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   Chapter 9
Appendix

   9.1    Uniqueness of RREF

   


Definition 9.1.1.   Fix n ∈ ℕ. Then, for each f ∈n, we associate an n × n matrix, denoted
Pf = [pij], such that pij = 1, whenver f(j) = i and 0, otherwise. The matrix Pf is called the
Permutation matrix corresponding to the permutation f. For example, I2, corresponding
to Id2, and  = E12, corresponding to the permutation (1,2), are the two permutation
matrices of order 2 × 2.
   


   


Remark 9.1.2.  Recall that in Remark 9.2.16.1, it was observed that each permutation is a product of
n transpositions, (1,2),…,(1,n).
     
	
  1. 
	Verify that the elementary matrix Eij  is the permutation matrix corresponding to the
     transposition (i,j) .
     
	
  2. 
	Thus, every permutation matrix is a product of elementary matrices E1j, 1 ≤ j ≤ n.
     
	
  3. 
	For  n  =  3,  the  permutation  matrices  are  I3,   =  E
23   =  E12E13E12,
      = E
12,  = E
12E13,  = E
13E12 and  = E
13.
     
	
  4. 
	Let f ∈ n  and Pf  = [pij] be the corresponding permutation matrix. Since pij  = δi,j
     and {f(1),…,f(n)} = [n], each entry of Pf is either 0 or 1. Furthermore, every row and
     column of Pf has exactly one nonzero entry. This nonzero entry is a 1 and appears at the
     position pi,f(i).
     
	
  5. 
	By the previous paragraph, we see that when a permutation matrix is multiplied to A
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(a) 
	from left then it permutes the rows of A.
          
	
      (b) 
	from right then it permutes the columns of A.


     
	
  6. 
	P is a permutation matrix if and only if P has exactly one 1 in each row and column.
     
Solution: If P has exactly one 1 in each row and column, then P is a square matrix, say n×n.
     Now, apply GJE to P. The occurrence of exactly one 1 in each row and column implies that
     these 1’s are the pivots in each column. We just need to interchange rows to get it in RREF. So,
     we need to multiply by Eij. Thus, GJE of P is In and P is indeed a product of Eij’s. The other
     part has already been explained earlier.


   

We are now ready to prove Theorem 2.2.17.
   



Theorem 9.1.3.   Let A and B be two matrices in RREF. If they are row equivalent then
A = B.
   


Proof. Note that the matrix A = 0 if and only if B = 0. So, let us assume that the matrices A,B≠0.
Also, the row-equivalence of A and B implies that there exists an invertible matrix C such that
A = CB, where C is product of elementary matrices.

   Since B is in RREF, either B[:,1] = 0T  or B[:,1] = (1,0,…,0)T . If B[:,1] = 0T  then
A[:,1] = CB[:,1] = C0 = 0. If B[:,1] = (1,0,…,0)T  then A[:,1] = CB[:,1] = C[:,1]. As C is invertible,
the first column of C cannot be the zero vector. So, A[:,1] cannot be the zero vector. Further, A is in
RREF implies that A[:,1] = (1,0,…,0)T . So, we have shown that if A and B are row-equivalent then
their first columns must be the same.

   Now, let us assume that the first k - 1 columns of A and B are equal and it contains r pivotal
columns. We will now show that the k-th column is also the same.

   Define Ak = [A[:,1],…,A[:,k]] and Bk = [B[:,1],…,B[:,k]]. Then, our assumption implies that
A[:,i] = B[:,i], for 1 ≤ i ≤ k - 1. Since, the first k - 1 columns contain r pivotal columns, there exists
a permutation matrix P such that
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   If the k-th columns of A and B are pivotal columns then by definition of RREF,
A[:,k] =  = B[:,k], where 0 is a vector of size r and e1 = (1,0,…,0)T . So, we need to consider
two cases depending on whether both are non-pivotal or one is pivotal and the other is
not.

   As A = CB, we get Ak = CBk and
   

 So,
we see that C1 = Ir, C3 = 0 and A[:,k] = B[:,k].
   Case 1: Neither A[:,k] nor B[:,k] are pivotal. Then
   


Thus, X = Y and in this case the k-th columns are equal.
   Case 2: A[:,k] is pivotal but B[:,k] in non-pivotal. Then
   

 a
contradiction as e1≠0. Thus, this case cannot arise.
   Therefore, combining both the cases, we get the required result.                                  _


   
9.2    Permutation/Symmetric Groups

   


Definition 9.2.1.     For a positive integer n, denote [n] = {1,2,…,n}. A function f : A → B is called
     
	
   1. 
	one-one/injective  if f(x) = f(y) for some x,y ∈ A necessarily implies that x = y.
     
	
   2. 
	onto/surjective if for each b ∈ B there exists a ∈ A such that f(a) = b.
     
	
   3. 
	a bijection if f is both one-one and onto.


   

   


Example 9.2.2.  Let A = {1,2,3}, B = {a,b,c,d} and C = {α,β,γ}. Then, the function
     
	
   1. 
	j : A → B defined by j(1) = a,j(2) = c and j(3) = c is neither one-one nor onto.
     
	
   2. 
	f : A → B defined by f(1) = a,f(2) = c and f(3) = d is one-one but not onto.
     
	
   3. 
	g : B → C defined by g(a) = α,g(b) = β,g(c) = α and g(d) = γ is onto but not one-one.
     
