Hilbert space methods in analysis

Sameer Chavan Indian Institute of Technology Kanpur

TWE in functional analysis at Department of Mathematics, Kashmir University Srinagar Nov.28-Dec.12, 2021 These are the lecture notes prepared for TWE in functional analysis at Department of Mathematics, Kashmir University Srinagar to be held during Nov.28-Dec.12, 2021. I mostly referred in parts to the following texts:

- Jim Agler, John Edward McCarthy, Nicholas John Young, Operator Analysis: Hilbert Space Methods in Complex Analysis, Cambridge University Press, 2020, xvi+376 pp.
- Chavan, Sameer; Misra, Gadadhar, Notes on the Brown-Douglas-Fillmore theorem. Cambridge-IISc Series. Cambridge University Press, Cambridge, 2021. xi+246 pp
- Rudin, Walter Real and complex analysis. Third edition. McGraw-Hill Book Co., New York, 1987. xiv+416 pp

Theorem If $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ is convergent on $\mathbb{D}_R(a)$, then for any 0 < r < R,

$$a_n r^n = rac{1}{2\pi} \int_{-\pi}^{\pi} f(a + r e^{i heta}) e^{-i n heta} d heta, \quad n \geq 0$$

$$\sum_{n=0}^{\infty} |a_n|^2 r^{2n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(a + re^{i\theta})|^2 d\theta.$$

- The first part follows from the fact that the power series above converges uniformly on $\mathbb{D}_r(a)$, and hence one can interchange the infinite sum and the integral.
- For the second part, we need some bits of Hilbert space theory.

Corollary (Maximum modulus principle) Let $f \in H(U)$ for some open connected set U. If $\overline{\mathbb{D}}_r(a) \subseteq U$, then

$$|f(a)| \leq \sup_{|z-a|=r} |f(z)|.$$

Moreover, equality occurs above if and only if f is constant.

Proof.

Suppose that $\sup_{|z-a|=r} |f(z)| \leq |f(a)|.$ It follows from the last theorem that

$$\sum_{n=0}^{\infty} |a_n|^2 r^{2n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(a + re^{i\theta})|^2 d\theta \le |f(a)|^2 = a_0^2.$$

This implies that $a_1 = 0, a_2 = 0, \dots$ That is, f is constant on $\mathbb{D}_r(a)$. By the identity theorem, f is constant on U.

A subset $\{e_n\}_{n\geq 0}$ of H is said to be an *orthonormal basis* for a Hilbert space H if $\{e_n\}_{n\geq 0}$ is an orthonormal set and for every $h \in H$, there exist scalars α_n such that $\sum_{n=0}^{\infty} \alpha_n e_n$ converges to h. Theorem (Parseval's Identity)

Let $\{e_n\}$ be an orthonormal basis of a Hilbert space (complete inner-product space) H. Then, for $h \in H$, $||h||^2 = \sum_{n=0}^{\infty} |\langle h, e_n \rangle|^2$. Proof.

If $h = \sum_{n=0}^{\infty} \alpha_n e_n$ then for $m \ge 0$, by the orthogonality of $\{e_n\}_{n\ge 0}$,

$$\langle h, e_m \rangle = \sum_{n=0}^{\infty} \alpha_n \langle e_n, e_m \rangle = \alpha_m.$$

Note that for every $k \ge 0$, by the orthogonality of $\{e_n\}_{n\ge 0}$,

$$\|\sum_{n=0}^{k} \langle h, e_n \rangle e_n\|^2 = \sum_{n=0}^{k} |\langle h, e_n \rangle|^2$$

Let now $k \to \infty$ and use the continuity of the norm.

Let \mathbb{T} denote the unit circle in the complex plane \mathbb{C} and define $e_n(\theta) = e^{in\theta}, \ \theta \in [-\pi, \pi], \ n \in \mathbb{Z}.$

Example

We claim that $\{e_n\}_{n=-\infty}^{\infty}$ is an orthonormal basis for the Hilbert space $L^2(\mathbb{T})$.

