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Power series representation and Parseval’s formula

Theorem
If f (z) =

∑∞
n=0 an(z − a)n is convergent on DR(a), then for any

0 < r < R,

anr
n =

1

2π

∫ π

−π
f (a + re iθ)e−inθdθ, n ≥ 0

∞∑
n=0

|an|2r2n =
1

2π

∫ π

−π
|f (a + re iθ)|2dθ.

• The first part follows from the fact that the power series above
converges uniformly on Dr (a), and hence one can interchange the
infinite sum and the integral.

• For the second part, we need some bits of Hilbert space theory.



Corollary (Maximum modulus principle)

Let f ∈ H(U) for some open connected set U. If Dr (a) ⊆ U, then

|f (a)| ≤ sup
|z−a|=r

|f (z)|.

Moreover, equality occurs above if and only if f is constant.

Proof.
Suppose that sup|z−a|=r |f (z)| ≤ |f (a)|. It follows from the last
theorem that

∞∑
n=0

|an|2r2n =
1

2π

∫ π

−π
|f (a + re iθ)|2dθ ≤ |f (a)|2 = a20.

This implies that a1 = 0, a2 = 0, . . . . That is, f is constant on
Dr (a). By the identity theorem, f is constant on U.



A subset {en}n≥0 of H is said to be an orthonormal basis for a
Hilbert space H if {en}n≥0 is an orthonormal set and for every
h ∈ H, there exist scalars αn such that

∑∞
n=0 αnen converges to h.

Theorem (Parseval’s Identity)

Let {en} be an orthonormal basis of a Hilbert space (complete
inner-product space) H. Then, for h ∈ H, ‖h‖2 =

∑∞
n=0 |〈h, en〉|2.

Proof.
If h =

∑∞
n=0 αnen then for m ≥ 0, by the orthogonality of {en}n≥0,

〈h, em〉 =
∞∑
n=0

αn〈en, em〉 = αm.

Note that for every k ≥ 0, by the orthogonality of {en}n≥0,

‖
k∑

n=0

〈h, en〉en‖2 =
k∑

n=0

|〈h, en〉|2

Let now k →∞ and use the continuity of the norm.



Let T denote the unit circle in the complex plane C and define
en(θ) = e inθ, θ ∈ [−π, π], n ∈ Z.

Example

We claim that {en}∞n=−∞ is an orthonormal basis for the Hilbert
space L2(T).

• Note that L∞(T) is contained in L2(T).

• For every f ∈ L2(T),

‖f ‖22 =

∫
[−π,π]

|f (t)|2dt 6 2π‖f ‖2∞,

where ‖ · ‖∞ denotes the essential sup norm of f .

• Since trigonometric polynomials are dense in C (T)
(Stone-Weierstrass theorem), the linear span of {en}∞n=−∞ is
dense in the subspace of continuous functions in L2(T).

• However, continuous functions are dense in L2(T).



Problem (Maximal Orthonormal Set)

Let {en} be an orthonormal set in a Hilbert space H with the
property: If x ∈ H such that 〈x , en〉 = 0 for all n then x = 0. Show
that {en} is an orthonormal basis.

Solution.
By the continuity of the inner-product,

〈x −
∞∑
n=0

〈x , en〉en, em〉 = 0.

By hypothesis,

x −
∞∑
n=0

〈x , en〉en = 0,

and hence {en} is an orthonormal basis.

Since the linear span of {en}∞n=−∞ is dense in L2(T), by the last
problem, {en}∞n=−∞ forms an orthonormal basis for L2(T).



Theorem
If f (z) =

∑∞
n=0 an(z − a)n is convergent on DR(a), then for any

0 < r < R,

anr
n =

1

2π

∫ π

−π
f (a + re iθ)e−inθdθ, n ≥ 0

∞∑
n=0

|an|2r2n =
1

2π

∫ π

−π
|f (a + re iθ)|2dθ.

