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“.the deeper one drives the spade the harder the
digging gets; maybe it has become too hard for us
unless we are given some outside help, be it even by
such devilish devices as high-speed computing
machines.” - H. Weyl

(from an address delivered at the Princeton
University Bicentennial Conference on the
Problems of Mathematics, December 17-19, 1946)
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INTRODUCTION

Numerical simulations play a dominant role in
current science and engineering for the
purpose of our understanding of physical
phe: 2 Typical pl logical
theories and models involve some kind of a
continuum, for example, the assumption of
continuous space, continuous matter and/or
continuous time. Since most of the popular
scientific models contain equations that do not
admit closed form solutions, a strong
alternative, indeed a technique, to obtain some
solutions of such equations within a
controllable bound on error, is available to
researchers as numerical simulation. A typical
such model system involves differential
(ordinary or partial) equations, and the
technique of numerical simulation uses a
transformation, called discretization, and it is
applied on the continuous model. The resultis
a discrete model, or rather a family of
discretized models depending on discretizing
parameters such as mesh size. This process
involves, among other things, a shift from
non-algebraic to algebraic setting and
infinitesimal need to be replaced by finite, for
example finite difference equations result
from a discretization of differential equations
[2, 20]. The final discrete model so
constructed is implementable on a digital
B

comp for numerical si

Most of the focus, traditionally, in numerical
simulation remains on increasing the accuracy
of the numerical solution[27]. This has been
found inadequate, over last few decades, due to
a need for preserving the structure of the
original system as well [10]. The
mathematical/ geometrical structure of the
discrete model, constructed for the purpose of
numerical simulation, in relation to the
structure of the original continuous model is
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not at all obvious. In this article, I shall restrict
the attention to conservative mechanical
systems, i.e. the systems with time indey
Hamiltonian [7]. For example, consider a
mechanical system, such as a simple pendulum,
whose equation of motion is given in the
Hamiltonian framework. If I discretize these
equations then what is the structure of the
discretized model system in relation to that of
the original Hamiltonian system? Is there an

iated discrete Hamiltonian structure? For
such systems certain structure-preserving
numerical algorithms have been developed by
the researchers around the world which include
those methods preserving some physical
entities such as energy, momentum, etc, and
also some structural details such as
symplecticity, ete for simulating mechanical
systems [3, 14, 28, 27, 10, With the rise in
research, development and application of
structure-preserving algorithms in the field of
numerical simulation, there are still a few
fundamental aspects that require more study
(10,257,

On the other hand, from a practical point of
view the assumption of a continuum should
also allow a possibility to “measure'
continuously with ‘arbitrary' precision.
Obviously in the realm of measurements, this
kind of continuity is quite out of place (more a
hope) in the observable world (even if one
ignores validity of quantum theoretic
assumptions) and yet it is a common
assumption in scientific works. Discrete
mechanics’, in contrast, may require that such
measurements be at most countably possible,
not necessarily continuously. Since it involves a
discrete model system, it can be directly used
for numerical purposes. But again similar
questions may be asked. For example, is there a
possibility of a discrete Hamiltonian structure
so that the discrete model itself has properties

“There are also many other interpretations, formalations, as well as questions behind this which have been under investigation as part

of the quantum theories but 1 shall not indulge in those.
I shall not discuss any philosophical issues
of maximum or minimum does not appe

<Euler

chind a requirement like this. Nothing at all takes place in the universe in which some rule




analogous® to that of a continuous
Hamiltonian model? Indeed the focus is
therefore on studying discrete analogues of
some fi 1 continuous hematical
tools. Discrete mechanies contains  the
analogue of Lagrangian and Hamiltonian
mechanics when continuous time is replaced
by its discrete counterpart. Note that this is
not the same as any arbitrary discretization of
the equations of motion of a mechanical
system with continuous time but rather a
structure preserving discretization which also
has interesting theoretical aspects analogous
to continuous time Lagrangian and
Hamiltonian mechanics (see, eg.[24, 297).
The evolution of the system occurs at discrete
time instants from the outset following a
discrete variational principle and a discrete
analogue of the Euler-Lagrange equations,
Hamilton's equations, etc. The advantage
that the discrete analogues of the concepts in
continuous time such as symplecticity, the
Legendre transform, momentum maps,
Noether's theorem, ete, appear naturally (247,
Whereas the main topic in discrete mechanics
is the development of structure-preserving
algorithms for Lagrangian and Hamiltonian
systems (see, eg, [24]), the theoretical
aspects of itare interesting in their own right,
and furthermore provide insight into the
numerical aspects as well.

