
FUNCTIONAL ANALYSIS: NOTES AND PROBLEMS

Abstract. These are the notes prepared for the course MTH 405 to
be offered to graduate students at IIT Kanpur.
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1. Basic Inequalities

Exercise 1.1 : (AM-GM Inequality) Consider the set

An = {x = (x1, · · · , xn) ∈ Rn : x1 + · · ·+ xn = n, xi ≥ 0 every i},

and the function g : Rn → R+ given by g(x1, · · · , xn) = x1 · · ·xn. Verify:
(1) An is a compact subset of Rn, and g is a continuous function.
(2) Let z = (z1, · · · , zn) ∈ Rn be such that maxx∈An g(x) = g(z). Then

zi = 1 for all i.
(Hint. Let zp = min zi and zq = max zi for some 1 ≤ p, q ≤ n.

Define y = (y1, · · · , yn) ∈ An by yp = (zp + zq)/2 = yq and yi = zi
for i 6= p, q. If zp < zq then g(y) > g(z).)

(3) Let x ∈ An. Set α := 1
n

∑n
i=1 xi and y := (x1/α, · · · , xn/α) ∈ An.

Then g(y) ≤ 1.

Conclude that (
∏n
i=1 xi)

1/n ≤ 1
n

∑n
i=1 xi.

Exercise 1.2 : (Characterization of differentiable convex functions) Let f :
[a, b]→ R be a differentiable function. For a < x < y < b, verify:
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(1) If f is convex then f ′ is monotonically increasing.
Hint. Let h > 0 be such that x+ h < y. Then
f(x+ h)− f(x)

h
≤ f(y)− f(x)

y − x
≤ f(y)− f(y − h)

h
.

(2) If f ′ is monotonically increasing then f is convex.
Hint. Let z = (1 − t)x + ty. Then there exists c1 ∈ (x, z) and
c2 ∈ (z, y) such that

f(z) = f(x) + f ′(c1)(z − x), f(y) = f(z) + f ′(c2)(y − z).

Exercise 1.3 : (Characterization of twice differentiable convex functions)
Let f : [a, b] → R be a twice differentiable function. Show that f is convex
(resp. strictly convex) if and only if f ′′ ≥ 0 (resp. f ′′ > 0).

Hint. Necessary part follows from the last exercise. For sufficiency part,
use Taylor’s mean value theorem.

Remark 1.4 : The exponential is strictly convex.

Exercise 1.5 : Let a1, a2 be positive numbers and let p1, p2 > 0 be such
that p1 +p2 = 1. Prove that ap11 a

p2
2 ≤ p1a1 +p2a2. Equality holds iff a1 = a2.

Hint. The logarithm log 1
x is strictly convex.

Exercise 1.6 : (Young’s Inequality) Let p, q > 1 be conjugate exponents
(that is, 1/p+ 1/q = 1). For positive numbers a, b prove that

ab ≤ ap

p
+
bq

q
.

Equality holds iff ap = bq.

Hint. Let a1 = ap, a2 = bq and p1 = 1/p, p2 = 1/q in the preceding exercise.

Exercise 1.7 : (Geometric Proof of Young’s Inequality) Let p, q > 1 be
conjugate exponents (that is, 1/p + 1/q = 1). Given positive real numbers
a ≤ b, consider

D1 := {(x, y) ∈ R2 : 0 ≤ x ≤ a, 0 ≤ y ≤ xp−1}
D2 := {(x, y) ∈ R2 : 0 ≤ y ≤ b, 0 ≤ x ≤ yq−1}.

Verify the following:
(1) The intersection of D1 and D2 is {(x, y) ∈ R2 : 0 ≤ x ≤ a , y = xp−1}

(Hint. Since (p− 1)(q − 1) = 1, y = xp−1 iff x = yq−1).
(2) The rectangle {(x, y) ∈ R : 0 ≤ x ≤ a, 0 ≤ y ≤ b} is contained in

the union D1 ∪D2.

Conclude that ab ≤ ap/p+ bq/q. Equality holds iff ap = bq.

Exercise 1.8 : Assume the Hölder’s (resp. Minkowski’s) inequality for finite
sequences, and derive it for sequences.



FUNCTIONAL ANALYSIS: NOTES AND PROBLEMS 3

Exercise 1.9 : (Hölder’s Inequality for measurable functions) Let p, q > 1
be conjugate exponents. Let f and g be Lebesgue measurable complex-
valued functions. Then fg is measurable such that∣∣∣∣∫ f(x)g(x)dx

∣∣∣∣ ≤ (∫ |f(x)|pdx
)1/p(∫

|g(x)|qdx
)1/q

.

Hint. Let ‖f‖p :=
(∫
|f(x)|pdx

)1/p
, f̃ = f/‖f‖p. By Young’s Inequality,

|f̃(x)||g̃(x)| ≤ |f̃(x)|p/p+ |g̃(x)|q/q.
Now integrate both sides.

Exercise 1.10 : Prove Minkowski’s Inequality for measurable functions.

2. Normed Linear Spaces: Examples

Throughout these notes, the field K will stand either for R or C.

Exercise 2.1 : For 1 ≤ p <∞, for x = (x1, · · · , xn) ∈ Kn, consider

‖x‖p :=

 n∑
j=1

|xj |p
1/p

.

Show that (Kn, ‖ · ‖p) is a normed linear space.

Hint. Minkowski’s Inequality.

Exercise 2.2 : What goes wrong in the last exercise if 0 < p < 1 ?

Hint. If p = 1/2 then calculate the p-norms of (1, 1), (1, 0) and (2, 1).

Exercise 2.3 : How does a unit disc Dp := {(x, y) ∈ R2 : |x|p + |y|p < 1} in
(R2, ‖ · ‖p) look like ? Whether D∞ makes sense ?

Hint. Dp is invariant under reflections along X and Y axes: (x, y) ∈ Dp

iff (αx, βy) ∈ Dp for α, β ∈ {±1}. Now plot xp + yp = 1 for x, y ≥ 0.

Exercise 2.4 : For 1 ≤ p <∞, let lp stand for

lp := {(an) :
∞∑
n=1

|an|p <∞}.

Show that lp is a normed linear space with norm ‖(an)‖p := (
∑∞

n=1 |an|p)
1/p .

Exercise 2.5 : For a non-empty subset X of R (endowed with the subspace
topology), let b(X) denote the vector space of bounded functions f : X → K,
and C(X) denote the vector space of continuous functions f : X → K. Define
‖f‖∞ := supx∈X |f(x)| for f ∈ C(X). Verify:

(1) ‖ · ‖∞ defines a norm on b(X).
(2) ‖ · ‖∞ defines a norm on Cb(X) := b(X) ∩ C(X).
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Exercise 2.6 : Discuss the last exercise in case X equals
(1) {1, · · · , n}. What is C({1, · · · , n}) ?
(2) the set N of positive integers. In this case, b(N) = Cb(N). This is

commonly denoted as l∞.

Exercise 2.7 : Let C(n)(0, 1) consist of functions f(t) on (0, 1) having n
continuous and bounded derivatives. Verify that

‖f‖ := sup{
n∑
k=0

|f (k)(t)| : 0 < t < 1}

defines a norm on C(n)(0, 1).

We say that (Lebesgue) measurable functions f is equivalent to g (for
short, f ∼ g) if f and g agree outside a set of (Lebesgue) measure 0. Let [f ]
denote the equivalence class containing f, and let ‖[f ]‖p :=

(∫
|f(x)|pdx

)1/p
.

Exercise 2.8 : Verify the following:
(1) ∼ is an equivalence relation.
(2) If two measurable functions f, g are equivalent then ‖[f ]‖p = ‖[g]‖p.

For simplicity, we denote the equivalence class [f ] containing f by f itself.

Exercise 2.9 : For a measurable set X, let Lp(X) denote the set of all
(equivalence classes of) measurable functions f for which ‖f‖p < ∞. Show
that Lp(X) is a normed linear space with norm ‖f‖p.

A complex-valued function f is said to be µ-essentially bounded if ‖φ‖m,∞
is finite, where ‖φ‖m,∞ ≡ inf{M ∈ R+ : |φ(z)| ≤M outside set of measure 0}.

Exercise 2.10 : If f ∼ g then ‖f‖∞ may be not be equal to ‖g‖∞. Show
that ‖f‖m,∞ = ‖g‖m,∞.

Exercise 2.11 : For a measurable set X, let L∞(X) denote the set of all
(equivalence classes of) measurable functions f for which ‖f‖m,∞ < ∞.
Show that L∞(X) is a normed linear space with norm ‖f‖m,∞.

Exercise 2.12 : Let t, u, v, w be generators of R3. For x ∈ R3, define

‖x‖ := inf{|a|+ |b|+ |c|+ |d| : a, b, c, d ∈ R such that x = at+ bu+ bcv + dw}.

Show that (R3, ‖ · ‖) is a normed linear space.

Hint. If ‖x‖ = 0 then there exists a sequence |an|+ |bn|+ |cn|+ |dn| → 0
such that x = ant+ bnu+ cnv + dnw. To see ‖x1 + x2‖ ≤ ‖x1‖+ ‖x2‖, note

{|a|+ |b|+ |c|+ |d| : x1 + x2 = at+ bu+ cv + dw} ⊇
{|a1 + a2|+ |b1 + b2|+ |c1 + c2|+ |d1 + d2| : xi = ait+ biu+ civ + diw}.
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3. Normed Linear Spaces: Elementary Properties

Exercise 3.1 : (The norm determined by the unit ball)) Let (X, ‖ · ‖) be a
normed linear space. Let B(x0, R) := {x ∈ X : ‖x − x0‖ < R} be the ball
centered at x0 and of radius R. Show that the norm is determined completely
by D(0, R): ‖x‖ = inf{R > 0 : x ∈ D(0, R)}.

Hint. If x ∈ D(0, R) then ‖x‖ < R. Thus ‖x‖ is at most the entity on
RHS. To see the reverse inequality, argue by contradiction.

We say that two norms ‖ · ‖ and ‖ · ‖′ on a normed linear space X are
equivalent if the identity mapping I from (X, ‖ · ‖) onto (X, ‖ · ‖′) is a ho-
moemorphism (that is, I is continuous with continuous inverse).

