Hilbert space methods in analysis

Sameer Chavan
Indian Institute of Technology Kanpur

TWE in functional analysis at Department of Mathematics,
Kashmir University Srinagar
Nov.28-Dec.12, 2021



These are the lecture notes prepared for TWE in functional
analysis at Department of Mathematics, Kashmir University
Srinagar to be held during Nov.28-Dec.12, 2021.
| mostly referred in parts to the following texts:

o Jim Agler, John Edward McCarthy, Nicholas John Young, Operator

Analysis: Hilbert Space Methods in Complex Analysis, Cambridge
University Press, 2020, xvi+376 pp.

o Chavan, Sameer; Misra, Gadadhar, Notes on the
Brown-Douglas-Fillmore theorem. Cambridge-lISc Series.
Cambridge University Press, Cambridge, 2021. xi+246 pp

o Rudin, Walter Real and complex analysis. Third edition.
McGraw-Hill Book Co., New York, 1987. xiv+416 pp



Power series representation and Parseval's formula

Theorem
Iff(z) =Y 72 an(z —a)" is convergent on Dg(a), then for any
0<r<R,

1 7 _
apr" = 2/ f(a+re®e ™dh, n>0
U —T
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e The first part follows from the fact that the power series above
converges uniformly on D,(a), and hence one can interchange the
infinite sum and the integral.

e For the second part, we need some bits of Hilbert space theory.



Corollary (Maximum modulus principle)
Let f € H(U) for some open connected set U. If D,(a) C U, then

f(a)l < sup [f(2)].

|z—al=r
Moreover, equality occurs above if and only if f is constant.

Proof.
Suppose that sup|,_,—, |f(z)| < [f(a)|. It follows from the last
theorem that

oo 1 T .
S-lanrn = oo [ if(a+ re?)Pdo < If(a)? = 2
2r J_
n=0
This implies that a; = 0,a, = 0,.... That is, f is constant on

D,(a). By the identity theorem, f is constant on U. O



A subset {ep}n>0 of H is said to be an orthonormal basis for a
Hilbert space H if {e,}n>0 is an orthonormal set and for every
h € H, there exist scalars «, such that Z o Qin€n converges to h.

Theorem (Parseval’s Identity)

Let {en} be an orthonormal basis of a Hilbert space (complete
inner-product space) H. Then, for h € H, ||h||?> = 352, |(h, en)|?.

Proof.
If h="7>"7",ane, then for m > 0, by the orthogonality of {e,} >0,

h em § an €n, em = Q0m.

Note that for every k > 0, by the orthogonality of {e,}n>0,

k k
1D (b, enenll” = [(h, en)]?
n=0 n=0

Let now k — oo and use the continuity of the norm.

O



Let T denote the unit circle in the complex plane C and define
en(0) = e, 0 c[-n,7], ncZ.
Example
We claim that {e,}52
space L2(T).
e Note that L°(T) is contained in L?(T).
e For every f € L%(T),

_ oo 1S an orthonormal basis for the Hilbert

1715 = [ 1) < 2 I,

where || - ||oo denotes the essential sup norm of f.

e Since trigonometric polynomials are dense in C(T)
(Stone-Weierstrass theorem), the linear span of {e,}52_ is

dense in the subspace of continuous functions in L2(T).

e However, continuous functions are dense in L2(T).



Problem (Maximal Orthonormal Set)

Let {e,} be an orthonormal set in a Hilbert space H with the
property: If x € H such that (x, e,) = 0 for all n then x = 0. Show
that {e,} is an orthonormal basis.

Solution.
By the continuity of the inner-product,

(x — Z(X, €n)€n, €m) = 0.
n=0
By hypothesis,
X — Z(x, en)en =0,
n=0
and hence {e,} is an orthonormal basis. O
Since the linear span of {e,}5°_ is dense in L2(T), by the last

problem, {e,}> ___ forms an orthonormal basis for L?(T).



