
LINEAR DYNAMICS

SAMEER CHAVAN

Abstract. These are the lecture notes prepared for AIS Geometric
Methods in Complex Analysis (2012) to be held at IISc Bangalore. We
discuss the basics of the theory of dynamics of linear operators.

1. Topological Transitivity and Hypercyclicity

Let V be a topological space. We say that a continuous transformation

T : V → V is topologically transitive if for each pair of non-empty open sets

U, V ⊆ X there exists a non-negative integer n such Tn(U) ∩ V 6= ∅.

The Tent Map 1.1. Consider the function T : [0, 1]→ [0, 1] defined by

T (x) = 2x if 0 ≤ x < 1/2

= −2x+ 2 if 1/2 ≤ x ≤ 1.

We contend that T is topologically transitive. Let us examine the action of

T 2. A simple calculation shows that

T 2(x) = 2(2x) if 0 ≤ x < 1/4

= −2(2x) + 2 if 1/4 ≤ x < 1/2

= −2(−2x+ 2) + 2 if 1/2 ≤ x < 3/4

= 2(−2x+ 2) if 3/4 ≤ x ≤ 1.

Thus T 2 maps any interval of the form [k/4, (k + 1)/4] for k = 0, 1, 2, 3

onto the interval [0, 1]. More generally, Tn maps any interval of the form

Ik,n := [k/2n, (k+1)/2n] for k = 0, 1, · · · , 2n−1 onto the interval [0, 1]. Given

an open subset U of [0, 1], we may find a positive integer n sufficiently large

so that Ik,n ⊆ U for some 0 ≤ k ≤ 2n − 1. But then

[0, 1] = Tn(Ik,n) ⊆ Tn(U) ⊆ [0, 1]

shows that Tn(U) = [0, 1]. In particular, T is topologically transitive.

We say that a continuous transformation T : V → V is hypercyclic if there

exists f ∈ V (to be referred to as a hypercyclic vector) such that O(f, T ) is

dense in V, where

O(f, T ) := {Tnf : n is a non-negative integer}.
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Remark 1.2. If a topological space supports a hypercyclic transformation

then it is necessarily separable.

In these notes, the main object of study is linear hypercyclic transforma-

tions on a topological vector space. Recall that a topological vector space

is a vector space together with a topology such that with respect to this

topology the addition and scalar multiplication are continuous operations.

Examples 1.1. Topological Vector Spaces:

(1) A normed linear space.

(2) The vector space O(Ω) of complex-valued holomorphic functions f

defined on the open set Ω ⊂ C endowed with the topology of uniform

convergence on compact subsets.

Before we see some examples of linear hypercyclic transformations on a

topological vector space (can you think of a simple one?), here are some

examples of non-hypercyclic transformations:

Example 1.1. Let V be a normed linear space and let T : V → V be

a continuous transformation. If R := supn≥1 ‖Tn‖ < ∞ then T is not

hypercyclic. Indeed, O(T, x) is contained in the closed ball centered at the

origin and of radius R, and hence can not be dense in V.

Let us see a particular instance when this happens. Assume that T is

a bounded linear operator on a Banach space (that is, a complete normed

linear space) X. Suppose the spectrum

σ(T ) := {λ ∈ C : T − λI is not bijective }

of T is contained in the open unit disc. By the Spectral Radius Formula,

sup
λ∈σ(T )

|λ| = lim
n→∞

‖Tn‖
1
n .

Since σ(T ) is a compact subset of the open unit disc, one may find a positive

number K < 1 and positive integer N such that ‖Tn‖ ≤ Kn for all n ≥ N.

It is obvious now that R is at most max{1, ‖T‖, · · · , ‖TN−1‖}.

Birkhoff’s Transitivity Theorem 1.1. Let X be a separable topological

space and let T : X → X be given. Then the following are true:

(1) Suppose X is a complete metric space. If T is topologically transitive

then T is hypercyclic.

(2) Suppose X is a topological vector space. If T is hypercyclic then T

is topologically transitive.

In both the cases, the set H of hypercyclic vectors is dense in X.

