Hilbert space methods in analysis

Sameer Chavan
Indian Institute of Technology Kanpur

TWE in functional analysis at Department of Mathematics, Kashmir University Srinagar

Nov.28-Dec.12, 2021

These are the lecture notes prepared for TWE in functional analysis at Department of Mathematics, Kashmir University Srinagar to be held during Nov.28-Dec.12, 2021.
I mostly referred in parts to the following texts:

- Jim Agler, John Edward McCarthy, Nicholas John Young, Operator Analysis: Hilbert Space Methods in Complex Analysis, Cambridge University Press, 2020, xvi+376 pp.
- Chavan, Sameer; Misra, Gadadhar, Notes on the Brown-Douglas-Fillmore theorem. Cambridge-IISc Series. Cambridge University Press, Cambridge, 2021. xi +246 pp
- Rudin, Walter Real and complex analysis. Third edition. McGraw-Hill Book Co., New York, 1987. xiv+416 pp

Power series representation and Parseval's formula

Theorem
If $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ is convergent on $\mathbb{D}_{R}(a)$, then for any $0<r<R$,

$$
\begin{gathered}
a_{n} r^{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(a+r e^{i \theta}\right) e^{-i n \theta} d \theta, \quad n \geq 0 \\
\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} r^{2 n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f\left(a+r e^{i \theta}\right)\right|^{2} d \theta .
\end{gathered}
$$

- The first part follows from the fact that the power series above converges uniformly on $\mathbb{D}_{r}(a)$, and hence one can interchange the infinite sum and the integral.
- For the second part, we need some bits of Hilbert space theory.

Corollary (Maximum modulus principle)

Let $f \in H(U)$ for some open connected set U. If $\overline{\mathbb{D}}_{r}(a) \subseteq U$, then

$$
|f(a)| \leq \sup _{|z-a|=r}|f(z)|
$$

Moreover, equality occurs above if and only if f is constant.
Proof.
Suppose that $\sup _{|z-a|=r}|f(z)| \leq|f(a)|$. It follows from the last theorem that

$$
\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} r^{2 n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f\left(a+r e^{i \theta}\right)\right|^{2} d \theta \leq|f(a)|^{2}=a_{0}^{2}
$$

This implies that $a_{1}=0, a_{2}=0, \ldots$ That is, f is constant on $\mathbb{D}_{r}(a)$. By the identity theorem, f is constant on U.

A subset $\left\{e_{n}\right\}_{n \geq 0}$ of H is said to be an orthonormal basis for a Hilbert space H if $\left\{e_{n}\right\}_{n \geq 0}$ is an orthonormal set and for every $h \in H$, there exist scalars α_{n} such that $\sum_{n=0}^{\infty} \alpha_{n} e_{n}$ converges to h.
Theorem (Parseval's Identity)
Let $\left\{e_{n}\right\}$ be an orthonormal basis of a Hilbert space (complete inner-product space) H. Then, for $h \in H,\|h\|^{2}=\sum_{n=0}^{\infty}\left|\left\langle h, e_{n}\right\rangle\right|^{2}$.
Proof.
If $h=\sum_{n=0}^{\infty} \alpha_{n} e_{n}$ then for $m \geq 0$, by the orthogonality of $\left\{e_{n}\right\}_{n \geq 0}$,

$$
\left\langle h, e_{m}\right\rangle=\sum_{n=0}^{\infty} \alpha_{n}\left\langle e_{n}, e_{m}\right\rangle=\alpha_{m}
$$

Note that for every $k \geq 0$, by the orthogonality of $\left\{e_{n}\right\}_{n \geq 0}$,

$$
\left\|\sum_{n=0}^{k}\left\langle h, e_{n}\right\rangle e_{n}\right\|^{2}=\sum_{n=0}^{k}\left|\left\langle h, e_{n}\right\rangle\right|^{2}
$$

Let now $k \rightarrow \infty$ and use the continuity of the norm.

Let \mathbb{T} denote the unit circle in the complex plane \mathbb{C} and define $e_{n}(\theta)=e^{i n \theta}, \theta \in[-\pi, \pi], n \in \mathbb{Z}$.

Example

We claim that $\left\{e_{n}\right\}_{n=-\infty}^{\infty}$ is an orthonormal basis for the Hilbert space $L^{2}(\mathbb{T})$.