Theorem
Iff(z) =Y 02 an(z —a)" is convergent on Dg(a), then for any
0<r<R,

U

1 , .
apr" = > f(a+re®e ™dh, n>0
™ —T

™

E |an|?r®" = 2/ |(a+ re?)|2d6.
T
n=0

—T

Proof.
Apply the Parseval’s identity to

f(a+re) = Zanr"e’m, H = L*(T), e,(0) =™, 0 € [-7, 7],
n=0

where we used the fact that {e,}52_ is an orthonormal basis for
the Hilbert space L?(T). O



In the entire analysis above, the most crucial fact we used is

Theorem
{en}5o_ . is an orthonormal basis for the Hilbert space L?(T).

One can give a proof of this fact using the so-called spectral
theorem, Although we do not provide all the details here, let us
understand the " spectral theorem”.

Let p(z) = >/, axz* be a complex polynomial of degree n in the
variable z. If T € L£(H) then it is natural to define p(T) by

p(T) =3k oak T*, which is obtained by replacing z by T in the
expression for p(z). Notice that p(T) belongs to L(#), since
L(H) is an algebra. The association p — p(T) is an algebra
homomorphism: For v € C, and for complex polynomials p, g,

(p+aq)(T)=p(T)+a(q(T)) and (pq)(T) = p(T)q(T).

We call this algebra homomorphism as the polynomial functional
calculus for T.



The spectrum o(T) of T € L(H) is defined as the subset
{Ae€ C: T — Al isnot invertible in L(H)}

of the complex plane C. It turns out that o(T) is a bounded
subset of C. In fact,

o(T) C{zeC: |z <IT]},
where || T|| = sup{|| Tx|| : x € H, ||x|| = 1} is the operator norm
of T. This inclusion may be derived from the following fact.
Problem
If C € L(H) has norm less than 1, then show that | — C is
invertible and limp_, o H Sho Ch—(1 - C)_lH =0.

Solution.

For integers m < n, one has

> fm CKl < e 1CKI < S I CII%, where we used the
fact that || C¥|| < ||C||¥ for every non-negative integer k.



Solution continued .. ..
Since ||C|| < 1, by the convergence of the geometric series for real
numbers,

n
P(m,n) = Z Ck = 0 in the operator norm as m, n — cc.

k=m

Thus {P(0,n)} -0 is a Cauchy sequence in L(H). Since L(H) is
complete in the operator norm, there exists T € L(#H) such that
{P(0, n)},>0 converges to T in the operator norm. Since

|CIl <1, {Ck}x=0 converges to 0 in the operator norm. To
conclude the proof, note that

(I — C)P(0,n) =1 — C™* = P(0,n)(I — C)

converges to (I — C)T, I, T(I — C) simultaneously in the
operator norm. Since limit is unique, we must have
(I-C)T=1=T(-C). O



Problem
Show that o(T) is a compact subset of C.

Hint.
For zo € C\o(T), let r = ||(T — z) ||~ and let z € C be such
that |z — zg| < r. Observe that

T—zl=(T -z = (T — 2) Yz — z0)).
By last problem, | — (T — z)~!(z — z) and so is T — zI. O

Theorem
The spectral radius r(T) = sup{|z| : z € o(T)} of T is given by

o nil/n
A(T) = tim [T

'Moreover, o(T) is nonempty. This is an application of Liouville's theorem
from complex analysis.



Theorem (Spectral mapping property for polynomials)

For any polynomial in the complex variable and for any A in L(H),
we have o(p(A)) = p(a(A)).

Proof.

Replacing p by p — A, it suffices to verify that p(T) is invertible if
and only if p is nowhere-vanishing on o(T). By Fundamental
Theorem of Algebra,

p(z) = ag(z — a1)(z — a2) -+ - (z — an), {ak}i_y € C. Suppose
that p is nowhere-vanishing on o(T). It follows that ay ¢ o(T) for
k=1,...,n. Hence

p(T)=ao(T—ar)(T —aal) - (T —apl), {ak}ti_s CC\o(T).

It is now clear that p(T) is invertible.

Conversely, assume that p(T) is invertible. Then there exists

S € L(H) such that p(T)S =1 = Sp(T). It follows that

ak ¢ o(T) for any k =1,...,n. Thus p(z) is nonzero for any
zco(T). O



Let us discuss the spectral theorem for self-adjoint operators on
complex Hilbert spaces. Recall that a bounded linear operator A is
self-adjoint if A* = A or equivalently, (Ax, y) = (x, Ay), x,y € H.
Note that (Ax, x) is a real number for any x € H.

