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1. Space of Riemann Integrable Functions

In these notes, we will be concerned about the space L1(X) of integrable func-

tions on X and two of its subspaces: the subspace Cc(X) of continuous functions

with compact support and the subspace R[a, b] of Riemann integrable functions

in case X = [a, b]. If not specified, then X = Rd or more generally a measurable

subset of Rd of positive measure. It turns out that the subspace C[a, b] := Cc[a, b]

of L1[a, b] is properly contained in the space R[a, b] of Riemann integrable functions

on [a, b]. Indeed, by a result of Lebesgue, f : [a, b]→ R is Riemann integrable if and

only if f is continuous a.e. (for a proof, see [4, Problem 4, Chapter 1]). Moreover,

R[a, b] is a subspace of L1[a, b] as shown below.

Theorem 1.1. Every Riemann integrable function on [a, b] is Lebesgue integrable.

Moreover, the Riemann integral of f is same as the Lebesgue integral of f .

Proof. We give outline of the proof. Suppose |f(x)| ≤M for all x ∈ [a, b] and some

M ∈ R. Use the definition of Riemann integrability to find sequences {φk} and {ψk}
of step functions bounded by M such that φk ↑ φ and ψk ↓ ψ for some measurable

functions φ and ψ such that φ ≤ f ≤ ψ. Also, the limits of Riemann integrals of φk
and ψk agree with that of f. Since Riemann integral and Lebesgue integral agree

for step functions, by bounded convergence theorem, Lebesgue integrals of φ and

ψ are same. Since φ ≤ ψ, we must have φ = f = ψ a.e. This shows that f is

measurable. It is now easy to see that the Riemann integral of f is same as its

Lebesgue integral. �
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Remark 1.2 : The set of Riemann integrable functions forms a subspace of L1[a, b].

In general, it is hard to compute Lebesgue integral right from the definition. The

preceding result, in particular, shows that Lebesgue integral of continuous functions

may be calculated using the methods from Riemann integration theory.

The pointwise limit of Riemann integrable functions need not be Riemann inte-

grable as shown below.

Problem 1.3. Consider the function fm(x) = limn→∞(cos(m!πx))n for x ∈ R.
Find the set of discontinuities of fm. Further, verify the following:

(1) {fm} converges pointwise to f, where f(x) = 0 if x ∈ R \Q, and f(x) = 1

for x ∈ Q.
(2) f is discontinuous everywhere.

Remark 1.4 : If {rn}∞n=1 is enumeration of rationals then the sequence {χ{r1,··· ,rn}}
of Riemann integrable functions converges pointwise to the characteristic function

of rationals, which is not Riemann integrable.

Since R[a, b] is a subspace of L1[a, b], it is natural to ask whether it is closed in

L1[a, b]. The answer is No.

Problem 1.5. Let Ĉ denote the Cantor-like set obtained by removing 2k−1 centrally

situated open subintervals I1k, · · · , I2k−1k of I := [0, 1] each of length 1/4k at the kth

stage, where k = 1, 2, · · · . Let Fk : I → I be a continuous function such that F1 = 1

on I \ ∪2k−1

i=1 Iik and F1 = 0 at the mid-points of I1k, · · · , I2k−1k. For fn :=
∏n
i=1 Fi

for n ≥ 1, verify the following:

(1) The sequence {fn} of continuous functions decreases to some f : I → I

pointwise.

(2) The limit function f is discontinuous at every point of Ĉ.

Conclude that the set R[0, 1] of Riemann integrable functions as a subspace of

L1[0, 1] is not closed.

Remark 1.6 : Consider the vector space R[a, b] of Riemann integrable functions.

Then R[0, 1] is a subspace of L1[a, b] with norm ‖f−g‖1 :=
∫ b
a
|f(t)−g(t)|dt, which

is not complete.

The preceding remark raises the following question: What is the closure of R[a, b]

in L1[a, b] ?

2. Space of Lebesgue Integrable Functions

The measurable functions, in general, could be extended real-valued. The fol-

lowing simple observation shows that for members of L1, WLOG, we may confine

ourselves to real-valued functions.