Remark 3.2 : A subset of X is open with respect to ‖ · ‖ topology if and
only if it is open with respect to ‖ · ‖′ topology.

Exercise 3.3 : Prove that two norms ‖ · ‖ and ‖ · ‖′ on a normed linear
space X are equivalent if and only if there exist positive scalars C1 and C2

such that C1‖x‖ ≤ ‖x‖′ ≤ C2‖x‖ for all x ∈ X.

Exercise 3.4 : (Geometric interpretation of equivalence of norms) Show
that two norms ‖ · ‖ and ‖ · ‖′ on a normed linear space X (with balls
B(x0, r) and B′(x0, R)) are equivalent if and only B′(0, 1) ⊆ B(0, r) and
B(0, 1) ⊆ B′(0, R) for some positive constants r and R.

Exercise 3.5 : Show that the equivalence of norms is an equivalence re-
lation. Conclude that all norms ‖ · ‖p on Kn are equivalent by verifying
‖x‖∞ ≤ ‖x‖p ≤ np‖x‖∞..

Exercise 3.6 : (All norms on Kn are equivalent) Let ‖ · ‖ be an arbitrary
norm on Kn. Verify:

(1) Let e1, · · · , en denote the standard basis of Kn. Then

‖x‖ ≤ (
n∑
i=1

‖ei‖)‖x‖∞.

(2) The function f : (Kn, ‖·‖∞)→ R given by f(x) = ‖x‖ is continuous.
(3) There exists a ∈ Kn such that ‖a‖∞ = 1 such that ‖x‖ ≥ ‖a‖ > 0

for every x ∈ Kn whenever ‖x‖∞ = 1.
(4) The norm ‖ · ‖ is equivalent to ‖ · ‖∞.

Exercise 3.7 : (Inequivalent norms on K[x]) Let K[x] denote the vector
space of polynomials in x over K. Let p(x) ∈ K[x] be given by p(x) =∑k

n=0 anx
n. For c := {cn}∞n=0, define ‖p‖c :=

∑k
n=0 |cn||an|. Verify:

(1) ‖ · ‖c defines a norm on K[x].
(2) Let cn = 1/n and dn = n. Then ‖ · ‖c and ‖ · ‖d are not equivalent.
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Exercise 3.8 : For 1 ≤ p < r ≤ ∞, verify the following:
(1) ‖x‖p ≥ ‖x‖r for every finite or infinite sequence x.
(2) There does not exist K > 0 such that ‖x‖p ≤ K‖x‖r for every

infinite sequence x.
Conclude that lr ( lp.

Hint. For the first, let y =: x/‖x‖p which has norm equal to 1. Note that
1 = ‖y‖pp ≥ ‖y‖rr, and hence ‖y‖r ≤ 1. For the second part, find a sequence
x such that ‖x‖r <∞ but ‖x‖p =∞ (Try: xk = 1/kq).

Exercise 3.9 : Let 1 ≤ p < r ≤ ∞. For measurable function f on [0, 1],
let ‖f‖p :=

∫
[0,1] |f(x)|pdm, where dm denotes the normalized Lebesgue

measure. Verify:
(1) ‖f‖p ≤ ‖f‖r.
(2) There does not exist K > 0 such that ‖f‖r ≤ K‖f‖p for every

measurable function f on [0, 1].
Conclude that Lr[0, 1] ( Lp[0, 1].

Hint. Choose q > 1 such that p/r + 1/q = 1. Now apply Hölder’s
inequality to f(x) = |x|p and g(x) = 1.

Exercise 3.10 : Let 1 ≤ p ≤ ∞. Show that lp is separable iff p <∞.

Hint. Let {an} denote a countable dense subset of K. Then

{an1e1 + · · ·+ ank
ek : nk ∈ N, k ≥ 1}

is dense in lp if p < ∞. If p = ∞ then any two distinct points in the
uncountable set {x : xn = 0 or 1} are at distance 1.

Exercise 3.11 : Show that a proper subspace of a normed linear space has
empty interior.

Hint. If a proper subspace has non-empty interior then it contains a ball.

4. Complete Normed Linear Spaces

A sequence {xn} in a normed linear space X is Cauchy if ‖xn− xm‖ → 0
as n,m → ∞. We say that {xn} is convergent in X if there exists x ∈ X
such that ‖xn − x‖ → 0 as n→∞.

Exercise 4.1 : If {xn} in a normed linear space X then show that there
exists a subsequence {xnk

} of {xn} such that ‖xnk
−xnl

‖ ≤ 2−k for all l ≥ k.
Prove further that {xn} is convergent iff {xnk

} is convergent.

A normed linear space X is said to be complete if every Cauchy sequence is
convergent in X. Complete normed linear spaces are also known as Banach
spaces.
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Remark 4.2 : Let X be a normed linear space X with norm ‖ · ‖. Then X
is complete iff the metric space X with metric d(x, y) := ‖x−y‖ is complete.

Exercise 4.3 : Verify the following:
(1) A Banach space is closed.
(2) A closed subspace of a Banach space is complete.

Remark 4.4 : If E is a subset of a Banach space X then the closure of the
linear span linspanE of E is also a Banach space.

Exercise 4.5 : Let X be a normed linear space with two equivalent norms
‖ · ‖ and ‖ · ‖′. Show that (X, ‖ · ‖) is complete iff (X, ‖ · ‖′) is complete.

Exercise 4.6 : Let ‖ · ‖ be an arbitrary norm on Kn. Show that the normed
linear space (Kn, ‖ · ‖) is complete.

Hint. In view Exercise 4.5, we need to check that (Kn, ‖·‖∞) is complete.
Let us see an example of incomplete normed linear space.

Exercise 4.7 : Consider the vector space K[x] of polynomials p(x) in x with
the norm ‖p‖∞ := supx∈[0,1] |p(x)|. Let fk(x) =

∑k
n=0(x/2)n be a sequence

of polynomials in K[x]. Verify:
(1) {fk} is Cauchy.
(2) There is no polynomial g(x) such that ‖fk − g‖∞ → 0 as k →∞.

Hint. To see (2): uniform convergence implies point-wise convergence.

A series
∑n

n=0 xn in a normed linear space X is said to be convergent if
there exists x ∈ X such that ‖

∑k
n=0 xn − x‖ → 0 as k → ∞. We say that∑n

n=0 xn is absolutely convergent if the series
∑n

n=0 ‖xn‖ is convergent.

Exercise 4.8 : Show that the series
∑∞

n=1 en/n is convergent in l2 but not
absolutely convergent, where en ∈ l2 is the sequence with nth entry equal
to 1 and all remaining entries 0.

Remark 4.9 : If {ak :=
∑k

n=0 ‖xn‖} is Cauchy then so is {yk :=
∑k

n=0 xn} :

‖yk − yl‖ ≤ |ak − al|.

Exercise 4.10 : In a Banach space, show that every absolutely convergent
series is convergent.

Exercise 4.11 : Let fk be as in Exercise 4.7. Show that
∑∞

k=0 fk is abso-
lutely convergent, but not convergent.

Exercise 4.12 : Consider the vector space R[x] of polynomials in x is an
with the norm ‖p‖c with c = {1, 1, · · · , } (see Exercise 3.7). Consider f(x) :=∑∞

n=1
xn

n2 . Verify the following:
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(1) f(x) is absolutely convergent.
(2) For any g(x) ∈ K[x] of degree d and for any integer k > d,

‖
k∑

n=1

xn

n2
− g(x)‖ ≥ 1

(d+ 1)2
.

Exercise 4.13 : Let (x(n) := {x(n)
1 , x

(n)
2 , · · · , }) be a Cauchy sequence in lp.

For ε > 0, verify:

(1) (x(n)
i ) ⊆ K converges to some xi for each i.

(2) For k ≥ 1, there exists n0 ≥ 1 (independent of k) such that

k∑
i=1

|x(n)
i − xi|

p ≤ ε for all n ≥ n0.

(3) For k ≥ 1,
∑k

i=1 |xi|p ≤ (ε+ ‖x(n0)‖p)p.
(4) The normed linear space lp is complete.

Exercise 4.14 : Show that the normed linear space l∞ is complete.

Exercise 4.15 : Let X be a normed linear space with the property that
every absolutely convergent series is convergent. Let {xn} be a sequence in
a normed linear space X such that ‖xn − xm‖ ≤ 2−n for m ≥ n. Show that
{xn} is convergent.

Hint. Let x0 = 0 and yk = xk − xk−1 for k ≥ 1. Examine
∑∞

k=1 yk.

Theorem 4.16. A normed linear space is complete iff every absolutely con-
vergent series is convergent.

As an application let us see that Lp[0, 1] is complete.

Exercise 4.17 : (Riesz-Fischer) Let
∑∞

n=1 fn be an absolutely convergent
series in Lp[0, 1], where 1 ≤ p <∞. Define the increasing sequence gn(x) :=∑n

k=1 |fk(x)| and let g(x) :=
∑∞

k=1 |fk(x)| ∈ [0,∞]. Verify:

(1) g ∈ Lp[0, 1] (Hint. Show that there is M > 0 such that ‖gn‖p ≤M
for every n ≥ 1. Now apply Fatou Lemma).

(2) g(x) is finite for all x ∈ [0, 1] outside a set E of measure zero. In
particular, for x /∈ E, sn(x) :=

∑n
k=1 fk(x) is convergent.

(3) Define the measurable function s by

s(x) =

{
limn→∞ sn(x) for x /∈ E
0 for x ∈ E.

Then |s(x)| ≤ g(x) for all x ∈ [0, 1], and hence s ∈ Lp[0, 1].
(4) ‖sn − s‖p → 0 as n→∞ (Hint. Lebesgue Convergence Theorem).
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Exercise 4.18 : Let X be a normed linear space with norm ‖ · ‖. Show that
X is complete iff the unit sphere SX in X is a complete metric space with
the metric d(x, y) := ‖x− y‖.

Hint. Since SX is closed, the necessary part is immediate. For sufficiency
part, let {xn} be a Cauchy sequence in X. By passing to a subsequence, we
may assume that xn 6= 0 for every n. Now consider two cases (1) inf ‖xn‖ = 0
and (2) inf ‖xn‖ > 0.

