Chapter 3

Vector analysis

3.1 Triple products

3.1.1 Scalar triple product

(3.1)

Note that, scalar triple product represents volume of a parallelepiped, bounded
by three vectors A, B and C. The cross product is the area of a parallelogram,
which is then multiplied by height to get the volume. Clearly, we can use any two
sides as base, and the volume should not change. Using this, we can prove that
A-(BxC) = (Ax B)-C etc. Thus, it does not matter where we put the dot and cross
product in a scalar triple product and often it is represented as (ﬁéé). However,
it might pick a negative sign, like A- (B x C) = —A - (C x B) etc. It should be most
convenient to figure out all possible combinations (with appropriate sign) from the
determinant, because interchanging two rows introduces a negative sign.

3.1.2 Vector triple product

Ax(BxC)=B(A-C)—C(A-B) (3.2)
It is not very difficult to realize that the above triple product is a linear combi-
nation of B and C, i.e., a vector lying in the same plane, as the two vectors in

parenthesis. The middle vector has a positive sign and coefficient of each vector
is a dot product of the other two.

3.1.3 Exercise

1. Derive the formula for vector triple product, assuming B to be along = axis
and C in the zy plane.

2. Let us change from rectangular to some general coordinate system (any three
non-coplanar vectors, not perpendicular to each other). Derive the Jacobian,
used in multiple integrals for changing variables.



3.2. FIRST DERIVATIVE OF SCALAR AND VECTOR FIELDS

3. Using reciprocal lattice vectors b, by and bs, find the direction perpendicu-
lar to the plane with Miller index (hkl). Also find the inter-planar spacing
between (hkl) planes.

4. Mary L. Boas, chapter 6, section 3, problem 11-14.

3.2 First derivative of scalar and vector fields

3.2.1 Gradient and directional derivative

Let ¢(x,y, z) be a scalar field. Gradient of ¢ (read as “grad ¢” or “del ¢”) is defined
as:

%ad) ;09 ka¢. (3.3)

This is very useful for calculating directional derivative, given by

4 _ Vé-a (3.4)
du

where the unit vector is pointing in a direction along which the derivative is cal-
culated.

3.2.2 Physical significance of gradient

Note that, rate of change of ¢ in some direction v is maximum, if 4 is in the
direction of the V¢ itself. Thus, gradient is the direction along which the rate of
change (inrease/decrease) of ¢ is maximum.

3.2.3 Geometrical significance of gradient

Note that, the value of ¢ does not change along a contour line. Thus, if we draw
a tangent at some point on the contour line, ¢ does not change along the line.
On the other hand, we know that, gradient is the direction along which the rate
of change of ¢ is maximum. Therefore, we conclude that gradient is the direction
normal to the surface at a given point.

3.2.4 Divergence

o s o OV oV, OV,
V- (0V)= (Vo) -V +¢(V-V). (3.6)
Physical significance of divergence will be discussed later.
3.2.5 Curl
- L0V, 0OV, ~ OV OV, ~ (OV, OV,
1V =1 E_ Y ) r_ Z -y _ . 7
curlV’ Z(ﬁy 8z)+j<az 8x)+k(8x 8y> (8.7
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3.3. SECOND DERIVATIVE OF SCALAR AND VECTOR FIELDS

V x (¢V) = (Vo) x V + ¢(V x V). (3.8)

Physical significance of curl will be discussed later.

3.2.6 Exercise

1.

Using Lagrange multiplier, find the maximum value of the directional deriva-
tive d¢/du, subject to the constraint that a?+b*+c? = 1, where @ = ai+bj + ck.

Other coordinate systems

Define polar coordinate system. Write the transformation matrix from the
cartesian to polar coordinate system. Note that, this is a 2D rotation matrix.
Do you see why?

Write the gradient operator in polar, cylindrical and spherical coordinate
system.

Take a function f(r) = r, where r = /22 + ¢2. Calculate Vf in polar, as well
as cartesian coordinate system. Compare the answers and check whether
you get the same answer or not.