- Note that $L^{\infty}(\mathbb{T})$ is contained in $L^{2}(\mathbb{T})$.
- For every $f \in L^{2}(\mathbb{T})$,

$$
\|f\|_{2}^{2}=\int_{[-\pi, \pi]}|f(t)|^{2} d t \leqslant 2 \pi\|f\|_{\infty}^{2}
$$

where $\|\cdot\|_{\infty}$ denotes the essential sup norm of f.

- Since trigonometric polynomials are dense in $C(\mathbb{T})$ (Stone-Weierstrass theorem), the linear span of $\left\{e_{n}\right\}_{n=-\infty}^{\infty}$ is dense in the subspace of continuous functions in $L^{2}(\mathbb{T})$.
- However, continuous functions are dense in $L^{2}(\mathbb{T})$.

Problem (Maximal Orthonormal Set)

Let $\left\{e_{n}\right\}$ be an orthonormal set in a Hilbert space H with the property: If $x \in H$ such that $\left\langle x, e_{n}\right\rangle=0$ for all n then $x=0$. Show that $\left\{e_{n}\right\}$ is an orthonormal basis.

Solution.

By the continuity of the inner-product,

$$
\left\langle x-\sum_{n=0}^{\infty}\left\langle x, e_{n}\right\rangle e_{n}, e_{m}\right\rangle=0
$$

By hypothesis,

$$
x-\sum_{n=0}^{\infty}\left\langle x, e_{n}\right\rangle e_{n}=0
$$

and hence $\left\{e_{n}\right\}$ is an orthonormal basis.
Since the linear span of $\left\{e_{n}\right\}_{n=-\infty}^{\infty}$ is dense in $L^{2}(\mathbb{T})$, by the last problem, $\left\{e_{n}\right\}_{n=-\infty}^{\infty}$ forms an orthonormal basis for $L^{2}(\mathbb{T})$.

Theorem
If $f(z)=\sum_{n=0}^{\infty} a_{n}(z-a)^{n}$ is convergent on $\mathbb{D}_{R}(a)$, then for any $0<r<R$,

$$
\begin{gathered}
a_{n} r^{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(a+r e^{i \theta}\right) e^{-i n \theta} d \theta, \quad n \geq 0 \\
\sum_{n=0}^{\infty}\left|a_{n}\right|^{2} r^{2 n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f\left(a+r e^{i \theta}\right)\right|^{2} d \theta .
\end{gathered}
$$

Proof.
Apply the Parseval's identity to
$f\left(a+r e^{i \theta}\right)=\sum_{n=0}^{\infty} a_{n} r^{n} e^{\text {in } \theta}, H=L^{2}(\mathbb{T}), e_{n}(\theta)=e^{\text {in } \theta}, \theta \in[-\pi, \pi]$,
where we used the fact that $\left\{e_{n}\right\}_{n=-\infty}^{\infty}$ is an orthonormal basis for the Hilbert space $L^{2}(\mathbb{T})$.

In the entire analysis above, the most crucial fact we used is
Theorem
$\left\{e_{n}\right\}_{n=-\infty}^{\infty}$ is an orthonormal basis for the Hilbert space $L^{2}(\mathbb{T})$.
One can give a proof of this fact using the so-called spectral theorem, Although we do not provide all the details here, let us understand the "spectral theorem".

Let $p(z)=\sum_{k=0}^{n} a_{k} z^{k}$ be a complex polynomial of degree n in the variable z. If $T \in \mathcal{L}(\mathcal{H})$ then it is natural to define $p(T)$ by $p(T)=\sum_{k=0}^{n} a_{k} T^{k}$, which is obtained by replacing z by T in the expression for $p(z)$. Notice that $p(T)$ belongs to $\mathcal{L}(\mathcal{H})$, since $\mathcal{L}(\mathcal{H})$ is an algebra. The association $p \mapsto p(T)$ is an algebra homomorphism: For $\alpha \in \mathbb{C}$, and for complex polynomials p, q,

$$
(p+\alpha q)(T)=p(T)+\alpha(q(T)) \text { and }(p q)(T)=p(T) q(T)
$$

We call this algebra homomorphism as the polynomial functional calculus for T.

Spectrum

The spectrum $\sigma(T)$ of $T \in \mathcal{L}(\mathcal{H})$ is defined as the subset

$$
\{\lambda \in \mathbb{C}: T-\lambda I \text { is not invertible in } \mathcal{L}(\mathcal{H})\}
$$

of the complex plane \mathbb{C}. It turns out that $\sigma(T)$ is a bounded subset of \mathbb{C}. In fact,

$$
\sigma(T) \subseteq\{z \in \mathbb{C}:|z| \leqslant\|T\|\}
$$

where $\|T\|=\sup \{\|T x\|: x \in \mathcal{H},\|x\|=1\}$ is the operator norm of T. This inclusion may be derived from the following fact.