- Note that $L^{\infty}(\mathbb{T})$ is contained in $L^{2}(\mathbb{T})$.
- For every $f \in L^2(\mathbb{T})$,

$$\|f\|_2^2 = \int_{[-\pi,\pi]} |f(t)|^2 dt \leqslant 2\pi \|f\|_{\infty}^2,$$

where $\|\cdot\|_{\infty}$ denotes the essential sup norm of f.

- Since trigonometric polynomials are dense in C(T) (Stone-Weierstrass theorem), the linear span of {e_n}_{n=-∞}[∞] is dense in the subspace of continuous functions in L²(T).
- However, continuous functions are dense in $L^2(\mathbb{T})$.

Problem (Maximal Orthonormal Set)

Let $\{e_n\}$ be an orthonormal set in a Hilbert space H with the property: If $x \in H$ such that $\langle x, e_n \rangle = 0$ for all n then x = 0. Show that $\{e_n\}$ is an orthonormal basis.

Solution.

By the continuity of the inner-product,

$$\langle x-\sum_{n=0}^{\infty}\langle x, e_n\rangle e_n, e_m\rangle=0.$$

By hypothesis,

$$x-\sum_{n=0}^{\infty}\langle x, e_n\rangle e_n=0,$$

and hence $\{e_n\}$ is an orthonormal basis. Since the linear span of $\{e_n\}_{n=-\infty}^{\infty}$ is dense in $L^2(\mathbb{T})$, by the last problem, $\{e_n\}_{n=-\infty}^{\infty}$ forms an orthonormal basis for $L^2(\mathbb{T})$. Theorem

If $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ is convergent on $\mathbb{D}_R(a)$, then for any 0 < r < R,

$$a_n r^n = rac{1}{2\pi} \int_{-\pi}^{\pi} f(a + r e^{i heta}) e^{-i n heta} d heta, \quad n \geq 0$$

$$\sum_{n=0}^{\infty} |a_n|^2 r^{2n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(a+re^{i\theta})|^2 d\theta.$$

Proof.

Apply the Parseval's identity to

$$f(a + re^{i\theta}) = \sum_{n=0}^{\infty} a_n r^n e^{in\theta}, \ H = L^2(\mathbb{T}), \ e_n(\theta) = e^{in\theta}, \ \theta \in [-\pi, \pi],$$

where we used the fact that $\{e_n\}_{n=-\infty}^{\infty}$ is an orthonormal basis for the Hilbert space $L^2(\mathbb{T})$.

In the entire analysis above, the most crucial fact we used is

Theorem

 $\{e_n\}_{n=-\infty}^{\infty}$ is an orthonormal basis for the Hilbert space $L^2(\mathbb{T})$. One can give a proof of this fact using the so-called spectral theorem, Although we do not provide all the details here, let us understand the "spectral theorem".

Let $p(z) = \sum_{k=0}^{n} a_k z^k$ be a complex polynomial of degree *n* in the variable *z*. If $T \in \mathcal{L}(\mathcal{H})$ then it is natural to define p(T) by $p(T) = \sum_{k=0}^{n} a_k T^k$, which is obtained by replacing *z* by *T* in the expression for p(z). Notice that p(T) belongs to $\mathcal{L}(\mathcal{H})$, since $\mathcal{L}(\mathcal{H})$ is an algebra. The association $p \mapsto p(T)$ is an algebra homomorphism: For $\alpha \in \mathbb{C}$, and for complex polynomials *p*, *q*,

$$(p + \alpha q)(T) = p(T) + \alpha(q(T))$$
 and $(pq)(T) = p(T)q(T)$.

We call this algebra homomorphism as the *polynomial functional* calculus for T.

Spectrum

The spectrum $\sigma(T)$ of $T \in \mathcal{L}(\mathcal{H})$ is defined as the subset

 $\{\lambda \in \mathbb{C} : T - \lambda I \text{ is not invertible in } \mathcal{L}(\mathcal{H})\}$

of the complex plane \mathbb{C} . It turns out that $\sigma(T)$ is a bounded subset of \mathbb{C} . In fact,

$$\sigma(T) \subseteq \{z \in \mathbb{C} : |z| \leq ||T||\},\$$

where $||T|| = \sup\{||Tx|| : x \in \mathcal{H}, ||x|| = 1\}$ is the operator norm of T. This inclusion may be derived from the following fact.