Mary L. Boas, chapter 6, section 6, problem 18-20.

Equation of a line (normal to surface) and plane (tangent to surface)

Mary L. Boas, chapter 6, section 6, problem 6-9.

Finding the direction of heat flow

Mary L. Boas, chapter 6, section 6, problem 10-14. Note that, you should
use a computer for better understanding.

3.3 Second derivative of scalar and vector fields

We can treat V as a “vector” (you have to apply some common sense as well) and
then get the following results.

3.3.1 Divergence of gradient or Laplacian

V- (V) = (V-V)$ =V (3.9

3.3.2 Laplacian of a vector field

—

(V-V)V = V2V, (3.10)
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3.4. LINE INTEGRALS

3.3.3 Curl of gradient

V x Vo = 0. (3.11)

Note that, this is just a consequence of ggy = 38;(;; etc. Using this, we can write a

very important theorem. First note that, V¢ is a vector field (say U).
Theorem: if (curl U)=0, then U must be the gradient of some scalar field ¢."

3.3.4 Divergence of curl

V- (VxV)=0. (3.12)

Using this, we can write another very important theorem. Again, first we should
note that, V x V' is a vector field (say U).
Theorem: if (div U)=0, then U must be the curl of some vector field V.

3.3.5 Curl of curl

—

Vx(VxV)=V(V-V)-VV. (3.13)

3.3.6 Gradient of divergence

0%V,

(Ve OV, VN (Ve OV, VLN (0. O,
0x?  Oxdy  Oxdz J oxdy  Oy? = Oyoz 0xdz  Oyoz

022

).

(3.14)

3.3.7 Exercise

1. Starting from the gradient, divergence and curl (first derivatives), derive
some second derivatives like: Laplacian, (curl grad), (div curl) and (grad div).

2. In order to memorize, we treated V operator as a “vector” and it worked fine!
Then, can we conclude that (V¢) x (Vi) = 0?

3. What would be the expression for: V - (V¢ x Vi))?

3.4 Line integrals

We know that, work done by a force is diW = F - d5 and we have to calculate a
line integral [W = F. d§] to get the total work done along certain path. The first

thing to keep in mind while calculating a line integral is the fact that there is
only one independent variable along a curve. Thus, first we have to express
F(z,y,z) and ds = idx+ jdy+kdz as functions of a single variable and then evaluate

'Later, we will find that it is related to Euler reciprocity relation and definition of an exact
differential, which is also a path function in thermodynamics. A related concept is a conservative
force field in classical mechanics and electrodynamics and work done is independent of path in a
conservative force field.
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3.4. LINE INTEGRALS

the integral (of one variable) to find the total work done by the force to move an
object from one point to other along a path.

Now, work required to move an object from one point to another may depend
on the path (for example, because of energy dissipated due to friction). Such a
field is known as a non-conservative force field. On the other hand, if the work
required to move an object from one point to another is independent of the path
taken, we call it a conservative force field.

Clearly, we can evaluate W along different path and find out whether the force
field is conservative or not. Can we do this without evaluating the integral? The
answer is yes and we have to think logically to recognize the following:

A vector field is conservative if V x F =0]|.

A similar statement is:

A vector field is conservative if F = VW |.

The first two statements are correlated can can be stated as,

If ﬁzﬁW, then curl F =0/

This is not entirely new, as we already know the reverse statement. In order to
prove this, let us write the components of F' = VW: F, = dW/dz, F, = 0W/oy
and F, = 9W/dz. Now, using the equality of second derivatives, i.e., 9*?W/0x0y =
0?°W/0yox, we find that

0F, /0y = 0F, /0, (3.15)
O0F,/0z = 0F; /0y,
OF,/0x = OF,/0z.

Is there a way to express the above set of equations in a compact form? We have
to use the definition of curl and we can write a compact equation like VxF=0.