Proof.
Apply the Parseval’s identity to

f (a + re iθ) =
∞∑
n=0

anr
ne inθ, H = L2(T), en(θ) = e inθ, θ ∈ [−π, π],

where we used the fact that {en}∞n=−∞ is an orthonormal basis for
the Hilbert space L2(T).



In the entire analysis above, the most crucial fact we used is

Theorem
{en}∞n=−∞ is an orthonormal basis for the Hilbert space L2(T).

One can give a proof of this fact using the so-called spectral
theorem, Although we do not provide all the details here, let us
understand the ”spectral theorem”.

Let p(z) =
∑n

k=0 akz
k be a complex polynomial of degree n in the

variable z . If T ∈ L(H) then it is natural to define p(T ) by
p(T ) =

∑n
k=0 akT

k , which is obtained by replacing z by T in the
expression for p(z). Notice that p(T ) belongs to L(H), since
L(H) is an algebra. The association p 7→ p(T ) is an algebra
homomorphism: For α ∈ C, and for complex polynomials p, q,

(p + αq)(T ) = p(T ) + α(q(T )) and (pq)(T ) = p(T )q(T ).

We call this algebra homomorphism as the polynomial functional
calculus for T .



Spectrum

The spectrum σ(T ) of T ∈ L(H) is defined as the subset

{λ ∈ C : T − λI is not invertible in L(H)}
of the complex plane C. It turns out that σ(T ) is a bounded
subset of C. In fact,

σ(T ) ⊆ {z ∈ C : |z | 6 ‖T‖},
where ‖T‖ = sup{‖Tx‖ : x ∈ H, ‖x‖ = 1} is the operator norm
of T . This inclusion may be derived from the following fact.

Problem
If C ∈ L(H) has norm less than 1, then show that I − C is

invertible and limn→∞

∥∥∥∑n
k=0 C

k − (I − C )−1
∥∥∥ = 0.

Solution.
For integers m < n, one has∥∥∑n

k=m C k
∥∥ 6

∑n
k=m ‖C k‖ 6

∑n
k=m ‖C‖k , where we used the

fact that ‖C k‖ 6 ‖C‖k for every non-negative integer k.



Solution continued . . ..
Since ‖C‖ < 1, by the convergence of the geometric series for real
numbers,

P(m, n) =
n∑

k=m

C k → 0 in the operator norm as m, n→∞.

Thus {P(0, n)}n>0 is a Cauchy sequence in L(H). Since L(H) is
complete in the operator norm, there exists T ∈ L(H) such that
{P(0, n)}n>0 converges to T in the operator norm. Since
‖C‖ < 1, {C k}k>0 converges to 0 in the operator norm. To
conclude the proof, note that

(I − C )P(0, n) = I − Cn+1 = P(0, n)(I − C )

converges to (I − C )T , I , T (I − C ) simultaneously in the
operator norm. Since limit is unique, we must have
(I − C )T = I = T (I − C ).



Problem
Show that σ(T ) is a compact subset of C.1

Hint.
For z0 ∈ C\σ(T ), let r = ‖(T − z0)−1‖−1 and let z ∈ C be such
that |z − z0| < r . Observe that

T − zI = (T − z0I )(I − (T − z0)−1(z − z0)).

By last problem, I − (T − z0)−1(z − z0) and so is T − zI .

Theorem
The spectral radius r(T ) = sup{|z | : z ∈ σ(T )} of T is given by

r(T ) = lim
n→∞

‖T n‖1/n.

1Moreover, σ(T ) is nonempty. This is an application of Liouville’s theorem
from complex analysis.



Theorem (Spectral mapping property for polynomials)

For any polynomial in the complex variable and for any A in L(H),
we have σ(p(A)) = p(σ(A)).

