

Object-oriented software engineering for designing an aerial survey LiDAR Simulator

Rakesh Kumar Mishra, Dr. Bharat Lohani

Geoinformatics division Indian Institute of Technology Kanpur Kanpur, INDIA

LiDAR Technology

□ Provides accurate topographic data at high speed

Data collection with higher density, accuracy & less time

□ Weather and light independent

Applications:

- DEM generation
- Flood hazard zonation
- Cellular networks etc.

Object-oriented software engineering for software development

Initial investigation (Why simulator ?)

LiDAR data is not available in most of the countries

□ LiDAR data is not available for teaching as required

□ LiDAR data is not available for research as required

□ Software for flight planning

Requirements User friendly GUI

- □ Simulation of generic as well as commercial sensors
- □ Simulation of earth like surfaces
- □ Flight trajectory as in case of actual flight
- □ Possibilities of error introduction
- Output data in common format
- □ Help and tutorial

Feasibility study

- Sufficient background is available for the system development
- The system can be engineered using current technology
- Development can be done within the budget & time

Developed system will be useful for the user group

□ Objects in the problem domain is identified

Object relationships are made

Object state table is developed

□ Inheritance diagram for objects is made

Object-oriented design

Trajectory components

Class design

□ Identify classes from the components

□ Identify subclass within each class

□ Identify abstraction in each class

□ Identify the common behaviour of classes

System implementation

□ Java is used to realize the design

□ Each classes are implemented with its relationship

□ Standard way of coding is used

□ Methods are designed for each basic task

Complexities handled

□ Efficient algorithms are designed

□ Threads are used to optimize software execution

Special data structures are designed to handle memory problems

□ New file formats are designed to improve I/O.

GUI Screenshots

Polynomial surface

Raster surface(City model)

Fractal surface

Acceleration

Airborne Altimetric LiDAR Simulator		
<u>File M</u> enus <u>H</u> elp		
Surface City Model Fractal Terrain	Sensor Roll Pitch	tput
Platform Component	Acceleration Parameters	□* ⊠
Elight	Enter values of acceleration parameters	
Acceleration Choice	A, B, C & D values for accelerations:	
Select Acceleration Type		
Simulated Acceleration O Without Acceleration	0.3 80 0.2 100	
	av: 0.05 3.38 0.51 3.77	
OK Consel	1.25 2.45 1.07 2.88	
	0.3 85 0.2 95	
	az: 0.85 1.38 1.51 4.77	
	0.25 4.45 1.07 0.88	
	0.2 80 0.3 100	
	m: 0.0	
	OK Cancel	

Sensor component

📓 Airbor	ne Altimetric LiDAR Simulator		
<u>F</u> ile <u>M</u> enu	us <u>H</u> elp		
Sur	City Model Fractal Terrain Image: City Model Image: City Model	Flight Senso	r Roll Pitch
<u>S</u> ensor T	ypes		
<u>G</u> eneric	Sensor		
<u>ALS 50</u>	Parameters for Generic Sensor	Parameters for ALS50 Sensor	Parameters for ALTM Sensor
<u>C</u> lose	Flight Plan	Flight Plan	Flight Plan
	Altitude (m AGL): 1100	Altitude (m AGL): 1100	Altitude (m AGL) : 1100 (Up to 2000 m)
	Overlap (%) : 1.5	Overlap (%) : 1.5	Overlap (%): 1.5
	Velocity (m/s) : 60	Velocity (m/s) : 60	Velocity (m/s) : 60
	LiDAR Settings	LiDAR Settings	LiDAR Settings
	Scan Pattern : Sinusoidal	Firing Frequency (kHz) : 2	Firing Frequency (kHz) : 20 (Up to 100 kHz)
	Firing Frequency (kHz) : 20	Scan Frequency (Hz) : 3	Scan Frequency (Hz) : 30 (Up to 35 Hz)
	Scan Frequency (Hz) : 48	Field of View (deg) : 5	Scan Angle (deg): +/- 25 (Up to 30 deg)
	Scan Angle (deg) : +/- 25		
	OK Cancel	ОК Са	OK Cancel
Indi	an Institute of Techno	logy Kanpur	22

