diagonalizable.
     
	
  7. 
	Let A ∈ Mn(ℂ). Suppose that mA(x)|x(x - 1)(x - 2)(x - 3). Must A be diagonalizable?
     
	
  8. 
	Let A ∈ M9(ℂ) be a nilpotent matrix such that A5≠0 but A6 = 0. Determine PA(x) and
     mA(x).
     
	
  9. 
	Recall that for A,B ∈ Mn(ℂ), the characteristic polynomial of AB and BA are the same.
     That is, PAB(x) = PBA(x). However, they need not have the same minimal polynomial.
     Take A =  and B =  to verify that mAB(x)≠mBA(x).


   

   We end this section with a method to compute the minimal polynomial of a given
matrix.
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Example 7.2.13.  [Computing  the  Minimal  Polynomial]    Let  λ1,…,λk  be  the  distinct
eigenvalues of A ∈ Mn(ℂ).
   



   
7.3    Applications of Jordan Canonical Form

In the last section, we say that the matrices if A is a square matrix then A and AT  are similar. In this
section, we look at some more applications of the Jordan Canonical Form.


   
7.3.1    Coupled system of linear differential equations

Consider the first order Initial Value Problem (IVP) x′(t) =  = A = Ax(t), with
x(0) = 0. If A is not a diagonal matrix then the system is called coupled and is hard to solve. Note
that if A can be transformed to a nearly diagonal matrix, then the amount of coupling among xi’s can
be reduced. So, let us look at J = Jordan CF(A) = S-1AS. Then, using S-1A = JS-1. verify that
the initial problem x′(t) = Ax(t) is equivalent to the equation S-1x′(t) = S-1Ax(t) which
in turn is equivalent to y′(t) = Jy(t), where S-1x(t) = y(t) with y(0) = S-1x(0) = 0.
Therefore, if y is a solution to the second equation then x(t) = Sy is a solution to the initial
problem.

   When J is diagonalizable then solving the second is as easy as solving yi′(t) = λiyi(t) for which
the required solution is given by yi(t) = yi(0)eλit.

   If J is not diagonal, then for each Jordan block, the system reduces to
   

 This
problem can also be solved as in this case the solution is given by yk = c0eλt; yk-1 = (c0t + c1)eλt and
so on.
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7.3.2    Commuting matrices

Let P(x) be a polynomial and A ∈ Mn(ℂ). Then, P(A)A = AP(A). What about the converse? That
is, suppose we are given that AB = BA for some B ∈ Mn(ℂ). Does it necessarily imply that
B = P(A), for some nonzero polynomial P(x)? The answer is No as I commutes with A for every A.
We start with a set of remarks.
   



Theorem 7.3.1.   Let A ∈ Mn(ℂ) and B ∈ Mm(ℂ). Then, the linear system AX -XB = 0, in
the variable matrix X of size n×m, has a unique solution, namely X = 0 (the trivial solution),
if and only if σ(A) and σ(B) are disjoint.
   


Proof. Let us assume that σ(A) and σ(B) are disjoint.

   Since σ(A) and σ(B) are disjoint, the matrix PB(A) = , obtained by evaluating
A at the characteristic polynomial, PB(t), of B, is invertible. So, let us look at the implication of the
condition AX = XB. This condition implies that A2X = AXB = XBB = XB2 and hence,
P(A)X = XP(B), for any polynomial P(t). In particular, PB(A)X = XPB(B) = X0 = 0. As PB(A)
is invertible, we get X = 0.

   Now, conversely assume that AX - XB = 0 has only the trivial solution X = 0. Suppose on the
contrary λ is a common eigenvalue of both A and B. So, choose nonzero vectors x ∈ ℂn and y ∈ ℂm
such that (λ,x) is an eigen-pair of A and (λ,y) is a left eigen-pair of B. Now, define X0 = xyT . Then,
X0 is an n × m nonzero matrix and
   


Thus, we see that if λ is a common eigenvalue of A and B then the system AX - XB = 0 has a
nonzero solution X0, a contradiction. Hence, the required result follows.                            _
   


Corollary 7.3.2.   Let A ∈ Mn(ℂ),B ∈ Mm(ℂ) and C be an n × m matrix. Also, assume that
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σ(A) and σ(B) are disjoint. Then, it can be easily verified that the system AX - XB = C, in
the variable matrix X of size n × m, has a unique solution, for any given C.
   


