A Highly Scalable High Voltage MOSFET Model

Yogesh Singh Chauhan, Costin Anghel, Francois Krummenacher, Adrian Mihai Ionescu and Michel Declercq

Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Renaud Gillon, Bart Desoete, Steven Frere

AMI Semiconductor, Belgium
Outline

• Motivation – why new HV MOSFET Model
• Device Architecture and Modeling Strategy
 • Core – Low Voltage EKV MOSFET Model
 • Analytical bias dependent drift resistance
 • Strategy for charge evaluation based on V_K
• Validation and Results
 • Most of the results on VDMOS
 • Some results on LDMOS
• Conclusion
Outline

• Motivation – why new HV MOSFET Model
 • Device Architecture and Modeling Strategy
 • Core – Low Voltage EKV MOSFET Model
 • Analytical bias dependent drift resistance
 • Strategy for charge evaluation based on V_K
 • Validation and Results
 • Most of the results on VDMOS
 • Some results on LDMOS
 • Conclusion
Motivation

- Robust HV Model for circuit simulators
- Analytical & Physical Compact Model
- Accuracy in DC & AC
- Small number of parameters: EKV!
- Scaling with physical & electrical parameters
- Convergence and Speed
- Open Source

- **General** HV-MOS Model?
Outline

• Motivation – why new HV MOSFET Model
• Device Architecture and Modeling Strategy
 • Core – Low Voltage EKV MOSFET Model
 • Analytical bias dependent drift resistance
 • Strategy for charge evaluation based on \(V_K \)
• Validation and Results
 • Most of the results on VDMOS
 • Some results on LDMOS
• Conclusion
General HV MOSFET Modeling Strategy

- EKV Model
 - Physically based parameters
 - Less parameters than BSIM

EKV MOSFET Model (constant doping)

Intrinsic drain potential

\[V_G \quad V_S \quad V_B \quad V_K \quad V_D \quad R_{Drift} (V_D, V_G) \]
Device Architectures

- **VDMOS**: $V_{D_{\text{max}}} = 50\,\text{V}$, $V_{G_{\text{max}}} = 3.3\,\text{V}$

- **LDMOS**: $V_{D_{\text{max}}} = 40-100\,\text{V}$, $V_{G_{\text{max}}} = 13\,\text{V}$

Most of the available models use macro-models for HV devices with thick oxide.
Main EKV Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Channel Width</td>
<td>m</td>
</tr>
<tr>
<td>L</td>
<td>Channel Length</td>
<td>m</td>
</tr>
<tr>
<td>COX</td>
<td>Oxide Cap. per unit area</td>
<td>F/m²</td>
</tr>
<tr>
<td>VT0</td>
<td>Long-channel Threshold Voltage</td>
<td>V</td>
</tr>
<tr>
<td>U₀</td>
<td>Low Field mobility</td>
<td>cm²/Vs</td>
</tr>
<tr>
<td>GAMMA</td>
<td>Body Effect Parameter</td>
<td>V¹/²</td>
</tr>
<tr>
<td>PHI</td>
<td>Bulk Fermi Potential</td>
<td>V</td>
</tr>
<tr>
<td>E₀</td>
<td>Mobility Reduction Coefficient</td>
<td>V/m</td>
</tr>
<tr>
<td>UCRIT</td>
<td>Longitudinal Critical Field</td>
<td>V/m</td>
</tr>
<tr>
<td>LAMBDA</td>
<td>Channel Length Modulation</td>
<td>-</td>
</tr>
</tbody>
</table>
Modeling Strategy

- Drift Resistance expression

\[R_{Drift} = R = \text{constant} \]

\[R_{Drift} = \frac{R_{Drift0}}{(1 + \theta_{Acc} \cdot V_G)} \]

Why not?

- Accumulation in Drift

(Images showing graphs of current vs. voltage for different voltages, with red and blue lines indicating model and measurement, respectively.)

(red - model & blue - measurement)
Modeling Strategy

• Drift part mainly affects the linear region of the output characteristics.

• Delayed transition between linear and saturation regime at high \(V_G \) - velocity saturation in the drift

\[
R_{Drift} = \frac{R_{Drift0}}{(1 + \theta_{Acc} \cdot V_G)}
\]

\[
R_{Drift} = R_{Drift0} \left[1 + \left(\frac{V_D - V_K}{V_{SAT}} \right)^{\alpha_{vsat}} \right]
\]

High \(V_D \) but linear region

\[V_G = 2.8V \] (red - model & blue - measurement)

\[V_G = 1.2V \]
Scalable Drift Resistance

\[R_{\text{Drift}} = R_{\text{Drift}0} \left(1 + \left(\frac{V_D - V_K}{VSAT} \right)^{\alpha_{\text{vsat}}} \right) \left(1 \pm \left(k_{rd} - 1 \right) \frac{N_F - 1}{N_F + N_{\text{CRIT}}} \right) \left(1 + \alpha_T \Delta T \right) \]

\[R_{\text{Drift}0} = \rho_{\text{Drift}0} \left(\frac{L_{\text{DR}}}{N_F (W + \Delta W)} \right) \]