Problem

If $C \in \mathcal{L}(\mathcal{H})$ has norm less than 1 , then show that I $-C$ is invertible and $\lim _{n \rightarrow \infty}\left\|\sum_{k=0}^{n} C^{k}-(I-C)^{-1}\right\|=0$.

Solution.

For integers $m<n$, one has
$\left\|\sum_{k=m}^{n} C^{k}\right\| \leqslant \sum_{k=m}^{n}\left\|C^{k}\right\| \leqslant \sum_{k=m}^{n}\|C\|^{k}$, where we used the fact that $\left\|C^{k}\right\| \leqslant\|C\|^{k}$ for every non-negative integer k.

Solution continued

Since $\|C\|<1$, by the convergence of the geometric series for real numbers,

$$
P(m, n)=\sum_{k=m}^{n} C^{k} \rightarrow 0 \text { in the operator norm as } m, n \rightarrow \infty
$$

Thus $\{P(0, n)\}_{n \geqslant 0}$ is a Cauchy sequence in $\mathcal{L}(\mathcal{H})$. Since $\mathcal{L}(\mathcal{H})$ is complete in the operator norm, there exists $T \in \mathcal{L}(\mathcal{H})$ such that $\{P(0, n)\}_{n \geqslant 0}$ converges to T in the operator norm. Since $\|C\|<1,\left\{C^{k}\right\}_{k \geqslant 0}$ converges to 0 in the operator norm. To conclude the proof, note that

$$
(I-C) P(0, n)=I-C^{n+1}=P(0, n)(I-C)
$$

converges to $(I-C) T, I, T(I-C)$ simultaneously in the operator norm. Since limit is unique, we must have

$$
(I-C) T=I=T(I-C)
$$

Problem

Show that $\sigma(T)$ is a compact subset of $\mathbb{C} .{ }^{1}$
Hint.
For $z_{0} \in \mathbb{C} \backslash \sigma(T)$, let $r=\left\|\left(T-z_{0}\right)^{-1}\right\|^{-1}$ and let $z \in \mathbb{C}$ be such that $\left|z-z_{0}\right|<r$. Observe that

$$
T-z I=\left(T-z_{0} I\right)\left(I-\left(T-z_{0}\right)^{-1}\left(z-z_{0}\right)\right) .
$$

By last problem, $I-\left(T-z_{0}\right)^{-1}\left(z-z_{0}\right)$ and so is $T-z I$.
Theorem
The spectral radius $r(T)=\sup \{|z|: z \in \sigma(T)\}$ of T is given by

$$
r(T)=\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{1 / n}
$$

${ }^{1}$ Moreover, $\sigma(T)$ is nonempty. This is an application of Liouville's theorem from complex analysis.

Theorem (Spectral mapping property for polynomials)

For any polynomial in the complex variable and for any A in $\mathcal{L}(\mathcal{H})$, we have $\sigma(p(A))=p(\sigma(A))$.
Proof.
Replacing p by $p-\lambda$, it suffices to verify that $p(T)$ is invertible if and only if p is nowhere-vanishing on $\sigma(T)$. By Fundamental Theorem of Algebra, $p(z)=\alpha_{0}\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right) \cdots\left(z-\alpha_{n}\right),\left\{\alpha_{k}\right\}_{k=0}^{n} \subseteq \mathbb{C}$. Suppose that p is nowhere-vanishing on $\sigma(T)$. It follows that $\alpha_{k} \notin \sigma(T)$ for $k=1, \ldots, n$. Hence
$p(T)=\alpha_{0}\left(T-\alpha_{1} I\right)\left(T-\alpha_{2} I\right) \cdots\left(T-\alpha_{n} I\right),\left\{\alpha_{k}\right\}_{k=1}^{n} \subseteq \mathbb{C} \backslash \sigma(T)$.
It is now clear that $p(T)$ is invertible.
Conversely, assume that $p(T)$ is invertible. Then there exists $S \in \mathcal{L}(\mathcal{H})$ such that $p(T) S=I=S p(T)$. It follows that $\alpha_{k} \notin \sigma(T)$ for any $k=1, \ldots, n$. Thus $p(z)$ is nonzero for any $z \in \sigma(T)$.