For the purpose of this article, discrete
mechanics may be arising either out of
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cob Bernoulli providing the stationarity condition [19, 87
tor his derivation of the cycloid as minimal curve

computational discretization (usually needed
to solve a typical problem in continuous
mechanics) or it may be inherently involved in
the behavior of a phenomenological
mechanical model. Either way the subject of
discrete mechanics finds a prominent place in
the subject of mechanics as well as applied
mathematics (1537, In this article on discrete
mechanics [ shall not dwell on details. For
more exhaustive’ surveys, there are many
other sources available, eg. (28,247

1. CLASSICAL MECHANICS

Before embarking on the discrete case in the
next section, it may be helpful to recall some
aspects of the continuous. As it will be clear
soon this necessitates some highlights from
the traditional calculus of variations. The
foundations of analytical mechanics can be
attributed to Euler, Lagrange and Hamilton
[87. Ina way, the mathematical solution of the
“brachistochrone problem' [197 was the
origin of the main tool involved, ie., calculu
of wariations, [8, 6]. Using a discrete
variation of the extremal curve between
equidistant points and the discrete
stationarity condition (see Fig.1), the
Bernoulli brothers thus anticipated Euler's
constructions for finding a general condition.
Euler solved the more general extremal
problem for a given a function F dependent on
three variables #,4,¢ ' The problem was

enter) gure by
[19, 87; {right) Original

"Also, a few ariginal citations may be missing and many results or concepts could have been credited more accurately.

“qand § are independent variables, possibly vectar valued in the following

determination of a curve g which extremi.
the integral (67

a

F(t,q(t),q(t))dt. (1)

0

Such anintegral occursin the brachistrochrone
problem, for example. Note that for a given
candidate curve, the variables ¢ and ¢ are
assignedas:q = g(t), ¢ = g-‘{(l) foragivent.

As can be seen in Fig. 1, Euler introduced
equidistant discrete points t as part of the
s. The discretized problem can be
ly using the methods of elementary
calculus, The condition for the discretized
problem requires a sum to be stationary. In the
limit as the distance between consecutive
discrete points approaches zero, the sum
approaches the original integral and the
discrete stationarity condition becomes a
differential equation:

aF ) d IF I
m(r.q(l)‘q(f)) - m(ag“-"“)'"(”” =0,

0<t<al2)

This equation is usually called the Euler-
Lagrange differential equation and it
expresses a necessary condition for an
extremal of the problem [67]. For example,
the famous geodesic curves Fig. 2) on the
spherical surface in three dimensions, i.e, arcs
of great circles, provide extremals for the

(s

distance function on the surface. Following
Euler, one may associate a discrete set of
points on a geodesic candidate and attempt to
construct a discrete geodesic in such a way
that the total discrete distance on the surface is
minimized. In the limit when the number of
points become infinite, one hopes to recover
the continuous arc of a great circle.

Applying above variational formalism to
mechanics requires some  definitions. The
action function [17 & to be extremized,
invoking the Hamilton's principle (17, is the
integral

64'.‘1'.(4.\'.’,\')22/1.,(q(l).q(I])dl (3)
~

along a trajectory 7 (ing-t plane) connecting
the points (go, to) and (gx,tyx) (see Fig. 3).
Here as an interlude I describe the notation
which is useful for the rest of this article. The
symbol Dy, whenever it appears in front of a
function of two variables, example L, refers to
derivative with respect to the first entry in the
expression of the function (for example L
depends on two variables g and ¢, both
variables vectorial in general, so that q is
respect entry and ¢ is the second).Similarly,
D, refers to derivative with respect to the
second entry in the expression of the function.
Inother words,’
pi=%p, -2
dq dq

Figure 2: Paths with minimum distance between two points on a sphere together with a set of points on
such a path.