Proof. (1): Let H denote the set of all hypercyclic vectors of T and let

{Vj}j∈N be a countable basis for X. Note that a sequence {xn}n∈N is dense
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in X if and only if for each j ∈ N there exists nj ∈ N such that xnj ∈ Vj .
Applying this fact to the sequence xn := Tnx, one obtains

H :=
⋂
j

⋃
n≥0

(Tn)−1(Vj).

By hypothesis, for each non-empty open set U ⊆ X there exists a non-

negative integer n such Tn(U) ∩ Vj 6= ∅. It follows that
⋃
n≥0 T

−n(Vj) is

dense in X for every j. By the Baire Category Theorem, H is dense in X.

(2): If x ∈ X then since scalar multiplication is continuous, every neigh-

borhood of x contains points from X \ {x}. Thus X has no isolated points.

Now it follows that if T is hypercyclic with hypercyclic vector x, then for

every non-negative integer n, Tnx is a hypercyclic vector for T. In particular,

H is dense in X. Now if TNx ∈ V for some non-negative integer N, then for

some n ≥ N, Tnx ∈ U. Thus Tn−N (U) ∩ V is non-empty. �

Let U ⊂ C be open and let {Kn}n≥1 denote a compact exhaustion of U.

If U = C then the collection closed discs centered at the origin and of radius

n forms a compact exhaustion of U. Define a metric d on the vector space

C(U) of continuous functions on U as follows:

d(f, g) :=
∞∑
n=1

1
2n

‖f − g‖Kn,∞
1 + ‖f − g‖Kn,∞

(f, g ∈ O(U)), (1.1)

where ‖f‖K,∞ = supz∈K |f(z)|. Note that C(U) is endowed with the topology

of uniform convergence on compact sets. Recall that C(U) is a complete

metric space. So is the subspace O(U) of all holomorphic functions on U

(see Exercise 4.1).

The next result relies on the Runge’s Polynomial Approximation. This

approximation theorem is included in almost every text on complex analysis

but very few texts exhibit its utility (see Exercise 4.3 below, and refer to [6]

for many such).

Corollary 1.3. For a non-zero complex number a, let Ta : O(C) → O(C)

denote the translation operator defined by Ta(f)(z) = f(z + a). Then Ta is

hypercyclic.

Proof. We apply the Birkhoff’s Transivity Theorem to X := O(C) and T :=

Ta. Let U, V be two non-empty open subsets of O(C). One may find ε > 0,

and f, g ∈ O(C) such that

{h ∈ O(C) : d(f, h) < 3ε} ⊆ U, {h ∈ O(C) : d(g, h) < 3ε} ⊆ V,

where d is as given in (1.1). Now it is easy to see that there exists a closed

disc K ⊂ C such that

{h ∈ O(C) : ‖h− f‖∞,K < ε} ⊆ U, {h ∈ O(C) : ‖h− g‖∞,K < ε} ⊆ V
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(see Exercise 4.2). Let n be a positive integer such that K ∩ (K + an) = ∅.
Since the compact set K∪(K+an) has connected complement in C, Runge’s

Theorem is applicable to the holomorphic function taking value f(z) in the

vicinity of K, and Tn−a(g)(z) = g(z − na) in the vicinity of K + an. This

gives us an analytic polynomial p such that

‖p− f‖∞,K < ε and ‖p− Tn−a(g)‖∞,K+an = ‖Tna (p)− g‖∞,K < ε.

In particular, p ∈ U and Tna (p) ∈ V. �

Corollary 1.4. Let X be a separable, complete metric space and a topolog-

ical vector space. Suppose T is invertible with a continuous inverse T−1 :

X → X. Then T is hypercyclic if and only if so is T−1.

Proof. Note that Tn(U)∩V 6= ∅ if and only if T−n(V )∩U 6= ∅. Now appeal

to the Birkhoff’s Transitivity Theorem. �

In the remaining part of these notes, we confine ourselves to the study

of hypercyclicity of bounded, linear operators. We use L(X) to denote the

algebra of continuous linear operators on X.

Kitai’s Criterion 1.1. Let X be a complete metric space and a separable

topological vector space. Let T ∈ L(X). If there exist a dense subset D of X

and a sequence {Sn} of transformations Sn : X → X such that

(1) Tn(x)→ 0 for any x ∈ D,
(2) Sn(x)→ 0 for any x ∈ D, and

(3) TnSn(x)→ x for any x ∈ D.