5. Various Notions of Basis

Recall that a subset of B of a vector space V is a basis if every x ∈ V
is a linear combination of finitely many elements in B. This notion of basis
from Linear Algebra is also known as Hamel Basis.

Exercise 5.1 : Let {sn} be a Schauder basis for an n-dimensional space X.
Show that the co-ordinate functionals αi (i = 1, · · · , n) are continuous.

Hint. Prove that the linear transformation T : X → Kn given by T (x) =
(α1(x), · · · , αn(x)) is a homeomorphism.

Exercise 5.2 : Let X be a Banach space. For a sequence {xn} in X, let
Ym := linspan{x1, · · · , xm}. Verify:

(1) The complement X \ Ym of the closed set Ym is dense in X.
(2) The intersection

⋂
X \ Ym is dense in X.

(3) linspan{xn} is a proper subspace of X.
(4) X can not a have countable Hamel basis.

Although any vector space has a Hamel basis, it is too big to have any
utility in case of Banach spaces. Thus the notion of Hamel basis is not
appropriate in the study of Banach spaces. This motivates another notion
of basis named after Schauder:

Definition 5.3 : A sequence {sn} in a Banach space X is said to be a
Schauder basis if for every x ∈ X there exists a unique sequence {cn(x)} of
scalars cn(x) depending on x such that ‖x−

∑k
n=0 cn(x)sn‖ → 0 as k →∞.

Remark 5.4 : For finite-dimensional spaces, the notions of Schauder basis
and Hamel basis coincide.

Exercise 5.5 : Let {sn} be a Schauder basis for a Banach space X. Show
that the mapping cn : x −→ cn(x) is well-defined and linear.

The mapping cn as given in the last exercise are known as the co-ordinate
functionals corresponding to the Schauder basis {sn}.
Exercise 5.6 : Let en denote the sequence with nth entry 1 and all re-
maining entries equal to 0. Show that {en} forms a Schauder basis for lp for
1 ≤ p <∞.
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Hint. To get uniqueness, use the definition of ‖ · ‖p. Note that your
argument fails in case p =∞.

Exercise 5.7 : Prove that a Banach space with a Schauder basis must be
separable. Conclude the following:

(1) lp is separable for 1 ≤ p <∞.
(2) l∞ can not admit a Schauder basis.

We recall the notion of orthogonal vectors in Kn. Two vectors x and y in
Kn are orthogonal if 〈x, y〉 = 0, where

〈x, y〉 :=

{∑n
i=1 xiyi2 if K = R;∑n
i=1 xiȳi2 if K = C.

The orthogonal basis for Kn is nothing but a Hamel basis consisting mutually
orthogonal basis vectors. The well-known Gram-Schmidt process allows one
to construct an orthogonal basis from a given Hamel basis.

Exercise 5.8 : For x, y ∈ Kn, define 〈x, y〉2 :=
∑n

i=1 xiyi. Show that Kn is
an inner-product space with inner-product 〈x, y〉2 iff K = R.

Exercise 5.9 : Let A ∈ Mn(K) be such that A is one-one. Prove that
〈x, y〉A := 〈Ax, Ay〉2 defines an inner-product on Kn.

Find A ∈ M2(R) for which 〈(x1, x2), (y1, y2)〉A := x1x2 + x1y2 + x2y1 +
2y1y2 defines an inner-product on R2.

If A ∈Mn(K) then

A∗ :=

{
transpose of A if K = R;
conjugate transpose of A if K = C.

Exercise 5.10 : Let A ∈Mn(K) be such that A∗ = A. Show that

〈x, y〉 := 〈Ax, y〉2
defines an inner-product on Kn iff the eigen-values of A are positive.

Hint. Use Spectral Theorem for Symmetric/Self-adjoint matrices.

Exercise 5.11 : Let X denote an inner-product space with the inner-
product 〈·, ·〉 and let ‖ · ‖ =

√
〈·, ·〉. Show that, for any x, y ∈ X, the

following hold true:
(1) (Parallelogram Law)

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.
(2) (Polarization Identity)

〈x, y〉 =

{
1
4

(
‖x+ y‖2 − ‖x− y‖2

)
(x, y ∈ X) if K = R;

1
4

(
‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2

)
if K = C.
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(3) (Pythagorean Identity) If 〈x, y〉 = 0 then ‖x+ y‖2 = ‖x‖2 + ‖y‖2.

Hint. Write ‖x + y‖2 as 〈x+ y, x+ y〉 and then use properties of the
inner-product.

Here are two applications of the Parallelogram Law:

Exercise 5.12 : Suppose that n ≥ 2. Show that there does not exist
invertible matrix A in Mn(K) such that A maps {x ∈ Kn : ‖x‖∞ = 1} onto
{x ∈ Kn : ‖x‖2 = 1}.

Exercise 5.13 : Let Y be a subspace of an inner-product space X and let
x ∈ X. Verify:

(1) There exists a Cauchy sequence {yn} in Y such that ‖x − yn‖ →
inf{‖x− y‖ : y ∈ Y } as n→∞ (Hint. Parallelogram Law).

(2) If {yn} converges to y ∈ Y then 〈x− y, z〉 = 0 for every z ∈ Y
(Hint. Assume that ‖z‖ = 1, and note that ‖x − y‖ ≤ ‖x − w‖,
where w := y + 〈x− y, z〉z.

Theorem 5.14. (Cauchy-Schwarz Inequality) Let X be an inner-product
space with the inner-product 〈·, ·〉 and the induced norm ‖ · ‖ =

√
〈·, ·〉.

Then |〈x, y〉| ≤ ‖x‖‖y‖ for every x, y ∈ X. Moreover, equality holds iff x, y
are linearly dependent.

Proof. We may assume that 〈x, y〉 6= 0. Letting t = 〈y, y〉
〈x, y〉 in 〈y − tx, y − tx〉 ≥

0, we obtain Cauchy-Schwarz inequality. Equality holds iff 〈y − tx, y − tx〉 =
0 iff y = tx. �

Corollary 5.15. Let X denote an inner-product space with the inner-product
〈·, ·〉. Show that ‖ · ‖ =

√
〈·, ·〉 defines a norm.

Proof. The only difficult part is the triangle inequality, which follows from
the Cauchy-Schwarz Inequality:
‖x+ y‖2 = ‖x‖2 + 〈x, y〉+ 〈y, x〉+ ‖y‖2 ≤ (‖x‖+ ‖y‖)2. �

Remark 5.16 : Note that equality holds in the Cauchy-Schwarz Inequality
iff that holds in the triangle inequality.

Exercise 5.17 : Let X be an inner-product space and let 0 ≤ t ≤ 1. If
x, y ∈ X are linearly independent then ‖tx+ (1− t)y‖ < 1 iff 0 < t < 1.

Hint. Use the equality part of Cauchy-Schwarz Inequality.

Corollary 5.18. The inner-product is jointly continuous.

Proof. Use the continuity of norm and either the Polarization Identity or
Cauchy-Schwarz Inequality. �

Not all norms are induced by an inner-product.
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Exercise 5.19 : (Jordan and von Neumann) Let X denote a normed linear
space with the norm ‖ · ‖. If X satisfies the Parallelogram Law then the
expression 〈x, y〉, as given in the Polarization Identity, satisfies

√
〈·, ·〉 = ‖·‖

and defines an inner-product on X.
In other words, norm on any normed linear space is induced by an inner-

product if and only if it satisfies the Parallelogram Law.

Hint. We divide the verification into four steps:
(1) 〈x, y〉 = 〈y, x〉 (x, y ∈ X).
(2) 〈x/2, y〉 = 1/2〈x, y〉 (x, y ∈ X).
(3) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 = (x, y ∈ X).

Note that x+ y + z = x+ y/2 + y/2 + z.
(4) 〈αx, y〉 = α〈x, y〉 for any α ∈ C.

Use density of {m/2n : m ∈ Z, n ∈ N ∪ {0}} in R to conclude
that 〈αx, y〉 = α〈x, y〉 for any real α.

A Hilbert space is a complete inner-product space.

Exercise 5.20 : Verify the following:
(1) lp is a Hilbert space iff p = 2.
(2) Lp[0, 1] is a Hilbert space iff p = 2.

Hint. ‖ · ‖p satisfies the Paralleogram Law iff p = 2.
The Hardy space H2 of the unit disc is a normed linear space of complex-

valued functions f holomorphic on the unit disc D1 for which

‖f‖2H2 := sup
0<r<1

∫ 2π

0
|f(reiθ)|2 dθ

2π
<∞.

Exercise 5.21 : For the Hardy space H2, verify the following:
(1) H2 is an inner-product space endowed with the inner-product

〈f, g〉H2 :=
1
4
(
‖f + g‖2H2 − ‖f − g‖2H2 + i‖f + ig‖2H2 − i‖f − ig‖2H2

)
(Hint. Verify that the norm on H2 satisfies the Paralleogram Law).

(2) If {fn} is a Cauchy sequence in H2 then

|fn(z)− fm(z)| ≤ ‖fn − fm‖H2

R− r
for any |z| ≤ r < R < 1 (Hint. By the Cauchy Integral Formula,

fn(z)− fm(z) =
∫
|z|=R

f(w)
w − z

dw (|z| < R < 1).

(3) If {fn} is a Cauchy sequence in H2 then there exists a holomorphic
function f : D1 → C such that ‖fn−f‖∞,K for every compact subset
K of the unit disc D1 (Hint. Weierstrass Convergence Theorem).

(4) H2 is a Hilbert space.
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Remark 5.22 : In the discussion to follow, we confine ourselves to separable
Hilbert spaces. In particular, according to our definition, orthonormal basis
is necessarily (finitely or infinitely) countable. Even after this assumption,
practically, we do not loose much.

Exercise 5.23 : Find an example of a non-separable Hilbert space.

Let X be an inner-product space with inner product 〈·, ·〉. A subset E
of X is orthogonal if 〈x, y〉 = 0 for every x, y ∈ E. A subset E of X is
orthonormal if every element in E has unit norm and 〈x, y〉 = 0 for every
x, y ∈ E. We say that y is orthogonal to E if 〈x, y〉 = 0 for every x ∈ E.

Exercise 5.24 : Let X be a separable inner-product space. Any orthonor-
mal subset of X is countable.