Figure 3:
Figure
of action function S{qgo.qn)
Using this notation, when F in (1] ix independent of ¢, (1) can be now rewritten as Dy Figtrl, ¢
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tly smooth L,

nuous extremal betweengoy;ga; along with a dise
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be Euler-Lagrang

Dyblset), e = 0. for 7 (in g-¢ plane) as the unknown traje
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An extremal trajectory which models the
evolution of the mechanical system, governed
by the Hamilton's principle stated above, is a
solution of the Euler-Lagrange differential
cquation”

d

i(P2L) = DiL =0 (#)
with the boundary values

qlto) = qo.qltx) = an. (5)

Using a family of extremals (see Fig. 4) the
action & can be considered as a function
S(qugn) , defined by

Stanax) = [ Lia(0).d(0)ar )
ta

The solution exists uniquely locally at least if
o, gn are sulliciently elose 717, The partial
derivatives of S with respect to gy and gy,
using the definition of the conjugate momenta
10, ia the Legendre transform p= Dy L,
can be found as

95 (go.an) = ~us () =
By W00 = —Po g l@ean) =pa- (o

Thedifferential of S is, therefore

dJas aJs
ds = —(’II\ + m(”ln = pndgx — podqn,

dan
(8)

Figure 5: A simple (mathematical) pendulum (17

which is one of the basic formula for the
generating functions of  a symplectic
transformation [ 17 (though derived above by
the application of elementary calculus[2+7)

Using the definition of the conjugate
momenta p = DL, the Hamiltonian [17] can
be obtained as H = pg — L ; and one may
derive the Hamilton's equations. I skip the
details as they can be easily found in any
classical book, for example [7, 15]. The
extremals, ie, the solutions of Euler-

Lagrange equation, can be associated with the
solutions of the Hamilton's equations in a one
to one manner through the Legendre
transform "17.

As an illustration of the Hamiltonian
framework, I mention here a common
example: simple  pendulum (see Fig. 5).
Consider the mathematical pendulum -
assuming the mass m = 1, massless rod of
length /= 1; gravitational acceleration g = 1.
Thisisasystem (see Fig. 5) with one degree of
freedom(g = 0, p = g= #)and the Hamiltonian

1
H{q,p) = =p* — cosgq. (9)
can be easily found either directly or using the

Lagrangian for th tem. The Hamilton's
equations of motion for simple pendulum are

p=—sing,

. 10
i=p. (10)
Since the left hand side is 27-periodicin ¢, itis

natural to consider ¢ as a variable on the circle
§'. Hence, the phas (see Fig. 6) of
points (p,q ) becomes the cylinder R x §'.
Figure 6 also shows some level curves of
H(q, p )and the solution curves of the
Hamilton's equations lic on such level curves.
There exists a symplectic structure on the
phase space which is preserved by the exact
flow (See [17 for further details). For the case
of simple pendulum, since this system has a
single degree of freedom, the symplectic
structure reduces to the preservation of area
and Fig. 7 demonstrates the same.

In the next section I shall now discuss some
discrete counterparts of above conceptual
formulation,

2.DISCRETE MECHANICS

A formulation of mechanics adapted to
numerical simulation may be termed discrete
mechan There have been many attempts
at the development of a discrete mechanics
157 along the same lines as the traditional
mechanics. In this arti for simplicity, I
restrict the attention to classical mechanics
The discrete mechanics, as developed so far

°
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Figure 6: The phase space (extreme right) of a simple pendulum using ¢ = 0, p = g = d, along with

level curv
charac

regions as time increa

variational principle. Using a discrete time as
dynamical variable and a given discrete
Lagrangian some other developments also
took place in parallel directions [16, 17
Overall this is one place where mechanics and
numerical d tization and common ground
and may complement each other.