Let us discuss the spectral theorem for self-adjoint operators on complex Hilbert spaces. Recall that a bounded linear operator A is self-adjoint if $A^{*}=A$ or equivalently, $\langle A x, y\rangle=\langle x, A y\rangle, x, y \in H$. Note that $\langle A x, x\rangle$ is a real number for any $x \in H$.

Problem

Show that spectrum of a self-adjoint operator A is contained in \mathbb{R}.

Solution.

Let $\lambda=\alpha+i \beta \in \mathbb{C}$ be such that $\beta \neq 0$. Then, for any $x \in H$,

$$
\|(A-\lambda I) x\|^{2}=\|A x\|^{2}-2 \operatorname{Re}\langle A x, \lambda x\rangle+|\lambda|^{2}\|x\|^{2}
$$

However, $\langle A x, \lambda x\rangle=\bar{\lambda}\langle A x, x\rangle=(\alpha-i \beta)\langle A x, x\rangle$ Thus

$$
\|(A-\lambda I) x\|^{2}=\|A x\|^{2}-2\langle A x, x\rangle \alpha+\left(\alpha^{2}+\beta^{2}\right)\|x\|^{2} \geqslant \beta^{2}\|x\|
$$

for every $x \in H$. Clearly, $A-\lambda$ is injective and the range is closed. Since $A^{*}=A,(A-\lambda)^{*}$ is also injective, so the range of $A-\lambda I$ is dense. Hence $A-\lambda I$ is invertible.

Theorem (Spectral theorem for self-adjoint operators-I)
If A is a self-adjoint operator in $\mathcal{L}(\mathcal{H})$, then there is a unique positive, isometric, algebraic *-homomorphism map
$\phi: C(\sigma(A)) \rightarrow \mathcal{L}(\mathcal{H})$ such that $\phi(p)=p(A)$ for every polynomial $p \in C(\sigma(A))$.
We present a proof based on the following:

Theorem (Stone-Weierstrass theorem)

Let \mathscr{A} be an algebra of continuous functions $f: K \rightarrow \mathbb{R}$ with the following properties:
(1) If $x \neq y \in K$, then there exists $f \in \mathscr{A}$ such that $f(x) \neq f(y)$.
(2) For every $x \in K$, there exists $f \in \mathscr{A}$ such that $f(x) \neq 0$.

Then \mathscr{A} is dense in the algebra $C_{\mathbb{R}}(K)$ of continuous real-valued functions on K endowed with the uniform norm.

We also need the following fact:

Lemma

For any operator $T \in \mathcal{L}(\mathcal{H})$ for which $T^{*} T \leqslant T T^{*},\|T\|$ is equal to the spectral radius $r(T)=\max \{|z|: z \in \sigma(T)\}$ of T.

Proof.

Note that for any positive integer n and any $h \in \mathcal{H}$,

$$
\left\|T^{n} h\right\|^{2}=\left\langle T^{*} T^{n} h, T^{n-1} h\right\rangle \leq\left\|T^{*} T^{n} h\right\|\left\|T^{n-1} h\right\| \leqslant\left\|T^{n+1} h\right\|\left\|T^{n-1} h\right\| .
$$

Thus we have $\left\|T^{n}\right\|^{2} \leqslant\left\|T^{n+1}\right\|\left\|T^{n-1}\right\|$ for any positive integer n. We now check by induction on integers $n \geqslant 1$ that $\left\|T^{n}\right\| \geqslant\|T\|^{n}$. Assuming the inductive hypothesis for $k=1, \ldots, n$, we obtain

$$
\left\|T^{n+1}\right\|\|T\|^{n-1}=\left\|T^{n+1}\right\|\left\|T^{n-1}\right\| \geqslant\left\|T^{n}\right\|^{2}=\|T\|^{2 n}
$$

which yields $\left\|T^{n+1}\right\| \geqslant\|T\|^{n+1}$ completing the proof of induction. By the spectral radius formula $r(T)=\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{1 / n}$, we get $r(T) \geqslant\|T\|$. Since $r(T) \leqslant\|T\|$ holds true for any operator T in $\mathcal{L}(\mathcal{H})$, we obtain the equality $r(T)=\|T\|$.