Problem

If $C \in \mathcal{L}(\mathcal{H})$ has norm less than 1, then show that I - C is invertible and $\lim_{n\to\infty} \left\| \sum_{k=0}^{n} C^k - (I - C)^{-1} \right\| = 0.$

Solution.

For integers m < n, one has $\left\|\sum_{k=m}^{n} C^{k}\right\| \leq \sum_{k=m}^{n} \|C^{k}\| \leq \sum_{k=m}^{n} \|C\|^{k}$, where we used the fact that $\|C^{k}\| \leq \|C\|^{k}$ for every non-negative integer k.

Solution continued

Since $\|C\| < 1$, by the convergence of the geometric series for real numbers,

$$P(m,n) = \sum_{k=m}^n C^k o 0$$
 in the operator norm as $m,n o\infty.$

Thus $\{P(0,n)\}_{n\geq 0}$ is a Cauchy sequence in $\mathcal{L}(\mathcal{H})$. Since $\mathcal{L}(\mathcal{H})$ is complete in the operator norm, there exists $T \in \mathcal{L}(\mathcal{H})$ such that $\{P(0,n)\}_{n\geq 0}$ converges to T in the operator norm. Since $\|C\| < 1, \{C^k\}_{k\geq 0}$ converges to 0 in the operator norm. To conclude the proof, note that

$$(I - C)P(0, n) = I - C^{n+1} = P(0, n)(I - C)$$

converges to (I - C)T, I, T(I - C) simultaneously in the operator norm. Since limit is unique, we must have (I - C)T = I = T(I - C).

Problem Show that $\sigma(T)$ is a compact subset of $\mathbb{C}^{,1}$

Hint.

For $z_0 \in \mathbb{C} \setminus \sigma(T)$, let $r = ||(T - z_0)^{-1}||^{-1}$ and let $z \in \mathbb{C}$ be such that $|z - z_0| < r$. Observe that

$$T - zI = (T - z_0I)(I - (T - z_0)^{-1}(z - z_0)).$$

By last problem, $I - (T - z_0)^{-1}(z - z_0)$ and so is T - zI.

Theorem

The spectral radius $r(T) = \sup\{|z| : z \in \sigma(T)\}$ of T is given by

$$r(T) = \lim_{n \to \infty} \|T^n\|^{1/n}.$$

¹Moreover, $\sigma(T)$ is nonempty. This is an application of Liouville's theorem from complex analysis.

Theorem (Spectral mapping property for polynomials)

For any polynomial in the complex variable and for any A in $\mathcal{L}(\mathcal{H})$, we have $\sigma(p(A)) = p(\sigma(A))$.

Proof.

Replacing p by $p - \lambda$, it suffices to verify that p(T) is invertible if and only if p is nowhere-vanishing on $\sigma(T)$. By Fundamental Theorem of Algebra,

 $p(z) = \alpha_0(z - \alpha_1)(z - \alpha_2) \cdots (z - \alpha_n), \ \{\alpha_k\}_{k=0}^n \subseteq \mathbb{C}.$ Suppose that p is nowhere-vanishing on $\sigma(T)$. It follows that $\alpha_k \notin \sigma(T)$ for $k = 1, \ldots, n$. Hence

$$p(T) = \alpha_0(T - \alpha_1 I)(T - \alpha_2 I) \cdots (T - \alpha_n I), \ \{\alpha_k\}_{k=1}^n \subseteq \mathbb{C} \setminus \sigma(T).$$

It is now clear that p(T) is invertible.

Conversely, assume that p(T) is invertible. Then there exists $S \in \mathcal{L}(\mathcal{H})$ such that p(T)S = I = Sp(T). It follows that $\alpha_k \notin \sigma(T)$ for any k = 1, ..., n. Thus p(z) is nonzero for any $z \in \sigma(T)$.

