Compact Modeling of Semiconductor Devices: MOSFET

Yogesh S. Chauhan
Assistant Professor and Ramanujan Fellow
Nanolab, Department of Electrical Engineering
IIT Kanpur
Email: chauhan@iitk.ac.in
Homepage – http://home.iitk.ac.in/~chauhan/
Outline

• Compact Modeling
• MOSFET
• Drain Current in MOSFET
• Smoothing Functions
• Terminal Charges
• Scaling
• FinFET
Compact Modeling or SPICE Modeling

- Excellent Convergence
- Simulation Time – ~\(\mu\)sec
- Accuracy requirements – ~1% RMS error after fitting
- Example: BSIM6, BSIM-CMG

Good model should be:
- **Accurate**: Trustworthy simulations.
- **Simple**: Parameter extraction is easy.

Balance between accuracy and simplicity depends on end application.
Industry Standard Compact Models

• Standardization Body – **Compact Model Coalition**

• CMC Members – EDA Vendors, Foundries, IDMs, Fabless, Research Institutions/Consortia

• CMC is by the industry and for the industry
What is MOSFET?

- MOSFET is a transistor used for **amplifying** or **switching** electronic signals.
Introduction to MOSFET

• Building block of Gb memory chips, GHz microprocessors, analog, and RF circuits.

Basic MOSFET structure and IV characteristics

Polysilicon gate & SiO$_2$

What is desirable: large I_{on}, small I_{off}
How can we simulate MOSFET based circuits?

- We need
 - Currents
 \[
 I_{ds} = W \cdot Q_{inv} \cdot \nu = W \cdot Q_{inv} \cdot \mu_{ns} E \\
 I_{ds} = W \cdot C_{ox} (V_{gs} - V_{t}) \cdot \mu_{ns} \frac{dV_{ch}}{dx}
 \]
 - Charges (for capacitance)
Energy Band Diagram in Equilibrium
Depletion and Inversion

Surface is depleted of holes

Surface is inverted
Threshold Condition and Threshold Voltage

Threshold (of inversion):

\[n_s = N_a, \text{ or} \]

\[(E_c - E_f)_{\text{surface}} = (E_f - E_v)_{\text{bulk}}, \text{ or} \]

\[A = B, \text{ and } C = D \]

\[\psi_{st} = 2\phi_B = 2\frac{kT}{q} \ln\left(\frac{N_a}{n_i}\right) \]

\[V_{ox} = \frac{\sqrt{qN_a 2\varepsilon_s 2\phi_B}}{C_{\text{ox}}} \]

\[V_g = V_{fb} + \psi_s + V_{ox} \]

\[V_t = V_g \text{ at threshold} = V_{fb} + 2\phi_B + \frac{\sqrt{qN_a 2\varepsilon_s 2\phi_B}}{C_{\text{ox}}} \]

Amount of band bending at surface is called “Surface Potential”.

12/3/2014 Yogesh S. Chauhan, IIT Kanpur
Inversion Layer Charge

- Applied Gate Voltage

\[V_g = V_{fb} + 2\phi_B - \frac{Q_{dep}}{C_{ox}} - \frac{Q_{inv}}{C_{ox}} \]
\[= V_{fb} + 2\phi_B + \sqrt{qN_a 2\varepsilon_s 2\phi_B} - \frac{Q_{inv}}{C_{ox}} \]
\[= V_t - \frac{Q_{inv}}{C_{ox}} \]

\[Q_{inv} = -C_{ox} (V_g - V_t) \]
MOSFET V_t and the Body Effect

- Two capacitors \Rightarrow two charge components

\[C_{dep} = \frac{\varepsilon_s}{W_{d\text{ max}}} \]

\[Q_{inv} = -C_{oxe}(V_{gs} - V_t) + C_{dep}V_{sb} \]

\[= -C_{oxe}(V_{gs} - (V_t + \frac{C_{dep}}{C_{oxe}}V_{sb})) \]

- Redefine V_t as

\[V_t(V_{sb}) = V_{t0} + \frac{C_{dep}}{C_{oxe}}V_{sb} = V_{t0} + \alpha V_{sb} \]
Uniform Body Doping

• In earlier generations of MOSFETs, the body doping density is more or less uniform and \(W_{d_{\text{max}}} \) varies with \(V_{sb} \).

• In that case, the theory for the body effect is more complicated.

\[
V_t = V_{t0} + \frac{\sqrt{qN_a 2\varepsilon_s}}{C_{\text{oxe}}} (\sqrt{2\phi_B + V_{sb}} - \sqrt{2\phi_B})
\]

\[
\equiv V_{t0} + \gamma (\sqrt{2\phi_B + V_{sb}} - \sqrt{2\phi_B})
\]

\(\gamma \) is the body-effect parameter.
Threshold Voltage Modeling

• Long/Wide Channel Model With Uniform Doping

\[V_{th} = V_{FB} + \Phi_s + \gamma \sqrt{\Phi_s - V_{bs}} = V_{TH0} + \gamma \left(\sqrt{\Phi_s - V_{bs}} - \sqrt{\Phi_s} \right) \]

- \(V_{FB} \) = flat band voltage
- \(V_{TH0} \) = threshold voltage of device at zero substrate bias
- \(\gamma \) is the body bias coefficient given by

\[\gamma = \frac{\sqrt{2 q \varepsilon_{si} N_{substrate}}}{C_{oxe}} \]
Threshold Voltage Modeling