Problem
Show that spectrum of a self-adjoint operator A is contained in R.

Solution.
Let A= a + i € C be such that 8 # 0. Then, for any x € H,

I(A = A)x[|? = [|Ax][* — 2Re(Ax, Ax) + [A]?|1x]|*.
However, (Ax, Ax) = M(Ax, x) = (a — iB)(Ax, x) Thus
ICA = Mx|[* = [ Ax[|* = 2(Ax, x)a + (o2 + B2) [ x]|* > 52| x]|
for every x € H. Clearly, A — X is injective and the range is closed.

Since A* = A, (A — \)* is also injective, so the range of A— A/ is
dense. Hence A — A/ is invertible. []



Theorem (Spectral theorem for self-adjoint operators-1)

If A is a self-adjoint operator in L(H), then there is a unique
positive, isometric, algebraic *-homomorphism map

¢ : C(o(A)) — L(H) such that ¢(p) = p(A) for every polynomial
p € C(a(A)).

We present a proof based on the following:

Theorem (Stone-Weierstrass theorem)

Let o/ be an algebra of continuous functions f : K — R with the
following properties:

(1) If x # y € K, then there exists f € o/ such that f(x) # f(y).
(2) For every x € K, there exists f € of such that f(x) # 0.

Then < is dense in the algebra Cgr(K) of continuous real-valued
functions on K endowed with the uniform norm.



We also need the following fact:

Lemma

For any operator T € L(H) for which T*T < TT*, ||T| is equal
to the spectral radius r(T) = max{|z| : z€ o(T)} of T.

Proof.
Note that for any positive integer n and any h € H,

IT Al = (T*T"h, T h) < IT* T AIIT Al < T 1A | T A

Thus we have || 77| < || T2 || T"~1|| for any positive integer n.
We now check by induction on integers n > 1 that || T"|| > || T||".
Assuming the inductive hypothesis for k = 1,..., n, we obtain

T TN = I T = T = 0T,

which yields || T™1|| > || T||"™*! completing the proof of induction.
By the spectral radius formula r(T) = lim, o || T"||*/", we get
r(T) > || T||. Since r(T) < || T| holds true for any operator T in
L(H), we obtain the equality r(T) = || T||. O



Recall that any bounded linear operator T satisfies the identity
| T*T|| = || T||* (C*-algebra identity).

Proof of Spectral theorem for self-adjoint operators-I.
Since A is self-adjoint, for any complex polynomial p,

p(A) p(A) = |p[*(A).
Hence, by the C*-algebra identity and the last lemma,
Ip(A)Z = 1lp(A) p(A) = lllpP(A)] = r(lp[*(A)).

However, o(|p|?(A)) = |p|?>(c(A)) (since |p|? is also a polynomial
in the real variable), and hence

r(|p2(A)) = |p(z20)|? for some zy € o(A).

Thus [|p(A)|l = ||pllso,s(a) Showing that ¢(p) = p(A) defines a
positive, isometric, algebraic *~homomorphism. Now apply
Stone-Weierstrass Theorem to extend ¢ isometrically.

OJ



Square-root and polar decomposition

Let P be a positive operator, that is, P is self-adjoint and
(Px, x) = 0 for every x € H.

e The spectrum of a positive operator is contained in [0, ) :
Since o(P) C R, it suffices to check that P — X is invertible for
every \ € (—00,0). However, ((P — \)x, x) = —\||x||? for every
x € H. Conclude that P — X is bijective.

Theorem
Every positive operator P has a positive square-root, that is, there
exists a positive operator Q such that P = Q2.

Proof.

By the spectral theorem, ¢(p) = P, where p is the polynomial
p(z) = z. Note that id is defined on the spectrum of P. However,
the spectrum of P is contained in [0, 00). So the function p has a
positive continuous sqaure-root, that is, there exists positive
element g € C(a(P)) such that p = g°. Applying ¢ on both sides



Proof continued .. ..
gives P = ¢(p) = ¢(q?) = ¢(q)>. Note that Q = ¢(q) is a positive
operator satisfying P = Q2. O
Let T be a left-invertible bounded linear operator on H, that is,
there exists a bounded linear operator L such that LT = /.

e Note that ||x|| = ||[LTx|| < ||L]|||| Tx|| and hence

(T*Tx, x) = | Tx||* = |ILI72lIx]I?, x € H.