Then T is hypercyclic with a dense set of hypercyclic vectors.

Proof. It suffices to verify the hypothesis of the Birkhoff’s Transivity The-

orem. To see that, let U, V be two non-empty open subsets of X and pick

x ∈ D ∩ U, y ∈ D ∩ V. Then x + Sn(y) → x ∈ U as k → ∞. Choose a

positive integer k1 so that x + Sn(y) ∈ U for n ≥ k1. Since T is linear,

Tn(x+ Sn(y)) = Tn(x) + TnSn(y)→ y ∈ V. Choose a positive integer k2 so

that Tn(x+ Sn(y)) ∈ V for n ≥ k2. It follows that Tn(U)∩ V is non-empty

for every n ≥ max{k1, k2}. �

The following result is due to G. R. MacLane.

Theorem 1.5. The derivative operator d
dz : O(C)→ O(C) is hypercyclic.

Proof. One may conclude from the Weierstrass’ Convergence Theorem that
d
dz ∈ L(O(C)). Set D := the vector space of analytic polynomials. Since ev-

ery entire function can be globally represented as a power series (convergent
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uniformly on compact sets), D is dense inO(C). Consider the transformation

S : O(C)→ O(C) given by

S(f)(z) =
∫

[0,z]
f(w)dw,

where [0, z] denotes the line segment joining the origin and z. Set Sn = Sn.

We now apply the Kitai’s Criterion to X := O(C), T := d
dz . Fix positive

integers k and l. Since T k(zl) = 0 if k ≥ l; Sk(zl) = l!
(l+k)!z

l+k → 0 on any

compact subset of C, TS(zl) = zl, conditions (1), (2), (3) of the Kitai’s

Criterion are satisfied. �

Remark 1.6. Note that the set of hypercyclic vectors of d
dz is dense in O(C).

To see an interesting application of the preceding result to the complex

function theory, we need a definition.

Definition 1.7. The final set L(f) of a function f meromorphic in the

complex plane C is the set of points z0 of the Riemann sphere C ∪ {∞} for

which the following holds true: Each neighbourhood of z0 contains zeros of

infinitely many derivatives of f.

A result of Pólya, which says that the final set of any non-entire, mero-

morphic function consists of a union of rays, lines, and line segments. In

view of this, the following is quite striking.

Corollary 1.8. There exists a dense subset H of O(C) such that L(f) =

C ∪ {∞} for all f ∈ H.

Proof. We take H to be the set of hypercyclic vectors of d
dz . By Remark

1.6, H is dense in O(C). Fix f ∈ H and z0 ∈ C. One may now approximate

z − z0 by some subsequence of {d
nf
dzn }n≥0, uniformly on compact subsets of

C. By the Hurwitz’s Theorem, each disc centered at z0 contains zeros of all

but finitely many members of this subsequence. Hence z0 ∈ L(f). To see

that ∞ ∈ L(f), note simply that any neighbourhood of ∞ contains an open

subset of C. This shows that L(f) = C ∪ {∞} for all f ∈ H. �

Recall that the Hardy space H2 of the unit disc consists of complex-valued

functions f holomorphic on the unit disc D1 for which

‖f‖2H2 := sup
0<r<1

∫ 2π

0
|f(reiθ)|2 dθ

2π
<∞.

Since the norm on H2 satisfies the Paralleogram Law, H2 is an inner-product

space endowed with the inner-product

〈f, g〉H2 :=
1
4
(
‖f + g‖2H2 − ‖f − g‖2H2 + i‖f + ig‖2H2 − i‖f − ig‖2H2

)
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for all f, g ∈ H2 (see Exercise 4.10). What is not so obvious is that H2 is

complete in this inner-product. To see that, let {fn} be a Cauchy sequence

in H2. By the Cauchy Integral Formula,

fn(z)− fm(z) =
∫
|z|=R

f(w)
w − z

dw (|z| < R < 1),

which leads to

|fn(z)− fm(z)| ≤ 1
R− r

∫ 2π

0
|f(Reiθ)|dθ

≤ 2π
R− r

∫ 2π

0
|f(Reiθ)|2dθ

≤ ‖fn − fm‖H2

R− r
for any |z| ≤ r < R < 1. This shows that fn− fm converges compactly to 0.