	
   4. 
	h : B → A defined by h(a) = 2,h(b) = 2,h(c) = 3 and h(d) = 1 is onto.
     
	
   5. 
	h ∘ f : A → A is a bijection.
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6. 
	g ∘ f : A → C is neither one-one not onto.


   

   


Remark 9.2.3.   Let f : A → B and g : B → C be functions. Then, the composition of
functions, denoted g ∘ f, is a function from A to C defined by (g ∘ f)(a) = g(f(a)). Also, if
     
	
  1. 
	f and g are one-one then g ∘ f is one-one.
     
	
  2. 
	f and g are onto then g ∘ f is onto.


Thus, if f and g are bijections then so is g ∘ f.
   


   


Definition 9.2.4.   A function f : [n] → [n] is called a permutation on n elements if f is a
bijection. For example, f,g : [2] → [2] defined by f(1) = 1,f(2) = 2 and g(1) = 2,g(2) = 1 are
permutations.
   


   


Exercise 9.2.5.   Let 3 be the set consisting of all permutation on 3 elements. Then, prove that 3
has 6 elements. Moreover, they are one of the 6 functions given below.
     
	
  1. 
	f1(1) = 1,f1(2) = 2 and f1(3) = 3.
     
	
  2. 
	f2(1) = 1,f2(2) = 3 and f2(3) = 2.
     
	
  3. 
	f3(1) = 2,f3(2) = 1 and f3(3) = 3.
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4. 
	f4(1) = 2,f4(2) = 3 and f4(3) = 1.
     
	
  5. 
	f5(1) = 3,f5(2) = 1 and f5(3) = 2.
     
	
  6. 
	f6(1) = 3,f6(2) = 2 and f6(3) = 1.


   

   


Remark 9.2.6.   Let f : [n] → [n] be a bijection. Then, the inverse of f, denote f-1, is defined
by f-1(m) = ℓ whenever f(ℓ) = m for m ∈ [n] is well defined and f-1  is a bijection. For
example, in Exercise 9.2.5, note that fi-1 = fi, for i = 1,2,3,6 and f4-1 = f5.
   


   


Remark 9.2.7.  Let n = {f : [n] → [n] : σ is a permutation}. Then, n has n! elements
and forms a group with respect to composition of functions, called product, due to the
following.
     
	
  1. 
	Let f ∈ Sn. Then,
          	
      (a) 
	f can be written as f = , called a two row notation.
          
	
      (b) 
	f  is  one-one.  Hence,  {f(1),f(2),…,f(n)} =  [n]  and  thus,  f(1)  ∈ [n],f(2)  ∈
          [n] \{f(1)},… and finally f(n) = [n] \{f(1),…,f(n - 1)}. Therefore, there are n
          choices for f(1), n- 1 choices for f(2) and so on. Hence, the number of elements in
          n equals n(n - 1)2 ⋅ 1 = n!.


     
	
  2. 
	By Remark 9.2.3, f ∘ g ∈n, for any f,g ∈ Sn.
     
	
  3. 
	Also associativity holds as f ∘ (g ∘ h) = (f ∘ g) ∘ h for all functions f,g and h.
     
	
  4. 
	n has a special permutation called the identity permutation, denoted Idn, such that Idn(i) = i,
     for 1 ≤ i ≤ n.
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5. 
	For each f ∈n, f-1 ∈n and is called the inverse of f as f ∘ f-1 = f-1 ∘ f = Idn.


   

   


Lemma 9.2.8.   Fix a positive integer n. Then, the group n satisfies the following:
     
	
  1. 
	Fix an element f ∈n. Then, n = {f ∘ g : g ∈n} = {g ∘ f : g ∈n}.
     
	
  2. 
	n = {g-1 : g ∈n}.


   


   

   
Proof. Part 1: Note that for each α ∈n the functions f-1∘α,α∘f-1 ∈n and α = f∘(f-1∘α)
as well as α = (α ∘ f-1) ∘ f.

   Part 2: Note that for each f ∈n, by definition, (f-1)-1 = f. Hence the result holds.     __
   


   


Definition 9.2.9.  Let f ∈n. Then, the number of inversions of f, denoted n(f), equals


   



   

   


Example 9.2.10.  
     
	
   1. 
	For f = , n(f) = |{(1,2),(1,3),(2,3)}| = 3.
     
	
   2. 
	In Exercise 9.2.5, n(f5) = 2 + 0 = 2.
     
	
   3. 
	Let f = . Then, n(f) = 3+1+1+1+0+3+2+1 = 12.


   

   


Definition 9.2.11.  [Cycle  Notation]  Let  f  ∈ n.  Suppose  there  exist  r,2  ≤ r  ≤ n and
i1,…,ir  ∈ [n] such that f(i1) = i2,f(i2) = i3,…,f(ir) = i1  and f(j) = j for all j≠i1,…,ir.
Then, we represent such a permutation by f = (i1,i2,…,ir) and call it an r-cycle. For example,
f =  = (1,4,5) and  = (2,3).
   


   


Remark 9.2.12.  
     
	
  1. 
	One also write the r-cycle (i1,i2,…,ir) as (i2,i3,…,ir,i1) and so on. For example, (1,4,5) =
     (4,5,1) = (5,1,4).
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  2. 
	The permutation f =  is not a cycle.
     