Finally, we want to prove that work done is independent of the path for a
conservative force field, i.e.,

/ﬁ-dE’ is independent of path if VxF=0 o F=VW|

Now, since F' = VW, we can write F - d5 = %—Vfdm + %—V;dy + %—V:dz = dW, where
d§ = idx + jdy + kdz. Finally, the line integral

B B
/ﬁ-dgz/ dW = W(B) — W(A), (3.16)
A A

is found to depend only on the value of W at the end points and independent
of the path along which the integration is carried out. It is obvious that for a
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3.4. LINE INTEGRALS

conservative force field, integral over a closed path:

7{15~d§:jé dW = 0. (3.17)
C C

Next, we see two important applications of what we have learnt just now.

3.4.1 Exact Differential

In thermodynamics, we often see terms like exact and inexact differential. Let us
understand what do they mean. Let dI¥ be the infinitesimal difference between
two adjacent values of W, i.e., dW = W(x + dz,y + dy, z + dz) — W(z,y,z). Let us
assume that we can express the differential (often termed as total differential and
it is nothing but tangent approximation) as:

ow ow ow
dW = %dx + Tydy + gdz = Fy(z,y,2)de + Fy(z,y,2)dy + F.(x,y,2)dz. (3.18)

This particular differential is an example of exact differential.? One can easily
verify that Eq. 3.15 is satisfied for exact differential.®> This is known as Euler
reciprocity relation and it is simply based on the equality of the second deriva-
tive.

State and path functions in thermodynamics:

Do you see a connection between conservative force fields and exact differentials?
Note that, Eq. 3.15 implies that V x F = 0. Thus, we can also state that: dW =
F.d3 is exact differential if VxF = 0. The last statement is true for a conservative
force field, for which work done is independent of path. Thus, we conclude that,
line integrals of exact differentials are path independent, such that Eq. 3.16
and Eq. 3.17 are valid. In thermodynamics, exact differentials are related to state
functions, while inexact differentials are related to path functions.

One should note the connection between an exact differential and a conser-
vative vector field. If I give you a conservative vector field F', you can find an
exact differential dW = F - d5. On the other hand, if I give you an exact differ-
ential, dW = Xdx + Ydy + Zdz, then you can define a conservative vector field
like F = Xi+ Y + Zk. You will find problems related to differentials in thermo-
dynamics, while problems related to force fields are important in mechanics or
electrodynamics.

3.4.2 Scalar potential for a conservative force field

In mechanics, we define a scalar potential for a conservative force field. Note that,
F = VW implies that W is the work done by the force F'. For example, if we lift

2Every differential dw = P(z,vy, z)dz + Q(z,y, 2)dy + R(z,y, z)dz need not be an exact differential.
If the differetial is an exact differential, then only we can write it as dw = $2dx + §2dy + $2dz. See
problem set for examples.

5This is the test to check whether a given differential is an exact differential or an inexact differ-
ential.
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3.5. GREEN’'S THEOREM IN PLANE

a mass, the work done against the gravitational force is W = —mgh. But we are
increasing the potential energy by ¢ = +mgh and we conclude that W = —¢. Thus,
we can write

-

F=-V¢. (3.19)

3.4.3 Exercise

Evaluation of line integrals

1. Mary L. Boas, chapter 6, section 8, problem 1-7.

Given a conservative force field, find the scalar potential

2. Mary L. Boas, chapter 6, section 8, problem 8-15.

Given the differential, determine the function

3. Test if dz = de — Zdy is exact or inexact differential. If it is exact, find
2(z,y).

4. Test if dz = (2z + y)dz + (z + y)dy is exact or not. If exact, then find z(z,y).

5. Given dP = = de + dV, find out the function P(T,V).

(v b)2 B Tv2

3.5 Green’s theorem in plane

Line integral around a closed path is equal to the double integral over the area A
enclosed by the path.

7{[ (z,y)dx + Q(x,y)dy] = // <8Q - (9P> dzdy (3.20)

The line integral should be evaluated in the counterclockwise direction around
the boundary of A. Consult the textbook for detailed proof. There is a simple way
of memorizing the formula. If we consider the differential in the L.H.S. to be an
exact differential, then the line integral should be zero. Now, the condition for
exact differential is: 0Q)/0r = 0P/0y and these two are present in the R.H.S. in
such a combination that the integral is going to be zero if the differential in the
L.H.S. is an exact differential.