Recall that any bounded linear operator T satisfies the identity $\left\|T^{*} T\right\|=\|T\|^{2}$ (C^{*}-algebra identity).
Proof of Spectral theorem for self-adjoint operators-I.
Since A is self-adjoint, for any complex polynomial p,

$$
p(A)^{*} p(A)=|p|^{2}(A)
$$

Hence, by the C^{*}-algebra identity and the last lemma,

$$
\|p(A)\|^{2}=\left\|p(A)^{*} p(A)\right\|=\left\||p|^{2}(A)\right\|=r\left(|p|^{2}(A)\right) .
$$

However, $\sigma\left(|p|^{2}(A)\right)=|p|^{2}(\sigma(A))$ (since $|p|^{2}$ is also a polynomial in the real variable), and hence

$$
r\left(|p|^{2}(A)\right)=\left|p\left(z_{0}\right)\right|^{2} \text { for some } z_{0} \in \sigma(A)
$$

Thus $\|p(A)\|=\|p\|_{\infty, \sigma(A)}$ showing that $\phi(p)=p(A)$ defines a positive, isometric, algebraic ${ }^{*}$-homomorphism. Now apply Stone-Weierstrass Theorem to extend ϕ isometrically.

Square-root and polar decomposition

Let P be a positive operator, that is, P is self-adjoint and $\langle P x, x\rangle \geqslant 0$ for every $x \in H$.

- The spectrum of a positive operator is contained in $[0, \infty)$: Since $\sigma(P) \subseteq \mathbb{R}$, it suffices to check that $P-\lambda$ is invertible for every $\lambda \in(-\infty, 0)$. However, $\langle(P-\lambda) x, x\rangle \geqslant-\lambda\|x\|^{2}$ for every $x \in H$. Conclude that $P-\lambda$ is bijective.

Theorem

Every positive operator P has a positive square-root, that is, there exists a positive operator Q such that $P=Q^{2}$.

Proof.

By the spectral theorem, $\phi(p)=P$, where p is the polynomial $p(z)=z$. Note that id is defined on the spectrum of P. However, the spectrum of P is contained in $[0, \infty)$. So the function p has a positive continuous sqaure-root, that is, there exists positive element $q \in C(\sigma(P))$ such that $p=q^{2}$. Applying ϕ on both sides

Proof continued

gives $P=\phi(p)=\phi\left(q^{2}\right)=\phi(q)^{2}$. Note that $Q=\phi(q)$ is a positive operator satisfying $P=Q^{2}$.
Let T be a left-invertible bounded linear operator on H, that is, there exists a bounded linear operator L such that $L T=I$.

- Note that $\|x\|=\left\|L T_{x}\right\| \leqslant\|L\|\left\|T_{x}\right\|$ and hence

$$
\left\langle T^{*} T_{x}, x\right\rangle=\|T x\|^{2} \geqslant\|L\|^{-2}\|x\|^{2}, \quad x \in H .
$$

- Thus $\sigma\left(T^{*} T\right) \subseteq\left[\frac{1}{\|L\|}, \infty\right)$ (Exercise).
- Define $U: H \rightarrow H$ by $U=T\left(T^{*} T\right)^{-1 / 2}$, where $\left(T^{*} T\right)^{-1 / 2}$ denote the positive square-root of $\left(T^{*} T\right)^{-1}$.
- Note that U is an isometry, that is, $U^{*} U=I$:

$$
\begin{aligned}
& U^{*} U=\left(T\left(T^{*} T\right)^{-1 / 2}\right)^{*} T\left(T^{*} T\right)^{-1 / 2} \\
& =\left(T^{*} T\right)^{-1 / 2} T^{*} T\left(T^{*} T\right)^{-1 / 2}=I .
\end{aligned}
$$

- $T=U P$, where U an isometry and $P=\left(T^{*} T\right)^{1 / 2}$ positive.

Theorem (Polar decomposition)

Every invertible $T \in \mathcal{L}(\mathcal{H})$ can be decomposed (uniquely) as $T=U P$ with positive invertible P and unitary U (that is, an invertible isometry).
Let $\mathcal{U}(\mathcal{H})$ denote the set of all unitary operators in $\mathcal{L}(\mathcal{H})$. Let $\mathcal{G}(\mathcal{H})$ denote the set of all invertible operators in $\mathcal{L}(\mathcal{H})$. Note that $\mathcal{G}(\mathcal{H})$ is a group under the operation of composition and that

$$
\mathcal{U}(\mathcal{H}) \subsetneq \mathcal{G}(\mathcal{H}) \subsetneq \mathcal{L}(\mathcal{H}) .
$$

Let V be a normed linear space with the norm $\|\cdot\|$. A subset \mathcal{O} of V is said to be path-connected if for any $v_{1}, v_{2} \in \mathcal{O}$ there exists a map (to be referred to as path) $\gamma:[0,1] \rightarrow \mathcal{O}$ such that
(1) $\gamma(0)=v_{1}$ and $\gamma(1)=v_{2}$, and
(2) $\lim _{n \rightarrow \infty}\left\|\gamma\left(t_{n}\right)-\gamma(t)\right\|=0$ whenever $\lim _{n \rightarrow \infty}\left|t_{n}-t\right|=0$ for any $t, t_{n} \in[0,1]$.