Hint. Suppose {xα} is orthonormal. Then {B(xα, 1/
√

2)} is a collection
of disjoint open balls in H. Now if {yn} is countable dense subset of H then
each B(xα, 1/

√
2) must contain at least one yn.

Theorem 5.25. (Orthogonal Decomposition of a Hilbert Space) Let H be a
Hilbert space and let Y be a closed subspace of H. Then every x ∈ H can be
written uniquely as y + z, where y ∈ Y and z is orthogonal to Y.

Proof. By Exercise 5.13(1), there exists a Cauchy sequence {yn} such that
‖x−yn‖ converges to the distance d between x and Y. Note that d is positive
since Y is closed subspace of H. Also, since H is complete and Y is closed,
{yn} converges to some y ∈ Y. By Exercise 5.13(2), x−y is orthogonal to Y.
To see the uniqueness part, note that y1+z1 = y2+z2 implies y1−y2 = z2−z1

belongs to Y and orthogonal to Y. It follows that y1 = y2 and z1 = z2. �

Example 5.26 : The orthogonal decomposition may not be unique in case
Y is not a closed subspace of H. For instance, consider H := l2 and c00 :=
{(xn) ∈ l2 : xn is non-zero for finitely many n}. Then, for each k ≥ 1,∑∞

k=1
ek
k ∈ l

2 can be decomposed as
∑n

k=1
ek
k + z, where z :=

∑∞
k=n+1

ek
k is

orthogonal to
∑n

k=1
ek
k .

An orthonormal basis for X is a Schauder basis which is also an orthonor-
mal subset of X.

Example 5.27 : Let en denote the sequence with nth entry equal to 1 and
all other entries 0. Then {en} forms an orthonormal basis for l2.

Exercise 5.28 : Show that {zn} forms an orthonormal basis for the Hardy
space H2.

Exercise 5.29 : Let {en} be an orthonormal subset of an inner-product
space X. Verify the following:

(1) (Bessel’s Inequality)
∑∞

n=0 |〈x, en〉|2 ≤ ‖x‖2.
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(2) (Riemann-Lebesgue Lemma) limn→∞〈x, en〉 = 0.

Hint. Apply Pythagorean Identity to y := x −
∑k

n=0〈x, en〉en and z :=∑k
n=0〈x, en〉en.

Exercise 5.30 : For n ∈ Z, let En(t) := eint. Verify:
(1) {En} is an orthonormal subset of L2[0, 2π].
(2) limn→∞

∫
[0,2π] f(t) cos(nt)dt = 0 = limn→∞

∫
[0,2π] f(t) sin(nt)dt for

any f ∈ L2[0, 2π].

Exercise 5.31 : Let {en} be an orthonormal basis of a Hilbert space H.
Verify the following:

(1) Every h ∈ H takes the form
∑∞

n=0〈h, en〉en (Hint. If h =
∑∞

n=0 αnen
then αn = 〈h, en〉).

(2) The co-ordinate functionals corresponding to the orthonormal basis
{en} are continuous.

(3) (Parseval’s Identity) ‖h‖2 =
∑∞

n=0 |〈h, en〉|2.

Exercise 5.32 : (Maximal Orthonormal Set) Let {en} be an orthonormal
set in a Hilbert space H with the property: If x ∈ H such that 〈x, en〉 = 0
for all n then x = 0. Show that {en} is an orthonormal basis.

Hint. Examine 〈x−
∑∞

n=0〈x, en〉en, em〉.
Exercise 5.33 : For n ∈ Z, let En(t) := eint. Let f ∈ L1[0, 2π] be such that
〈f, En〉2 = 0 for every n ∈ Z. Define F (t) :=

∫
[0,t] f(s)ds. Verify:

(1) There is a scalar a ∈ K such that 〈F − a, En〉2 = 0 for every n ∈ Z
(Hint. Integration by Parts).

(2) There exists a sequence of trigonometric polynomials pn such that
‖F − a− pn‖∞ → 0 as n→∞ (Hint. Stone-Weierstrass Theorem).

(3) F = a a. e. (Hint. ‖F − a‖2 ≤ ‖F − a− pn‖∞‖F − a‖1).
(4) f is zero almost everywhere.

Conclude that {En} is an orthonormal basis for L2[0, 2π].

Exercise 5.34 : Show that, for every f ∈ L2[0, 2π], we have∫
[0,2π]

|f(s)−
k∑

n=−k
〈f, eint〉e−ins|2ds→ 0 as k →∞.

Scholium 5.35 : Every separable Hilbert space has an orthonormal basis.

Proof. This is an application of the Zorn’s Lemma: Suppose a partially
ordered set P has the property that every totally ordered subset has an upper
bound in P. Then the set P contains at least one maximal element.

Let P be the collection of all orthonormal subsets of H ordered by inclu-
sion. If h 6= 0 then {h/‖h‖} ∈ P, so that P is non-empty. If Q be a totally
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ordered subset of P, then ∪A∈QA is an upper bound of Q in P. By Zorn’s
Lemma, P contains a maximal element B ∈ P. Since H is separable, by
Exercise 5.24, B is countable. We contend that B is an orthonormal basis
for H. To see that, let x ∈ H be such that 〈x, y〉 = 0 for every y ∈ B. If
x 6= 0 then B ∪ {x/‖x‖} ∈ P, which is impossible. It follows that x = 0,
and hence by Exercise 5.32, B is an orthonormal basis of H. �

Exercise 5.36 : Show that there exists an isometric isomorphism from a
separable Hilbert space H onto l2. In case H is L2[0, 2π], can you see what
will be the isometric isomorphism ?

Hint. For second part, recall the definition of Fourier transform.

6. Bounded Linear Transformations

A linear transformation T : X → Y is said to be bounded if there exists
M > 0 such that ‖Tx‖ ≤M‖x‖ for every x ∈ X.

Exercise 6.1 : Show that every linear transformation from a finite dimen-
sional normed linear space is bounded.

Exercise 6.2 : Let X be a normed linear space with Hamel basis {en}
consisting unit vectors en. Define Ten = nen and extend T linearly to X.
Verify that T is bounded iff X is finite-dimensional.

Exercise 6.3 : Use Riesz Lemma to show that if X contains an infinite
linearly independent subset {zn} then the unit sphere in X is not compact.

Hint. Let Zn := span{z1, · · · , zn}. Choose xn ∈ Zn+1 such that ‖xn‖ = 1
and d(xn, Zn) ≥ 1/2.

Exercise 6.4 : For any subspace Y of H, show that Y ⊥ := {x ∈ H :
〈x, y〉 = 0 for all y ∈ Y } is a closed subspace of H.

Exercise 6.5 : (Orthogonal Projection) Let H be a Hilbert space with a
closed subspace Y. In view of Theorem 5.25, every x ∈ H may be uniquely
written as y + z, where y ∈ Y and z ∈ Y ⊥. Verify:

(1) P : H → Y given by Px = y defines a bounded linear map.
(2) P⊥ : H → Y ⊥ given by P⊥x = z defines a bounded linear transfor-

mation such that P + P⊥ = I.

Theorem 6.6. Let T : X → Y be a linear transformation. Then the
following are equivalent:

(1) T is bounded.
(2) T is continuous.
(3) T is continuous at 0.
(4) T maps null-sequences to bounded sequences.
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By a linear functional, we mean a linear transformation from a normed
linear space into K.

Exercise 6.7 : Let f be a linear functional be such that the kernel of f is
closed. Show that f is bounded.

Theorem 6.8. (Riesz Representation Theorem) Let H be a separable Hilbert
space and let f : H → K be a bounded linear functional. Then there exists
a unique y ∈ H (representative of f) such that f(x) = 〈x, y〉 for all x ∈ H.

Proof. Let {en} be an orthonormal basis for H as ensured by Scholium 5.35.
Consider yk :=

∑k
n=1 f(en)en ∈ H. Note that f(yk) =

∑k
n=1 |f(en)|2 =

‖yk‖2. Also, there is M > 0 such that |f(yk)| ≤ M‖yk‖. Combining last
two estimates, we obtain ‖yk‖ ≤ M for every k ≥ 1. In particular, y :=∑∞

n=1 f(en)en ∈ H. Check that f(x) = 〈x, y〉.
To see the uniqueness part, note that 〈x, y1〉 = 〈x, y2〉 implies 〈x, y1 − y2〉

for every x ∈ H, and hence for x := y1 − y2. This gives y1 = y2. �

Exercise 6.9 : Consider the Hilbert space Hk of trigonometric polynomials
spanned by the orthogonal set {eint : −k ≤ n ≤ k} with ‖ · ‖2 norm. Find
representative of the linear functional f : Hk → C given by f(p) = p′(0).

Exercise 6.10 : Consider the Hilbert space L2[0, 2π]. Find representative
of the linear functional φ : L2[0, 2π]→ C given by φ(f) = f(0).

Exercise 6.11 : Consider the linear functional f : c00 → K given by f(x) =∑∞
k=1 xk/k. Verify:

(1) |f(x)| ≤
√
π/6‖x‖2.

(2) f does not have any representative in c00.

Let T : X → Y be a bounded linear transformation. The operator norm
of T is given by ‖T‖ := sup{‖Tx‖ : ‖x‖ = 1}. Since T is bounded, ‖T‖ is
finite. Further:

Exercise 6.12 : Show that ‖T‖ = inf{M ∈ R+ : ‖Tx‖ ≤M‖x‖}.

Exercise 6.13 : What is the operator norm of (1) a diagonal operator (2)
an isometry (3) an orthogonal projection (4) f appearing in RRT ?

Exercise 6.14 : Let A be an n×n self-adjoint matrix with complex entries.
If λ1, · · · , λn are eigenvalues of A then show that ‖A‖ = max{|λ1|, · · · , |λn|}.

Hint. If A,B are two n× n matrices then ‖AB‖ ≤ ‖A‖‖B‖. Now apply
the Spectral Theorem.

Theorem 6.15. The set BL(X,Y ) of bounded linear transformations from
X into Y is a normed linear space with norm as the operator norm. If Y is
complete then so is BL(X,Y ).
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Remark 6.16 : Let X ′ denote the normed linear space of bounded linear
functionals on a normed linear space X. Then X ′ is always complete.

Exercise 6.17 : Let H be a separable Hilbert space. Define φ : H → H ′

by φ(y) = fy, where fy(x) = 〈x, y〉 (x ∈ H). Show that φ is an isometric
isomorphism. Conclude that the norm on H ′ is induced by an inner-product.