3.5.1 Exercise

1. Using Green’s theorem, prove that:

//ﬁ-ﬁdxdy_}z{ V - fids (3.21)
0A
A

Note that, this can be generalized to write the divergence theorem.
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3.6. DIVERGENCE AND DIVERGENCE THEOREM

2. Using Green’s theorem, prove that:

//(6 x V) - kdzdy :7{ V. dF (3.22)
0A
A

Note that, this can be generalized to write the Stokes’ theorem.

3. Mary L. Boas, chapter 6, section 9, problems 2-12.

3.6 Divergence and divergence theorem

3.6.1 Physical significance of divergence

Let us develop our understanding of divergence using mass flux J [velocity x
density]. Note that, whatever we discuss is true for any flux and in general, for
any vector field. We already have defined divergence as:

01, 03, 0J.
oxr Oy Oz

divi=V -J= (3.23)

Divergence represents net outflow per unit volume. See class notes/text book for
a simple proof for a cubic volume element.
3.6.2 Equation of continuity

By net outflow, we mean outgoing minus incoming and in general they are not
equal, such that the equation of continuity is:

5

P _o. (3.24)

VTt

In steady state,

- =

V-J=0. (3.25)

Note that, the above equations are correct if there exist no source and sink. Oth-
erwise, we have to add a term v to take into account the source minus sink part,

)

P _
5 = (3.26)

V-J+
3.6.3 Divergence theorem: volume and surface integral

As shown in Fig. 3.1, imagine that water is flowing through the cylinder. Now,
amount of water crossing the area A’ in time ¢ is (vt)A’p and this is equal to
the amount crossing the area A in time ¢. Since A’ = Acosf, we can write the
following:

(p)(vt)(A") = (pv) At = (pv)(Acos )t = (pv cos B) At = (J - ) At. (3.27)
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3.7. CURL AND STOKES’ THEOREM

Figure 3.1: Amount of water crossing through area A’ is same as amount of water
crossing through the area A.

Note that, 6 is the angle between the direction of ¢ and 7n (unit normal to the
surface A). Thus, net amount of water crossing per unit area and per unit time is

given by . Now, we can take some area element da on any surface enclosing
some volume (for example surface of a sphere) and unit normal 7 to the surface.
Thus, mass of water flowing out of the area is given by (J - 72)da and the total
outflow from the volume enclosed by the surface is

//(f-ﬁ)da_//f-da. (3.28)

We already know that divergence is net outflow per unit volume. We can easily
argue that (consult textbook or class notes): net outflow from the volume enclosed
by the surface must be equal to the the net outflow from a surface enclosing the
volume, which leads to the divergence theorem:

///(ﬁf)dvz//(f.ﬁ)da. (3.29)

Note that, the L.H.S. is a triple integral over the entire volume enclosed by the
surface A and R.H.S. is a double integral over the entire surface enclosing the
volume V.

3.6.4 Exercise

1. Given that, B = Vx4, using the divergence theorem, prove that ¢ B-nda over
any closed surface is zero. Can you justify this in terms of simple arguments.

2. Mary L. Boas, chapter-6, section-10, problem 1-10 and 15-16.
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3.7. CURL AND STOKES' THEOREM
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Figure 3.2: (left) Line integral over a closed path in zy plane, such that the nor-
mal is pointing towards the k at the given point. (center) We generalize the area
element and take it to be on the surface of a hemisphere. (right) Flat view of the
hemisphere.

3.7 Curl and Stokes’ theorem

3.7.1 Physical significance of curl

Again we consider fluid flow and let ¢ be the vector field representing the velocity.
Now, V x 7 represents the angular velocity of the fluid in the neighborhood of a
given point. If V x 7 = 0 in some region, then the flow is said to be irrotational
in that region. Interestingly, this is the same mathematical condition for a force
field F (which is a vector field) to be conservative.