Let us discuss the spectral theorem for self-adjoint operators on complex Hilbert spaces. Recall that a bounded linear operator A is self-adjoint if $A^* = A$ or equivalently, $\langle Ax, y \rangle = \langle x, Ay \rangle$, $x, y \in H$. Note that $\langle Ax, x \rangle$ is a real number for any $x \in H$.

Problem

Show that spectrum of a self-adjoint operator A is contained in \mathbb{R} .

Solution.

Let $\lambda = \alpha + i\beta \in \mathbb{C}$ be such that $\beta \neq 0$. Then, for any $x \in H$,

$$\|(A - \lambda I)x\|^2 = \|Ax\|^2 - 2\operatorname{Re}\langle Ax, \, \lambda x \rangle + |\lambda|^2 \|x\|^2.$$

However, $\langle Ax, \lambda x \rangle = \overline{\lambda} \langle Ax, x \rangle = (\alpha - i\beta) \langle Ax, x \rangle$ Thus

$$\|(A - \lambda I)x\|^2 = \|Ax\|^2 - 2\langle Ax, x \rangle \alpha + (\alpha^2 + \beta^2)\|x\|^2 \ge \beta^2 \|x\|$$

for every $x \in H$. Clearly, $A - \lambda$ is injective and the range is closed. Since $A^* = A$, $(A - \lambda)^*$ is also injective, so the range of $A - \lambda I$ is dense. Hence $A - \lambda I$ is invertible. Theorem (Spectral theorem for self-adjoint operators-I) If A is a self-adjoint operator in $\mathcal{L}(\mathcal{H})$, then there is a unique positive, isometric, algebraic *-homomorphism map $\phi : C(\sigma(A)) \rightarrow \mathcal{L}(\mathcal{H})$ such that $\phi(p) = p(A)$ for every polynomial $p \in C(\sigma(A))$.

We present a proof based on the following:

Theorem (Stone-Weierstrass theorem)

Let \mathscr{A} be an algebra of continuous functions $f : K \to \mathbb{R}$ with the following properties:

If x ≠ y ∈ K, then there exists f ∈ A such that f(x) ≠ f(y).
 For every x ∈ K, there exists f ∈ A such that f(x) ≠ 0.
 Then A is dense in the algebra C_R(K) of continuous real-valued functions on K endowed with the uniform norm.

We also need the following fact:

Lemma

For any operator $T \in \mathcal{L}(\mathcal{H})$ for which $T^*T \leq TT^*$, ||T|| is equal to the spectral radius $r(T) = \max\{|z| : z \in \sigma(T)\}$ of T.

Proof.

Note that for any positive integer n and any $h \in \mathcal{H}$,

$$||T^{n}h||^{2} = \langle T^{*}T^{n}h, T^{n-1}h \rangle \leq ||T^{*}T^{n}h|| ||T^{n-1}h|| \leq ||T^{n+1}h|| ||T^{n-1}h||.$$

Thus we have $||T^n||^2 \leq ||T^{n+1}|| ||T^{n-1}||$ for any positive integer *n*. We now check by induction on integers $n \geq 1$ that $||T^n|| \geq ||T||^n$. Assuming the inductive hypothesis for k = 1, ..., n, we obtain

$$||T^{n+1}|| ||T||^{n-1} = ||T^{n+1}|| ||T^{n-1}|| \ge ||T^n||^2 = ||T||^{2n},$$

which yields $||T^{n+1}|| \ge ||T||^{n+1}$ completing the proof of induction. By the spectral radius formula $r(T) = \lim_{n\to\infty} ||T^n||^{1/n}$, we get $r(T) \ge ||T||$. Since $r(T) \le ||T||$ holds true for any operator T in $\mathcal{L}(\mathcal{H})$, we obtain the equality r(T) = ||T||. Recall that any bounded linear operator T satisfies the identity $||T^*T|| = ||T||^2$ (C^* -algebra identity).