- As channel length gets shorter V_{th} shows a greater dependence on
 - Short-channel effect \leftarrow Higher Off Current Leakage
 - DIBL \leftarrow Higher Off Current Leakage at high V_{ds}

\[\Delta V_{th}(SCE, DIBL) = -\theta_{th} \left(L_{eff} \right) \cdot \left[2(V_{bi} - \Phi_s) + V_{ds} \right] \]

\[V_{bi} = \frac{k_B T}{q} \ln \left(\frac{NDEP \cdot NSD}{n_t^2} \right) \]
Threshold Voltage Modeling

• The complete V_{th} model implemented in SPICE as

$$
V_{th} = VTH0 + \left(K_{1ox} \cdot \sqrt{\Phi_s - V_{bseff}} - K1 \cdot \sqrt{\Phi_s} \right) \sqrt{1 + \frac{LPEB}{L_{eff}} - K_{2ox} V_{bseff}} \\
+ K_{1ox} \left(\sqrt{1 + \frac{LPE0}{L_{eff}}} - 1 \right) \sqrt{\Phi_s + (K3 + K3B \cdot V_{bseff}) \frac{TOX}{W_{eff}}} + W0 \Phi_s \\
- 0.5 \left[\frac{DVT0W}{\cosh(DVT1W \frac{L_{eff}}{t_{ox}}) - 1} + \frac{DVT0}{\cosh(DVT1 \frac{L_{eff}}{t_{ox}}) - 1} \right] (V_{bi} - \Phi_s) \\
- \frac{0.5}{\cosh(DSUB \frac{L_{eff}}{t_{ox}}) - 1} (ETA0 + ETAB \cdot V_{bseff}) \cdot V_{ds} - n_v \cdot \ln \left(\frac{L_{eff}}{L_{eff} + DVTP0 \left(1 + e^{-DVTP1 \cdot V_{ds}} \right)} \right) \\
- \left(DVTP5 + \frac{DVTP2}{L_{eff}} \right) \cdot \tanh(DVTP4 \cdot V_{ds})
$$
Surface Mobility

- Scattering mechanisms
 - Phonon scattering
 - Coulomb scattering
 - Interface roughness scattering

\[I_{ds} = W \times Q_{inv} \times \nu = W Q_{inv} \mu_{ns} E \]
\[= W Q_{inv} \mu_{ns} V_{ds} / L \]
\[= W C_{oxe} (V_{gs} - V_t) \mu_{ns} V_{ds} / L \]
Surface Mobility

- Mobility is a function of the average of the fields at the bottom and the top of the inversion charge layer, E_b and E_t.

From Gauss’s Law,

$$V_g = V_{fb} + \psi_s + V_{ox}$$

$$V_t = V_{fb} + \phi_{st} - \frac{Q_{dep}}{C_{oxe}}$$

Therefore,

$$E_b = -\frac{Q_{dep}}{\varepsilon_s}$$

$$E_t = -(Q_{dep} + Q_{inv}) / \varepsilon_s$$

$$= E_b - \frac{Q_{inv}}{\varepsilon_s} = E_b + \frac{C_{oxe}}{\varepsilon_s} (V_{gs} - V_t)$$

$$= \frac{C_{oxe}}{\varepsilon_s} (V_{gs} - V_{fb} - \phi_{st})$$

$$\therefore \frac{1}{2} (E_b + E_t) = \frac{C_{oxe}}{2\varepsilon_s} (V_{gs} + V_t - 2V_{fb} - 2\phi_{st})$$

$$\approx \frac{C_{oxe}}{2\varepsilon_s} (V_{gs} + V_t + 0.2 \text{ V})$$

NMOS with n+ poly-Si gate

$V_{fb} \approx -0.5$ and $\psi_{st} \approx 0.4$

$$= \frac{V_{gs} + V_t + 0.2 \text{ V}}{6T_{oxe}}$$
Universal Surface Mobilities

\[
\frac{(V_{gs} + V_t + 0.2)}{6T_{oxe}} \text{ (MV/cm)}
\]

- Surface roughness scattering is stronger (mobility is lower) at higher \(V_g\), higher \(V_t\), and thinner \(T_{oxe}\).

\[
\mu_{ns} = \frac{540 \text{ cm}^2/\text{Vs}}{1 + \left(\frac{V_{gs} + V_t + 0.2 \text{ V}}{5.4T_{oxe}}\right)^{1.85}}
\]

\[
\mu_{ps} = \frac{185 \text{ cm}^2/\text{Vs}}{1 - \left(\frac{V_{gs} + 1.5V_t - 0.25 \text{ V}}{3.38T_{oxe}}\right)}
\]
Mobility Modeling in BSIM4

\[\text{mobMod} = 0 \]

\[
\mu_{\text{eff}} = \frac{U_0 \cdot f(L_{\text{eff}})}{1 + (U_A + UCV_{\text{t eff}}) \left(\frac{V_{\text{g eff}} + 2V_{\text{th}}}{T_{O XE}} \right) + UB \left(\frac{V_{\text{g eff}} + 2V_{\text{th}}}{T_{O XE}} \right)^2 + UD \left(\frac{V_{\text{th}} \cdot T_{O XE}}{V_{\text{g eff}} + 2 \sqrt{V_{\text{th}}^2 + 0.0001}} \right)^2}
\]

\[\text{mobMod} = 1 \]