	
  3. 
	Let f = (1,3,5,4) and g = (2,4,1) be two cycles. Then, their product, denoted f ∘ g or
     (1,3,5,4)(2,4,1) equals (1,2)(3,5,4). The calculation proceeds as (the arrows indicate the
     images): 
1 → 2. Note (f ∘ g)(1) = f(g(1)) = f(2) = 2. 
2 → 4 → 1 as (f ∘ g)(2) = f(g(2)) = f(4) = 1. So, (1,2) forms a cycle.
3 → 5 as (f ∘ g)(3) = f(g(3)) = f(3) = 5. 
5 → 4 as (f ∘ g)(5) = f(g(5)) = f(5) = 4. 
4 → 1 → 3 as (f ∘ g)(4) = f(g(4)) = f(1) = 3. So, the other cycle is (3,5,4).
     
	
  4. 
	Let  f  =  (1,4,5)  and  g  =  (2,4,1)  be  two  permutations.  Then,  (1,4,5)(2,4,1)  =
     (1,2,5)(4) = (1,2,5) as 1 → 2,2 → 4 → 5,5 → 1,4 → 1 → 4 and 
(2,4,1)(1,4,5) = (1)(2,4,5) = (2,4,5) as 1 → 4 → 1,2 → 4,4 → 5,5 → 1 → 2.
     
	
  5. 
	Even though  is not a cycle, verify that it is a product of the cycles
     (1,4,5) and (2,3).


   

   


Definition 9.2.13.  A permutation f ∈n is called a transposition if there exist m,r ∈ [n]
such that f = (m,r).
   


   


Remark 9.2.14.   Verify that
     
	
  1. 
	(2,4,5) = (2,5)(2,4) = (4,2)(4,5) = (5,4)(5,2) = (1,2)(1,5)(1,4)(1,2).
     
	
  2. 
	in general, the r-cycle (i1,…,ir) = (1,i1)(1,ir)(1,ir-1)(1,i2)(1,i1).
     
	
  3. 
	So, every r-cycle can be written as product of transpositions. Furthermore, they can be
     written using the n transpositions (1,2),(1,3),…,(1,n).
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With the above definitions, we state and prove two important results.
   



Theorem 9.2.15.   Let f ∈n. Then, f can be written as product of transpositions.
   



   

   
Proof. Note that using use Remark 9.2.14, we just need to show that f can be written as
product of disjoint cycles.

   Consider the set S = {1,f(1),f(2)(1) = (f ∘ f)(1),f(3)(1) = (f ∘ (f ∘ f))(1),…}. As S is an
infinite set and each f(i)(1) ∈ [n], there exist i,j with 0 ≤ i < j ≤ n such that f(i)(1) = f(j)(1).
Now, let j1  be the least positive integer such that f(i)(1) = f(j1)(1), for some i,0 ≤ i < j1.
Then, we claim that i = 0.

   For if, i - 1 ≥ 0 then j1 - 1 ≥ 1 and the condition that f is one-one gives
   

 Thus, we see that the repetition has occurred at the (j1 - 1)-th instant, contradicting the
assumption that j1 was the least such positive integer. Hence, we conclude that i = 0. Thus,
(1,f(1),f(2)(1),…,f(j1-1)(1)) is one of the cycles in f.
   Now, choose i1 ∈ [n] \{1,f(1),f(2)(1),…,f(j1-1)(1)} and proceed as above to get another
cycle. Let the new cycle by (i1,f(i1),…,f(j2-1)(i1)). Then, using f is one-one follows that
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 So, the above process needs to be repeated at most n times to get all the disjoint cycles. Thus,
the required result follows.                                                                                       __
   

   


Remark 9.2.16.   Note that when one writes a permutation as product of disjoint cycles, cycles of
length 1 are suppressed so as to match Definition 9.2.11. For example, the algorithm in the proof of
Theorem 9.2.15 implies
     
	
  1. 
	 Using Remark 9.2.14.3, we see that every permutation can be written as product of the
     n transpositions (1,2),(1,3),…,(1,n).
     
	
  2. 
	 = (1)(2,4,5)(3) = (2,4,5).
     
	
  3. 
	 = (1,4,5)(2)(3)(6,9)(7,8) = (1,4,5)(6,9)(7,8).


   

   Note that Id3 = (1,2)(1,2) = (1,2)(2,3)(1,2)(1,3), as well. The question arises, is it possible to
write Idn as a product of odd number of transpositions? The next lemma answers this question in
negative.
   



Lemma 9.2.17.   Suppose there exist transpositions fi,1 ≤ i ≤ t, such that
   

 then t is even.
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Proof. We will prove the result by mathematical induction. Observe that t≠1 as Idn is not a
transposition. Hence, t ≥ 2. If t = 2, we are done. So, let us assume that the result holds for all
expressions in which the number of transpositions t ≤ k. Now, let t = k + 1.

   Suppose  f1   =  (m,r)  and  let  ℓ,s  ∈ [n] \ {m,r}.  Then,  the  possible  choices  for  the
composition f1 ∘ f2 are (m,r)(m,r) = Idn,(m,r)(m,ℓ) = (r,ℓ)(r,m),(m,r)(r,ℓ) = (ℓ,r)(ℓ,m)
and (m,r)(ℓ,s) = (ℓ,s)(m,r). In the first case, f1  and f2  can be removed to obtain Idn =
f3 ∘f4 ∘∘ft, where the number of transpositions is t- 2 = k - 1 < k. So, by mathematical
induction, t - 2 is even and hence t is also even.