In the following two exercises, we need the fact that every bijective bounded
linear operator on l2 has bounded inverse (This will be proved later!)

Exercise 6.18 : Define D : l2 → l2 by Den = 1/nen. Show that D is
one-one with dense range, but not surjective.

Exercise 6.19 : Let B : l2 → l2 be defined by Be1 = 0 and Ben = en−1 for
n ≥ 2. Show that B−I is injective with dense range, which is not surjective.

Hint. Verify: (1) Bx = x implies x = 0. (2) {en} ⊆ ran(B). (3) If there
is α > 0 such that ‖(B− I)x‖ ≥ α‖x‖ then try x =

∑∞
n=1(1− 1/k)nen ∈ l2.

The following exercise shows how the information about operators can be
used to know more about spaces.

Exercise 6.20 : Suppose that there exists an injective operator T ∈ B(K)
such that ran(T ) ( K is dense in H. Prove that there exist a Hilbert space
H and closed subspaces M and N of H such that M+N ( H is dense in
H and M∩N = {0}.

Hint. Let H := K ⊕ K (with inner-product 〈(x⊕ y, x′ ⊕ y′〉 = 〈x, x′〉 +
〈y, y′〉), M := {x⊕ Tx : x ∈ K} and N := K ⊕ {0}.
Exercise 6.21 : Let X be a normed linear space. Let M be a closed linear
subspace of X, let N be a finite-dimensional subspace, and let x ∈ X. Prove:

(1) M + Kx is a closed subspace of X.
(2) M +N is a closed subspace of X.

Conclude that any finite-dimensional subspace of X is closed in X.

Hint. If yn + αnx is a Cauchy sequence in M + Kx then so is αn :
‖yn + αnx− (ym + αmx)‖ ≥ |αn − αm|d(M,x).

7. Three Basic Facts in Functional Analysis

A mapping T : X → Y is said to be open if T (U) is open in Y for every
open subset U of X.

Exercise 7.1 : Show that translation and dilation are open mappings.

Exercise 7.2 : Show that every linear open map is surjective.

If T has continuous inverse then clearly T is open. What is surprising
is that this is true even if T is not invertible. This is the content of the
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open mapping theorem. Before we state and prove it, let us see a handy
characterization of linear open mappings.

Lemma 7.3. Let T : X → Y be a linear transformation. Then the following
are equivalent:

(1) T sends the open unit ball to an open subset of Y.
(2) T is an open mapping.
(3) There exists c > 0 such that for each y ∈ Y there corresponds x ∈ X

with the properties ‖x‖ ≤ c‖y‖ and Tx = y.

Proof. (1) implies (2): Let U be an open subset of X. Let y = Tx ∈ T (U).
Then B(x,R) ⊆ U for some R > 0. Then B(0, 1) ⊆ U−x

R := {y−xR : y ∈ U}.
Since T (B(0, 1)) is open in Y, so is R ·T (B(0, 1))+Tx = T (B(x,R)) in T (U).

(2) implies (3): Note that 0 ∈ T (B(0, 1)) is open, and hence B(0, R) ⊆
T (B(0, 1)) for some R > 0. Thus for every y ∈ Y , r y

‖y‖ ∈ B(0, R) for any
0 < r < R. Then there exists x0 ∈ B(0, 1) such that Tx0 = r y

‖y‖ . Check that
Tx = y, where x = x0‖y‖/r. Check that ‖x‖ ≤ R−1‖y‖, so that (3) holds
with c = R−1.

(3) implies (1): For any r > 0, check that B(y0, rc
−1) ⊆ T (B(x0, r)),

where y0 = Tx0. �

Exercise 7.4 : LetX,Y be Banach spaces and let T : X → Y be a surjective
bounded linear transformation and let y ∈ Y be a unit vector. Verify:

(1) Y = ∪∞n=1T (B(0, n)).
(2) There is an integer k ≥ 1 such that T (B(0, k)) contains a non-empty

open set W.
(3) Let y0 ∈ W be such that B(y0, R) ⊆ W for some R > 0. If z ∈

B(y0, R) then there exists {un} ⊆ B(0, 2k) such that Tun → z − y0.
(4) There exists x1 ∈ X such that ‖x1‖ ≤ 2k

R and ‖y − Tx1‖ < 1/2.
(5) There exists a sequence {xn} such that ‖xn‖ ≤ 2k

R
1

2n−1 and ‖y −
(Tx1 + · · ·+ Txn)‖ ≤ 1/2n.

(6) The sequence {x1 + · · · + xn} converges to some x ∈ X. Moreover,
‖x‖ ≤ 4k/R and Tx = y.

The preceding exercise and Lemma 7.3 immediately give the following:

Theorem 7.5. (Open Mapping Theorem) Every bounded linear transfor-
mation from a Banach space onto a Banach space is open.

The following is often known as the Bounded Inverse Theorem (for short,
BIT).

Corollary 7.6. (Algebraic invertibility implies topological invertibility) A
bijective bounded linear transformation is a homeomorphism.

Example 7.7 : Let (an) be a sequence of positive real numbers. Define
‖ · ‖a on l∞ by ‖(bn)‖a :=

∑
n an|bn|. Note that ‖ · ‖a satisfies all conditions
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of a norm except that ‖ · ‖a is [0,∞]-valued function. We contend that for
no (an), ‖(bn)‖a <∞ iff (bn) ∈ l∞. We prove this by contradiction.

Note that ‖ · ‖a defines a norm, which makes l∞ complete. In particular,∑
n an < ∞. It follows that ‖(bn)‖a ≤ ‖(bn)‖∞

∑
n an. Thus the identity

transformation from l∞ onto the Banach space (l∞, ‖ · ‖a) is continuous.
By Bounded Inverse Theorem, there exists M > 0 such that ‖(bn)‖∞ ≤
M‖(bn)‖a for all (bn) ∈ l∞. Letting (bn) = en, we obtain 1 ≤ Man, which
implies that

∑
n an =∞.

Exercise 7.8 : Use BIT to show that C[0, 1] is incomplete in the ‖·‖p norm
for any 1 ≤ p <∞.

Corollary 7.9. (Closed Graph Theorem) Let X and Y be Banach spaces.
Let T : X → Y be a linear operator, which is closed in the sense that if
xn → x and Txn → y then Tx = y. Then T is continuous.

Proof. Define the norm |x| on X by |x| := ‖x‖+‖Tx‖ (x ∈ X). Then (X, |·|)
is complete. Apply BIT to identity mapping from X onto (X, | · |). �

Exercise 7.10 : Define a linear operator D by Den = nen. Extend D
linearly to {x = (xn) ∈ l2 :

∑∞
n=1 n

2|xn|2 <∞} by setting Dx =
∑∞

n=1 nxn.
Show that D is closed but not continuous. What goes wrong with CGT ?

Exercise 7.11 : (Multiplication Operators) Let φ ∈ Lp[0, 1] be such that
φf ∈ Lp[0, 1] whenever f ∈ Lp[0, 1]. Define a linear operator Mφ : Lp[0, 1]→
Lp[0, 1] by Mφ(f) = φf. Show that Mφ is a bounded linear operator.

Hint. Closed Graph Theorem.

Exercise 7.12 : Show that, up to equivalence of norms, the sup norm is the
only norm on C[0, 1], which makes C[0, 1] complete and which also implies
the point-wise convergence.

Exercise 7.13 : Show that, up to equivalence of norms, the ‖ · ‖p norm
is the only norm on Lp[0, 1], which makes Lp[0, 1] complete and which also
implies the point-wise convergence almost everywhere of a subsequence.

Exercise 7.14 : Suppose X is a Banach space, Y is a normed linear space,
and F ⊆ B(X,Y ). For n ≥ 1, let

Vn := {x ∈ X : there exists T ∈ F for some ‖Tx‖ > n}.

Verify the following:

(1) Vn is an open subset of X.
(2) If Vn is dense for every n ≥ 1, then there exists a dense subset E of X

such that supT∈F ‖Tx‖ =∞ for all x ∈ E (Hint. Take E := ∩nVn).
(3) If there is an N ≥ 1 such that VN is not dense then supT∈F ‖T‖ <∞.
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The following is often referred to as the Uniform Boundedness Principle
(for short, UBP).

Theorem 7.15. Suppose X is a Banach space, Y is a normed linear space,
and F ⊆ B(X,Y ). Then only one of the following holds true:

(1) supT∈F ‖T‖ <∞.
(2) There exists a dense set E ⊆ X such that supT∈F ‖Tx‖ =∞ for all

x ∈ E.
Proof. Use the last exercise. �

Corollary 7.16. If {Tn} is a sequence of bounded linear operators from
a Banach space X into a normed linear space Y such that limn→∞ Tnx
exists for every x ∈ X. Then the linear operator T : X → Y defined by
Tx := limn→∞ Tnx (x ∈ X) is a bounded linear operator.

Proof. Apply UBP to F := {Tn} to conclude that supn ‖Tn‖ <∞. For given
ε > 0, choose N ≥ 1 (depending on x) such that ‖Tnx− Tx‖ < ε. Then, for
any unit vector x ∈ X, ‖Tx‖ ≤ ε+ supn ‖Tn‖. �

Exercise 7.17 : Let f ∈ L1[−π, π] with ‖f‖1 :=
∫

[−π,π] |f(t)| dt2π . Let f̂(k) =∫
[−π,π] f(t)e−ikt dt2π for k ∈ Z. Verify the following:

(1)
∑n

k=−n f̂(k)eikx =
∫

[−π,π] f(t)Dn(x− t) dt2π , where

Dn(t) :=
n∑

k=−n
eikt =

sin((n+ 1/2)t)
sin(t/2)

.

(2) ‖Dn‖1 ≥ 4
π

∑n
k=1

1
k (Hint. |Dn(t)| ≥ 2| sin((n+ 1/2)t)|/|t|).

(3) If Λn : C[−π, π]→ C is given by Λn(f) :=
∑n

k=−n f̂(k) then Λn is a
bounded linear functional with ‖Λn‖ = ‖Dn‖1.

(4) There exists f ∈ C[−π, π] such that the Fourier series
∑∞

k=−∞ f̂(k)eikt

diverges at any given point in [−π, π].