A “discrete' Lagrangian flow {ae}il0 onan

n-dimensional smooth conguration space Q,
can be described by the lullumng “discrete!
variational pr mmple Let &% be the following
action sum of the “discrete’ Lagrangian

Li:QxQ

‘ 4 N-1 (11)

&Y ({ahiio) = z Lalg. q+1).
k=0

The discretized Hamilton's principle consi
of Lxm.mmng, for given go and gy, the sum
Sal({gn}Y). Above expression for the discrete
action can be considered as an approximation
of the action |||ugl'||f Lig(t),q(t))dt
Recall the notation stated earlier ce meerning Dy
and Dy So Dyin front of L refers to derivative
with respect to the first entry in the expression
of the function [ yand so on. Using the discrete
variations gg + en, for k=0,1,... N, ¢
small, ny = ny =0, the re iational
principle for &) () = 0 all such gives the
“discrete’ Euler-Lagrange (difference)
equation’:

DaLa(qe-1,qx) + DiLalge.gea) = 0. (12)

£

187who termed it “discrete mechanics
rete Lagrangian L
rticular, 01 Lalay v ea)

-0 an extremum.

“This depends on the postulited discrete ian

237 as an approximation Lulao.
Dylalav.aves) =

{middle and left plots) of H{g, p). Also shown in the phase space are some
stic trajectories of a simple pendulum
Preservation of symplectic structure, which in tlm case redu
, by the continuous phase flow of simple pendulum [ 10
and this is shown for two sets of initial conditions bounded by circles,

s to the conservation of (signed)
darker regions evolve into lighter

Above is a three-term’ difference scheme
207 for determining 91 -+ 4v—1 (given go, gn)
Now the “discrete’ momenta can be defined via
a ‘“discrete' Legendre transform (247,
o = D2La(qn-1.92). Also by the discrete
Euler-Lagrange equation (12),
e = =Dy Lalgn, Gus1). In fact, the left and
right “discrete” Legendre transforms [267]
FLE:QxQ — T*Q canbe formally defined
by
FLT < (quoqiir) = (gu, —Di Lalge, qesn ).
FLY = (greqiesr) = (ges1, D2Lalge. ki),
(19)
respectively. Consequently the momenta are
givenby
Prist = —DiLalge, qesr),

14)
Piier = DaLalgr air)- {

The discrete Euler-Lagrange equation

implies that Pi-14 = Pris1 In view of this,
by defining

it —
Pk = Pk = Prgsrs (1)

one can rewrite the discrete Euler-Lagrange
equation as follows:

e = —DiLa(qk, gr+1),

(16)
s = D2Lalqi, Gisa)-

“This appears to be due to the name of scheme for numerical solution of classical equations of mation by LaBudde and Greenspan
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. evolve into lighter regions as time index increases and this is compared with
the continuous flow shown in Fig 6 for two sets of initial conditions bounded by circles and same scaled
instants, Note the preservation of symplectic structure.

Figure 9: Some trajectories for the discrete pendulum model [11, 127 in p-q plane.

ections 2014

Recall now the continuous case in the interim
and analogous to it, using the definition of Sy

Salgo.qn) = Z La(gn.gn+1)- (17)

cIN
nem]

where {g,, }i_ is a solution of the discrete
Euler-Lagrange equation above with the
boundary values g and gy, it can be shown
that

dSalgo,qn) = —podao + pnday,
05, a8, (18)
dg  Mogy TV
Suppose the discrete flow, due to the discrete
Euler-Lagrange equation, is denoted by

B, QxQ>QxQ JLe,
DLyt (gr-rogn) = (Qe, Qi) (19)

Le, &, is a representation of the general
solution of the discrete Euler-Lagrange
equation. Then, in the presence of a well
defined discrete Legendre transform between
paiandg,, | for given g, , the discrete ¢ is
symplectic J17.

For example, in the case of simple pendulum,
since [ =pj—H=T-V

= ,i(]’ + cosq,

1 °
Lalae, aen) = g1 = a)* + 7 cos g, (20)

where 7 is a time constant.
discrete model is proposed:

ing this, a

Qi1 = 7(p — TSingy) + i,

Pi41 = pr — TSing.