   In  the  remaining  cases,  the  expression  for  f1 ∘ f2  is  replaced  by  their  counterparts  to
obtain another expression for Idn. But in the new expression for Idn, m doesn’t appear in
the first transposition, but appears in the second transposition. The shifting of m to the right
can continue till the number of transpositions reduces by 2 (which in turn gives the result
by mathematical induction). For if, the shifting of m to the right doesn’t reduce the number
of transpositions then m will get shifted to the right and will appear only in the right most
transposition. Then, this expression for Idn does not fix m whereas Idn(m) = m. So, the later
case leads us to a contradiction. Hence, the shifting of m to the right will surely lead to an
expression in which the number of transpositions at some stage is t - 2 = k - 1. At this stage,
one applies mathematical induction to get the required result.                                        __
   


   


Theorem 9.2.18.  Let f ∈n. If there exist transpositions g1,…,gk and h1,…,hℓ with
   

 then, either k and ℓ are both even or both odd.
                                                                                      

                                       DRAFT                               
   

   

Proof. As g1 ∘∘ gk = h1 ∘∘ hℓ and h-1 = h for any transposition h ∈n, we have
   

 Hence by Lemma 9.2.17, k + ℓ is even. Thus, either k and ℓ are both even or both odd.      __
   

   


Definition 9.2.19.  [Even and Odd Permutation]  A permutation f ∈n is called an
     
	
   1. 
	even permutation if f can be written as product of even number of transpositions.
     
	
   2. 
	odd permutation if f can be written as a product of odd number of transpositions.


   

   


Definition 9.2.20.   Observe that if f and g are both even or both odd permutations, then
f ∘g and g ∘f are both even. Whereas, if one of them is odd and the other even then f ∘g and
g ∘ f are both odd. We use this to define a function sgn : n →{1,-1}, called the signature
of a permutation, by
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Example 9.2.21.   Consider the set n. Then,
     
	
   1. 
	by Lemma 9.2.17, Idn is an even permutation and sgn(Idn) = 1.
     
	
   2. 
	a transposition, say f, is an odd permutation and hence sgn(f) = -1
     
	
   3. 
	 using Remark 9.2.20, sgn(f ∘ g) = sgn(f) ⋅ sgn(g) for any two permutations f,g ∈n.


   

   We are now ready to define determinant of a square matrix A.
   



Definition 9.2.22.   Let A = [aij] be an n×n matrix with complex entries. Then, the determinant
of A, denoted det(A), is defined as
   	
   
	(9.2.2)
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For example, if 2  = {Id,f = (1,2)} then for A = ,
det(A) = sgn(Id) ⋅ a1Id(1)a2Id(2) + sgn(f) ⋅ a1f(1)a2f(2) = 1 ⋅ a11a22 + (-1)a12a21 = 1 - 4 = -3.
   


   Observe that det(A) is a scalar quantity. Even though the expression for det(A) seems complicated
at first glance, it is very helpful in proving the results related with “properties of determinant”. We
will do so in the next section. As another examples, we verify that this definition also
matches for 3 × 3 matrices. So, let A = [aij] be a 3 × 3 matrix. Then, using Equation (9.2.2),


   




   
9.3    Properties of Determinant

   


Theorem 9.3.1 (Properties of Determinant).    Let A = [aij] be an n × n matrix.
     
	
  1. 
	 If A[i,:] = 0T  for some i then det(A) = 0.
     
	
  2. 
	 If B = Ei(c)A, for some c≠0 and i ∈ [n] then det(B) = cdet(A).
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3. 
	 If B = EijA, for some i≠j then det(B) = -det(A).
     
	
  4. 
	 If A[i,:] = A[j,:] for some i≠j then det(A) = 0.
     
	
  5. 
	 Let B and C be two n×n matrices. If there exists m ∈ [n] such that B[i,:] = C[i,:] = A[i,:]
     for all i≠m and C[m,:] = A[m,:] + B[m,:] then det(C) = det(A) + det(B).
     
	
  6. 
	 If B = Eij(c), for c≠0 then det(B) = det(A).
     
	
  7. 
	 If A is a triangular matrix then det(A) = a11ann, the product of the diagonal entries.
     
	
  8. 
	 If E is an n × n elementary matrix then det(EA) = det(E)det(A).
     
	
  9. 
	 A is invertible if and only if det(A)≠0.
     
	
 10. 
	 If B is an n × n matrix then det(AB) = det(A)det(B).
     
	
 11. 
	 If AT  denotes the transpose of the matrix A then det(A) = det(AT ).


   


   

   
Proof. Part 1: Note that each sum in det(A) contains one entry from each row. So, each sum
has an entry from A[i,:] = 0T . Hence, each sum in itself is zero. Thus, det(A) = 0.

Part 2: By assumption, B[k,:] = A[k,:] for k≠i and B[i,:] = cA[i,:]. So, 

   



Part 3: Let τ = (i,j). Then, sgn(τ) = -1, by Lemma 9.2.8, n = {σ ∘ τ : σ ∈n} and


   



Part 4: As A[i,:] = A[j,:], A = EijA. Hence, by Part 3, det(A) = -det(A). Thus, det(A) = 0.