Theorem
$\mathcal{U}(\mathcal{H})$ is path-connected.

Corollary

$\mathcal{G}(\mathcal{H})$ is path-connected.

Proof.

It suffices to show that there exists a path joining any $T \in \mathcal{G}(\mathcal{H})$ and the identity operator I. Let $T \in \mathcal{G}(\mathcal{H})$ and consider its polar decomposition $T=U P$. Let $\gamma:[0,1] \rightarrow \mathcal{U}(\mathcal{H})$ be a path joining U and I. Define $\delta:[0,1] \rightarrow \mathcal{G}(\mathcal{H})$ by

$$
\delta(t)=\gamma(t)((1-t) P+t l), \quad t \in[0,1] .
$$

Then δ is well-defined since $(1-t) P+t /$ is invertible in view of

$$
\sigma\left((1-t) P_{1}+t /\right)=\{(1-t) \lambda+t: \lambda \in \sigma(P)\}
$$

and $\sigma(P) \subset(0, \infty)$. Clearly, the continuity of δ follows from that of γ. Since $\delta(0)=T$ and $\delta(1)=I$, the proof is over.

For the proof of the connectedness of $\mathcal{U}(\mathcal{H})$ using spectral theorem, we need to go beyond continuous functional calculus.

Recall that a bounded linear operator T on a Hilbert space \mathcal{H} is cyclic if there exists a vector $h \in \mathcal{H}$ (a cyclic vector) such that

$$
\bigvee\left\{T^{n} h: n \text { is a non-negative integer }\right\}=\mathcal{H}
$$

Lemma

Let A be a self-adjoint operator in $\mathcal{L}(\mathcal{H})$. If A is cyclic with cyclic vector $f \in \mathcal{H}$, then there exists a finite positive Borel measure μ_{f} and a unitary operator $U: \mathcal{H} \rightarrow L^{2}\left(\sigma(A), d \mu_{f}\right)$ such that

$$
\left(U A U^{-1} g\right)(\lambda)=\lambda g(\lambda), \quad g \in L^{2}\left(\sigma(A), \mu_{f}\right)
$$

Let ϕ denote the continuous functional calculus.

Proof.

Consider the bounded linear functional $\psi: C(\sigma(A)) \rightarrow \mathbb{C}$ by $\psi(g)=\langle\phi(g) f, f\rangle, \quad g \in C(\sigma(A))$. By Riesz Representation Theorem, there exists a finite positive Borel measure μ_{f} on $\sigma(A)$ such that

$$
\psi(g)=\int_{\sigma(A)} g(t) d \mu_{f}(t), \quad g \in C(\sigma(A))
$$

Define U by $U \phi(g) f=g$ for $g \in C(\sigma(A))$, and note that

$$
\|\phi(g) f\|^{2}=\left\langle\phi\left(|g|^{2}\right) f, f\right\rangle=\int_{\sigma(A)}|g(t)|^{2} d \mu_{f}(t)=\|g\|^{2}
$$

Since f is cyclic for A, U extends isometrically from \mathcal{H} into $L^{2}\left(\sigma(A), \mu_{f}\right)$. Since the range of U contains continuous functions, U is surjective. Note that for any $g \in L^{2}\left(\sigma(A), \mu_{f}\right)$ and $\lambda \in \sigma(A)$,

$$
\left(U A U^{-1} g\right)(\lambda)=(U A \phi(g) f)(\lambda)=(U \phi(z g) f)(\lambda)=\lambda g(\lambda)
$$

This completes the proof.

Lemma

Let \mathcal{H} be a separable Hilbert space. If $A \in \mathcal{L}(\mathcal{H})$, then there exists an orthonormal family $\left\{g_{j}\right\}_{j=1}^{N}$ with $N \in \mathbb{N}$ or $N=\infty$, such that $\mathcal{H}=\oplus_{j=1}^{N} \mathcal{H}_{j}$, where

$$
\mathcal{H}_{j}=\bigvee\left\{A^{* k} A^{\prime} g_{j}: k, l \in \mathbb{N}\right\}, \quad j=1, \ldots, N
$$

Proof.