Problem 2.1. Let f : Rd → R∪{∞} be an extended real-valued function. If f ∈ L1

then the set {x ∈ Rd : |f(x)| =∞} is of measure zero.
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Problem 2.2. Consider the intervals I1 = [0, 1], I2 = [0, 1/2], I3 = [1/2, 1], I4 =

[0, 1/4], I5 = [1/4, 1/2], I6 = [1/2, 3/4], I7 = [3/4, 1] and so on. For fn = χIn and

f = 0, show that ‖fn − f‖1 → 0, but fn(x) 9 f(x) for any x ∈ [0, 1].

Hint. Any x ∈ [0, 1] belongs to infinitely many In’s and complements of infinitely

many In’s.

Although, the convergence in L1 need not imply the pointwise convergence, the

situation is not very bad.

Lemma 2.3. If {fn} is a Cauchy sequence in L1, then there exists a subsequence

{fnk
} of {fn} such that ‖fnk+1 − fnk

‖ ≤ 2−k for all non-negative integers k and

fnk
(x)→ f(x) a.e. where

f(x) = fn1
(x) +

∞∑
k=1

(fnk+1(x)− fnk
(x)).

A normed linear space is complete if every Cauchy sequence is convergent.

Theorem 2.4. The normed linear space L1 is complete.

Proof. Assume that {fn} is a Cauchy sequence in L1. By the preceding lemma,

there exists a subsequence {fnk
} satisfying the conditions given there. Check that

|f − fnk
| ≤ g, where

g(x) = |fn1
(x)|+

∞∑
k=1

|fnk+1(x)− fnk
(x)|.

Since ‖fnk+1 − fnk
‖ ≤ 2−k,

∞∑
k=1

∫
|fnk+1 − fnk

| < 1.

By the monotone convergence theorem, g ∈ L1. On the other hand, since |f −
fnk
| ≤ g, by the dominated convergence theorem, ‖fnk

− f‖1 → 0 as k → ∞.
By general theory, a Cauchy sequence with a convergent subsequence is necessarily

convergent. �

The Riesz-Fischer Theorem makes possible the application of abstract theory

of Banach spaces to L1. For instance, one may conclude that every absolutely

convergent series in L1 is convergent. An astute reader may notice, however, that

this observation is implicitly there in the above proof of Riesz-Fischer theorem.

Problem 2.5. Verify that a closed subspace of a complete normed linear space is

complete. Conclude that C[a, b] is not closed in L1[a, b].

Hint. Suppose that C[a, b] is closed in L1[a, b]. By Riesz-Fischer theorem,

(C[a, b], ‖ · ‖) is a complete normed linear space. We apply the bounded inverse

theorem to the mapping f → f from (C[a, b], ‖ · ‖∞) onto (C[a, b], ‖ · ‖1) to get

C > 0 such that ‖f‖∞ ≤ C‖f‖1 for every f ∈ C[a, b].

The preceding exercise raises the question: what is the closure of C[0, 1] in

L1[0, 1] ? We will see in Section 3 that it is the whole of L1[0, 1].
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3. Some Dense subspaces of L1

We say that a subset Y of X is dense in X if for every f ∈ X and for every

ε > 0, there exists a g in Y such that ‖f − g‖ < ε.

Many times it is practical to know ”good” dense subsets of a given normed linear

space. For instance, an inequality for all members of X could be deduced from the

same inequality for members of Y (see Exercise 3.9 below for another application).

Problem 3.1. Show that the set of simple functions is dense in L1.

Hint. Since f = f+ − f−, WLOG, we assume that f ≥ 0 a.e. Then there exists

a sequence of simple functions increasing to f pointwise. Now apply monotone

convergence theorem.

Problem 3.2. Show that for any step function s : R → R and ε > 0, there exists

a continuous function f such that ‖f − s‖∞ < ε.

Hint. First try a characteristic function of an interval.

Problem 3.3. Show that for any step function s : Rd → R in L1 and ε > 0, there

exists a continuous function f with compact support such that ‖f − s‖∞ < ε.

Hint. Characteristic function of a cube is a product of characteristic functions

of intervals. Now apply the last exercise.

Problem 3.4. For a measurable subset E of Rd of finite measure and ε > 0,

show that there exists an almost disjoint family of rectangles {R1, · · · , RM} with

m(E4∪Mj=1 Rj) ≤ ε.

Hint. Cover E by ∪∞j=1Qj such that
∑∞
j=1 |Qj | ≤ m(E) + ε/2. There exists

N ≥ 1 such that
∑∞
j=N+1 |Qj | ≤ ε/2. Verify that m(E4 ∪Nj=1 Qj) ≤ ε. Warning:

Q1, · · · , QN may not be almost disjoint.

