Learn how to do FinFET modeling using the BSIM-CMG standard from the experts

KEY FEATURES
- Authored by the lead inventor and developer of FinFET, and developers of the BSIM-CMG standard model, providing an experts’ insight into the specifications of the standard
- The first book on the industry-standard FinFET model - BSIM-CMG

DESCRIPTION
This book is the first to explain FinFET modeling for IC simulation and the industry standard – BSIM-CMG - describing the rush in demand for advancing the technology from planar to 3D architecture, as now enabled by the approved industry standard.

The book gives a strong foundation on the physics and operation of FinFET, details aspects of the BSIM-CMG model such as surface potential, charge and current calculations, and includes a dedicated chapter on parameter extraction procedures, providing a step-by-step approach for the efficient extraction of model parameters.

With this book you will learn:
- Why you should use FinFET
- The physics and operation of FinFET
- Details of the FinFET standard model (BSIM-CMG)
- Parameter extraction in BSIM-CMG
- FinFET circuit design and simulation

ABOUT THE AUTHORS
Yogesh Singh Chauhan Assistant Professor, Department of Electrical Engineering, Indian Institute of Technology (IIT) Kanpur, India
Darsen Lu Research Scientist, IBM Research.
Sriramkumar Venugopalan Samsung Electronics
Sourabh Khandelwal University of California, Berkeley, USA
Juan Pablo Duarte University of California, Berkeley, USA
Navid Paydavosi Device Engineer, Intel Corp., Oregon, USA
Ali Niknejad Professor in the EECS department at UC Berkeley, USA.
Chenming Hu Professor Emeritus at University of California at Berkeley, CA,
TABLE OF CONTENTS

1. FinFET- from Device Concept to Standard Compact Model
2. Analog/RF behavior of FinFET
3. Core Model for FinFETs
4. Channel Current and Real Device Effects
5. Leakage Current Models
6. Charge, Capacitance and Nonquasi-Static Effect
7. Parasitic Resistances and Capacitances
8. Noise
10. Benchmark Tests for Compact Models
11. BSIM-CMG Model Parameter Extraction
12. Temperature Effects