Proof.
Replacing p by p − λ, it suffices to verify that p(T ) is invertible if
and only if p is nowhere-vanishing on σ(T ). By Fundamental
Theorem of Algebra,
p(z) = α0(z − α1)(z − α2) · · · (z − αn), {αk}nk=0 ⊆ C. Suppose
that p is nowhere-vanishing on σ(T ). It follows that αk /∈ σ(T ) for
k = 1, . . . , n. Hence

p(T ) = α0(T −α1I )(T −α2I ) · · · (T −αnI ), {αk}nk=1 ⊆ C\σ(T ).

It is now clear that p(T ) is invertible.

Conversely, assume that p(T ) is invertible. Then there exists
S ∈ L(H) such that p(T )S = I = Sp(T ). It follows that
αk /∈ σ(T ) for any k = 1, . . . , n. Thus p(z) is nonzero for any
z ∈ σ(T ).



Let us discuss the spectral theorem for self-adjoint operators on
complex Hilbert spaces. Recall that a bounded linear operator A is
self-adjoint if A∗ = A or equivalently, 〈Ax , y〉 = 〈x , Ay〉, x , y ∈ H.
Note that 〈Ax , x〉 is a real number for any x ∈ H.

Problem
Show that spectrum of a self-adjoint operator A is contained in R.

Solution.
Let λ = α + iβ ∈ C be such that β 6= 0. Then, for any x ∈ H,

‖(A− λI )x‖2 = ‖Ax‖2 − 2Re〈Ax , λx〉+ |λ|2‖x‖2.

However, 〈Ax , λx〉 = λ〈Ax , x〉 = (α− iβ)〈Ax , x〉 Thus

‖(A− λI )x ||2 = ‖Ax‖2 − 2〈Ax , x〉α + (α2 + β2)‖x‖2 > β2‖x‖

for every x ∈ H. Clearly, A− λ is injective and the range is closed.
Since A∗ = A, (A− λ)∗ is also injective, so the range of A− λI is
dense. Hence A− λI is invertible.



Theorem (Spectral theorem for self-adjoint operators-I)

If A is a self-adjoint operator in L(H), then there is a unique
positive, isometric, algebraic *-homomorphism map
φ : C (σ(A))→ L(H) such that φ(p) = p(A) for every polynomial
p ∈ C (σ(A)).

We present a proof based on the following:

Theorem (Stone-Weierstrass theorem)

Let A be an algebra of continuous functions f : K → R with the
following properties:

(1) If x 6= y ∈ K, then there exists f ∈ A such that f (x) 6= f (y).

(2) For every x ∈ K , there exists f ∈ A such that f (x) 6= 0.

Then A is dense in the algebra CR(K ) of continuous real-valued
functions on K endowed with the uniform norm.



We also need the following fact:

Lemma
For any operator T ∈ L(H) for which T ∗T 6 TT ∗, ‖T‖ is equal
to the spectral radius r(T ) = max{|z | : z ∈ σ(T )} of T .

Proof.
Note that for any positive integer n and any h ∈ H,

‖T nh‖2 = 〈T ∗T nh, T n−1h〉 ≤ ‖T ∗T nh‖ ‖T n−1h‖ 6 ‖T n+1h‖ ‖T n−1h‖.

Thus we have ‖T n‖2 6 ‖T n+1‖ ‖T n−1‖ for any positive integer n.
We now check by induction on integers n > 1 that ‖T n‖ > ‖T‖n.
Assuming the inductive hypothesis for k = 1, . . . , n, we obtain

‖T n+1‖ ‖T‖n−1 = ‖T n+1‖ ‖T n−1‖ > ‖T n‖2 = ‖T‖2n,

which yields ‖T n+1‖ > ‖T‖n+1 completing the proof of induction.
By the spectral radius formula r(T ) = limn→∞ ‖T n‖1/n, we get
r(T ) > ‖T‖. Since r(T ) 6 ‖T‖ holds true for any operator T in
L(H), we obtain the equality r(T ) = ‖T‖.



Recall that any bounded linear operator T satisfies the identity
‖T ∗T‖ = ‖T‖2 (C ∗-algebra identity).