\[
\mu_{\text{eff}} = U_0 \cdot f(L_{\text{eff}}) \cdot \frac{1}{1 + \left(V_{\text{g eff}} + 2V_{\text{th}} \right) + UB \left(\frac{V_{\text{g eff}} + 2V_{\text{th}}}{T_{O XE}} \right)^2 \left(1 + UC \cdot V_{\text{t eff}} \right) + UD \left(\frac{V_{\text{th}} \cdot T_{O XE}}{V_{\text{g eff}} + 2 \sqrt{V_{\text{th}}^2 + 0.0001}} \right)^2}
\]

\[\text{mobMod} = 2 \]

\[
\mu_{\text{eff}} = \frac{U_0 \cdot f(L_{\text{eff}})}{1 + (U_A + UC \cdot V_{\text{t eff}}) \left[\frac{V_{\text{g eff}} + C_0 \cdot (V_{TH0} - V_{FB} - \Phi_s)}{T_{O XE}} \right]^{\frac{1}{4}} + UD \left(\frac{V_{\text{th}} \cdot T_{O XE}}{V_{\text{g eff}} + 2 \sqrt{V_{\text{th}}^2 + 0.0001}} \right)}
\]

where the constant \(C_0 = 2 \) for NMOS and 2.5 for PMOS.

\[f(L_{\text{eff}}) = 1 - UP \cdot \exp \left(- \frac{L_{\text{eff}}}{LP} \right) \]

(5.6)

\[E_{\text{eff}} = \frac{V_{\text{gs}} + V_t}{6T_{\text{oxe}}} \]

(5.7)

\[E_{\text{eff}} = \frac{V_{\text{gs}} - V_t + 2V_t}{6T_{\text{oxe}}} \]

(5.8)

\[E_{\text{eff}} = \frac{V_{\text{gsteff}} + 2V_t}{6T_{\text{oxe}}} \]

(5.9)

12/3/2014

Yogesh S. Chauhan, IIT Kanpur
Current in subthreshold region

- Subthreshold conduction
 - Transistor is in depletion
- Surface potential is determined by depletion under the gate, which is constant everywhere \((\psi_s \approx \psi_{sa})\).

\[
\psi_{sa} \approx \psi_{sa} = \left(-\frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{4} + V_{GB} - V_{FB}} \right)^2
\]

\[
Q_I' = -\frac{\sqrt{2q\varepsilon_s N_A}}{2\sqrt{2\phi_f + V_{CB}^'}} \left(\frac{V_{GC} - V_M}{\phi_t e^{n\phi_t}} \right)
\]

\[
I_{ds}(x) = \mu_{eff} W Q_i \frac{dV_{CB}}{dx}
\]
Current in subthreshold region

- Integrating from source to drain,

\[
\int_{0}^{L} I_{ds}(x)dx = \int_{0}^{L} \mu_{eff} \cdot W \cdot Q_i \cdot dV_{CB}
\]

\[
I_{ds} = \mu_{eff} \frac{W}{L} \int_{V_{SB}}^{V_{DB}} Q_i \cdot dV_{CB}
\]

\[
I_{ds} = \mu_{eff} \frac{W}{L} \int_{V_{SB}}^{V_{DB}} \left(\frac{\sqrt{2q \varepsilon_s N_A}}{2\sqrt{2\phi_f + V_{CB}}} \right) \cdot \phi(t) \left(e^{\frac{V_{GB} - V_{CB} - V_{TH}}{n\phi_t}} \right) \cdot dV_{CB}
\]

\[
I_{ds} = I_0 \left(e^{\frac{V_{GS} - V_{TH}}{n\phi_t}} - e^{\frac{V_{GD} - V_{TH}}{n\phi_t}} \right) = I_0 e^{\frac{V_{GS} - V_{TH}}{n\phi_t}} \left(1 - e^{\frac{V_{DS}}{n\phi_t}} \right)
\]
Current in subthreshold region

\[I_{ds} = I_0 e^{n\phi_t} \left(\frac{V_{GS}-V_{TH}}{V_{DS}} \right) \left(1 - e^{n\phi_t} \right) \]

- Note – \(V_{TH} \) is a function of body bias.
- If \(V_B \) increases in negative direction, \(V_{TH} \) increases.

\[V_{TH} = V_{T0} + \gamma \left(\sqrt{\phi_0 + V_{SB}} - \sqrt{\phi_0} \right) \]
Subthreshold slope

- It is defined as the amount of gate voltage required to change the gate current by 1-decade.

\[S = \frac{dV_{GS}}{d(\log I_{ds})} \]

At room temperature

\[S = (25.85)(2.30) \left(1 + \frac{C_{dep}}{C_{ox}}\right) \approx 60mV \left(1 + \frac{C_{dep}}{C_{ox}}\right) \]
Drain Current and Q_{inv} in MOSFET

- Channel voltage
 $V_c = V_s$ at $x = 0$ and $V_c = V_d$ at $x = L$.

\[
Q'_{I} = -C'_\text{ox} \left(V_{GC} - V_{TH} \right) = -C'_\text{ox} \left(V_{GC} - V_{t0} - \alpha V_{cb} \right)
\]

- $Q_{\text{inv}} = - C_{\text{ox}} (V_{gs} - V_{cs} - V_{t0} - \alpha (V_{sb} + V_{cs}))$
- $Q_{\text{inv}} = - C_{\text{ox}} (V_{gs} - V_{cs} - (V_{t0} + \alpha V_{sb}) - \alpha V_{cs})$
- $Q_{\text{inv}} = - C_{\text{ox}} (V_{gs} - m V_{cs} - V_{t})$

\[m \equiv 1 + \alpha = 1 + 3 \frac{T_{\text{ox}}}{W_{\text{dmax}}} \approx 1.2\]

m is called the body-effect factor or bulk-charge factor.
Drain Current Calculation