Thus o(T*T) C [ﬁ,oo) (Exercise).

Define U: H — Hby U= T(T*T) /2, where (T*T)"1/2
denote the positive square-root of (T*T)71.
Note that U is an isometry, that is, U*U = | :

UU = (T(T*T)" Y2 1(T"T)~1/?

( ) 12T ( T*T )—1/2 /.
= UP, where U an isometry and P = (T*T)'/? positive.



Theorem (Polar decomposition)

Every invertible T € L(H) can be decomposed (uniquely) as

T = UP with positive invertible P and unitary U (that is, an
invertible isometry).

Let U(H) denote the set of all unitary operators in £(H). Let
G(H) denote the set of all invertible operators in £(#). Note that
G(H) is a group under the operation of composition and that

UH) ¢ G(H) ¢ L(H).

Let V be a normed linear space with the norm || - ||. A subset O of

V is said to be path-connected if for any vi, vo € O there exists a

map (to be referred to as path) v : [0,1] — O such that

(1) v(0) = v; and (1) = vo, and

(2) nll_>ngo |v(ta) — v(t)|| = 0 whenever nI|_>an1>o |tn, — t| =0 for any
t,t, €[0,1].



Theorem
U(H) is path-connected.

Corollary
G(H) is path-connected.

Proof.

It suffices to show that there exists a path joining any T € G(H)
and the identity operator /. Let T € G(H) and consider its polar
decomposition T = UP. Let 7 : [0,1] — U(H) be a path joining U
and /. Define § : [0,1] — G(H) by

o(t) =v(t) (1 —=t)P+tl), te][0,1].
Then ¢ is well-defined since (1 — t)P + t/ is invertible in view of
o(1-t)Pi+th={1-t)\+t:Xeo(P)}

and o(P) C (0,00). Clearly, the continuity of ¢ follows from that
of 7. Since 6(0) = T and §(1) = /, the proof is over. O



For the proof of the connectedness of U(H) using spectral
theorem, we need to go beyond continuous functional calculus.

Recall that a bounded linear operator T on a Hilbert space H is
cyclic if there exists a vector h € H (a cyclic vector) such that

\/{T"h . n is a non-negative integer} = H.

Lemma

Let A be a self-adjoint operator in L(H). If A is cyclic with cyclic
vector f € H, then there exists a finite positive Borel measure pif
and a unitary operator U : H — L?(c(A), dus) such that

(VAU g)(A) = Xg(\), g € L*(a(A), pr).

Let ¢ denote the continuous functional calculus.



Proof.

Consider the bounded linear functional ¢ : C(c(A)) — C by
v(g) = (p(g)f, f), g€ C(c(A)). By Riesz Representation
Theorem, there exists a finite positive Borel measure pf on o(A)
such that

ve)= [ edur(t) g€ ClolA)).
o(A)
Define U by U¢(g)f = g for g € C(o(A)), and note that

lo(e)fII? = (¢(|gl*)f, f) = /(A) g(t)Pdue(t) = llgl.

Since f is cyclic for A, U extends isometrically from H into
L?(o(A), pf). Since the range of U contains continuous functions,
U is surjective. Note that for any g € L?(c(A), uf) and X € o(A),

(VAU 1) () = (UAG(g)F)(N) = (Us(28)f)(N) = Ag(A).
This completes the proof. []



Lemma
Let H be a separable Hilbert space. If A € L(H), then there exists
an orthonormal family {gj}szl with N € N or N = oo, such that

H= 69 —1H;, where

”Hj:\/{A*kAlgj:k,leN}, j=1,...,N.