It follows that {fn} converges compactly to some holomorphic function f.

Now, it is easy to see that ‖fn − f‖H2 converges to 0.

The following result provides an example of a hypercyclic linear operator

on a Hilbert space and it is due to S. Rolewicz.

Corollary 1.9. αS∗ is hypercyclic for |α| > 1.

Proof. Consider the function κ : D1 → H2 defined by

κ(λ) ≡
∞∑
n=0

λnSn(1).

Since ‖S‖ ≤ 1, κ is well-defined on the open unit disc. Also, S∗(κ(λ)) =

λκ(λ) in view of S∗(1) = 0. Set

Dr := linspan{κ(λ) : λ ∈ Dr}

for a real r > 0. We check that Dr is dense in H2. Let f(z) :=
∑∞

n=0 anz
n ∈

H2 be such that 〈f, κ(λ)〉 = 0 for every λ ∈ Dr. Since {zn}n≥0 forms an

othonormal set in H2, 〈f, κ(λ)〉 = f(λ). Thus f(z) is zero on Dr, and hence

by the Identity Theorem, f(z) is identically zero. Thus the claim stands

verified. Now one may apply the Kitai’s Criterion with T := αS∗ and

Sn := αnSn for |α| > 1 to obtain the desired result. �

2. Spectral Properties

For simplicity, in the remaining part of these lecture notes, all the topo-

logical spaces are assumed to be complex, separable Banach spaces. We use

B(X) to denote the algebra of bounded linear operators on X. We use X ′

to denote the dual space of X.

Proposition 2.1. Let T ∈ B(X) be hypercyclic. Then the adjoint operator

T ∗ has no eigenvalue.
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Proof. Suppose T ∗f = λf for some non-zero f ∈ X ′ and complex number

λ. Then, for g ∈ X and for all integers n ≥ 0,

〈f, Tng〉 = 〈Tn∗f, g〉 = 〈T ∗nf, g〉 = λn〈f, g〉.

Clearly, for any g, the set {λn〈f, g〉 : n ≥ 0} is not dense in C (Why?) On the

other hand, if g is a hypercyclic vector for T, then αf can be approximated by

a subsequence of {T g}n≥0 for any complex number α, and hence in that case

{〈f, Tng〉 : n ≥ 0} is dense in C. Consequently, no g can be a hypercyclic

vector for T. �

Corollary 2.2. A finite-dimensional complex vector space does not support

hypercyclic operators.

Remark 2.3. By a more direct argument, this result can be proved even for

real vector spaces (see Exercise 4.6).

The conclusion of Corollary 2.2 is not actually satisfactory as it just con-

cludes that the orbit of an n×n complex (or real) matrix can not be dense.

We claim that it can not even be somewhere dense. To see that, let us ex-

amine the orbit of a complex k×k matrix T . By the Jordan Decomposition,

it suffices to examine the orbit of an n×n Jordan block J = λI +N, where

λ ∈ C, and N is a nilpotent operator with the superdiagonal with all entries

equal to 1. Since Nn = 0 and λI commutes with N, one obtains

Tm =



λm
(
m
1

)
λm−1

(
m
2

)
λm−2

(
m
3

)
λm−3 · · ·

0 λm
(
m
1

)
λm−1

(
m
2

)
λm−2 · · ·

0 0 λm
(
m
1

)
λm−1 · · ·

0 0 0 λm · · ·

...
...

...
...


.

It is not now difficult to see that O(x, J) is a discrete subset of Cm.

For a positive real number r, let

Dr := {z ∈ C : |z| < r}, ∂Dr := {z ∈ C : |z| = r},Dr := {z ∈ C : |z| ≤ r}.

Theorem 2.4. Let T ∈ B(X) be such that

σ(T ) ∩ ∂Dr = ∅, σ(T ) ∩ Dr 6= ∅

for some positive real number r ≤ 1. Then T is not hypercyclic.

Proof. Note that σ(T ) is a union of disjoint closed sets σ1 and σ2, where

σ1 = σ(T ) ∩ Dr, σ2 = σ(T ) ∩ (C \ Dr).
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By the Riesz Decomposition Theorem ([1], Appendix D), there exist bounded

linear operators T1 and T2 such that T = T1⊕T2 and σ(T1) = σ1, σ(T2) = σ2.