Now,

\[I_{ds} = WC_{oxe}(V_{gs} - mV_{cs} - V_t)\mu_{ns} dV_{cs}/dx \]

Integrating the above equation over the channel length \(L \), gives the current voltage relation as follows:

\[
\int_0^L I_{ds} dx = WC_{oxe}\mu_{ns} \int_0^{V_{ds}} (V_{gs} - mV_{cs} - V_t) dV_{cs}
\]

\[I_{ds}L = WC_{oxe}\mu_{ns}(V_{gs} - V_t - mV_{ds}/2)V_{ds} \]

\[
I_{ds} = \mu_{ns} C_{oxe} \frac{W}{L} \left(V_{gs} - V_t - \frac{m}{2} V_{ds} \right) V_{ds}
\]
I-V characteristics

\[\frac{dI_{ds}}{dV_{ds}} = 0 \]

\[\frac{W}{L} C_{oxe} \mu_n s (V_{gs} - V_t - m V_{dsat}) = 0 \]

\[V_{dsat} = \frac{V_{gs} - V_t}{m} \]

\[V_{ds} < V_{dsat} \quad \text{Linear Region} \]

\[V_{ds} \geq V_{dsat} \quad \text{Saturation region} \]

Drain current in saturation region

\[I_{dsat} = \frac{W}{2mL} C_{oxe} \mu_n s (V_{gs} - V_t)^2 \]

- **transconductance:**

\[g_m = \frac{dI_{ds}}{dV_{gs}} \quad g_{msat} = \frac{W}{mL} C_{oxe} \mu_n s (V_{gs} - V_t) \]
I-V characteristics

What happens at $V_{ds}=V_{dsat}$ & why I_{ds} remains constant beyond V_{dsat}

✓ At $V_{ds}=V_{dsat}$, Q_{inv} near the drain end of the channel becomes zero! i.e. Pinch off.

$$I_{ds} = WQ_{inv} \mu_n E \text{ (Large } E \text{ and negligible } Q_{inv})$$

✓ At $V_{ds} > V_{dsat}$, A very short region near the drain end where the $Q_{inv} = 0$, a very high electric field exist due to the drop of the additional $V_{ds} - V_{dsat}$.
Velocity Saturation

- At low E,
 \[\nu = \mu_{ns} E \]

- The inversion-layer electron velocity saturates at high field

\[\nu = \frac{\mu_{ns} \xi}{1 + \xi / \xi_{sat}} \]

\[\nu = \nu_{sat} = \mu_{ns} \xi_{sat} \quad , \quad \xi \geq \xi_{sat} \]

ξ_{sat} is the field at which velocity saturation becomes dominant.
Velocity Saturation and I-V Model

\[I_{ds} = WQ_{inv} \nu \]

\[\nu = \frac{\mu_{ns} \xi}{1 + \xi / \xi_{sat}} \]

\[I_{ds} = WC_{oxe} \left(V_{gs} - mV_{cs} - V_t \right) \frac{dV_{cs}}{dx} \frac{\mu_{ns}}{1 + \frac{dV_{cs}}{dx} / \xi_{sat}} \]

\[\int_0^L I_{ds} \, dx = \int_0^{V_{ds}} \left[WC_{oxe} \mu_{ns} \left(V_{gs} - mV_{cs} - V_t \right) - I_{ds} / \xi_{sat} \right] \, dV_{cs} \]

Drain current when \(\nu < \nu_{sat} \)

\[I_{ds} = \frac{W}{L} C_{oxe} \mu_{ns} \left(V_{gs} - \frac{m}{2} V_{ds} - V_t \right) V_{ds} \]

\[1 + \frac{V_{ds}}{L \xi_{sat}} \]
Velocity Saturation and I-V Model

- If L is large then \(\frac{V_{ds}}{L \xi_{sat}} \) will be negligible, then:

\[
I_{ds} = \frac{W}{L} C_{ox} \mu_s (V_{gs} - V_t - \frac{m}{2} V_{ds}) V_{ds}
\]

It is called the long channel I-V model

- Effect of velocity saturation on \(I_{ds} \):

\[
I_{ds} = \frac{(Long \ channel \ I_{ds})}{(1 + \frac{V_{ds}}{L \xi_{sat}})}
\]

- In short channel devices

\[
1 + \frac{V_{ds}}{L \xi_{sat}} > 1
\]
Velocity Saturation and I-V Model

• Drain current for $V_{ds} \geq V_{dsat}$

\[I_{dsat} = \frac{W}{2mL} C_{oxe} \mu_{ns} \left(\frac{(V_{gs} - V_t)^2}{V_{gs} - V_t} \right) \]

\[\approx \frac{W}{2mL} C_{oxe} \mu_{ns} \left(V_{gs} - V_t \right) \]

Very short channel case:

\[I_{dsat} = W V_{sat} C_{oxe} \left(V_{gs} - V_t - mE_{sat} L \right) \]

Long channel case:

\[E_{sat} L \ll V_{gs} - V_t \]

\[I_{dsat} \approx W V_{sat} C_{oxe} \mu_{ns} \left(V_{gs} - V_t \right) \]

\[E_{sat} L \gg V_{gs} - V_t \]

\[I_{dsat} \approx \frac{W}{2mL} C_{oxe} \mu_{ns} \left(V_{gs} - V_t \right)^2 \]

• I_{dsat} is proportional to $V_{gs} - V_t$ rather than $(V_{gs} - V_t)^2$.