System defined optimal flight lines

User defined optimal flight lines

Attitude

📓 Airborne Altimetric LiDAR Simulator					
<u>F</u> ile <u>M</u> enus <u>H</u> elp					
Surface Fractal Terrain Flight	Sensor Roll Pitch				
🔲 Roll, Pitch and Yaw Component	🔄 🛅 Roll, Pitch and Yaw Parameters 🔤				
RPY Parameters	Enter values of RPY parameters				
RPY Simulated	A, B, C & D values for RPY:				
RPY from File	A B C D				
Close	Roll: 0.05 1.38 0.51 1.77				
	0.25 0.8 0.27 0.88				
Parameters for Roll, Pitch and Yaw (Simulated)					
Salast Ball Ditab and Your	Pitch: 0.7 0.5 0.51 1.4				
Select Roll, Pitch, and Taw	0.25 0.7 0.57 0.7				
Simulated RPY O Without RPY	Yaw: 0.85 0.4 0.51 1.3				
	0.8 0.8 0.7 0.7				
OK Cancel	m: 0.0				
	OK Cancel				
Indian Institute of Technology Kanpy	<u>17</u> 25				

Error simulation

📄 Parameters for Error in Simulated LiDAR Data					
Enter values of error in X, Y & Z coordinates					
O With Error O Without Error.					
Error in X(m): 0.30 Error in Y(m): 0.30 Error in Z(m): 0.15					
OK Cancel					

Output generation

airborne Altimetric LiDAR Simulator	
<u>File M</u> enus <u>H</u> elp	
Surface City Model Fractal Terrain	Sensor Sensor Roll Fror Simulation Dutput
☐ Output of the Processes Select Output:	Writing X Y Z values for flight line: 1 🗱 🗗 🗹 🛛
✓ X, Y, Z, Values.	
LAS binary (Version 1.0).	
LAS binary (Version 1.1).	
Time, Altitude.	Writing LAS (1.0) file for flight line:1 26%
Time, Accelerations.	
Time, X, Y, Z, Attitude, Accelerations.	
Error in Various Processes.	
OK Cancel	Writing LAS (1.1) file for flight line:1 D C C

Simulator Results

3D Raster terrain (Displayed in Surfer)

Altitude=210m Overlap=4% Velocity=60m/s Sensor-ALS-50 Firing frequency=20KHz Scan frequency=48Hz Scan angle=40° Flight area=430m×430m

Rakesh Kumar Mishra

Lidar data plot in plan

Rakesh Kumar Mishra

Profile A-A with and without error

			 -
		-	

nan Hanna anna	ی میں اور		 A second s	

Profile B-B with respect to flight lines

LiDAR data without error

LiDAR data with error

Rakesh Kumar Mishra

Data without attitude variation

Data with attitude variation

Rakesh Kumar Mishra

Fractal surface displayed in Surfer

Rakesh Kumar Mishra

LiDAR data of fractal surface

Terrain with objects

Indian Institute of Technology Kanpur

Rakesh Kumar Mishra

Altitude=490m Overlap=2% Velocity=60m/s Sensor-ALS-50 Firing frequency=20KHz Scan frequency=48Hz Scan angle=50° Flight area=640m×460m

LiDAR data of terrain with objects

Profile view of buildings

Effect of different flight direction

Use of Simulator

Education

- Process of LiDAR data generation
- □ Effect of change in various parameters
- Effect of error in data
- □ Effect of different sensors on LiDAR data
- Generating data of known ground truth
- □ Conducting various lab exercises

Research

- Evaluation of information extraction algorithms
- □ Assessing effect of error on performance of algorithms
- □ Study the effect of parameters on data
- Generate data of different specifications with no cost
- □ Finding optimal data specification for an application

Flight planning

Determine the optimal flight line

□ Effect of sensor parameters on data

- □ Effect of data density
- Determine the optimal sensor parameters

Conclusion

□ Offers a user friendly GUI based interface

□ Simulate the process of LiDAR data collection

□ Freedom to set the sensor parameters

□ Many data sets can be generated for the same terrain

□ Ideal software tool for LiDAR research and education

OOSE makes it easily maintainable and scalable software

Rakesh Kumar Mishra

Thanks !!