Proof. Consider the linear transformation T : Mn,m(ℂ) → Mn,m(ℂ), defined by T(X) = AX - XB.
Then, by Theorem 7.3.1, Null(T) = {0}. Hence, by the rank-nullity theorem, T is a bijection and the
required result follows.                                                                                             _
   



Definition 7.3.3.  [Toeplitz Matrix]   A square matrix A is said to be of Toeplitz type if each
(super/sub)-diagonal of A consists of the same element. For example, A = 
is a 4 × 4 Toeplitz type matrix. and the matrix B =  is an upper triangular
Toeplitz type matrix.
   


   


Exercise 7.3.4.   Let Jn(0) ∈ Mn(ℂ) be the Jordan block with 0 on the diagonal.
     
	
  1. 
	 Further, if A ∈ Mn(ℂ) such that AJn(0) = Jn(0)A then prove that A is an upper Toeplitz
     type matrix.
     
	
  2. 
	 Further, if A,B ∈ Mn(ℂ) are two upper Toeplitz type matrices then prove that
          	
      (a) 
	there exists ai ∈ ℂ,1 ≤ i ≤ n, such that A = a0I + a1Jn(0) +  + anJn(0)n-1.
          
	
      (b) 
	P(A) is a Toeplitz matrix for any polynomial P(t).
          
	
      (c) 
	AB is a Toeplitz matrix.
          
	
      (d) 
	if A is invertible then A-1 is also an upper Toeplitz type matrix.
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To proceed further, recall that a matrix A ∈ Mn(ℂ) is called non-derogatory if Geo.Mulα(A) = 1,
for each α ∈ σ(A) (see Definition 6.2.4).
   



Theorem 7.3.5.   Let A ∈ Mn(ℂ) be a non-derogatory matrix. Then, the matrices A and B
commute if and only if B = P(A), for some polynomial P(t) of degree at most n - 1.
   


Proof. If B = P(A), for some polynomial P(t), then A and B commute. Conversely, suppose that
AB = BA, σ(A) = {λ1,…,λk} and let J = Jordan CFA = S-1AS be the Jordan matrix of A.
Then, J = . Now, write B = S-1BS = , where
B is partitioned conformally with J. Note that AB = BA gives JB = BJ. Thus, verify
that
   

 and
hence B12 = 0. A similar argument gives Bij = 0, for all i≠j. Hence, JB = BJ implies
Jni(λi)Bii = BiiJni(λi), for 1 ≤ i ≤ k. Or equivalently, Jni(0)Bii = BiiJni(0), for 1 ≤ i ≤ k (using
Exercise 7.1.6.3). Now, using Exercise 7.3.4.1, we see that Bii is an upper triangular Toeplitz type
matrix.
   To proceed further, for 1 ≤ i ≤ k, define Fi(t) = ∏
  j≠i(t-λj)nj. Then, Fi(t) is a polynomial with
deg(Fi(t)) = n - ni and Fi(Jnj(λj)) = 0 if j≠i. Also, note that Fi(Jni(λi)) is a nonsingular
upper triangular Toeplitz type matrix. Hence, its inverse has the same form and using
Exercise 7.3.4.1, the matrix Fi(Jni(λi))-1Bii is also a Toeplitz type upper triangular matrix.
Hence,
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Thus, Bii = Fi(Jni(λi))Ri(Jni(λi)). Putting Pi(t) = Fi(t)Ri(t), for 1 ≤ i ≤ k, we see that Pi(t) is a
polynomial of degree at most n - 1 with Pi((Jnj(λj)) = 0, for j≠i and Pi((Jnj(λi)) = Bii. Taking,
P = P1 +  + Pk, we have 
   


Hence, B = SBS-1 = SP(J)S-1 = P(SJS-1) = P(A) and the required result follows.         _
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