3.7.2 Stoke’s theorem: surface and line integral

Let V be a vector field. For example, V can be a force field F or it can be V = @p
for fluid flow. We want to evaluate the line integral §, V - dF over the closed path
shown in Fig. 3.2. We have already evaluated such integrals (for example, work
done fc F - dF over a closed path). Let the vector field be V =Vyi+ Vyj' = Pi+Qj.
You can easily verify that,

Pdx + Qdy =V - dF, (3.30)

oQ orP 9V, IV, o oo -

9 Oy oz ay—(VxV) h-

. oQ op .
Now, using Greens theorem ¢ (Pdz + Qdy) = Erirw dzdy, we can write
c Y
that,

7{? dF = //(6 x V) - kdzdy. (3.31)

Now, there is nothing special about xzy plane and we can easily generalize the

above to write:
fx? i = //(6 x V) - ada, (3.32)
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3.7. CURL AND STOKES' THEOREM

Figure 3.3: In a fishing net, the net forms the open surface and the rim (made of
metal or plastic) is the curve bounding the open surface.

where 7 is normal to the area element da and c is the curve surrounding the area
element da (see Fig. 3.2).

Now, imagine a surface which is not flat, for example, surface of a hemisphere.
We can divide the entire surface of the hemisphere in small area elements da and
add all the terms obtained from the above equation. As shown in Fig. 3.2, all
the interior line integals cancel each other, because along the border, two adja-
cent integrals are in opposite direction. However, line integrals around the curve
bounding the hemisphere (the outermost circle) do not cancel each other. Thus,
surface integral over entire surface of the hemisphere is equal to the line integral
around the curve (the circle) bounding the hemisphere. This is the statement of
Stokes’ theorem, which relates an integral over an open surface to a line integral
around a curve bounding the surface:

7{ V'dfz// (V x V) -nda|. (3.33)
surface boundary surface

Let us think of a small fishing net, as shown in Fig. 3.3. The net forms the
open surface, while the rim is the curve bounding the open surface. Note that, we
can deform the net easily, but the rim does not change. Now, let us think of a
net of the shape of a hemisphere. We can deform the net to any other shape,
keeping the rim unchanged. If we do this, whatever we agrued to get Eq. 3.33,
still remains valid. Let us further assume that the net is made of a stretchable
material, which looks like a fishing net when stretched, but converts to something
like a badminton racket when unstretched. Accoding to our logic, integral over
the surface should be the same for the stretched and unstretched net. Thus,
we conclude that, what matters is the curve bounding the sufrace, not the surface
itself.
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3.7. CURL AND STOKES' THEOREM

This further implies that, all we need is to calculate a surface integral over a
flat surface (similar to the badminton racket), instead of a curved surface (similar
to the fishing net). The result is going to be same as long as the rim (curve
bounding the net) remains same. For example, if we take the bounding curve to
be a circle, it does not matter whether we have a perfect hemisphere or deformed
hemisphere on top of the circle. We need not even try to calculate the surface
integral over a deformed (or perfect) hemisphere. All we need to calculate is a
surface integral over the circle (bounding the “hemisphere” of whatever shape).

3.7.3 Vector potential

A vector field is solenoidal if V - V = 0. Using the fact that div(curl) and curl(grad)
is zero, we can write, .
V=VxA+Vu, (3.34)

where A is a vector field (vector potential) and u is a scalar field.

3.7.4 Exercise

1. Let us verify the fact that integral over a hemisphere is same as integral over
a circle boundlng the hemisphere. Assume V= dyi + zj + sz
(a) Find [ [( (V x V) - fida over the hemisphere z2 + y2 + 22 = a2, z > 0.
(b) Verify that the result will be same if we evaluate the integral over the
circle bounding the hemisphere.

Apply Stokes’ theorem to evaluate the integrals

2. Mary L. Boas, chapter-8, section-11, problems 1-15.

Find vector potential, given the vector field

3. Mary L. Boas, chapter-8, section-11, problems 18-22.
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