Let $\left\{e_{j}\right\}_{j \in \mathbb{N}}$ be an orthonormal basis of \mathcal{H}. Let $g_{1}=e_{1}$. If $\mathcal{H}_{1}=\mathcal{H}$, then let $N=1$. Otherwise, let k_{1} be the smallest positive integer
such that $P_{\mathcal{H}_{1}^{\perp}} e_{k_{1}} \neq 0$ and let $g_{2}=\frac{P_{\mathcal{H}_{1}^{\perp}} e_{k_{1}}}{\left\|P_{\mathcal{H}_{1}^{\perp}} e_{k_{1}}\right\|}$. Since $\left\langle g, g_{2}\right\rangle=0$ for every $g \in \mathcal{H}_{1}$, the spaces \mathcal{H}_{1} and \mathcal{H}_{2} are orthogonal. Further, $\left\{e_{j}\right\}_{j=1}^{k_{1}} \subseteq \mathcal{H}_{1} \oplus \mathcal{H}_{2}$. Now proceed by induction.

Theorem (Spectral Theorem for Self-adjoint Operators)

Let \mathcal{H} be a separable Hilbert space and let $A \in \mathcal{L}(\mathcal{H})$. If A is a self-adjoint operator, then there exist finite positive Borel measures $\mu_{1}, \ldots, \mu_{N}(N \in \mathbb{N}$ or $N=\infty)$ and a unitary operator $U: \mathcal{H} \rightarrow \oplus_{n=1}^{N} L^{2}\left(\sigma(A), \mu_{n}\right)$ such that
$\left(U A U^{-1} g\right)_{n}(\lambda)=\lambda g_{n}(\lambda), \quad g=\left(g_{n}\right)_{n=1}^{N} \in \oplus_{n=1}^{N} L^{2}\left(\sigma(A), \mu_{n}\right)$.
In particular, there exists a unique positive, contractive, algebraic *-homo-morphism $\phi: B_{\infty}(\sigma(A)) \rightarrow \mathcal{L}(\mathcal{H})$ such that

$$
\phi(f)=f(A), \quad f \in C(\sigma(A)) \text { is a polynomial. }
$$

Moreover, ϕ is isometric on $C(\sigma(A))$.

Proof.

There exist invariant subspaces $\mathcal{H}_{1}, \mathcal{H}_{2}, \ldots, \mathcal{H}_{N}$ of A such that

$$
\mathcal{H}=\oplus_{n=1}^{N} \mathcal{H}_{n}, \text { and }\left.A\right|_{\mathcal{H}_{n}} \text { is cyclic. }
$$

The first part now follows from Lemma 20. To see the second part, let $f_{n} \in L^{2}\left(\sigma(A), \mu_{n}\right)$ such that $\left\|f_{n}\right\|=2^{-n}$, and let M denote the disjoint union of N copies of $\sigma(A)$. If μ be the restriction of μ_{n} to nth copy of $\sigma(A)$, then $\langle M, \mu\rangle$ is the desired finite measure space. Moreover, A is unitarily equivalent to the operator M_{λ} of multiplication by λ on $L^{2}(M, \mu)$. The Borel functional calculus of A now follows from that of M_{λ}. This completes the proof.

Theorem (L^{2}-version of the Müntz-Szász Theorem)
If $\left\{n_{k}\right\}_{k \geqslant 1}$ is a strictly increasing sequence of nonnegative integers, then closed linear span $\left\{t^{n_{k}}: k \geqslant 1\right\}=L^{2}[0,1] \Leftrightarrow \sum_{k=1}^{\infty} \frac{1}{n_{k}+1}=\infty$.

Corollary
The closed linear $\operatorname{span}\left\{t^{k}: k \geqslant 1\right\}=L^{2}[0,1]$.
For a complex number $z=x+i y$, note that if $2 x+1>0$, then

$$
\int_{0}^{1}\left|t^{z}\right|^{2} d t=\int_{0}^{1} t^{2 x} d t=\left.\frac{t^{2 x+1}}{2 x+1}\right|_{0} ^{1}
$$

Also, if $2 x+1 \leqslant 0$, then $t^{z} \notin L^{2}[0,1]$. Thus if
$\Omega=\left\{z \in \mathbb{C}: \operatorname{Re}(z)>-\frac{1}{2}\right\}$. then

$$
t^{z} \in L^{2}[0,1] \Leftrightarrow z \in \Omega
$$

- $z=x+i y \in \Omega$ iff $x>\frac{1}{2}$ iff $\frac{x^{2}+y^{2}}{(x+1)^{2}+y^{2}}<1$ iff $\left|\frac{z}{z+1}\right|<1$.
- The $\operatorname{map} \phi: \Omega \rightarrow \mathbb{D}$ given by $\phi(z)=\frac{z}{z+1}$ is bijective.