Proof.
Let {ej}jen be an orthonormal basis of H. Let g1 = e;. If H1 = H,
then let N = 1. Otherwise, let k; be the smallest positive integer

P
such that Pfo_ ek, 7 0 and let g» = HPliu Since (g, g») = 0 for
1

every g € Hi, the spaces H1 and H, are orthogonal. Further,
{ej} 1, € Hi1® Ho. Now proceed by induction. O



Theorem (Spectral Theorem for Self-adjoint Operators)

Let H be a separable Hilbert space and let A€ L(H). IfAis a
self-adjoint operator, then there exist finite positive Borel measures
i, iy (N €N or N=o00) and a unitary operator

U:H — &N 12(c(A), un) such that

(UAUT g)n(N) = Agn(N), & = (gn)hy € BN L2 (0(A), pin).

In particular, there exists a unique positive, contractive, algebraic
*-homo-morphism ¢ : By (c(A)) — L(H) such that

o(f) =f(A), f e C(o(A)) is a polynomial.

Moreover, ¢ is isometric on C(co(A)).



Proof.
There exist invariant subspaces Hi, Ha, ..., Hy of A such that

H =N M, and Aly, is cyclic.

The first part now follows from Lemma 20. To see the second part,
let f, € L2(0(A), un) such that ||f,|| = 27", and let M denote the
disjoint union of N copies of o(A). If i be the restriction of u, to
nth copy of o(A), then (M, p) is the desired finite measure space.
Moreover, A is unitarily equivalent to the operator M, of
multiplication by A on L2(M, 11). The Borel functional calculus of
A now follows from that of My. This completes the proof. O



Theorem (L2-version of the Miintz-Szész Theorem)

If {nk}k=1 is a strictly increasing sequence of nonnegative integers,
then closed linear span{t™ : k > 1} = L?[0,1] & Z —— = 0.
Corollary

The closed linear span{t* : k > 1} = L2[0,1].

For a complex number z = x + iy, note that if 2x + 1 > 0, then

1 1 F2x+1 1
/ |t?2dt = / t2Xdt = .
0 0 2X + ]. 0

Also, if 2x + 1 < 0, then tZ ¢ [2[0,1]. Thus if
Q={z€C:Re(z) > —3}. then

t? € 1%[0,1] ©zcQ.



oz_x+WeQﬂx>2ﬁWliL—<lﬂ <1

+1)2+ z+1
e The map ¢ : Q — D given by ¢(z) = %5 is bijective.

z+1
For z € Q, define v, : D — C by

1
(1+2)(1 = é(z)n)’

Consider the Hilbert space H?(ID) of all holomorphic function
f(z) =Y 725 anz" on D endowed with the inner-product

ng2]D)) Zann

Note that (f, vz)p2(p ):%(f Yoo d(2)™") =
H%Zn 0 3nd(2) ) = % (6(2)). Since ¢ is surjective, we obtain

Lemma
The closed linear span of {v, : z € Q} is equal to H*(DD).

vz(n) = n € D.




Lemma
For every z,w € €,

(Vz, vw) 2y = (t%, t) 12[0,1)-

Proof.
A calculation using the geometric series shows that

1 1 1

Ve SO = (1 )14 W) T o) T o(win) 7O
B 1 1 1 1
1+ z2)(14+w)1— o(2)p(w) 1 +2)(1+W) 1~ P a an)

= L : = (t*, t7).

I+2)1+w)—zw 1+z+w

This completes the proof.



Define V : H2(D) — L2[0, 1] by setting
V()= %, zeQ,

and extending linearly and continuously to H?(D). Note that V is
an isometry. Hence it has closed range. However, the range is
dense (since polynomials are dense in L2[0,1]), so V/ is unitary.

The above argument shows the following:

Lemma

For any strictly increasing sequence {ny}«>1, the following are
equivalent:

(i) the closed linear span of {vy, }k>1 is H*(D),
(ii) the closed linear span of {t"},=1 is L2[0, 1],
(iii) the closed linear span of{m} k1 is H?(D).



We also need a fact from complex analysis.

Lemma

Let {an}n>1 be a sequence of points in D. There exists a non-zero
function f € H?(DD) that vanishes at each point a, if and only if
(0.9]

> (1 —|an]) < oo

n=1

Proof of the L2-version of the Miintz-Szasz Theorem.
Note that

S a—len))=>_ o
n=1 k=1

and apply all the lemmas. []