8. The Hahn-Banach Extension Theorem

In this section, we discuss the norm-preserving extension problem, that
is, the problem of extending a given linear functional defined on a subspace
linearly and continuously to the given space such that norm is preserved:
Let Y be a subspace of X, and let f : Y → K be a bounded linear functional.
We wish to find a linear functional g : X → K such that

(1) g(y) = f(y) for every y ∈ Y, and
(2) ‖g‖ = ‖f‖.

If this happens then we say that g is a norm-preserving extension of f.

Remark 8.1 : (1) above implies that ‖f‖ ≤ ‖g‖.

Let us see a couple of special cases in which the norm-preserving extension
problem can be solved.
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Exercise 8.2 : If Y is a dense subspace of X then any bounded linear
functional f : Y → K extends uniquely to a bounded linear functional
g : X → K such that ‖g‖ = ‖f‖.

Exercise 8.3 : If Y is a subspace of a Hilbert space H and f : Y → K then
there exists a linear functional g : X → K such that g(y) = f(y) for every
y ∈ Y, and ‖g‖ = ‖f‖.

Hint. g := f ◦ PY , where PY is the orthogonal projection of H onto Y .

To treat the general case, let us first solve the problem for a subspace of
co-dimension 1 over real field.

Exercise 8.4 : Let Y be a subspace of the normed linear space X over R
such that X \ Y is a 1 dimensional space spanned by x1. Let f : Y → R be
a bounded linear functional. Verify the following:

(1) For y1, y2 ∈ Y ,

−f(y2)− ‖f‖‖y2 + x‖ ≤ −f(y1) + ‖f‖‖y1 + x‖.

(2) For y ∈ Y, there exists α ∈ R (independent of y) such that

−f(y)− ‖f‖‖y + x1‖ ≤ α ≤ −f(y) + ‖f‖‖y + x1‖

(Hint. Take sup over left, and then inf over right in (1). Any α
between the sup and inf works).

(3) |α+ f(y)| ≤ ‖f‖‖y + x‖ for every y ∈ Y.
(4) Define the functional g : Y + Rx1 → R by g(y + λx1) = f(y) + λα.

Then g1 is a well-defined linear functional such that ‖g‖ = ‖f‖.

Exercise 8.5 : Let X be a normed linear space and let Y be a subspace of
X (over R). Given a bounded linear functional f : Y → R, consider

P := {(Z, g) : g : Z → R is a norm-preserving bounded linear extension of f}.

Verify the following:
(1) P is a non-empty partially ordered set with order defined by

(Z1, g1) ≤ (Z2, g2) if Z1 ⊆ Z2 and g1(z) = g2(z) for all z ∈ Z1.

(2) Suppose Q := {(Zi, gi) ∈ P : i ∈ I} is a totally ordered subset of P.
Then (Z, g) is a upper bound of Q in P, where

Z :=
⋃
i∈I

Zi, and g(z) = gi(z) if z ∈ Zi.

(3) If (Z, g) is the maximal element of P then Z = X.
(4) There exists a norm-preserving bounded linear extension of f.

Exercise 8.6 : Let X be a normed linear space and let Y be a subspace of
X (over C). Let f : Y → C be a bounded linear functional. Verify:
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(1) There exists a bounded R-linear functional u : Y → R such that
f(y) = u(y)− iu(iy) for all y ∈ Y and ‖f‖ = ‖u‖ ((Hint. For y ∈ Y,
find θ ∈ R such that |f(y)| = f(eiθy) = u(eiθy) ≤ ‖u‖‖y‖).

(2) Let v : X → R be a norm-preserving extension of u (as guaranteed
by the previous exercise). Then g(x) = v(x) − iv(ix) is a norm-
preserving extension of f .

We combine last two exercises to obtain Hahn-Banach extension Theorem.

Theorem 8.7. Let X be a normed linear space and let Y be a subspace of
X (over K). Then, for any bounded linear functional φ : Y → K, there
exists a bounded linear functional ψ : X → K such that

ψ(y) = φ(y) (y ∈ Y ) and ‖ψ‖ = ‖φ‖.

Corollary 8.8. If x 6= y ∈ X then there exists a bounded linear functional
g : X → K such that g(x) 6= g(y).

Proof. Consider the one-dimensional subspace Y spanned by x−y and define
f(t(x− y)) = t‖x− y‖. Now apply HBT. �

Exercise 8.9 : Show that

‖x‖ = sup{|f(x)| : f is a bounded linear functional such that ‖f‖ ≤ 1}.

Corollary 8.10. If M is a closed subspace of X and x ∈ X \M then there
exists a bounded linear functional g : X → K of unit norm such that g = 0
on M and g(x) = d(x,M).

Proof. Consider the subspace Y := M+Kx, and define f(y+αx) = αd(x,M)
for y ∈M and α ∈ K. Now apply HBT. �

Exercise 8.11 : Let {Mk}k≥1 be a countable collection of closed subspaces
of H. Show that

{∩k≥1Mk}⊥ =
∨
k≥1

M⊥k .

Hint. Consider the two closed subspaces S1 and S2 of H:

S1 :=
∨
k≥1

M⊥k , S2 := {∩k≥1Mk}⊥.

Verify that S1 ⊆ S2. Suppose, we have the strict inclusion, S1 ( S2, and
apply the previous corollary.

Exercise 8.12 : Show that polynomials are dense in the Hardy space of the
unit disc.

Hint. Consider Mk = zkH2. By the Identity Theorem, ∩k≥1Mk = {0}.
Apply the last exercise to conclude that

∨
k≥1M

⊥
k = H2. Since M⊥k is the

vector space of polynomials of degree less than k, we are done.
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Remark 8.13 : Apart from an application of HBT, this is not the best
solution.

Exercise 8.14 : Let M be a closed subspace of X. Show that

M =
⋂
f∈F

ker f,

where F is the space of all bounded linear functionals f on X such that
M ⊆ ker f.

The last exercise may be used to give a proof of Runge’s Theorem from
C-analysis [2, Chapter III, Section 8].

9. Dual Spaces

Let X be a normed linear space. The dual space X ′ of X is defined as the
normed linear space of all bounded linear functionals f : X → K. We have
seen that X ′ is a Banach space with norm ‖f‖ := sup{|f(x)| : ‖x‖ ≤ 1}
(compare this with the conclusion of Exercise 8.9).

Exercise 9.1 : X 6= {0} if and only if X ′ 6= {0}.

Hint. Let x ∈ X be non-zero. Then f(αx) = α‖x‖ is a bounded linear
functional on Kx. Now apply HBT.

Exercise 9.2 : For p <∞, find dual space of (1) (Kn, ‖ · ‖p) (2) lp.

Hint. Let q be such that 1/p + 1/q = 1. Define F ((yn)) = φy, where
φy((xn)) =

∑
n xnȳn. Check that ‖φy‖ ≤ ‖y‖q. We will see in the class that

‖φy‖ = ‖y‖q if y ∈ lq. If φ ∈ (lp)′ then φ = φy with y = (φ(e1), φ(e2), · · · , ). If
p = 1 then ‖y‖∞ ≤ ‖φ‖‖ei‖1 = ‖φ‖.Otherwise, let zm = (y1, · · · , ym, 0, · · · , )
and note that ‖φzm‖ = ‖zm‖q. Since ‖φzm‖ ≤ ‖φ‖, we obtain ‖y‖q =
limm→∞ ‖zm‖q ≤ ‖φ‖.

Exercise 9.3 : Let {f1, f2, · · · , } be a countable dense subset of the unit
sphere in X ′. Let Q be a dense subset of K. Verify the following:

(1) For all n ≥ 1, there is xn ∈ X such that ‖xn‖ = 1 and |fn(xn)| > 1/2.
(2) {

∑m
i=1 kixi : ki ∈ Q} is a countable dense subset of Y := linspan{xn}.

(3) Y is dense in X if and only if the following is true: For every f ∈ X ′
such that f(y) = 0 for all y ∈ Y implies f = 0.

(4) Let f ∈ X ′ be such that f(y) = 0 for all y ∈ Y . Then f = 0 (Hint.
Suppose ‖f‖ = 1 and find n ≥ 1 such that ‖fn−f‖ < 1/2. However,
|fn(xn)| = |fn(xn)− f(xn)| ≤ ‖fn − f‖).

Conclude that X is separable whenever so is X ′.

Remark 9.4 : The dual of l∞ can not be l1.
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Exercise 9.5 : Let Y be a dense subspace of X. Define F : Y ′ → X ′ by
F (f) = g, where g is the unique continuous extension of f to X (discussed
in the class). Show that F is an isometric isomorphism.

Remark 9.6 : For p <∞, the dual of (c00, ‖ · ‖p) is lq.

Let us calculate the dual of the Banach space c0 of sequences converging
to 0 (with sup norm).

Exercise 9.7 : Verify the following:
(1) For y ∈ l1, define fy : c0 → K by fy(x) =

∑∞
j=1 xj ȳj . Then fy ∈ (c0)′

such that ‖fy‖ ≤ ‖y‖1.
(2) If xj = ȳj/yj for 1 ≤ j ≤ n and 0 otherwise. Then fy(x)→ ‖y‖1.
(3) ‖fy‖ = ‖y‖1.
(4) Every f ∈ (c0)′ is of the form fy for some y ∈ l1.

Remark 9.8 : The dual of (c00, ‖ · ‖∞) is l1.

Exercise 9.9 : Show that the dual of L2[0, 1] is L2[0, 1] itself.

Hint. Riesz Representation Theorem for Hilbert spaces.

Let us try to understand the dual of L∞.

Proposition 9.10. (Dual of L∞ is bigger than L1) Let g ∈ L1[0, 1]. Then
the linear functional φg : L∞[0, 1] → C given by φg(f) :=

∫
[0,1] f(t)g(t)dt is

bounded. Furthermore, the mapping F : L1[0, 1] → (L∞)′ given by F (g) =
φg is injective but nor surjective.