Part 5: By assumption, C[i,:] = B[i,:] = A[i,:] for i≠m and C[m,:] = B[m,:] + A[m,:]. So,


   



Part 6: By assumption, B[k,:] = A[k,:] for k≠i and B[i,:] = A[i,:] + cA[j,:]. So, 

   



Part 7: Observe that if σ ∈n and σ≠Idn then n(σ) ≥ 1. Thus, for every σ≠Idn, there
exists m ∈ [n] (depending on σ) such that m > σ(m) or m < σ(m). So, if A is triangular,
amσ(m) = 0. So, for each σ≠Idn, ∏
  i=1naiσ(i) = 0. Hence, det(A) = ∏
  i=1naii. the result
follows.

Part 8: Using Part 7, det(In) = 1. By definition Eij = EijIn and Ei(c) = Ei(c)In and
Eij(c) = Eij(c)In, for c≠0. Thus, using Parts 2, 3 and 6, we get det(Ei(c)) = c,det(Eij) = -1 and
det(Eij(k)) = 1. Also, again using Parts 2, 3 and 6, we get det(EA) = det(E)det(A).

Part 9: Suppose A is invertible. Then, by Theorem 2.3.1, A = E1Ek, for some elementary matrices
E1,…,Ek. So, a repeated application of Part 8 implies det(A) = det(E1)det(Ek)≠0 as det(Ei)≠0
for 1 ≤ i ≤ k.
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   Now, suppose that det(A)≠0. We need to show that A is invertible. On the contrary, assume that
A is not invertible. Then, by Theorem 2.3.1, Rank(A) < n. So, by Proposition 2.2.21, there exist
elementary matrices E1,…,Ek such that E1EkA = . Therefore, by Part 1 and a repeated
application of Part 8 gives
   

 As
det(Ei)≠0, for 1 ≤ i ≤ k, we have det(A) = 0, a contradiction. Thus, A is invertible.
Part 10: Let A be invertible. Then, by Theorem 2.3.1, A = E1Ek, for some elementary
matrices E1,…,Ek. So, applying Part 8 repeatedly gives det(A) = det(E1)det(Ek)
and
   


   In case A is not invertible, by Part 9, det(A) = 0. Also, AB is not invertible (AB is invertible will
imply A is invertible using the rank argument). So, again by Part 9, det(AB) = 0. Thus,
det(AB) = det(A)det(B).

Part 11: Let B = [bij] = AT . Then, bij = aji, for 1 ≤ i,j ≤ n. By Lemma 9.2.8, we know that
n = {σ-1 : σ ∈n}. As σ ∘ σ-1 = Idn, sgn(σ) = sgn(σ-1). Hence, 

   



                                                                                     __
   

   


Remark 9.3.2.  
     
	
  1. 
	 As det(A) = det(AT ), we observe that in Theorem 9.3.1, the condition on “row” can be
     replaced by the condition on “column”.
     
	
  2. 
	 Let A = [aij] be a matrix satisfying a1j = 0, for 2 ≤ j ≤ n. Let B = A(1|1), the submatrix of A
     obtained by removing the first row and the first column. Then det(A) = a11 det(B).
     
Proof: Let σ ∈n with σ(1) = 1. Then, σ has a cycle (1). So, a disjoint cycle representation of
     σ only has numbers {2,3,…,n}. That is, we can think of σ as an element of n-1. Hence,
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We now relate this definition of determinant with the one given in Definition 2.3.6.
   



Theorem 9.3.3.  Let A be an n × n matrix. Then, det(A) = ∑
  j=1n(-1)1+ja1j detA(1|j),
where recall that A(1|j) is the submatrix of A obtained by removing the 1st row and the jth
column.
   



   

   
Proof. For 1 ≤ j ≤ n, define an n × n matrix Bj = . Also, for each
matrix Bj, we define the n × n matrix Cj by
     
	
   1. 
	Cj[:,1] = Bj[:,j],
     
	
   2. 
	Cj[:,i] = Bj[:,i - 1], for 2 ≤ i ≤ j and
     
	
   3. 
	Cj[:,k] = Bj[:,k] for k ≥ j + 1.


Also, observe that Bj’s have been defined to satisfy B1[1,:] +  + Bn[1,:] = A[1,:] and
Bj[i,:] = A[i,:] for all i ≥ 2 and 1 ≤ j ≤ n. Thus, by Theorem 9.3.1.5,
   	
   
	(9.3.1)
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Let us now compute det(Bj), for 1 ≤ j ≤ n. Note that Cj = E12E23Ej-1,jBj, for 1 ≤ j ≤ n. Then,
by Theorem 9.3.1.3, we get det(Bj) = (-1)j-1 det(Cj). So, using Remark 9.3.2.2 and
Theorem 9.3.1.2 and Equation (9.3.1), we have
   


Thus, we have shown that the determinant defined in Definition 2.3.6 is valid.                   __
   


   
9.4    Dimension of W1 + W2

   


Theorem 9.4.1.   Let V be a finite dimensional vector space over F and let W1 and W2 be two
subspaces of V. Then,
   	
   
	(9.4.1)
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Proof. Since W1 ∩ W2  is a vector subspace of V , let  = {u1,…,ur} be a basis of W1 ∩ W2.
As, W1 ∩ W2  is a subspace of both W1  and W2, let us extend the basis  to form a basis
1 = {u1,…,ur,v1,…,vs} of W1 and a basis 2 = {u1,…,ur,w1,…,wt} of W2.