Problem 3.5. Let E be a measurable set of finite measure and let ε > 0 be given.

Show that there exists a step function g such that ‖χE − g‖1 < ε.

Hint. By the last exercise, there exists an almost disjoint family of rectangles

{R1, · · · , RM} with m(E4∪Mj=1 Rj) ≤ ε/2. Check that ‖χE −
∑M
j=1 χRj

‖1 < ε.

Theorem 3.6. The vector space of continuous functions with compact support is

dense in L1.

Proof. Let f ∈ L1 and ε > 0 be given. By Problem 3.1, there exists a simple

function s such that ‖f − s‖ < ε/3. Since s is a finite linear combination of char-

acteristic functions, by the preceding problem, there exists a step function g such

that ‖s − g‖1 < ε/3. Now by Problem 3.3, there exists a continuous function h

with compact support such that ‖g − h‖1 < ε/3. Finally, by triangle inequality, we

obtain ‖f − h‖1 < ε. �

Remark 3.7 : R[a, b] is dense in L1[a, b].
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Corollary 3.8. The space of polynomials on [a, b] are dense in L1[a, b]. In partic-

ular, L1[a, b] is separable.

Let us discuss one application of the density theorem.

Problem 3.9. For f : R→ R and y ∈ R, let fy(x) = f(x− y) denote the translate

of f. If f ∈ L1 then show that ψ : R → L1 given by ψ(y) = fy is uniformly

continuous.

Hint. Let g be a continuous function in L1 with support in [−A,A] such that

‖f−g‖1 < ε. Since g is uniformly continuous on [−A,A], there exists δ < A such that

|g(s)−g(t)| < ε/3A whenever |s−t| < δ. Check that ‖gs−gt‖1 < (2A+δ)(ε/3A) < ε,

and hence ‖fs − ft‖1 < 3ε whenever |s− t| < δ.

The following is known as Riemann-Lebesgue lemma:

Corollary 3.10. If f ∈ L1 then f̂(ζ) :=
∫
Rd f(x)e−2πixζdx tends to 0 as |ζ| → ∞.

Proof. By the preceding exercise, for f ∈ L1, ‖f − fh‖ → 0 as h→∞. The desired

conclusion follows from

f̂(ζ) =
1

2

∫
Rd

(f(x)− fh(x))e−2πixζdx,

where h = 1
2

ζ
|ζ|2 → 0 as |ζ| → ∞. �

4. Space of Functions of Bounded Variation

For a function F : [a, b] → C and a partition P : {t0 < t1 < · · · < tn} of [a, b],

let V (F, P ) :=
∑n
i=1 |F (ti)− F (ti−1)|.

Remark 4.1 : If c ∈ (a, b) and Pc denote the refinement of P obtained by adjoining

c to P, then V (F, P ) ≤ V (F, Pc).

The total variation TF of a function F : [0, 1]→ C is defined as

TF := sup
P
V (F, P ),

where sup is taken over all partitions P : {t0 < t1 < · · · < tn} of [0, 1]. We say that

F is of bounded variation if its total variation TF is finite.

Remark 4.2 : A function of bounded variation is necessarily bounded. Just con-

sider the partition P : {a, x, b}, and note that V (P, F ) is finite.

Let us see some examples of functions of bounded variation.

Problem 4.3. Show that every bounded monotonic real-valued function is of bounded

variation.

Hint. V (F, P ) = |F (a)− F (b)| for any partition P.

Problem 4.4. Show that every differentiable function with bounded derivative is

of bounded variation.
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Hint. Apply mean value theorem to real and imaginary parts of F.

A differentiable function of bounded variation need not have bounded derivative.

Problem 4.5. Show that the function F : [0, 1]→ R given by

F (x) = x3/2 sin(1/x), for 0 < x ≤ 1,

= 0, if x = 0

is of bounded variation.

Here is an example of continuous monotone function of bounded variation whose

derivative vanishes almost everywhere.