Proof. We prove only that F is not surjective. Consider the subspace Y :=
C[0, 1] of X := L∞[0, 1] and the bounded linear functional φ : Y → C
given by φ(f) = f(0). By HBT, there exists ψ : X → C such that ψ(f) =
φ(f) (f ∈ Y ) and ‖ψ‖ = ‖φ‖. Suppose that there exists g ∈ L1[0, 1] such
that ψ = φg. But then

∫
[0,1] f(t)g(t)dt = 0 for every f ∈ Y such that

f(0) = 0. Let f ∈ C[0, 1]. Given ε > 0, let fε ∈ C[0, 1] be a function such
that fε(0) = 0, fε = f on [ε, 1], and supt∈[0,ε] |f(t)−fε(t)| ≤ 2‖f‖∞. But then
|
∫

[0,1] f(t)g(t)dt| ≤ 2‖f‖∞
∫

[0,ε] |g(t)|dt. Since ε is arbitrary, by Dominated

Convergence Theorem, we get
∫

[0,1] f(t)g(t)dt = 0 for every f ∈ C[0, 1]. By

similar argument, one can see that
∫

[0,t] g(t)dt = 0, and hence
∫

[0,t] g(t)dt = 0.
Differentiating both sides, we obtain g(t) = 0 almost eveywhere. But then
ψ, and hence φ = 0, which is absurd. �

Let us see the dual of L1[0, 1].

Exercise 9.11 : Let g ∈ L∞[0, 1]. Define the linear functional φg : L1[0, 1]→
C by φg(f) :=

∫
[0,1] f(t)g(t)dt. For φ ∈ (Lp[0, 1])′, verify the following:

(1) φg ∈ (L1[0, 1])′.
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(2) For a measurable subset ∆ of [0, 1], define µ(∆) = φ(χ∆). Then µ is
a countably additive measure with the property: If ∆ is of Lebesgue
measure 0 then µ(∆) = 0 (Hint. |µ(∆)| = |φ(χ∆)| ≤ ‖φ‖‖χ∆‖1 =
‖φ‖(Lebesgue measure of ∆)).

(3) There exists a Lebesgue measurable function g such that µ(∆) =∫
∆ g(t)dt for every Lebesgue measurable subset of [0, 1] (This follows

from the Radon-Nikodym Theorem).
(4) ‖φg‖ = ‖g‖∞ an hence g ∈ L∞[0, 1] (Hint. For ε > 0, let A = {x ∈

[0, 1] : |g(x)| > ‖φ‖ + ε} and let f = χA(ḡ/g). Calculate ‖f‖1 and
examine φg(f)).

(5) φ = φg (Hint Check it for simple measurable functions and apply
Dominated Convergence Theorem).

The total variation V (g) of a function g : [0, 1]→ K is defined as

sup
P

n∑
i=1

|g(ti)− g(ti−1)|

, where sup is taken over all partitions P : {t0 < t1 < · · · < tn} of [0, 1]. We
say that g is of bounded variation if its total variation V (g) is finite.

Recall that the vector space B[0, 1] of bounded linear functionals on [0, 1]
is a normed linear space endowed with the sup norm.

Exercise 9.12 : Let φ ∈ (C[0, 1])′. Verify the following:

(1) If g is of bounded variation then φg(f) :=
∫

[0,1] f(t)dg(t) defines a
bounded linear functional on C[0, 1]. Moreover, ‖φg‖ ≤ V (g).

(2) There exists a bounded linear functional ψ : B[0, 1] → K such that
ψ(f) = φ(f) for all f ∈ C[0, 1] and ‖ψ‖ = ‖φ‖.

(3) Define g : [0, 1] → K by g(0) = 0 and g(t) = ψ(χ(0,t]). Then
V (g) ≤ ‖ψ‖ (Hint. There exists a real θ such that |g(ti)−g(ti−1)| =
eiθ(g(ti)− g(ti−1)) = ψ(eiθχ(ti−1,ti])).

(4) For f ∈ C[0, 1], consider sn :=
∑n

r=1 f(r/n)χ((r−1)/n,r/n]. Then sn
converges uniformly to f (Hint. Given ε > 0, choose n ≥ 1 such
that |f(s)− f(t)| < ε for all x, y such that |x− y| < 1/n. Note that
sn(t)− f(t) =

∑n
r=1(f(r/n)− f(t))χ((r−1)/n,r/n](t)).

(5) φ = φg for g of bounded variation (Hint. ψ(sn) converges to ψ(f)).

10. Weak Convergence and Eberlein’s Theorem

As we have seen that the unit ball in an infinite-dimensional normed linear
space can never be compact (in the norm topology). The question is whether
the unit ball is compact in some topology “weaker” than norm topology. To
answer this, we introduce a new convergence, which relies on the structure
of the dual space.

We say that a sequence {xn} in X converges weakly to x ∈ X if x′(xn)→
x′(x) for every x′ ∈ X ′.
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Remark 10.1 : Every convergent sequence is weakly convergent.

Exercise 10.2 : Limit of a weakly convergent sequence is unique.

Hint. HBT.

Exercise 10.3 : Let {xk} be a sequence in Kn. Show that every weakly
convergent sequence is convergent.

Exercise 10.4 : Show that {en} converges weakly to 0 in lp for 1 < p <∞.

Exercise 10.5 : For n ∈ Z, consider the function En(t) = eint. Show that
{En} converges weakly to 0 in L2[0, 2π].

Exercise 10.6 : Show that any orthonormal sequence in a Hilbert space
converges weakly to 0.

None of the sequences discussed in last three exercises converges in norm.
It is natural to know whether there exists an infinite-dimensional normed
linear space in which weak convergence is equivalent to normed convergence.

Theorem 10.7. (Schur’s Lemma) A sequence {xn} in l1 is weakly conver-
gent iff {xn} is convergent.

Proof. Suppose there exists a weakly convergent sequence {xn}, which is not
convergent. Replacing xn by xn − x, we may assume that {xn} converges
weakly to 0, and ‖xn‖9 0. Given ε > 0, there exists a subsequence of {xn},
denoted by {xn} itself, such that ‖xn‖1 ≥ 5ε for all n ≥ 1. By the weak
convergence of {xn}, xn(j)→ 0 as n→∞ (j ≥ 1).

Set n0 = 1 = m0. Let n1 be the smallest integer greater than n0 such
that

∑m0
j=1 |xn1(j)| = |xn1(1)| < ε. Let m1 be the smallest integer bigger

than m0 such that
∑∞

j=m1+1 |xn1(j)| < ε. Inductively define {nk} and {mk}
of natural numbers such that nk is the smallest integer greater than nk−1

satisfying
∑mk−1

j=1 |xnk
(j)| < ε, and mk be the smallest integer greater than

mk−1 such that
∑∞

j=mk+1 |xnk
(j)| < ε. Define y ∈ l∞ by y(1) = 1 and y(j) =

xnk
(j)/|xnk

(j)| if mk−1 < j ≤ mk. Clearly, fy ∈ (l1)′. Since ‖y‖∞ = 1,

|fy(xnk
)− ‖xnk

‖1| < 4ε.

It follows that |fy(xnk
)| ≥ ‖xnk

‖1 − 4ε ≥ ε. However, since {xn} converges
weakly to 0, so does {xnk

}. This contradiction completes the proof. �

Exercise 10.8 : Show that {en} is not weakly convergent in l1.

For a normed linear space X, consider the dual X ′′ of the dual X ′ of
X. Consider the mapping JX : X → X ′′ given by JX(x)(x′) = x′(x). By
Exercise 8.9, ‖JX(x)‖ = sup‖x′‖≤1 |JX(x)(x′)| = sup‖x′‖≤1 |x′(x)|| = ‖x‖.
Thus JX is a bounded linear isometry which embeds X into X ′′.

We will refer to JX as the canonical embedding of X into X ′′.
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Remark 10.9 : In general, JX is not surjective. For example, if X = l1

then X ′ = l∞, and X ′′ = (l∞)′ 6= l1. This shows that Jl1 is not surjective.

Example 10.10 : Consider a Hilbert space H. Recall that any g ∈ H ′

is given by the inner-product 〈·, g〉 for some g ∈ H. Thus the canonical
embedding JH is given by JH(f)(g) = 〈f, g〉.

Exercise 10.11 : A weakly convergent sequence is bounded.

Hint. It suffices to check that {JXxn} is bounded. Note that for every
x′ ∈ X ′, {(JXxn)(x′) = x′(xn)} is convergent, and hence bounded. Now
apply UBP to {JXxn}.
Exercise 10.12 : Let 1 ≤ p <∞. Show that the following are equivalent:

(1) A sequence {xn} in weakly convergent to x in lp.
(2) {xn} is bounded and xn(j)→ x(j) for every integer j ≥ 1.

Hint. To see that (2) implies (1), let f ∈ (lp)′ be of the form fy for
y ∈ lq. Given ε > 0, there exists N ≥ 1 such that

∑
j≥N |y(j)|q ≤ εq. Note

that |fy(xn)−fy(x)| ≤ (
∑N

j=1 |xn(j)−x(j)|p)1/p‖y‖q + ε sup ‖xn−x‖p. Now
choose n sufficiently large, so that (

∑N
j=1 |xn(j)− x(j)|p)1/p < ε.

We say that a Banach space X is reflexive if JX is surjective.

Example 10.13 : The spaces lp and Lp[0, 1] are reflexive for 1 < p < ∞.
The spaces l1 and L1[0, 1] are not reflexive.

Exercise 10.14 : Suppose X is reflexive. Then X is separable if and only
if X ′ is separable.

Hint. In view of Exercise 9.3, it suffices to check that if X is separable
then so is X ′. Note that X ′′ is separable if so is X. Now apply Exercise 9.3.

Exercise 10.15 : Show that C[0, 1] is not reflexive.

Hint. For t ∈ [0, 1], define Et : C[0, 1] → K by Et(f) = f(t). Then
Et ∈ (C[0, 1])′. Choose a continuous function f0 with ‖f0‖∞ = 1 such that
for s 6= t, f0(s) = 1 and f0(t) = 0. It follows that that ‖Et − Es‖ =
sup‖f‖=1 |f(t)− f(s)| ≥ 1. This shows that (C[0, 1])′ is not separable.

Exercise 10.16 : Let X be a normed linear space and let Y be a subspace.
Define φ : X ′ → Y ′ by φ(x′) = x′|Y . Show that φ is a surjective linear
isometry.