Proof of Spectral theorem for self-adjoint operators-I.

Since A is self-adjoint, for any complex polynomial p,

p(A)∗p(A) = |p|2(A).

Hence, by the C ∗-algebra identity and the last lemma,

‖p(A)‖2 = ‖p(A)∗p(A)‖ = ‖|p|2(A)‖ = r(|p|2(A)).

However, σ(|p|2(A)) = |p|2(σ(A)) (since |p|2 is also a polynomial
in the real variable), and hence

r(|p|2(A)) = |p(z0)|2 for some z0 ∈ σ(A).

Thus ‖p(A)‖ = ‖p‖∞,σ(A) showing that φ(p) = p(A) defines a
positive, isometric, algebraic *-homomorphism. Now apply
Stone-Weierstrass Theorem to extend φ isometrically.



Square-root and polar decomposition

Let P be a positive operator, that is, P is self-adjoint and
〈Px , x〉 > 0 for every x ∈ H.

• The spectrum of a positive operator is contained in [0,∞) :
Since σ(P) ⊆ R, it suffices to check that P − λ is invertible for

every λ ∈ (−∞, 0). However, 〈(P − λ)x , x〉 > −λ‖x‖2 for every

x ∈ H. Conclude that P − λ is bijective.

Theorem
Every positive operator P has a positive square-root, that is, there
exists a positive operator Q such that P = Q2.

Proof.
By the spectral theorem, φ(p) = P, where p is the polynomial
p(z) = z . Note that id is defined on the spectrum of P. However,
the spectrum of P is contained in [0,∞). So the function p has a
positive continuous sqaure-root, that is, there exists positive
element q ∈ C (σ(P)) such that p = q2. Applying φ on both sides



Proof continued . . ..
gives P = φ(p) = φ(q2) = φ(q)2. Note that Q = φ(q) is a positive
operator satisfying P = Q2.

Let T be a left-invertible bounded linear operator on H, that is,
there exists a bounded linear operator L such that LT = I .

• Note that ‖x‖ = ‖LTx‖ 6 ‖L‖‖Tx‖ and hence

〈T ∗Tx , x〉 = ‖Tx‖2 > ‖L‖−2‖x‖2, x ∈ H.

• Thus σ(T ∗T ) ⊆ [ 1
‖L‖ ,∞) (Exercise).

• Define U : H → H by U = T (T ∗T )−1/2, where (T ∗T )−1/2

denote the positive square-root of (T ∗T )−1.

• Note that U is an isometry, that is, U∗U = I :

U∗U = (T (T ∗T )−1/2)∗T (T ∗T )−1/2

= (T ∗T )−1/2T ∗T (T ∗T )−1/2 = I .

• T = UP, where U an isometry and P = (T ∗T )1/2 positive.



Theorem (Polar decomposition)

Every invertible T ∈ L(H) can be decomposed (uniquely) as
T = UP with positive invertible P and unitary U (that is, an
invertible isometry).

Let U(H) denote the set of all unitary operators in L(H). Let
G(H) denote the set of all invertible operators in L(H). Note that
G(H) is a group under the operation of composition and that

U(H) ( G(H) ( L(H).

Let V be a normed linear space with the norm ‖ · ‖. A subset O of
V is said to be path-connected if for any v1, v2 ∈ O there exists a
map (to be referred to as path) γ : [0, 1]→ O such that

(1) γ(0) = v1 and γ(1) = v2, and

(2) lim
n→∞

‖γ(tn)− γ(t)‖ = 0 whenever lim
n→∞

|tn − t| = 0 for any

t, tn ∈ [0, 1].



Theorem
U(H) is path-connected.

Corollary

G(H) is path-connected.

Proof.
It suffices to show that there exists a path joining any T ∈ G(H)
and the identity operator I . Let T ∈ G(H) and consider its polar
decomposition T = UP. Let γ : [0, 1]→ U(H) be a path joining U
and I . Define δ : [0, 1]→ G(H) by

δ(t) = γ(t)((1− t)P + tI ), t ∈ [0, 1].