   We now prove that  = {u1,…,ur,w1,…,ws,v1,v2,…,vt} is a basis of W1 + W2. To do this, we
show that
     
	
   1. 
	 is linearly independent subset of V and
     
	
   2. 
	LS() = W1 + W2.


The second part can be easily verified. For the first part, consider the linear system
   	
   
	(9.4.2)




in the variables αi’s, βj’s and γk’s. We re-write the system as
   


Then, v = -∑
  i=1sγivi ∈ LS(1) = W1. Also, v = ∑
  j=1rαrur + ∑
  k=1T βkwk. So,
v ∈ LS(2) = W2. Hence, v ∈ W1 ∩ W2 and therefore, there exists scalars δ1,…,δk such that
v = ∑
  j=1rδjuj.
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   Substituting this representation of v in Equation (9.4.2), we get
   

 So,
using Exercise 3.4.16.1, αi -δi = 0, for 1 ≤ i ≤ r and βj = 0, for 1 ≤ j ≤ t. Thus, the system (9.4.2)
reduces to
   

which has αi = 0 for 1 ≤ i ≤ r and γj = 0 for 1 ≤ j ≤ s as the only solution. Hence, we see that the
linear system of Equations (9.4.2) has no nonzero solution. Therefore, the set  is linearly
independent and the set  is indeed a basis of W1 + W2. We now count the vectors in the sets
,1,2 and  to get the required result.                                                                  __
   


   
9.5    When does Norm imply Inner Product

In this section, we prove the following result. A generalization of this result to complex vector space is
left as an exercise for the reader as it requires similar ideas.
   



Theorem 9.5.1.  Let V be a real vector space. A norm ∥⋅∥ is induced by an inner product if and only
if, for all x,y ∈ V, the norm satisfies
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   	(9.5.1)




   


Proof. Suppose that ∥⋅∥ is indeed induced by an inner product. Then, by Exercise 5.1.7.3 the result
follows.

   So, let us assume that ∥⋅∥ satisfies the parallelogram law. So, we need to define an inner product.
We claim that the function f : V × V → ℝ defined by
   


satisfies the required conditions for an inner product. So, let us proceed to do so.
     	
 
	Step 1: Clearly, for each x ∈ V, f(x,0)  =  0 and f(x,x)  =  ∥x + x∥2  =  ∥x∥2. Thus,
     f(x,x) ≥ 0. Further, f(x,x) = 0 if and only if x = 0.
     
	
 
	Step 2: By definition f(x,y) = f(y,x) for all x,y ∈ V.
     
	
 
	Step 3: Now note that ∥x + y∥2 -∥x - y∥2 = 2. Or equivalently,
     	
     
     	(9.5.2)


     
     Thus, for x,y,z ∈ V, we have 

     
     
     
Now, substituting z = 0 in Equation (9.5.3) and using Equation (9.5.2), we get
     2f(x,y) = f(x,2y) and hence 4f(x + z,y) = 2f(x + z,2y) = 4.
     Thus,
     	
     
     	(9.5.4)


     
     

	
 
	Step 4: Using Equation (9.5.4), f(x,y) = f(y,x) and the principle of mathematical induction, it
     follows that nf(x,y) = f(nx,y), for all x,y ∈ V and n ∈ ℕ. Another application of
     Equation (9.5.4) with f(0,y) = 0 implies that nf(x,y) = f(nx,y), for all x,y ∈ V and n ∈ ℤ.
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     Also, for m≠0,
     
     
     Hence, we see that for all x,y ∈ V and a ∈ ℚ, f = af(x,y).
     
	
 
	Step 5: Fix u,v ∈ V and define a function g : ℝ → ℝ by 
     
     
     
Then, by previous step g(x) = 0, for all x ∈ ℚ. So, if g is a continuous function then continuity
     implies g(x) = 0, for all x ∈ ℝ. Hence, f(xu,v) = xf(u,v), for all x ∈ ℝ.
     Note that the second term of g(x) is a constant multiple of x and hence continuous. Using a
     similar reason, it is enough to show that g1(x) = ∥xu + v∥, for certain fixed vectors u,v ∈ V, is
     continuous. To do so, note that
     

     
     Thus, ∥x1u + v∥-∥x2u + v∥≤∥(x1 - x2)u∥. Hence, taking the limit as x1 → x2, we get
     limx1→x2∥x1u + v∥ = ∥x2u + v∥.
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Thus, we have proved the continuity of g and hence the prove of the required result.                 _


   
9.6    Roots of a Polynomials

The main aim of this subsection is to prove the continuous dependence of the zeros of a polynomial on
its coefficients and to recall Descartes’s rule of signs.
   



Definition 9.6.1.  [Jordan Curves]   A curve in ℂ is a continuous function f : [a,b] → ℂ, where
[a,b] ⊆ ℝ.
     
	
   1. 
	If the function f is one-one on [a,b) and also on (a,b], then it is called a simple curve.
     
	
   2. 
	If f(b) = f(a), then it is called a closed curve.
     
	
   3. 
	A closed simple curve is called a Jordan curve.
     
	
   4. 
	The derivative (integral) of a curve f = u+iv is defined component wise. If f′ is continuous
     on [a,b], we say f is a 1-curve (at end points we consider one sided derivatives and
     continuity).
     
	
   5. 
	A 1-curve on [a,b] is called a smooth curve, if f′ is never zero on (a,b).
     
	
   6. 
	A piecewise smooth curve is called a contour.
     
	
   7. 
	A positively oriented simple closed curve is called a simple closed curve such that while
     traveling on it the interior of the curve always stays to the left. (Camille Jordan has proved
     that such a curve always divides the plane into two connected regions, one of which is
     called the bounded region and the other is called the unbounded region. The one which
     is bounded is considered as the interior of the curve.)