• Not as sensitive to L as than long channel case ($\propto 1/L$).
I-V Characteristics

• Long Channel

\[I_{ds} \propto (V_{gs} - V_t)^2 \]

• Short Channel

\[I_{ds} \propto V_{gs} - V_t \quad \text{DITS + CLM + DIBL} \]
I-V Characteristics

Curves for a particular gate voltage

Curves for a different gate voltages
Compact Modeling is Art based on Science
Smoothing function and I-V Model

- **Smoothing function** is required for a smooth transition between two functions.
 - This stems from the need to have a single equation valid in all regions of operation.

- **BSIM3 introduced use of smoothing functions to get single equation valid in all regions of biases.**
 - This gave continuous and smooth I-V and C-V making it popular model for analog design.
First generation SPICE models used this kind of equation,

\[
I_D = \begin{cases}
 \frac{W}{L} \mu C'_{ox} \left[(V_{GS} - V_T) V_{DS} - \frac{m}{2} V_{DS}^2 \right], & V_{DS} < V_{DS,\text{sat}} \\
 \frac{W}{L} \mu C'_{ox} \left[\frac{(V_{GS} - V_T)^2}{2m} \right], & V_{DS} \geq V_{DS,\text{sat}}
\end{cases}
\]

\(I_D\) and \(\frac{dI_D}{dV_{DS}}\) are continuous at \(V_{DS} = V_{DS,\text{sat}}\) but \(\frac{d^2I_D}{dV_{DS}^2}\) is not.
Linear to Saturation transition

- For numerical robustness, the derivatives of arbitrary order must be continuous at all voltage values of interest. This property is sometimes referred to as ∞-differentiability.
- **Single equation approach used in BSIM3.** Define an effective drain-source bias V_{DSeff}

$$V_{DSeff} = V_{DS, sat} - \frac{1}{2} \left(V_{DS, sat} - V_{DS} - \Delta + \sqrt{(V_{DS, sat} - V_{DS} - \Delta)^2 + 4\Delta V_{DS, sat}} \right)$$

- $V_{DS} \ll V_{DS, sat}$, $V_{DSeff} \approx V_{DS}$
- For $V_{DS} \gg V_{DS, sat}$, $V_{DSeff} \approx V_{DS, sat}$

- Drain current equation becomes ($V_{GS} > V_T$),

$$I_D = \frac{W}{L} \mu C_{ox} \left[(V_{GS} - V_T) V_{DSeff} - \frac{m}{2} V_{DS, eff}^2 \right]$$

- Derivatives are continuous.
Sub-threshold to strong inversion transition

• For $V_{GS} \ll V_T$,
 \[I_D = I_0 e \frac{(V_{GS} - V_T - V_{off})}{n k T/q} \left[1 - e^{-\frac{V_{DS}}{k T/q}} \right] \]
 – This is not valid in strong inversion. It leads to excessively high current for $V_{GS} \gg V_T$

• For $V_{GS} \gg V_T$
 \[I_D = \frac{W}{L} \mu C_{ox} \left[(V_{GS} - V_T) V_{DS,eff} - \frac{m}{2} V_{DS,eff}^2 \right] \]
 – This is not valid in sub-threshold and leads to negative current for $V_{GS} < V_T$

• First method – Single equation:
 \[I_D = I_{D,sub} + I_{D,inv} \]

• Good enough for Digital applications, but the derivatives are discontinuous making it unsuitable for Analog cases.
Sub-threshold to strong inversion transition

- **Second method** – Single equation: Use effective $V_{GS} - V_T$ as

$$V_{GST,eff} = \frac{2nkT}{q} \ln \left[1 + \exp \left(\frac{V_{GS} - V_T}{2nkT/q} \right) \right] \frac{1}{1 + 2n \exp \left(- \frac{V_{GS} - V_T - 2V_{off}}{2nkT/q} \right)}$$

- n is the ideality factor and lies between 1 and 2.
- V_{off} is a parameter for fringing from width side. Assume $V_{off}=0$ for further analysis.
- For $V_{GS} \gg V_T$, the exponential term inside $\ln()$ is larger than 1 making $V_{GST,eff} = V_{GS} - V_T$
- For $V_{GS} \ll V_T$,

$$V_{GST,eff} \approx \frac{kT}{q} \exp \left(\frac{V_{GS} - V_T}{nkT/q} \right)$$
Single equation for drain current

- Use $V_{DS,sat} = \frac{V_{GST,eff} + 2kT/q}{m}$, where $2kT/q$ is added for numerical stability when $V_{GST,eff} \ll 2kT/q$.
- We have written ID as follows valid from linear to saturation:

$$I_D = \frac{W}{L} \mu C_{ox}' \left[(V_{GS} - V_T)V_{DS,eff} - \frac{m}{2} V_{DS,eff}^2 \right]$$

$$I_D = \frac{W}{L} \mu C_{ox}' \left[V_{GST,eff} - \frac{m}{2} V_{DS,eff} \right] V_{DS,eff}$$

- Now drain current becomes,

$$I_D = \frac{W}{L} \mu C_{ox}' \left[V_{GST,eff} - \frac{m}{2} V_{DS,eff} V_{GST,eff} \right] V_{DS,eff}$$

$$I_D = \frac{W}{L} \mu C_{ox}' V_{GST,eff} \left[1 - \frac{m}{2} \frac{V_{DS,eff}}{V_{GST,eff} + 2kT/q} \right] V_{DS,eff}$$

- This is valid for all V_{gs} and V_{ds}.