- \(+ \): Drain-on-sides
- \(- \): Drain all-around

Effect of Temperature

Drift Length

Number of Fingers

Width and Width Offset
Modeling of Self Heating Effect

$R_{th} \rightarrow \text{Thermal Resistance}$

$C_{th} \rightarrow \text{Thermal Capacitance}$

$P_D = I_{DS} \cdot V_{DS}$

$\mu(T), V_T(T)$

ΔT

• External Temperature Node

AC Modeling

• Charges in MOSFET and Drift region

\[Q_G = Q_{EKV} + Q_{Drift} = Q_S + Q_K + Q_B + Q_{Drift} \]

\[Q_{Drift} = (V_G - V_{FB} - \psi_s) \cdot W \cdot L_{DR} \cdot C_{ox} \]

Assumptions

• \(\psi_s \) varies linearly across accumulation charge sheet
AC Modeling

V_K behavior

- As mentioned earlier, Drift does not affect the transistor characteristics in saturation.
- V_K obtained from Spice is valid for linear region. Many models use interpolation function for smooth V_K from linear to saturation.

Normalized reverse Current

$$i_r = [\ln(1 + e^{\frac{v_p - v_k}{2}})]^2$$

Normalized charge density at V_K (EKV)

$$q_k = \sqrt{i_r + 0.25} - 0.5$$

Normalized v_k (EKV)

$$v_k = \frac{V_K}{U_T} = v_p - (2.q_k + \ln(q_k))$$

\(V_K \) vs. \(V_G \) and \(V_D \) for VDMOS

- \(V_K \) – Important parameter for design of HV-MOS

- Trend matches with device simulation and also reported with literature
Outline

• Motivation – why new HV MOSFET Model
• Device Architecture and Modeling Strategy
 • Core – Low Voltage EKV MOSFET Model
 • Analytical bias dependent drift resistance
 • Strategy for charge evaluation based on V_K
• Validation and Results
 • Most of the results on VDMOS
 • Some results on LDMOS
• Conclusion
Model Validation on 50V VDMOS

Transfer Characteristics (I_D-V_G)

- Weak inversion to Strong inversion transition
- Subthreshold slope correctly matched
- Good accuracy

(red - model & blue - measurement)
Transconductance for $V_D=0.1-0.5V$

- Subthreshold slope correctly matched
- Descending slope – drift resistance

(red - model & blue - measurement)
Output Characteristics

- Linear region correctly modeled by drift resistance.
- Self Heating Effect
- Peaks on g_{ds}

(red - model & blue - measurement)
\(C_{GD} \text{ and } C_{GS}+C_{GB} \text{ vs } V_G \)
\(V_D=0-3V \)

Lateral Doping in the channel

Interpolation function used in drift (to be improved)

- Modeling of Non-uniform doping in intrinsic MOS (Chauhan et al. in *IEDM 2006*)
Temperature Scaling in VDMOS

Self-Heating scales well with temperature

ZTC point
Width Scaling in VDMOS

- Increase in Current and transconductance with Width

(red - model & black - measurement)
R_{ON} Scaling with number of fingers in VDMOS

- $R_{ON} \downarrow - N_F \uparrow$ for drain all-around-device due to current spreading at finger edges

W=5000µm

W=40µm

T=30ºC
Outline

• Motivation – why new HV MOSFET Model
• Device Architecture and Modeling Strategy
 • Core – Low Voltage EKV MOSFET Model
 • Analytical bias dependent drift resistance
 • Strategy for charge evaluation based on V_K
• Validation and Results
 • Most of the results on VDMOS
 • Some results on LDMOS
• Conclusion
Model Validation on 40V LDMOS

Transfer Characteristics

![Graphs showing transfer characteristics for 40V LDMOS with model and measurement data.](image-url)
Model Validation on 40V LDMOS

Output Characteristics

- Impact-Ionization Effect
- Self-Heating Effect
- Effect of drift resistance

![Graph showing output characteristics with model and measurement lines, and annotations for different effects.](image-url)
Drift Length Scaling : 100V LDMOS

\[V_G = 12V \]
\[V_G = 4V \]
Conclusion

• An HV-EKV MOSFET model proposed
• Main number of parameters - 24
• Good performance in DC and AC operations
 – Error (I_{DS}) ~ 10%
 – Error (g_m) ~ 10%
 – Error (Capacitance) ~ 25%
• Tested for transient operations
• Model validated on industrial devices
• Excellent convergence and scalability
• Self-Heating effect included – No ill convergence
• Implemented in Verilog-A – Platform independent
• Tested on ELDO, SABER, Spectre, UltraSim simulators
• Model has been accepted for evaluation as a candidate for LDMOS standardization by CMC
Acknowledgements

Christian Maier, Heinisch Holger

Robert Bosch, Germany

Andre Baguenier Desormeaux

Cadence Design Systems, France

Benoit Bakeroort

University of Gent, Belgium

P. Joris

AMI Semiconductor, Belgium

J.-M. Sallesse, N. Hefyene, A.S. Roy, S. Samala

EPFL, Switzerland

Funded by European Commission project “ROBUSPIC”
Website- http://www-g.eng.cam.ac.uk/robuspic/