Extrusion of square billet through cosine die.

By Avinash Kumar 10105018 Manufacturing Science Mechanical Engg. Department I.I.T. Kanpur(U.P.)

Table of contents:-

Introduction
Analysis
Results & discussion
Conclusion
References

Introduction

- extrusion:-a process by which a block of metal is reduced in cross section by forcing it through a die orifice under high pressure.
- Factors affecting extrusion process are die profile, friction factor, extrusion pressure & temperature.
- Dead metal zone, redundant work .
- Its dependence on die profile .it also optimizes the extrusion pressure.

Introduction

Methods for analysis of extrusion process

Upper bound method
Lower bound method
Slip line field method

Upper bound method:-It states that among all kinematically admissible velocity fields the actual one minimizes the expression

$$J = (2\sigma_0/\sqrt{3}) \int \sqrt{(\varepsilon_0 \varepsilon_0) \, \mathrm{d}V} + (\sigma_0/\sqrt{3}) \int |\Delta V|_s \, \mathrm{d}S$$
$$+ (m\sigma_0/\sqrt{3}) \int |\Delta V|_{\mathrm{sf}} \, \mathrm{d}S_{\mathrm{f}}$$

Dual Stream functions:-

- It represents class of surface in 3D called stream surfaces.
- It should be continuous & satisfying the b.c. On velocity.
- It should also satisfy the incomprehensibility conditions.
- It is used to determine the velocity components.
- Its function of die profile function.

Profile of die in 2D & 3D

Stream function & velocity components:-

$$\varphi_1 = x/F(z)$$

 $\varphi_2 = W^2 V_b y/F(z)$

$$\begin{split} V_x &= (\partial \varphi_2 / \partial y) \left(\partial \varphi_1 / \partial z \right) - (\partial \varphi_1 / \partial y) \left(\partial \varphi_2 / \partial z \right) \\ V_y &= (\partial \varphi_2 / \partial z) \left(\partial \varphi_1 / \partial x \right) - (\partial \varphi_1 / \partial z) \left(\partial \varphi_2 / \partial x \right) \\ V_z &= (\partial \varphi_2 / \partial x) \left(\partial \varphi_1 / \partial y \right) - (\partial \varphi_1 / \partial x) \left(\partial \varphi_2 / \partial y \right) \end{split}$$

Velocity & strain components:-

 $V_x = W^2 V_b x F' / F^3$ $V_y = W^2 V_b y F' / F^3$ $V_z = W^2 V_b / F^2$ where F = F(z) and F' = dF/dz.
$$\begin{split} \varepsilon_{xx} &= (W^2 V_b F')/F^3 \\ \varepsilon_{yy} &= (W^2 V_b F')/F^3 \\ \varepsilon_{zz} &= (-2W^2 V_b F')/F^3 \\ \varepsilon_{xy} &= \varepsilon_{yx} = 0 \\ \varepsilon_{yz} &= \varepsilon_{zy} = (1/2)W^2 V_b y [(F''/F^3) - (3(F')^2/F^4)] \\ \varepsilon_{zx} &= \varepsilon_{xz} = (1/2)W^2 V_b x [(F''/F^3) - (3(F')^2/F^4)] \end{split}$$

Various die profile shapes:-

(6)

(a)

(e)

€i 3

 The power consumed due to plastic deformation ,die surface & total power consumption are compared for the cosine with straightly conversing die.

Shows the variation of extrusion pressure with percentage reduction for smooth dies(m=0)

 Shows the variation of internal work of deformation with percentage reduction for smooth dies(m=0)

 Shows the variation of extrusion pressure with percentage reduction for dies with sticking friction(m=1)

 Shows the variation of non dimensional length with percentage reduction for dies with sticking friction(m=1)

conclusion

- Cosine dies are superior to other dies.
- It needs lower plastic deformation work, die surface friction and total power consumption.
- Upper-bound loads for the extrusion of square sections from square billets have been computed using the dual-stream-function method for a number of concave and convex dies. It is seen that a cosine die yields the lowest extrusion pressure under frictionless conditions (m = 0), whilst under sticking-friction conditions (m = 1.0) a straight-tapered die provides the least pressure.

conclusion

The internal work of deformation is found to be minimum and nearly equal to that for homogeneous compression for a straight tapered die for m = 0. It is also seen that the upper bounds calculated for concave dies are always greater than those for convex dies, due to the greater deformation volumes enclosed by these latter dies.

References

- Nagpal V, Altan T. Analysis of three-dimensional metal flow in extrusion shapes with the use of dual stream functions. In:Proceedings of the 3rd North American metal working research conference, Pitttsburgh; 1975. p. 26–40.
- Yang DY, Han CH. A new formulation of generalized velocity field for axisymmetric forward extrusion through arbitrarily curveddies. Trans ASME J Eng Ind 1987;109:161–8.
- Gunasekera JS, Hoshino S. Analysis of extrusion or drawing of polygonal sections through straightly converging dies. TransASME J Eng Ind 1982;104:38–44.
- Yang DY, Kim YG, Lee CM. An upper-bound solution for axisymmetric extrusion of composite rods through curved dies. IntJ Mach Tool Manu 1991;31(4):565–75.
- Maity KP, Kar PK, Das NS. A class of upper-bound solutions for the extrusions of square shapes from square billets through curveddies. J Mater Process Technol 1996;62:185–90.
- Narayanasamy R, Srinivasan P, Venkatesan R. Computer aideddesign and manufacture of streamlined extrusion dies. J MaterProcess Technol 2003;138:262–4.