Then δ is well-defined since (1− t)P + tI is invertible in view of

σ((1− t)P1 + tI ) = {(1− t)λ+ t : λ ∈ σ(P)}

and σ(P) ⊂ (0,∞). Clearly, the continuity of δ follows from that
of γ. Since δ(0) = T and δ(1) = I , the proof is over.



For the proof of the connectedness of U(H) using spectral
theorem, we need to go beyond continuous functional calculus.

Recall that a bounded linear operator T on a Hilbert space H is
cyclic if there exists a vector h ∈ H (a cyclic vector) such that∨

{T nh : n is a non-negative integer} = H.

Lemma
Let A be a self-adjoint operator in L(H). If A is cyclic with cyclic
vector f ∈ H, then there exists a finite positive Borel measure µf
and a unitary operator U : H → L2(σ(A), dµf ) such that

(UAU−1g)(λ) = λg(λ), g ∈ L2(σ(A), µf ).

Let φ denote the continuous functional calculus.



Proof.
Consider the bounded linear functional ψ : C (σ(A))→ C by
ψ(g) = 〈φ(g)f , f 〉, g ∈ C (σ(A)). By Riesz Representation
Theorem, there exists a finite positive Borel measure µf on σ(A)
such that

ψ(g) =

∫
σ(A)

g(t)dµf (t), g ∈ C (σ(A)).

Define U by Uφ(g)f = g for g ∈ C (σ(A)), and note that

‖φ(g)f ‖2 = 〈φ(|g |2)f , f 〉 =

∫
σ(A)
|g(t)|2dµf (t) = ‖g‖2.

Since f is cyclic for A, U extends isometrically from H into
L2(σ(A), µf ). Since the range of U contains continuous functions,
U is surjective. Note that for any g ∈ L2(σ(A), µf ) and λ ∈ σ(A),

(UAU−1g)(λ) = (UAφ(g)f )(λ) = (Uφ(zg)f )(λ) = λg(λ).

This completes the proof.



Lemma
Let H be a separable Hilbert space. If A ∈ L(H), then there exists
an orthonormal family {gj}Nj=1 with N ∈ N or N =∞, such that

H = ⊕N
j=1Hj , where

Hj =
∨
{A∗kAlgj : k , l ∈ N}, j = 1, . . . ,N.

Proof.
Let {ej}j∈N be an orthonormal basis of H. Let g1 = e1. If H1 = H,
then let N = 1. Otherwise, let k1 be the smallest positive integer

such that PH⊥1
ek1 6= 0 and let g2 =

PH⊥
1
ek1

‖PH⊥
1
ek1‖

. Since 〈g , g2〉 = 0 for

every g ∈ H1, the spaces H1 and H2 are orthogonal. Further,
{ej}k1j=1 ⊆ H1 ⊕H2. Now proceed by induction.



Theorem (Spectral Theorem for Self-adjoint Operators)

Let H be a separable Hilbert space and let A ∈ L(H). If A is a
self-adjoint operator, then there exist finite positive Borel measures
µ1, . . . , µN (N ∈ N or N =∞) and a unitary operator
U : H → ⊕N

n=1L
2(σ(A), µn) such that

(UAU−1g)n(λ) = λgn(λ), g = (gn)Nn=1 ∈ ⊕N
n=1L

2(σ(A), µn).

In particular, there exists a unique positive, contractive, algebraic
*-homo-morphism φ : B∞(σ(A))→ L(H) such that

φ(f ) = f (A), f ∈ C (σ(A)) is a polynomial.

Moreover, φ is isometric on C (σ(A)).



Proof.
There exist invariant subspaces H1,H2, . . . ,HN of A such that

H = ⊕N
n=1Hn, and A|Hn is cyclic.