12/3/2014 Yogesh S. Chauhan, IIT Kanpur
Terminal Charges and Charge Partition

- AC and Transient simulation need capacitances.
- **Quasi-static approximation**
 - The Channel charge is assumed to respond instantaneously to any change in the bias voltage.
- From Q'_i, we need to find Q_G, Q_B, Q_S and Q_D.

Yogesh S. Chauhan, IIT Kanpur
Total inversion charge

- Before delving into \(Q_G, Q_S, \) and \(Q_D \). Let us find the total inversion charge in the channel, \(Q_i \).
- The charge per unit area, \(Q_i' \), is given as
 \[
 Q_i' = -C'_{ox}(V_{GS} - V_T - mV_{CS}(x))
 \]
- We need to know \(V_{CS}(x) = ? \)

- Define \(\alpha = 1 - \frac{V_{DS,eff}}{V_{DS,sat}} \) which gives, \(\frac{V_{DS,eff}}{V_{DS,sat}} = 1 - \alpha \),

Thus

\[
V_{CS} = \frac{V_{GST,eff}}{m} \left[1 - \sqrt{1 - \frac{x}{L} (1 - \alpha)^2} \right]
\]
Total inversion charge

- The charge per unit area, Q'_I, is given as
 \[Q'_I = -C'_{ox}(V_{GS} - V_T - mV_{CS}(x)) \]
 \[Q'_I = -C'_{ox}V_{GST, eff} \sqrt{1 - \frac{x}{L}} (1 - \alpha)^2 \]

- Thus total inversion charge
 \[Q_I = -WC'_{ox} \int_{0}^{L} V_{GST, eff} \sqrt{1 - \frac{x}{L}} (1 - \alpha^2) dx \]

- Total inversion charge
 \[Q_I = -\frac{2}{3} WLC'_{ox}V_{GST, eff} \frac{1 + \alpha + \alpha^2}{1 + \alpha} \]
Source-Drain charge partitioning

• We know, \(Q_I = Q_S + Q_D \) but not the exact share of each.
• The assignment of the channel charge to the source and drain charges is called charge partition.

Charge partitioning

– 50/50 partition: Arbitrarily assign 50% of \(Q_I \) to \(Q_S \) and 50% to \(Q_D \). This is valid only when \(V_{DS} \) is small. For \(V_{DS} \approx 0 \), MOSFET is symmetrical and \(Q_S \approx Q_D \approx Q_I/2 \).

– 0/100 partition: This is based on the logic that in saturation, the pinch off region implies that \(Q_D = 0 \), which is actually not correct.

– 40/60 partition: This is a more physical distribution of charges. One should note that the charge distribution under this scheme is 40/60 only in saturation. However this partition scheme is valid in all regions.
Source-Drain charge

- **Ward-Dutton partitioning scheme**

\[Q_D = W \int_0^L \frac{x}{L} Q'_I dx, \quad Q_S = W \int_0^L \left(1 - \frac{x}{L} \right) Q'_I dx \]

- **Drain charge**

\[Q_D = W \int_0^L \frac{x}{L} Q'_I dx = -WC_{ox}V_{GST,eff} \int_0^L \frac{x}{L} \sqrt{1 - \frac{x}{L}} (1 - \alpha^2) dx \]

\[Q_D = -\frac{2}{15} WLC_{ox}V_{GST,eff} \frac{3\alpha^3 + 6\alpha^2 + 4\alpha + 2}{(1 + \alpha)^2} \]

- **Similarly,**

\[Q_S = W \int_0^L \left(1 - \frac{x}{L} \right) Q'_I dx = -\frac{2}{15} WLC_{ox}V_{GST,eff} \frac{2\alpha^3 + 4\alpha^2 + 6\alpha + 3}{(1+\alpha)^2} \]

Gate and Bulk charge

- **Total gate charge**

\[Q_G = W L C'_o x \left[\frac{V_{GST,eff}}{m} \left\{ (m - 1) + \frac{2}{3} \cdot \frac{1 + \alpha + \alpha^2}{1 + \alpha} \right\} \right. \]

\[\left. + 2(m - 1)(2\phi_F - V_{BS}) \right] \]

- **Finally Bulk charge**, \n
\[Q_B = -(Q_G - Q_I) \]

- **Capacitance** \(C_{mn} = \frac{\partial Q_m}{\partial V_n} \)
Charge and Capacitance plots

Normalized Capacitance

$V_G \ (V)$

- with PD and QM
- only PD
- only QM
- with PD and QM

C_{gb}

C_{bg}
Parasitic Source-Drain Resistance

- The main effect of the parasitic resistance is that V_{gs} in the I_{ds} equations is reduced by $R_s \cdot I_{ds}$.
High-frequency performance is limited by input R and/or C.

\[R_{in} = R_{g\text{-electrode}} + R_{ii} \]

Gate-electrode resistance

Intrinsic input resistance
Multi-finger layout greatly reduces the gate electrode resistance

\[R_{g-electrode} = \frac{\rho W}{12 T_g L_g N_f^2} \]

- \(\rho \): resistivity of gate material,
- \(W_f \): width of each gate finger,
- \(T_g \): gate thickness,
- \(L_g \): gate length,
- \(N_f \): number of fingers.
Bulk MOSFET

- Drain current in MOSFET (ON operation)
 \[I_{ON} = \mu \frac{W}{L} C_{ox} (V_{DD} - V_{TH})^2 \]

- Drain current in MOSFET (OFF operation)
 \[I_{OFF} \propto 10 \left(\frac{V_{GS}-V_{TH}}{S} \right) \]

- Desired
 - High \(I_{ON} \) (↓L, ↑Cox, ↑\(V_{DD} - V_{TH} \))
 - Low \(I_{OFF} \) (↑\(V_{TH} \), ↑S)

\(C_{ox} = \varepsilon_{ox}/t_{ox} = \text{oxide cap.} \)
S – Subthreshold slope
Technology Scaling

- Each time the minimum line width is reduced, we say that a new **technology node** is introduced.