   

   We state the famous Rouche Theorem of complex analysis without proof.
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Theorem 9.6.2.  [Rouche’s Theorem]  Let C be a positively oriented simple closed contour.
Also, let f and g be two analytic functions on RC, the union of the interior of C and the curve
C itself. Assume also that |f(x)| > |g(x)|, for all x ∈ C. Then, f and f + g have the same
number of zeros in the interior of C.
   


   


Corollary 9.6.3.  [Alen  Alexanderian,  The  University  of  Texas  at  Austin,  USA.]   Let
P(t)  =  tn + an-1tn-1 +  + a0  have distinct roots λ1,…,λm  with multiplicities α1,…,αm,
respectively. Take any ϵ > 0 for which the balls Bϵ(λi) are disjoint. Then, there exists a δ > 0
such that the polynomial q(t) = tn + an-1′tn-1 +  + a0′ has exactly αi roots (counting with
multiplicities) in Bϵ(λi), whenever |aj - aj′| < δ.
   


Proof. For an ϵ > 0 and 1 ≤ i ≤ m, let Ci = {z ∈ ℂ : |z - λi| = ϵ}. Now, for each i,1 ≤ i ≤ m, take
νi = minz∈Ci|p(z)|, ρi = maxz∈Ci[1 + |z| +  + |z|n-1] and choose δ > 0 such that ρiδ < νi. Then, for
a fixed j and z ∈ Cj, we have
   


Hence, by Rouche’s theorem, p(z) and q(z) have the same number of zeros inside Cj, for
each j = 1,…,m. That is, the zeros of q(t) are within the ϵ-neighborhood of the zeros of
P(t).                                                                                                                    _
   As a direct application, we obtain the following corollary.
   



Corollary 9.6.4.   Eigenvalues of a matrix are continuous functions of its entries.
   


Proof. Follows from Corollary 9.6.3.                                                                            _
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Remark 9.6.5.  
     
	
  1. 
	[Sign changes in a polynomial]  Let P(x) = ∑
  0naixn-i be a real polynomial, with a0≠0.
     Read the coefficient from the left a0,a1,…. We say the sign changes of ai occur at
     m1 < m2 <  < mk to mean that am1  is the first after a0 with sign opposite to a0; am2
     is the first after am1  with sign opposite to am1; and so on.
     
	
  2. 
	[Descartes’ Rule of Signs]   Let P(x)  =  ∑
  0naixn-i  be a real polynomial. Then, the
     maximum number of positive roots of P(x) = 0 is the number of changes in sign of the
     coefficients and that the maximum number of negative roots is the number of sign changes
     in P(-x) = 0.
     Proof. Assume that a0,a1,,an has k > 0 sign changes. Let b > 0. Then, the coefficients
     of (x - b)P(x) are
     

      This list has at least k + 1 changes of signs. To see this, assume that a0 > 0 and an≠0.
     Let the sign changes of ai occur at m1 < m2 <  < mk. Then, setting
     
      we see that ci > 0 when i is even and ci < 0, when i is odd. That proves the claim.
     Now, assume that P(x) = 0 has k positive roots b1,b2,,bk. Then,
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 where Q(x) is a real polynomial. By the previous observation, the coefficients of (x -
     bk)Q(x) has at least one change of signs, coefficients of (x-bk-1)(x-bk)Q(x) has at least
     two, and so on. Thus coefficients of P(x) has at least k change of signs. The rest of the
     proof is similar.                                                                                        _


   


   
9.7    Variational characterizations of Hermitian Matrices

Let A ∈ Mn(ℂ) be a Hermitian matrix. Then, by Theorem 6.2.22, we know that all the eigenvalues of
A are real. So, we write λi(A) to mean the i-th smallest eigenvalue of A. That is, the i-th from the left
in the list λ1(A) ≤ λ2(A) ≤≤ λn(A).
   



Lemma 9.7.1.  [Rayleigh-Ritz Ratio]  Let A ∈ Mn(ℂ) be a Hermitian matrix. Then,
     
	
  1. 
	 λ1(A)x*x ≤ x*Ax ≤ λn(A)x*x, for each x ∈ ℂn.
     
	
  2. 
	 λ1(A) = minx≠0 = min∥x∥=1x*Ax.
     
	
  3. 
	 λn(A) = maxx≠0 = max∥x∥=1x*Ax.


   

Proof. Proof of Part 1: By spectral theorem (see Theorem 6.2.22, there exists a unitary matrix U
such that A = UDU*, where D =  diag(λ1(A),…,λn(A)) is a real diagonal matrix. Thus, the set
{U[:,1],…,U[:,n]} is a basis of ℂn. Hence, for each x ∈ ℂn, there exists _i’s (scalar) such that
x = ∑
  αiU[:,i]. So, note that x*x = |αi|2 and
                                                                                      

                                       DRAFT                               
   
 For
Part 2 and Part 3, take x = U[:,1] and x = U(:,n), respectively.                                     _
   As an immediate corollary, we state the following result.
   



Corollary 9.7.2.   Let A ∈ Mn(ℂ) be a Hermitian matrix and α = . Then, A has an
eigenvalue in the interval (-∞,α] and has an eigenvalue in the interval [α,∞).
   