The first part now follows from Lemma 20. To see the second part,
let fn ∈ L2(σ(A), µn) such that ‖fn‖ = 2−n, and let M denote the
disjoint union of N copies of σ(A). If µ be the restriction of µn to
nth copy of σ(A), then 〈M, µ〉 is the desired finite measure space.
Moreover, A is unitarily equivalent to the operator Mλ of
multiplication by λ on L2(M, µ). The Borel functional calculus of
A now follows from that of Mλ. This completes the proof.



Theorem (L2-version of the Müntz-Szász Theorem)

If {nk}k>1 is a strictly increasing sequence of nonnegative integers,

then closed linear span{tnk : k > 1} = L2[0, 1] ⇔
∞∑
k=1

1

nk + 1
=∞.

Corollary

The closed linear span{tk : k > 1} = L2[0, 1].

For a complex number z = x + iy , note that if 2x + 1 > 0, then∫ 1

0
|tz |2dt =

∫ 1

0
t2xdt =

t2x+1

2x + 1

∣∣∣1
0
.

Also, if 2x + 1 6 0, then tz /∈ L2[0, 1]. Thus if
Ω = {z ∈ C : Re(z) > −1

2}. then

tz ∈ L2[0, 1] ⇔ z ∈ Ω.



• z = x + iy ∈ Ω iff x > 1
2 iff x2+y2

(x+1)2+y2 < 1 iff
∣∣∣ z
z+1

∣∣∣ < 1.

• The map φ : Ω→ D given by φ(z) = z
z+1 is bijective.

For z ∈ Ω, define vz : D→ C by

vz(η) =
1

(1 + z)(1− φ(z)η)
, η ∈ D.

Consider the Hilbert space H2(D) of all holomorphic function
f (z) =

∑∞
n=0 anz

n on D endowed with the inner-product

〈f , g〉H2(D) =
∞∑
n=0

anbn.

Note that 〈f , vz〉H2(D) = 1
1+z 〈f ,

∑∞
n=0 φ(z)nηn〉 =

1
1+z

∑∞
n=0 anφ(z)

n
= 1

1+z f (φ(z)). Since φ is surjective, we obtain

Lemma
The closed linear span of {vz : z ∈ Ω} is equal to H2(D).



Lemma
For every z ,w ∈ Ω,

〈vz , vw 〉H2(D) = 〈tz , tw 〉L2[0,1].

Proof.
A calculation using the geometric series shows that

〈vz , vw 〉H2(D) =
1

(1 + z)(1 + w)
〈 1

1− φ(z)η)
,

1

1− φ(w)η)
〉H2(D)

=
1

(1 + z)(1 + w)

1

1− φ(z)φ(w)
.

1

(1 + z)(1 + w)

1

1− z
z+1

w
w+1

=
1

(1 + z)(1 + w)− zw
=

1

1 + z + w
= 〈tz , tw 〉.

This completes the proof.



Define V : H2(D)→ L2[0, 1] by setting

V (vz) = tz , z ∈ Ω,

and extending linearly and continuously to H2(D). Note that V is
an isometry. Hence it has closed range. However, the range is
dense (since polynomials are dense in L2[0, 1]), so V is unitary.

The above argument shows the following:

Lemma
For any strictly increasing sequence {nk}k>1, the following are
equivalent:

(i) the closed linear span of {vnk}k>1 is H2(D),

(ii) the closed linear span of {tnk}k>1 is L2[0, 1],

(iii) the closed linear span of { 1
1−φ(nk )η}k>1 is H2(D).



We also need a fact from complex analysis.

Lemma
Let {an}n>1 be a sequence of points in D. There exists a non-zero
function f ∈ H2(D) that vanishes at each point an if and only if
∞∑
n=1

(1− |an|) <∞.

Proof of the L2-version of the Müntz-Szász Theorem.
Note that

∞∑
n=1

(1− |φ(nk)|) =
∞∑
k=1

1

nk + 1
,

and apply all the lemmas.