If T is hypercyclic then so is T1 (Exercise 4.8). Since σ(T1) = σ1 ⊆ Dr ⊆ D1,

by Example 1.1, T1 and hence T is not hypercyclic. �

Corollary 2.5. Let T ∈ B(X) be hypercyclic. Then the spectrum σ(T ) of

T intersects the unit circle ∂D1.

Proof. Suppose σ(T )∩ ∂D1 = ∅. By the preceding theorem (with r = 1), we

must have σ(T ) ∩ D1 = ∅. It follows that σ(T ) ⊆ (C \ D1). But then T is

invertible, and hence by Corollary 1.3, T−1 is hypercyclic. Since σ(T−1) =

{λ−1 : λ ∈ σ(T )} ⊆ D1, we arrive at a contradiction. �

Remark 2.6. Further, it can be proved that every connected component of

a hypercyclic operator intersects the unit circle [1].

Corollary 2.7. Let T ∈ B(X) be a compact operator. Then T is not

hypercyclic.

Proof. By Corollary 2.1, we may assume that X is infinite-dimensional. It

is known that the spectrum of a compact operator is countable and contains

0. Thus one can find a positive real number r ≤ 1 such that σ(T )∩∂Dr = ∅.
Since 0 ∈ σ(T ) ∩ Dr, by Theorem 2.4, T is not hypercyclic. �

3. The Set of Hypercyclic Vectors

Let T ∈ B(X) be hypercyclic and let H denote the set of its hypercyclic

vectors. Since any dense subset of X remains dense after removal of finitely

many points, Tnx ∈ H for any positive integer whenever x ∈ H. Thus either

H is empty or dense subset of X. This topological dichotomy leads to the

following rather striking representation theorem.

Proposition 3.1. Let T ∈ B(X) be hypercyclic and let H denote the set of

its hypercyclic vectors. Then X = H +H.

Proof. Let x ∈ X. As observed in the proof of Birkhoff’s Transitivity Theo-

rem, one has

H :=
⋂
j

⋃
n≥0

T−n(Vj),

where {Vj}j∈N is a countable basis for X. Thus both H and x−H are dense

Gδ subsets of X. By the Baire Category Theorem, H must intersect with

x −H. Now if y ∈ H and y ∈ x −H then y = x − z for some z ∈ H, and

hence x = y + z ∈ H +H. �

For T ∈ B(X) and p(x) := a0 + a1x+ · · ·+ akx
k, set

p(T ) := a0I + a1T + · · ·+ akT
k.
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Theorem 3.2. Let T ∈ B(X) be hypercyclic. If h ∈ X is a hypercyclic

vector then so is p(T )h for any non-zero polynomial p(x). In particular, the

set of all hypercyclic vectors for T is connected.

Proof. Let p(x) be a polynomial. If λ1, · · · , λk are (possibly repeated) com-

plex roots of p(x) then p(T ) = a(T − λ1I) · · · (T − λkI), where a 6= 0. By

Theorem 2.1, ker(T ∗ − λiI) = {0} for each i = 1, · · · , k. It is now easy to

see that ker(p(T ∗)) = {0}. Since p(T )∗ = p(T ∗), the range of p(T ) must be

dense in X.

Suppose that h is a hypercyclic vector for T. Consider now

O(p(T )h, T ) := {Tnp(T )h : n is a non-negative integer}

= {p(T )(Tnh) : n is a non-negative integer},

which is a dense subset of the range of p(T ). Since the range of p(T ) itself

is dense, so is O(p(T )h, T ).

Since for any complex vector space V, the set V \ {0} is connected,

{Tnp(T )h : n is a non-negative integer} is path-connected. Now to see the

remaining part, note that the set of all hypercyclic vectors lies between two

connected, dense sets {p(T )h : p(x) is a non-zero polynomial} and X, and

hence connected. �

Corollary 3.3. If T ∈ B(X) is hypercyclic then so is T 2.