- Example: 90 nm, 65 nm, 45 nm
 - Numbers refer to the minimum metal line width.
 - Poly-Si gate length may be even smaller.
Technology Scaling

• Scaling – At each new node, all geometrical features are reduced in size to 70% of the previous node.

• Reward – Reduction of circuit size by half. (~50% reduction in area, i.e., $0.7 \times 0.7 = 0.49$.)
 – Twice number of circuits on each wafer
 – Cost per circuit is reduced significantly.

• Ultimately – **Scaling drives down the cost of ICs.**
Scaling and Moore’s Law

- Number of components per IC function will double every two years – April 19, 1965 (Electronics Magazine)
- Shorthand for rapid technological change!

Source: http://www.intel.com/pressroom/kits/events/moores_law_40th/
Threshold Voltage Roll-Off

Vt decreases at very small Lg. It determines the minimum acceptable Lg because Ioff is too large when Vt becomes too low or too sensitive to Lg.

Source: Chenming Hu – Modern Semiconductor Devices for Integrated Circuits
Channel Length Modulation

Pinch off point moves towards the source as V_{ds} increases

$$I_{Dsat} = I_{Dsat0} \left(1 + \frac{\Delta L}{L}\right) = I_{Dsat0} \left(1 + \frac{V_{ds} - V_{dsat}}{V_A}\right)$$

For long channel:
- $L = 2.0 \, \mu m$
- $V_{gs} = 2.5 \, V$
- $V_t = 0.7 \, V$
- $V_{gs} = 2.0 \, V$
- $V_{gs} = 1.5 \, V$
- $V_{gs} = 1.0 \, V$

For short channel:
- $L = 0.15 \, \mu m$
- $V_{gs} = 2.5 \, V$
- $V_t = 0.4 \, V$
- $V_{gs} = 2.0 \, V$
- $V_{gs} = 1.5 \, V$
- $V_{gs} = 1.0 \, V$

$g_{ds} = \frac{dI_{dsat}}{dV_{ds}}$

A_v reduces
Technology Trend

2003 2005 2007 2009 2011
90 nm 65 nm 45 nm 32 nm 22 nm

Invented SiGe Strained Silicon
2nd Gen. SiGe Strained Silicon
Invented Gate-Last High-k Metal Gate
2nd Gen. Gate-Last High-k Metal Gate
First to Implement Tri-Gate

Strained Silicon
High-k Metal Gate
Tri-Gate

Product

45 nm Process Technology
Penryn
Intel® Core™ Microarchitecture
TICK

32 nm Process Technology
Westmere
Intel® Microarchitecture (Nehalem)
TICK
Sandy Bridge
NEW Intel® Microarchitecture
TOCK

22 nm Process Technology
Ivy Bridge
Intel® Microarchitecture (Sandy Bridge)
TICK
Intel’s First 22 nm Processor
TOCK

Performance

Drive Current (mA/μm)

1.5
1.0
0.5
0.0

1000
Gate Pitch (nm)

100

1.0 V, 100 nA Ioff

Strain
HI-k-MG
Other
“Classic” scaling

32nm
45nm
65nm
90nm
130nm
180nm
22nm

PMOS
Wasn’t that smooth ride?

• Where is the bottleneck?

\[I_{ON} = \mu \frac{W}{L} C_{ox} (V_{DD} - V_{TH})^2 \]

• \(V_{TH} \) can’t be decreased – why?
• Subthreshold slope gets worse!
Thin Depletion Layer - Problem

- $Q_G = Q_i + Q_b$
- Charge sharing
Short Channel – Big Problem

MOSFET becomes “resistor” at small L.

Chenming Hu, “Modern Semiconductor Devices for ICs” 2010, Pearson
Making Oxide Thin is Not Enough

Gate cannot control the leakage current paths that are far from the gate.
What can we do?

Gate

Source Leakage Path Drain
May 4, 2011

The New York Times Front Page

• Intel will use 3D FinFET at 22nm

• Most radical change in decades

• There is a competing SOI technology
One Way to Eliminate Si Far from Gate

Thin body controlled
By multiple gates.

FinFET body is a thin Fin.

Gate Length
Fin Height
Fin Width

N. Lindert et al., DRC paper II.A.6, 2001
40nm FinFET – 1999

30nm Fin allows 2.7nm SiO2 & undoped body ridding random dopant fluctuation.

X. Huang et al., IEDM, p. 67, 1999

66mV/dec
Introduced New Scaling Rule

Leakage is well suppressed if

Fin thickness < Lg

<table>
<thead>
<tr>
<th>10nm Lg</th>
<th>5nm Lg</th>
<th>3nm Lg</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMD</td>
<td>TSMC</td>
<td>KAIST</td>
</tr>
<tr>
<td>2002 IEDM</td>
<td>2004 VLSI</td>
<td>2006 VLSI</td>
</tr>
</tbody>
</table>

![Image of semiconductor structures](image-url)
Two Improvements Since 1999

- **2002** FinFET with thin oxide on Fin top
 F.L. Yang et al. (TSMC) 2002 IEDM, p. 225.