Example 4.6 : Let C be the Cantor set obtained by removing 2k−1 centrally

situated open subintervals I1k, · · · , I2k−1k of I := [0, 1] each of length 1/3k at the kth

stage, where k = 1, 2, · · · . Let F1 : I → I be a continuous increasing function such

that F1(0) = 0, F1 = 1/2 on I11, F1(1) = 1, and linear on remaining part. Similarly,

let F2 : I → I be a continuous increasing function such that F2(0) = 0, F2 = 1/4

on I12, F2 = 1/2 on I11, F2 = 3/4 on I22, F1(1) = 1, and linear on remaining part.

One can inductively define the sequence {Fk} of continuous increasing functions so

that Fk+1(0) = 0, Fk+1 = Fj on I1j , · · · , I2j−1j for 1 ≤ j ≤ k, the values of Fk+1

on consecutive Iij differ by 1/2k+1, and Fk+1(1) = 1. Note that

|Fk+1(x)− Fk(x)| ≤ 1

2k+1
for every x ∈ [0, 1].

It is easy to see that ‖Fm − Fn‖∞ → 0, and hence {Fk} converges uniformly to

a continuous function, say, F. The continuous increasing function F is known as

Cantor-Lebesgue function. By Problem 4.3, F is of bounded variation. Note further

that F is constant on each interval of the complement of C. Since C has measure

0, F ′(x) = 0 almost everywhere.

Remark 4.7 : Note that
∫

[0,1]
F ′(x)dx 6= F (1)− F (0).

Let F : [a, b] → C and a partition P : {t0 < t1 < · · · < tn} of [a, b] be given.

If c ∈ (a, b), then we have partitions P1 and P2 of [a, c] and [c, b] respectively such

that Pc = P1 ∪ P2. Moreover,

V (F, Pc) = V (F |[a,c], P1) + V (F |[c,b], P2).

By Remark 4.1, we have TF |[a,b]
= TF |[a,c]

+ TF |[c,b] . Replacing b by v and c by u,

for a ≤ u < v ≤ b, we obtain

TF |[a,v]
− TF |[a,u]

= TF |[u,v]
.(4.1)

Remark 4.8 : If F is of bounded variation then the mapping x→ TF[a,x]
increasing.

The following decomposition of functions of bounded variation is due to Jordan.

Theorem 4.9. Any real-valued function of bounded variation on [a, b] is a differ-

ence of two bounded, increasing functions.
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Proof. We decompose F (x) as [F (x) + TF[a,x]
] − TF[a,x]

for x ∈ [a, b]. In view of

the last remark, it suffices to check that x → F (x) + TF[a,x]
is increasing. For

a ≤ u < v ≤ b, by (4.1), we obtain

TF |[a,v]
− TF |[a,u]

= TF |[u,v]
≥ V (F |[u,v], {u, v}) = |F (v)− F (u)| ≥ F (u)− F (v),

and hence the desired conclusion. �

Problem 4.10. Show that the set of discontinuities of a monotone function on

[a, b] is countable, and hence of measure 0.

Hint. Suppose F is bounded and increasing. If x is a discontinuity of F, then

there exists a rational number rx such that lim
t→x,t<x

F (t) < rx < lim
t→x,t>x

F (t). Note

that if x < y then rx < ry, and hence x→ rx is one-to-one.

In view of the last exercise, it is interesting to know the set of points at which a

bounded, monotone function is non-differentiable. A deep result of Lebesgue says

that every bounded, monotone function on [a, b] is differentiable almost everywhere

with integrable derivative (refer to [4, Chapter 3] for a proof). As a consequence of

this and Jordan’s theorem, we obtain the following:

Corollary 4.11. If F : [a, b] → C is of bounded variation then F is differentiable

almost everywhere. Moreover, F ′ belongs to L1[a, b].

5. Riesz Representation Theorems

In this section, we will see the Riesz representation theorem for C[a, b] and

L1[a, b]. We start recalling some preliminaries from functional analysis. Let X be a

normed linear space. The dual space X ′ of X is defined as the normed linear space

of all bounded linear functionals f : X → C.

Problem 5.1. Show that X ′ is a Banach space with norm

‖f‖ := sup{|f(x)| : ‖x‖ ≤ 1}.

Hint. Note that |fn(x) − fm(x)| ≤ ‖fn − fm‖‖x‖, and if {fn} is Cauchy then

so is {fn(x)}. In this case, there exists a linear functional f : X → C such that

fn(x) → f(x) for every x. Show that for ε > 0, there exists N ≥ 1 such that

|fn(x)− f(x)| ≤ ε‖x‖ for all n ≥ N.