(2)

Such discrete models lead to a symplectic
flow™. In contrast to the original continuous
integrable system, it has been established that
these discrete flow maps, in general, do not
correspond to aintegrable” behavior [11,127.
For example, see the right side of Fig. 9 which
has been obtained by zooming in the

Lar, o s,

The same notation requires attention in Table 1

wd 50 an. [ parti

)=

ation stated earlier that D, in front of #7 refers to d
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trajectories near the figure eight trajectory in
cylindrical ph space of Fig. 6, i.e, near a
homoclinic orbit, of the pendulum. In this
manner the familiar KAM (Kolmogorov-
Arnold-Moser theorem [[17) features appear
in the discrete pendulum model [11, 127,
which are absent in the continuous case. Note
that the discrete Hamilton's equations are also
not quite analogous to the continuous case as
presented above, though the flow is on the
phase space, ie. the cotangent bundle T*Q.
With the right discrete Legendre transform

prir = FLJ (G, qrsr) = DaLalqe, qrir),

(22)
the following right discrete Hamiltonian can
be defined [267:

H (g prs1) = PrsrGesr — Ld(‘lb(]kol)t‘”)
Then, the discrete Hamiltonian map is denied
by the right discrete Hamilton's equations'
[26]

g1 = DaH [ (Ge, prs1)s (24)
pr = D1H [ (qe, pr+1)-

Similarly, with the left discrete Legendre
transform, a set of left discrete Hamilton's
equations result [267. Further as an
extension of the analogy between discrete
and continuous mechanics, a discrete
Hamilton-Jacobi equation, i.ec, Hamilton-
Jacobi differential-difference equation, can be
derived [+7. A list of some analogies between
ingredients in continuous and discrete
theories can be found in 7267, I am including
hereaslightly expanded list as Table1

A word of caution with discrete approach may
conclude this article appropriately. That in the
hunt for quantitative prediction using discrete
mechanics there is a risk of easy slide into the
tumultuous river of computational
mechanics. A risk avoidable to some while

desirable to some.

D3t} v pastd =




Continuous Discrete
(a.t) € Q x Ry (9.1) € Q x Z§
Lia(t), 4(1)) La(aw, us1)

S(g) 1= [y~ Lig(t).d(0))dt sing
4(0) = qo,q(tx) = qx

&) ((n}eo) = Lo’ Lalan.quar)

;L(D:L(v(l).ﬂ'))) = Dy L(q(t), 4(1)) = 0

DaLa(gu-1,qx) + Dy Lulqu, qusr) = 0

Evolution of g(t) from gy to gy in the

Evolution of g4 from gy to gy in the

configuration space Q configuration space Q
Legendre Transform FLj (quy qrsr) = DLl usr)
FL(q,4) = D2L(g,4) FLi (9 qusr) = =Dy Lalan, usr)

Hq.p) = (pi = L(q,4)) wing

La(aw, ausn)
or (H] (qu,pasr) = pror@isr = Lalqn, qusr))

4(t) = D:H(q(t).p(1)).
#t) =-DyH(q(t).p(1))

e p=FLq.d) using qusr © pror = FLY Q0 qus1))
or (Hy (proqusr) = =peae = Lalgn, qusr))
using guer ¢ puo= FLG (quiqusr))
Hanieea's squations {n = —DiLdlg @),

Prsr = DaLalqu.qusr)
sy = Dz”:(‘-’bll
P = Dy HJ (qu.prs1)

@ =-DiH;(pr.us1),
Prer = —DaHy (Prqusr)

Conti lution of 3 ¥
(q(t).p(t)) from (qo.po) in the phase
space T°Q

Discrete evolution of trajectory (gu.pz) from
(90, p0) in the phase space T°Q

S(g.t) = [5(P(s)i(s) — H(g(s).p(s)))ds
using (g, p) as solution of Hamilton's
equations with g(t) = ¢.4(0) = g

Sh@) = Tico Lalan@i+1)
or Si(@) = Tise (Prerqres — Hj (@1 pre1))

or Silae) = Tico (—prax — Hy (pr.@i1))
using (e, pa) as solution of discrete
Hamilton's equations

5 (a.)dq + §3(a. )t

S5 (qusr) — Sha)

pit)dq ~ H(q(t), p(t))dt

La(gu.qus1)
or prargusr = Hi (qu.pasr)
or =pugi = Hy (Pr,qrsr)

Hamilton-Jacobi equation

B+ HeE@n) =0

S5 (@ner) - Sh(@) - DSE (@1 )anes
+H] (qu, DS§* (qas1)) = 0
{s:"«...) - Sk(an) + DS}(a)an
+H7 (DS§(a).qusr) = 0

Table 1: Correspondence (267 between some ingredients in continuous and discrete theories; & is the set

of non-negative real numbers and Z is the set of nonnegative integers.
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