- **2003** FinFET on bulk substrate
 T. Park et al. (Samsung) 2003 VLSI Symp. p. 135.
State-of-the-Art 14nm FinFET

Transistor Fin Improvement

22 nm 1st Generation Tri-gate Transistor

14 nm 2nd Generation Tri-gate Transistor

22 nm Process

14 nm Process

Taller and Thinner Fins for increased drive current and performance

Source: Anandtech
BSIM Family of Compact Device Models

BSIM3 BSIM4 BSIMSOI BSIM-CMG & BSIM-IMG

Conventional MOSFET Silicon on Insulator MOSFET Multi-Gate MOSFET

BSIM: Berkeley Short-channel IGFET Model

12/3/2014 Yogesh S. Chauhan, IIT Kanpur
BSIM-CMG and BSIM-IMG

• Berkeley Short-channel IGFET Model
• First industry standard SPICE model for IC simulation
• Used by hundreds of companies for IC design since 1997
• BSIM FinFET model became industry standard in March 2012

It’s Free
Common-Multi-Gate Modeling

- Common Multi-gate (BSIM-CMG):
 - All gates tied together
 - Surface-potential-based core I-V and C-V model
 - Supports double-gate, triple-gate, quadruple-gate, cylindrical-gate; Bulk and SOI substrates
BSIM-CMG Model

- Surface potential obtained by solving the 1D Poisson’s equation

\[
\frac{\partial^2 \psi}{\partial x^2} = \frac{qn_i}{\varepsilon_{Si}} \cdot \left(\frac{q\psi}{kT} \cdot \mathbf{e} \cdot \frac{q\varphi_B}{kT} \cdot \mathbf{e} \cdot \frac{qV_{ch}}{kT} \cdot \mathbf{e} + \frac{q\varphi_B}{kT} \cdot \mathbf{e} \right)
\]

- A Perturbation approach is used to handle finite body doping

\[\psi = \psi_{\text{inv}} + \psi_{\text{pert}}\]

M. V. Dunga et al., TED 2006
BSIM-CMG Model

- Drain current derived from drift-diffusion

\[
I_d = \mu \frac{W_{\text{eff}}}{L} \left[\frac{Q_i^2}{2C_{\text{ox}}} + 2V_t Q_i - V_t \cdot (5C_{\text{Si}} V_t + Q_B) \ln (5V_t C_{\text{Si}} + Q_B + Q_i) \right]
\]

![Graph showing drain current (A) vs. drain voltage (V) for different gate voltages (Vg). The graph demonstrates the exponential increase of drain current with increasing drain voltage at constant gate voltage. The graph also shows the impact of gate voltage on drain current, with higher gate voltages resulting in higher drain currents.

![Graph showing drain current (A) vs. gate voltage (V) for different drain voltages (Vd). The graph illustrates the effect of drain voltage on drain current, showing that drain current increases significantly with drain voltage. Different symbols are used to differentiate between drain voltages of 0.1, 0.2, 0.4, and 0.6 volts, with each symbol representing a specific drain voltage condition. The graph confirms the expected trend of increased drain current with increased drain voltage.]
BSIM-CMG

Global fitting with 30nm–10µm FinFETs
Modeling of Germanium FinFETs @10nm

- Ge FinFET may be used in 10nm node for better P-FinFET.
- Industry standard BSIM FinFET model can now model Ge FinFET.
- Early availability of a unified Si/Ge FinFET model facilitates technology-circuits co-development.
Due to the lower m^* of holes in Ge the charge-centroid is farther away from the oxide interface resulting in a weaker SR scattering.

Ge mobility has a weaker dependence on E_{eff} up-to ~ 0.5 MV/cm as the impact of SR scattering is only seen at much higher E_{eff} in Ge as compared to Si.

Modeling of InGaAs FinFET @10nm

$L = 20 \text{ nm}$, $H = 30 \text{ nm}$, $W = 20 \text{ nm}$, $N_{\text{fin}} = 4$.

Data from: J. J. Gu et al. IEDM 2012

Transistor Pathway

Si/Ge Gate All Around (GAA) Vertical or Horizontal
- Improved electrostatics
 - Precision etch and CMP
 - Scaled metals
 - High Aspect Ratio ALD

III-V FinFET
- Improved mobility
 - Epi structure
 - III-V gate interface
 - New material CMP

Vertical TFET
- Improved SS
 - Epi structure
 - Multi-pass CMP
 - Precision etch & CMP

Source: Applied Materials

12/3/2014 Yogesh S. Chauhan, IIT Kanpur
FinFET Modeling for IC Simulation and Design: Using the BSIM-CMG Standard

Chapters

1. FinFET- from Device Concept to Standard Compact Model
2. Analog/RF behavior of FinFET
3. Core Model for FinFETs
4. Channel Current and Real Device Effects
5. Leakage Currents
6. Charge, Capacitance and Non-Quasi-Static Effect
7. Parasitic Resistances and Capacitances
8. Noise
10. Benchmark tests for Compact Models
11. BSIM-CMG Model Parameter Extraction
12. Temperature Effects
Acknowledgement

- My students
- BSIM team
- CMC members