Exercise 10.17 : Let X be a Banach space and let Y be a closed subspace
of X. Let y′′ ∈ Y . Verify the following:

(1) For every y′ ∈ Y ′, there is x′ ∈ X ′ such that x′|Y = y′.
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(2) Define x′′ ∈ X ′′ by x′′(x′) := y′′(x′|Y ). Let x ∈ X be such that
JX(x) = x′′. Then x ∈ Y (Hint. HBT).

(3) JY (x) = y′′. (Hint. JY (x)(y′) = y′(x) = x′|Y (x) = x′(x) =
JX(x)(x′) = x′′(x′) = y′′(x′|Y ) = y′′(y′).).

(4) If X is reflexive then so is Y

The the main result of this section is the following result due to Eberlein.
The proof will be presented in the next section.

Theorem 10.18. If X is reflexive then every bounded sequence has weakly
convergent subsequence.

Corollary 10.19. Let X be a reflexive space. If the norm convergence is
equivalent to the weak convergence then X is finite-dimensional.

Proof. Suppose weak convergence implies norm convergence. Let {xn} be a
bounded sequence. By Eberlein’s Theorem, {xn} has a weakly convergent
subsequence, and hence by assumption, {xn} has a convergent subsequence.
But then the unit sphere in X is (sequentially) compact. Hence, by Exercise
6.3, X must be finite-dimensional. �

11. Weak* Convergence and Banach’s Theorem

A sequence {x′n} in X ′ is said to be weak* convergent to some x′ ∈ X ′ if
for every x ∈ X, x′n(x)→ x′(x) as n→∞.

Remark 11.1 : If X is a Banach space then a weak* convergent sequence
is bounded. This follows from UBP.

Example 11.2 : Let {x′n} be a sequence in a Hilbert space H. Thus there
exists yn ∈ H such that x′n(x) = 〈x, yn〉. It follows that {x′n} is weak*
convergent if and only there exists y ∈ H such that 〈x, yn〉 → 〈x, y〉.

Recall that the dual of (c0, ‖ · ‖∞) is isometrically isomorphic to l1 : For
every f ∈ (c0)′, there exists unique y ∈ l1 such that

f(x) = fy(x) =
∞∑
j=1

x(j) ¯y(j).

Moreover, ‖fy‖ = ‖y‖.

Exercise 11.3 : Let fyn ∈ (c0)′ for yn ∈ l1. Show that {fyn} is weak*
convergent to fy iff yn(k)→ y(k) for all k ≥ 1 and sup ‖yn‖1 <∞.

Hint. For fixed m ≥ 1, check that |
∑m

j=1 x(j)yn(j)| ≤ ‖x‖∞ supn ‖yn‖1.
Letting n→∞, we obtain

|
m∑
j=1

x(j)y(j)| ≤ ‖x‖∞ sup
n
‖yn‖1.
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Now let m → ∞ to get ‖fy‖ ≤ supn ‖yn‖1 < ∞. It follows that y ∈ l1. Let
ε > 0 and x ∈ c0. Choose N ≥ 1 large enough so that |x(j)| < ε for j ≥ N.
Note that for large n ≥ 1, |yn(j)− y(j)| < ε/N.

|fyn(x)− fy(x)| ≤
N∑
j=1

|x(j)||(yn(j)− y(j))|+
∞∑
j=N

|x(j)||(yn(j)− y(j))|

≤ ‖x‖∞ε+ ε(‖yn‖1 + ‖y‖1).

The following is a special case of the Banach-Alagou Theorem.

Theorem 11.4. If X is a separable then every bounded sequence in X ′ has
a weak* convergent subsequence.

Proof. Suppose that X has a countable dense subset {xk}. Let M :=
supn ‖x′n‖. Since |x′n(x1)‖ ≤ M‖x1‖, {x′n(x1)} is a bounded sequence in
K. By the Bolzano-Weierstrass Theorem, {x′n(x1)} has a convergent sub-
sequence {x′n1(x1)}. Since |x′n1(x2)‖ ≤ M‖x2‖, {x′n1(x2)} is a bounded
sequence in K. Again by the Bolzano-Weierstrass Theorem, {x′n1(x2)} has a
convergent subsequence {x′n2(x2)}. Inductively, for k ≥ 1, {x′nk−1(xk)} has
a convergent subsequence {x′nk(xk)}.

For fixed k ≥ 1, consider the sequence {x′nn(xk)}. Note that x′nn(xk)
belongs to the convergent sequence {x′nk(xk)} for n ≥ k. Hence {x′nn(xk)}
is also convergent. To complete the proof, let x ∈ X. Given ε > 0, choose k
large enough so that ‖x− xk‖ < ε. For m,n ≥ 1, note that

|x′mm(x)− x′nn(x)| ≤ |x′mm(x)− x′mm(xk)|+ |x′mm(xk)− x′nn(xk)|
+ |x′nn(xk)− x′nn(x)|
≤ 2Mε+ |x′mm(xk)− x′nn(xk)|.

Thus {x′nn(x)} is a Cauchy sequence. It follows that x′nn converges to a
linear functional x′. Finally, note that ‖x′‖ ≤M. �

Remark 11.5 : If X is separable then the closed unit ball in X ′ is weak*
sequentially compact.

Now we are in a position to prove Theorem 10.18.

Proof of Eberlein’s Theorem. Suppose that X is reflexive, and let {xn} be a
bounded sequence in X. Note that Y = {xn} is closed and separable sub-
space of X. By Exercise 10.17, Y is reflexive, and hence Y ′ is separable. By
11.4, the bounded sequence {JY (xn)} in Y ′′ has a weak* convergent subse-
quence {JY (xnk

)}. Now if x′ ∈ X ′ then x′(xnk
) = x′|Y (xnk

) = JY (xnk
)(x′|Y )

converges as desired. �



30 FUNCTIONAL ANALYSIS: NOTES AND PROBLEMS

12. Spectral Theorem for Compact Operators

Let X,Y be Banach spaces. A linear operator T from X into Y is said to
be compact if for every bounded sequence {xn} in X, {Txn} has a convergent
subsequence.

Remark 12.1 : If S is compact and T is bounded then ST, TS are compact.

Exercise 12.2 : Show that every finite-rank linear mapping is compact.

Proposition 12.3. Compact operators form a closed subspace of B(X,Y ).

Proof. Given ε > 0, find N ≥ 1 such that ‖T − TN‖ < ε. Now find a
convergent sequence {TNxnk

} using compactness of TN . Check that {Txnk
}

is a Cauchy sequence. �

Exercise 12.4 : Let {an} be a bounded sequence. Show that the diagonal
operator on l2 with diagonal entries a1, a2, · · · is compact iff {an} ∈ c0.

Hint. If T is a diagonal operator with diagonal entries b1, b2, · · · , then
‖T‖ = supn |bn|. The sufficient part follows from this. WLOG, assume
that {an} is bounded from below. To see the necessary part, note that
‖Den −Dem‖2 = a2

n + a2
m > c > 0 if {an} /∈ c0.

Exercise 12.5 : Consider (Tf)(x) =
∫ x

0 f(y)dy (x ∈ [0, 1]) and

(Tnf)(x) =
n−1∑
k=0

χ[k/n,(k+1)/n)(x)
∫ k/n

0
f(y)dy (x ∈ [0, 1]).

Verify the following:
(1) T ∈ B(L2(0, 1), L2(0, 1)).
(2) Tn ∈ B(L2(0, 1), L2(0, 1)) has n-dimensional range.
(3) ‖T − Tn‖ ≤ n−1/2.
(4) T is compact.

Exercise 12.6 : If T is compact then show that the closure of {Tx : ‖x‖ ≤
1} is sequentially compact.

Exercise 12.7 : Consider the linear T : L2(0,∞)→ L2(0,∞) given by

(Tf)(x) =
1
x

∫ x

0
f(t)dt (x ∈ (0,∞)).

Show that T is not compact.

Hint. Consider fn(t) = n if 0 < t ≤ 1/n2, and 0 otherwise. Note that
‖Tfn‖ ≥ 1 for all n. However, 〈Tfn, g〉 → 0 for all g ∈ L2(0,∞).

Theorem 12.8. Show that if T is compact and the range R(T ) is closed
then the closed unit ball in R(T ) is sequentially compact. In particular, R(T )
is finite-dimensional in this case.
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Proof. Use Open Mapping Theorem. �

Exercise 12.9 : Let µ be a non-zero complex number and T : X → Y be
compact. Then T |ker(T−µ) is compact with closed range ker(T − µ).

We say that T has an eigenvalue µ if ker(T − µ) is non-zero.

Exercise 12.10 : Show that the eigenspace ker(T−µ) of a compact operator
corresponding to non-zero eigenvalue is finite-dimensional.

A bounded linear operator on a Hilbert space H is normal if T ∗T = TT ∗.
We say that T is self-adjoint if T ∗ = T.

The operator of multiplication by φ ∈ L∞ on L2 is normal. In fact,
M∗φ = M∗

φ̄
, where φ̄(z) = φ(z). Note that Mφ is self-adjoint iff φ is real-

valued.

Exercise 12.11 : If N is normal then so is N − λI for any scalar λ. Use
this to deduce that the eigenspaces corresponding to distinct eigenvalues are
orthogonal.

Exercise 12.12 : Consider the linear operator T on L2[0, 1]:

(Tf)(x) = (1− x)
∫ x

0
yf(y)dy + x

∫ 1

x
(1− y)f(y)dy (x ∈ [0, 1]).

Verify the following:
(1) T ∈ B(L2(0, 1), L2(0, 1)) is compact and self-adjoint (Hint. Use

Exercise 12.5 and Remark 12.1).
(2) If Tf = λf then for some integer n ≥ 1, f(x) = c sin(nπx) for some

scalar c and λ = 1/n2π2 (Hint. Calculate second derivative of Tf).

Theorem 12.13. Let T be a normal operator on an infinite-dimensional
Hilbert space. If T is compact then there exists an orthonormal basis {en}
of ker(T )⊥ and a sequence {λn} of complex numbers (possibly repeated) such
that Ten = λnen. Moreover, the following hold:

(1) For each n ≥ 1, ker(T − λn) is finite-dimensional.
(2) λn → 0 as n→∞.
(3) {λn} has no accumulation point except 0.
(4) For any x ∈ H, Tx =

∑∞
n=1 λn〈x, en〉en.
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