For $z \in \Omega$, define $v_{z}: \mathbb{D} \rightarrow \mathbb{C}$ by

$$
v_{z}(\eta)=\frac{1}{(1+z)(1-\phi(z) \eta)}, \quad \eta \in \mathbb{D}
$$

Consider the Hilbert space $H^{2}(\mathbb{D})$ of all holomorphic function $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ on \mathbb{D} endowed with the inner-product

$$
\langle f, g\rangle_{H^{2}(\mathbb{D})}=\sum_{n=0}^{\infty} a_{n} \bar{b}_{n} .
$$

Note that $\left\langle f, v_{z}\right\rangle_{H^{2}(\mathbb{D})}=\frac{1}{1+\bar{z}}\left\langle f, \sum_{n=0}^{\infty} \phi(z)^{n} \eta^{n}\right\rangle=$ $\frac{1}{1+\bar{z}} \sum_{n=0}^{\infty} a_{n} \overline{\phi(z)}^{n}=\frac{1}{1+\bar{z}} f(\overline{\phi(z)})$. Since ϕ is surjective, we obtain Lemma
The closed linear span of $\left\{v_{z}: z \in \Omega\right\}$ is equal to $H^{2}(\mathbb{D})$.

Lemma

For every $z, w \in \Omega$,

$$
\left\langle v_{z}, v_{w}\right\rangle_{H^{2}(\mathbb{D})}=\left\langle t^{z}, t^{w}\right\rangle_{L^{2}[0,1]}
$$

Proof.
A calculation using the geometric series shows that

$$
\begin{gathered}
\left\langle v_{z}, v_{w}\right\rangle_{H^{2}(\mathbb{D})}=\frac{1}{(1+z)(1+\bar{w})}\left\langle\frac{1}{1-\phi(z) \eta)}, \frac{1}{1-\phi(w) \eta)}\right\rangle_{H^{2}(\mathbb{D})} \\
=\frac{1}{(1+z)(1+\bar{w})} \frac{1}{1-\phi(z) \overline{\phi(w)}} \cdot \frac{1}{(1+z)(1+\bar{w})} \frac{1}{1-\frac{z}{z+1} \frac{\bar{w}}{\bar{w}+1}} \\
=\frac{1}{(1+z)(1+\bar{w})-z \bar{w}}=\frac{1}{1+z+\bar{w}}=\left\langle t^{z}, t^{w}\right\rangle .
\end{gathered}
$$

This completes the proof.

Define $V: H^{2}(\mathbb{D}) \rightarrow L^{2}[0,1]$ by setting

$$
V\left(v_{z}\right)=t^{z}, \quad z \in \Omega
$$

and extending linearly and continuously to $H^{2}(\mathbb{D})$. Note that V is an isometry. Hence it has closed range. However, the range is dense (since polynomials are dense in $L^{2}[0,1]$), so V is unitary.
The above argument shows the following:

Lemma

For any strictly increasing sequence $\left\{n_{k}\right\}_{k \geqslant 1}$, the following are equivalent:
(i) the closed linear span of $\left\{v_{n_{k}}\right\}_{k \geqslant 1}$ is $H^{2}(\mathbb{D})$,
(ii) the closed linear span of $\left\{t^{n_{k}}\right\}_{k \geqslant 1}$ is $L^{2}[0,1]$,
(iii) the closed linear span of $\left\{\frac{1}{1-\phi\left(n_{k}\right) \eta}\right\}_{k \geqslant 1}$ is $H^{2}(\mathbb{D})$.

We also need a fact from complex analysis.
Lemma
Let $\left\{a_{n}\right\}_{n \geqslant 1}$ be a sequence of points in \mathbb{D}. There exists a non-zero function $f \in H^{2}(\mathbb{D})$ that vanishes at each point a_{n} if and only if
$\sum_{n=1}^{\infty}\left(1-\left|a_{n}\right|\right)<\infty$.
Proof of the L^{2}-version of the Müntz-Szász Theorem.
Note that

$$
\sum_{n=1}^{\infty}\left(1-\left|\phi\left(n_{k}\right)\right|\right)=\sum_{k=1}^{\infty} \frac{1}{n_{k}+1}
$$

and apply all the lemmas.