Proof of Spectral theorem for self-adjoint operators-I. Since A is self-adjoint, for any complex polynomial p,

$$p(A)^*p(A) = |p|^2(A).$$

Hence, by the C^* -algebra identity and the last lemma,

$$\|p(A)\|^2 = \|p(A)^*p(A)\| = \||p|^2(A)\| = r(|p|^2(A)).$$

However, $\sigma(|p|^2(A)) = |p|^2(\sigma(A))$ (since $|p|^2$ is also a polynomial in the real variable), and hence

$$r(|p|^2(A)) = |p(z_0)|^2$$
 for some $z_0 \in \sigma(A)$.

Thus $||p(A)|| = ||p||_{\infty,\sigma(A)}$ showing that $\phi(p) = p(A)$ defines a positive, isometric, algebraic *-homomorphism. Now apply Stone-Weierstrass Theorem to extend ϕ isometrically.

Square-root and polar decomposition

Let P be a positive operator, that is, P is self-adjoint and $\langle Px, x \rangle \ge 0$ for every $x \in H$.

 The spectrum of a positive operator is contained in [0,∞): Since σ(P) ⊆ ℝ, it suffices to check that P − λ is invertible for every λ ∈ (−∞, 0). However, ⟨(P − λ)x, x⟩ ≥ −λ||x||² for every x ∈ H. Conclude that P − λ is bijective.

Theorem

Every positive operator P has a positive square-root, that is, there exists a positive operator Q such that $P = Q^2$.

Proof.

By the spectral theorem, $\phi(p) = P$, where p is the polynomial p(z) = z. Note that *id* is defined on the spectrum of P. However, the spectrum of P is contained in $[0, \infty)$. So the function p has a positive continuous squure-root, that is, there exists positive element $q \in C(\sigma(P))$ such that $p = q^2$. Applying ϕ on both sides

Proof continued

gives $P = \phi(p) = \phi(q^2) = \phi(q)^2$. Note that $Q = \phi(q)$ is a positive operator satisfying $P = Q^2$.

Let T be a left-invertible bounded linear operator on H, that is, there exists a bounded linear operator L such that LT = I.

• Note that $||x|| = ||LTx|| \le ||L|| ||Tx||$ and hence

$$\langle T^*Tx, x \rangle = \|Tx\|^2 \ge \|L\|^{-2}\|x\|^2, \quad x \in H.$$

• Thus
$$\sigma(T^*T) \subseteq [\frac{1}{\|L\|}, \infty)$$
 (Exercise).

- Define $U: H \to H$ by $U = T(T^*T)^{-1/2}$, where $(T^*T)^{-1/2}$ denote the positive square-root of $(T^*T)^{-1}$.
- Note that U is an isometry, that is, $U^*U = I$:

$$U^*U = (T(T^*T)^{-1/2})^*T(T^*T)^{-1/2}$$

$$= (T^*T)^{-1/2}T^*T(T^*T)^{-1/2} = I.$$

• T = UP, where U an isometry and $P = (T^*T)^{1/2}$ positive.

Theorem (Polar decomposition)

Every invertible $T \in \mathcal{L}(\mathcal{H})$ can be decomposed (uniquely) as T = UP with positive invertible P and unitary U (that is, an invertible isometry).

Let $\mathcal{U}(\mathcal{H})$ denote the set of all unitary operators in $\mathcal{L}(\mathcal{H})$. Let $\mathcal{G}(\mathcal{H})$ denote the set of all invertible operators in $\mathcal{L}(\mathcal{H})$. Note that $\mathcal{G}(\mathcal{H})$ is a group under the operation of composition and that

$$\mathcal{U}(\mathcal{H}) \subsetneq \mathcal{G}(\mathcal{H}) \subsetneq \mathcal{L}(\mathcal{H}).$$

Let V be a normed linear space with the norm $\|\cdot\|$. A subset \mathcal{O} of V is said to be *path-connected* if for any $v_1, v_2 \in \mathcal{O}$ there exists a map (to be referred to as *path*) $\gamma : [0, 1] \to \mathcal{O}$ such that

(1)
$$\gamma(0) = v_1$$
 and $\gamma(1) = v_2$, and
(2) $\lim_{n \to \infty} ||\gamma(t_n) - \gamma(t)|| = 0$ whenever $\lim_{n \to \infty} |t_n - t| = 0$ for any $t, t_n \in [0, 1]$.