Problem 5.2. X 6= {0} if and only if X ′ 6= {0}.

Hint. Let x ∈ X be non-zero. Then f(αx) = α‖x‖ is a bounded linear functional

on Cx. Now apply Hanh-Banach extension theorem.

The Riesz representation theorem for C[a, b] identifies the dual space of C[a, b]

with a subspace of functions of bounded variation. To establish it, we need some

definitions and observations.

Consider the vector space BV [a, b] of functions F : [a, b] of bounded variation.

Note that if F ∈ BV [a, b] then its total variation TF is 0 if and only if F is constant.

This allows us to make BV [a, b] into a normed linear space with norm

‖F‖ := TF + |F (a)|.
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Problem 5.3. If F ∈ BV [a, b] then ψF : C[a, b]→ C given by

ψF (f) :=

∫ b

a

f(t)dF (t)

is a bounded linear functional with norm ‖ψF ‖ at most the total variation TF of F,

where
∫ b
a
f(t)dF (t) is the limit of the Riemann-Stieljes sum

n∑
j=1

f(sj)[F (tj)− F (tj−1],

as the mesh of the partition {a = t0 < t1 < · · · < tn = b] tends to 0 and sj in

[tj−1, tj ] for j = 1, · · · , n.

Remark 5.4 : Note that the above limit exists in view of Jordan decomposition

theorem. The mapping F → ψF is not injective. Indeed, ψ1 = 0 = ψ2.

Let B[a, b] denote the normed linear space of bounded functions on [a, b] with

norm ‖ · ‖∞.

Remark 5.5 : If φ ∈ (C[a, b])′, then there exists a bounded linear functional

ψ ∈ (B[0, 1])′ such that ψ(f) = φ(f) for all f ∈ C[a, b] and ‖ψ‖ = ‖φ‖. This is a

consequence of Hanh-Banach extension theorem.

Problem 5.6. Let ψ ∈ (B[a, b])′. Define F : [0, 1] → K by F (0) = 0 and F (t) =

ψ(χ(0,t]). Show that TF ≤ ‖ψ‖.

Hint. There exists a θ ∈ R such that |F (ti)−F (ti−1)| = eiθ(F (ti)−G(ti−1)) =

ψ(eiθχ(ti−1,ti]).

A function F ∈ BV [a, b] is said to be normalized if F (a) = 0 and F is right

continuous on (a, b). Let NBV [a, b] denote the space of normalized functions of

bounded variation. Then NBV [a, b] is a normed linear space with norm as the

total variation.

Lemma 5.7. If F ∈ BV [a, b] then there exists a G ∈ NBV [a, b] such that∫ b

a

f(t)dF (t) =

∫ b

a

f(t)dG(t)

for every f ∈ C[a, b]. Moreover, TG ≤ TF .

Proof. Define G by setting G(a) = 0 and

G(t) = F (t+)− F (a) if t ∈ (a, b)

= F (b)− F (a) if t = b.

Clearly, G is right continuous. We claim that TG ≤ TF + ε for any ε > 0.

Given a partition P : {t0 = a, · · · , tn = b} of [a, b], find a partition Q : {s0 =

a, s1, · · · , sn−1, sn = b} such that tj < sj and

|F (t+j )− F (sj)| < ε/2n for j = 1, · · · , n− 1.

It is easy to see that V (P,G) ≤ V (Q,F ) + ε, and hence the claim stands verified.

However, since ε > 0 is arbitrary, we have TG ≤ TF . This shows thatG ∈ NBV [a, b].
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Since F −G is a constant almost everywhere, both the integrals given in the state-

ment agree. �

Problem 5.8. The G in the preceding lemma is unique.

Hint. Suppose that
∫ b
a
f(t)dG(t) for every f ∈ C[a, b]. For any c ∈ (a, b), show

that |G(c)| ≤ TG|[c,c+h]
for sufficiently small h. Now note that the function TG|[a,t]

is right continuous if so is G.

Theorem 5.9. If φ ∈ (C[a, b])′, then φ = φF for some function F of bounded

variation. Moreover, the mapping F → φF from NBV [a, b] onto (C[a, b])′ is an

isometric isomorphism.