   We now generalize the second and third parts of Theorem 9.7.2.
   



Proposition 9.7.3.   Let A ∈ Mn(ℂ) be a Hermitian matrix with A = UDU*, where U is a
unitary matrix and D is a diagonal matrix consisting of the eigenvalues λ1 ≤ λ2 ≤≤ λn.
Then, for any positive integer k,1 ≤ k ≤ n,
   


   

Proof. Let x ∈ ℂn such that x is orthogonal to U[,1],…,U[:,k - 1]. Then, we can write
x = ∑
  i=knαiU[:,i], for some scalars αi’s. In that case,
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 and
the equality occurs for x = U[:,k]. Thus, the required result follows.                                  _
   


Theorem 9.7.4.  [Courant-Fischer]  Let A ∈ Mn(ℂ) be a Hermitian matrix with eigenvalues
λ1 ≤ λ2 ≤≤ λn. Then,
   


   

Proof. Let A = UDU*, where U is a unitary matrix and D =  diag(λ1,…,λn). Now, choose a set of
k - 1 linearly independent vectors from ℂn, say S = {w1,…,wk-1}. Then, some of the eigenvectors
{U[:,1],…,U[:,k - 1]} may be an element of S⊥. Thus, using Proposition 9.7.3, we see
that
   


Hence, λk ≥ maxw1,…,wk-1 min    ∥x∥=1
x⊥w1,…,wk-1 x*Ax, for each choice of k - 1 linearly independent vectors.
But, by Proposition 9.7.3, the equality holds for the linearly independent set {U[:,1],…,U[:,k - 1]}
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which proves the first equality. A similar argument gives the second equality and hence the proof is
omitted.                                                                                                                _
   


Theorem 9.7.5.  [Weyl Interlacing Theorem] Let A,B ∈ Mn(ℂ) be a Hermitian matrices.
Then, λk(A) + λ1(B) ≤ λk(A + B) ≤ λk(A) + λn(B). In particular, if B = P*P, for some
matrix P, then λk(A + B) ≥ λk(A). In particular, for z ∈ ℂn, λk(A + zz*) ≤ λk+1(A).
   


Proof. As A and B are Hermitian matrices, the matrix A + B is also Hermitian. Hence, by
Courant-Fischer theorem and Lemma 9.7.1.1, 

   


and 
   



   If B = P*P, then λ1(B) = min∥x∥=1x*(P*P)x = min∥x∥=1∥Px∥2 ≥ 0. Thus,
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   In particular, for z ∈ ℂn, we have 

   


                                                                                      _
   


Theorem 9.7.6.  [Cauchy Interlacing Theorem]   Let A ∈ Mn(ℂ) be a Hermitian matrix.
Define Â = , for some a ∈ ℝ and y ∈ ℂn. Then,
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Proof. Note that 

   


and 
   


                                                                                      _
   As an immediate corollary, one has the following result.
   



Corollary 9.7.7.  [Inclusion principle] Let A ∈ Mn(ℂ) be a Hermitian matrix and r be a
positive integer with 1 ≤ r ≤ n. If Br×r is a principal submatrix of A then, λk(A) ≤ λk(B) ≤
λk+n-r(A).
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Theorem 9.7.8.  [Poincare Separation Theorem]   Let A ∈ Mn(ℂ) be a Hermitian matrix
and {u1,…,ur}⊆ ℂn be an orthonormal set for some positive integer r,1 ≤ r ≤ n. If further
B = [bij] is an r × r matrix with bij = ui*Auj,1 ≤ i,j ≤ r then, λk(A) ≤ λk(B) ≤ λk+n-r(A).
   


Proof. Let us extend the orthonormal set {u1,…,ur} to an orthonormal basis, say {u1,…,un} of ℂn
and write U = . Then, B is a r × r principal submatrix of U*AU. Thus, by inclusion
principle, λk(U*AU) ≤ λk(B) ≤ λk+n-r(U*AU). But, we know that σ(U*AU) = σ(A) and hence the
required result follows.                                                                                             _

   The proof of the next result is left for the reader.
   



Corollary 9.7.9.   Let A ∈ Mn(ℂ) be a Hermitian matrix and r be a positive integer with
1 ≤ r ≤ n. Then,
   


   

   


Corollary 9.7.10.   Let A ∈ Mn(ℂ) be a Hermitian matrix and W be a k-dimensional subspace
of ℂn. Suppose, there exists a real number c such that x*Ax ≥ cx*x, for each x ∈ W. Then,
λn-k+1(A) ≥ c. In particular, if x*Ax > 0, for each nonzero x ∈ W, then λn-k+1 > 0. Note
that, a k-dimensional subspace need not contain an eigenvector of A. For example, the line
y = 2x does not contain an eigenvector of .
   


Proof. Let {x1,…,xn-k} be a basis of W⊥. Then,
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   Now assume that x*Ax > 0 holds for each nonzero x ∈ W and that λn-k+1 = 0. Then, it follows
that min    ∥x∥=1
x⊥x1,…,xn-k x*Ax = 0. Now, define f : ℂn → ℂ by f(x) = x*Ax.

   Then, f is a continuous function and min∥x∥=1
 x∈W  f(x) = 0. Thus, f must attain its bound on the unit
sphere. That is, there exists y ∈ W with ∥y∥ = 1 such that y*Ay = 0, a contradiction. Thus, the
required result follows.                                                                                             _
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