Theorem $U(\mathcal{H})$ is path-connected.

Corollary $\mathcal{G}(\mathcal{H})$ is path-connected.

Proof.

It suffices to show that there exists a path joining any $T \in \mathcal{G}(\mathcal{H})$ and the identity operator *I*. Let $T \in \mathcal{G}(\mathcal{H})$ and consider its polar decomposition T = UP. Let $\gamma : [0, 1] \rightarrow \mathcal{U}(\mathcal{H})$ be a path joining *U* and *I*. Define $\delta : [0, 1] \rightarrow \mathcal{G}(\mathcal{H})$ by

$$\delta(t) = \gamma(t)((1-t)P + tI), \quad t \in [0,1].$$

Then δ is well-defined since (1 - t)P + tI is invertible in view of

$$\sigma((1-t)P_1+tI) = \{(1-t)\lambda + t : \lambda \in \sigma(P)\}$$

and $\sigma(P) \subset (0,\infty)$. Clearly, the continuity of δ follows from that of γ . Since $\delta(0) = T$ and $\delta(1) = I$, the proof is over.

For the proof of the connectedness of $\mathcal{U}(\mathcal{H})$ using spectral theorem, we need to go beyond continuous functional calculus.

Recall that a bounded linear operator T on a Hilbert space \mathcal{H} is *cyclic* if there exists a vector $h \in \mathcal{H}$ (a *cyclic vector*) such that

$$\bigvee$$
{ $T^nh: n \text{ is a non-negative integer}$ } = \mathcal{H} .

Lemma

Let A be a self-adjoint operator in $\mathcal{L}(\mathcal{H})$. If A is cyclic with cyclic vector $f \in \mathcal{H}$, then there exists a finite positive Borel measure μ_f and a unitary operator $U : \mathcal{H} \to L^2(\sigma(A), d\mu_f)$ such that

$$(UAU^{-1}g)(\lambda) = \lambda g(\lambda), \quad g \in L^2(\sigma(A), \mu_f).$$

Let ϕ denote the continuous functional calculus.

Proof.

Consider the bounded linear functional $\psi : C(\sigma(A)) \to \mathbb{C}$ by $\psi(g) = \langle \phi(g)f, f \rangle$, $g \in C(\sigma(A))$. By Riesz Representation Theorem, there exists a finite positive Borel measure μ_f on $\sigma(A)$ such that

$$\psi(g) = \int_{\sigma(A)} g(t) d\mu_f(t), \quad g \in C(\sigma(A)).$$

Define U by $U\phi(g)f = g$ for $g \in C(\sigma(A))$, and note that

$$\|\phi(g)f\|^2 = \langle \phi(|g|^2)f, f \rangle = \int_{\sigma(A)} |g(t)|^2 d\mu_f(t) = \|g\|^2.$$

Since f is cyclic for A, U extends isometrically from \mathcal{H} into $L^2(\sigma(A), \mu_f)$. Since the range of U contains continuous functions, U is surjective. Note that for any $g \in L^2(\sigma(A), \mu_f)$ and $\lambda \in \sigma(A)$,

$$(UAU^{-1}g)(\lambda) = (UA\phi(g)f)(\lambda) = (U\phi(zg)f)(\lambda) = \lambda g(\lambda).$$

This completes the proof.

Lemma

Let \mathcal{H} be a separable Hilbert space. If $A \in \mathcal{L}(\mathcal{H})$, then there exists an orthonormal family $\{g_j\}_{j=1}^N$ with $N \in \mathbb{N}$ or $N = \infty$, such that $\mathcal{H} = \bigoplus_{j=1}^N \mathcal{H}_j$, where

$$\mathcal{H}_j = \bigvee \{A^{*k}A^lg_j : k, l \in \mathbb{N}\}, \quad j = 1, \ldots, N.$$

Proof.