Proof. For simplicity, we assume that a = 0 and b = 1. For f ∈ C[0, 1], consider

sn :=
∑n
r=1 f(r/n)χ((r−1)/n,r/n]. Given ε > 0, choose n ≥ 1 such that |f(s) −

f(t)| < ε for all x, y such that |x− y| < 1/n. Note that

sn(t)− f(t) =

n∑
r=1

(f(r/n)− f(t))χ((r−1)/n,r/n](t).

It is now easy to see that sn converges uniformly to f . Let ψ ∈ (B[0, 1])′ be the

extension of φ an ensured by Remark 5.5. We claim that φ = φF , where F is the

function of bounded variation given by Problem 5.6. By the continuity of ψ, ψ(sn)

converges to ψ(f) = φ(f), and hence it suffices to check that ψ(sn) =
∫ 1

0
sn(t)dF (t).

This follows from ψ(χ((r−1)/n,r/n]) =
∫ 1

0
χ((r−1)/n,r/n](t)dF (t). The equality TF =

‖φ‖ follows from Problems 5.3 and 5.6. The remaining part follows from Problems

5.3 and 5.8 and Lemma 5.7. �

Remark 5.10 : The normed linear space NBV [a, b] with norm as total variation

is complete.

In the remaining part of this section, we present a proof of Riesz representation

theorem for L1[a, b]. To do that, we state (a special case of) the Radon-Nikodym

theorem (without proof).

Theorem 5.11. Let µ be a positive σ-finite measure defined on the σ-algebra Σ

and let λ be a complex measure on Σ with the property that λ(E) = 0 for every

E ∈ Σ for which µ(E) = 0. Then there exists a unique f ∈ L1(µ) such that

λ(E) =

∫
E

f(t)dµ(t)

for every E ∈ Σ.

Remark 5.12 : The Radon-Nikodym theorem may be viewed as a generalization

of the fundamental theorem of calculus:

F (b)− F (a) =

∫
[a,b]

F ′(t)dt.
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For instance, in view of Corollary 4.11, if F is a function of bounded variation, then

we have a complex measure λ obtained by setting

λ(E) =

∫
E

F ′(t)dt

for every Lebesgue measurable set E of [a, b]. In this case, F (b)− F (a) = λ([a, b]).

We wish to recall here that the conclusion of Fundamental theorem of calculus may

fail even for a function of bounded variation (see Remark 4.7).

A complex-valued function f is said to be essentially bounded if ‖φ‖m,∞ is finite,

where ‖φ‖m,∞ ≡ inf{M ∈ R+ : |φ(z)| ≤M outside set of Lebesgue measure 0}.

Remark 5.13 : If f ∼ g then ‖f‖∞ may be not be equal to ‖g‖∞. However, we

always have ‖f‖m,∞ = ‖g‖m,∞.

Problem 5.14. For a measurable set X, let L∞(X) denote the set of all (equiva-

lence classes of) measurable functions f for which ‖f‖m,∞ <∞. Show that L∞(X)

is a normed linear space with norm ‖f‖m,∞.

Problem 5.15. Let g ∈ L∞[a, b]. Define the linear functional φg : L1[a, b]→ C by

φg(f) :=
∫

[a,b]
f(t)g(t)dt. Show that φg ∈ (L1[a, b])′.

Theorem 5.16. For φ ∈ (L1[a, b])′, there exists a unique g ∈ L∞[a, b] such that

φ = φg, where φg is as defined in the preceding problem.

Proof. For a Lebesgue measurable subset ∆ of [a, b], define λ(∆) = φ(χ∆). Then

λ is a countably additive measure. If m(∆) = 0 then χ∆ = 0 almost everywhere,

and hence by linearity of φ, λ(∆) = φ(0) = 0. By Radon-Nikodym theorem, there

exists g ∈ L1[a, b] such that λ(∆) =
∫

∆
g(t)dt for every Lebesgue measurable subset

∆ of [a, b]. For ε > 0, let

A := {x ∈ [a, b] : |g(x)| > ‖φ‖+ ε}

and let f = χA(ḡ/g). Calculate ‖f‖1 and examine φg(f) to see that ‖φg‖ = ‖g‖∞.

This also shows that g ∈ L∞[a, b]. To see that φ = φg, we check that φ(s) =

φg(s) for any simple measurable function s. By a simple application of dominated

convergence theorem, we get φ(f) = φg(f) for any f ∈ L1[a, b]. We leave the

uniqueness of g to the reader. �
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