Let $\{e_j\}_{j\in\mathbb{N}}$ be an orthonormal basis of \mathcal{H} . Let $g_1 = e_1$. If $\mathcal{H}_1 = \mathcal{H}$, then let N = 1. Otherwise, let k_1 be the smallest positive integer such that $P_{\mathcal{H}_1^{\perp}}e_{k_1} \neq 0$ and let $g_2 = \frac{P_{\mathcal{H}_1^{\perp}}e_{k_1}}{\|P_{\mathcal{H}_1^{\perp}}e_{k_1}\|}$. Since $\langle g, g_2 \rangle = 0$ for every $g \in \mathcal{H}_1$, the spaces \mathcal{H}_1 and \mathcal{H}_2 are orthogonal. Further, $\{e_j\}_{i=1}^{k_1} \subseteq \mathcal{H}_1 \oplus \mathcal{H}_2$. Now proceed by induction.

Theorem (Spectral Theorem for Self-adjoint Operators) Let \mathcal{H} be a separable Hilbert space and let $A \in \mathcal{L}(\mathcal{H})$. If A is a

self-adjoint operator, then there exist finite positive Borel measures μ_1, \ldots, μ_N ($N \in \mathbb{N}$ or $N = \infty$) and a unitary operator $U : \mathcal{H} \to \bigoplus_{n=1}^N L^2(\sigma(A), \mu_n)$ such that

$$(UAU^{-1}g)_n(\lambda) = \lambda g_n(\lambda), \quad g = (g_n)_{n=1}^N \in \bigoplus_{n=1}^N L^2(\sigma(A), \mu_n).$$

In particular, there exists a unique positive, contractive, algebraic *-homo-morphism $\phi : B_{\infty}(\sigma(A)) \to \mathcal{L}(\mathcal{H})$ such that

 $\phi(f) = f(A), \quad f \in C(\sigma(A))$ is a polynomial.

Moreover, ϕ is isometric on $C(\sigma(A))$.

Proof.

There exist invariant subspaces $\mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_N$ of A such that

$$\mathcal{H} = \oplus_{n=1}^{N} \mathcal{H}_{n}$$
, and $A|_{\mathcal{H}_{n}}$ is cyclic.

The first part now follows from Lemma 20. To see the second part, let $f_n \in L^2(\sigma(A), \mu_n)$ such that $||f_n|| = 2^{-n}$, and let M denote the disjoint union of N copies of $\sigma(A)$. If μ be the restriction of μ_n to nth copy of $\sigma(A)$, then $\langle M, \mu \rangle$ is the desired finite measure space. Moreover, A is unitarily equivalent to the operator M_λ of multiplication by λ on $L^2(M, \mu)$. The Borel functional calculus of A now follows from that of M_λ . This completes the proof. Theorem (*L*²-version of the Müntz-Szász Theorem) If $\{n_k\}_{k \ge 1}$ is a strictly increasing sequence of nonnegative integers, then closed linear span $\{t^{n_k} : k \ge 1\} = L^2[0,1] \Leftrightarrow \sum_{k=1}^{\infty} \frac{1}{n_k + 1} = \infty.$

Corollary

The closed linear span{ $t^k : k \ge 1$ } = $L^2[0, 1]$.

For a complex number z = x + iy, note that if 2x + 1 > 0, then

$$\int_0^1 |t^z|^2 dt = \int_0^1 t^{2x} dt = rac{t^{2x+1}}{2x+1} \Big|_0^1.$$

Also, if $2x + 1 \leq 0$, then $t^z \notin L^2[0, 1]$. Thus if $\Omega = \{z \in \mathbb{C} : \operatorname{Re}(z) > -\frac{1}{2}\}$. then

 $t^z \in L^2[0,1] \Leftrightarrow z \in \Omega.$

•
$$z = x + iy \in \Omega$$
 iff $x > \frac{1}{2}$ iff $\frac{x^2 + y^2}{(x+1)^2 + y^2} < 1$ iff $\left| \frac{z}{z+1} \right| < 1$.

• The map $\phi: \Omega \to \mathbb{D}$ given by $\phi(z) = \frac{z}{z+1}$ is bijective.

For $z \in \Omega$, define $v_z : \mathbb{D} \to \mathbb{C}$ by

$$egin{aligned} \mathsf{v}_{\mathsf{z}}(\eta) &= rac{1}{(1+z)(1-\phi(z)\eta)}, \quad \eta \in \mathbb{D}. \end{aligned}$$

Consider the Hilbert space $H^2(\mathbb{D})$ of all holomorphic function $f(z) = \sum_{n=0}^{\infty} a_n z^n$ on \mathbb{D} endowed with the inner-product

$$\langle f, g \rangle_{H^2(\mathbb{D})} = \sum_{n=0}^{\infty} a_n \overline{b}_n.$$

Note that $\langle f, v_z \rangle_{H^2(\mathbb{D})} = \frac{1}{1+\overline{z}} \langle f, \sum_{n=0}^{\infty} \phi(z)^n \eta^n \rangle = \frac{1}{1+\overline{z}} \sum_{n=0}^{\infty} a_n \overline{\phi(z)}^n = \frac{1}{1+\overline{z}} f(\overline{\phi(z)})$. Since ϕ is surjective, we obtain Lemma

The closed linear span of $\{v_z : z \in \Omega\}$ is equal to $H^2(\mathbb{D})$.

Lemma

For every $z, w \in \Omega$,

$$\langle v_z, v_w \rangle_{H^2(\mathbb{D})} = \langle t^z, t^w \rangle_{L^2[0,1]}.$$

Proof.

A calculation using the geometric series shows that

$$egin{aligned} &\langle \mathsf{v}_z, \, \mathsf{v}_w
angle_{H^2(\mathbb{D})} = rac{1}{(1+z)(1+\overline{w})} \langle rac{1}{1-\phi(z)\eta)}, \, rac{1}{1-\phi(w)\eta)}
angle_{H^2(\mathbb{D})} \ &= rac{1}{(1+z)(1+\overline{w})} rac{1}{1-\phi(z)\overline{\phi(w)}} \cdot rac{1}{(1+z)(1+\overline{w})} rac{1}{1-rac{z}{z+1}rac{\overline{w}}{\overline{w}+1}} \ &= rac{1}{(1+z)(1+\overline{w})-z\overline{w}} = rac{1}{1+z+\overline{w}} = \langle t^z, \, t^w
angle. \end{aligned}$$

This completes the proof.

Define $V: H^2(\mathbb{D}) \to L^2[0,1]$ by setting

$$V(v_z) = t^z, \quad z \in \Omega,$$

and extending linearly and continuously to $H^2(\mathbb{D})$. Note that V is an isometry. Hence it has closed range. However, the range is dense (since polynomials are dense in $L^2[0,1]$), so V is unitary.

The above argument shows the following:

Lemma

For any strictly increasing sequence $\{n_k\}_{k \ge 1}$, the following are equivalent:

- (i) the closed linear span of $\{v_{n_k}\}_{k \ge 1}$ is $H^2(\mathbb{D})$,
- (ii) the closed linear span of $\{t^{n_k}\}_{k \ge 1}$ is $L^2[0, 1]$,
- (iii) the closed linear span of $\{\frac{1}{1-\phi(n_k)\eta}\}_{k\geq 1}$ is $H^2(\mathbb{D})$.

We also need a fact from complex analysis.

Lemma

Let $\{a_n\}_{n\geq 1}$ be a sequence of points in \mathbb{D} . There exists a non-zero function $f \in H^2(\mathbb{D})$ that vanishes at each point a_n if and only if $\sum_{n=1}^{\infty} (1-|a_n|) < \infty$.

Proof of the L^2 -version of the Müntz-Szász Theorem. Note that

$$\sum_{n=1}^{\infty} (1 - |\phi(n_k)|) = \sum_{k=1}^{\infty} \frac{1}{n_k + 1},$$

and apply all the lemmas.