Proof. Suppose that T is hypercyclic with a hypercyclic vector h. By the

Birkhoff’s Transitivity Theorem, it suffices to check that T 2 is topologically

transitive. To see that, let U, V be two non-empty open subsets of X. Since

T is hypercyclic, x := Tnh ∈ U for some positive integer n. To complete the

proof, we must find a positive integer k such that T 2kx ∈ V.
Let H denote the set of all hypercyclic vectors for T. Consider the follow-

ing subsets of H :

E := H ∩ {T 2kx : k ≥ 0}, O := H ∩ {T 2k+1x : k ≥ 0}.

We claim that E ∩ O 6= ∅. Since H ∩ {T kx : k ≥ 0} ⊆ E ∪ O, and x is a

hypercyclic vector for T, H = E ∪ O. Clearly, E and O are closed subsets

of H. Also, since x ∈ E and Tx ∈ O, by the connectedness of H, the

intersection of E and O is non-empty as desired.

Let y ∈ E ∩ O. Since y ∈ H, one can find a positive integer m such that

Tmy ∈ V. Thus y belongs to the open set T−mV. If, for some positive integer

k, m = 2k (resp. m = 2k + 1) then since y ∈ E (resp. y ∈ O), there exists

a positive integer l such that T 2lx ∈ T−2kV, and hence T 2(l+k)x ∈ V (resp.

T 2l+1x ∈ T−2k−1V, and hence T 2(l+k+1)x ∈ V ). �
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Remark 3.4. The proof of Corollary 3.2 is borrowed from ([1], Chapter 3).

Actually, Corollary 3.2 is a special case of a result of S. A. Ansari, which

says that Tn is hypercyclic for any positive integer n if so is T (see Corollary

3.6 below).

Example 3.1. One may conclude from the Maclane’s Theorem and the

Corollary 3.3 that there exists an entire function f ∈ O(C) such that the

sequence {
d2nf

dz2n

}
n≥0

is dense in O(C).

In the remaining part of this section, we discuss implications of the fol-

lowing beautiful result of Bourdon and Feldman: Either O(x, T ) is dense or

nowhere dense. We refer the reader to ([3], Chapter 6) for a proof.

The following result, conjectured by Herrero, is due to Costakis and Peris.

Theorem 3.5. Let T ∈ B(X). If, for some x1, · · · , xn ∈ X,
n⋃
j=1

O(xj , T ) is dense in X (3.2)

then T is hypercyclic.

Proof. Since finite union of closed sets is closed, the union of closure of

O(x1, T ), · · · , O(xn, T ) is closure of union of O(x1, T ), · · · , O(xn, T ). Now if

(3.2) holds true then
n⋃
j=1

O(xj , T ) = X,

and since finite union of nowhere dense sets is nowhere dense, by the Bourdon-

Feldman Theorem, for some j, O(xj , T ) is dense in X. �

Corollary 3.6. If T ∈ B(X) is hypercyclic then so is Tn for any positive

integer n. Moreover, if x ∈ X is a hypercyclic vector for T then x is also a

hypercyclic vector for Tn for any positive integer n.

Proof. Note that

O(x, T ) =
n−1⋃
j=0

O(T jx, Tn).

Now if T is hypercyclic then by the preceding theorem, so is Tn. In partic-

ular, O(T jx, Tn) is dense in X for some 1 ≤ j < n. Since

Tn−j(O(T jx, Tn)) ⊂ O(x, Tn)

and since the range of Tn−j is dense (Proposition 2.1), O(x, Tn) must be

dense in X. �
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4. Exercises

Exercise 4.1. Show that the subspace O(U) of C(U) is closed.

Exercise 4.2. Let d be as given by (1.1). Show that for any ε > 0 and

f ∈ O(U), there exists a compact subset K of U such that

{g ∈ O(U) : ‖f − g‖K,∞ < ε} ⊂ {g ∈ O(U) : d(f, g) < 3ε}.

Exercise 4.3. Show that there exists a sequence of complex polynomials

{pn}n≥1 such that

lim
n→∞

pn(z) =

 1 (Im(z) > 0)
0 (Im(z) = 0)
−1 (Im(z) < 0)


Hint. Let Kn denote the union of line segment [−n, n] and rectangles

[−n+ i/n, n+ i/n, n+ in,−n+ in], [−n− i/n, n− i/n, n− in,−n− in], where

[a, b, c, d] denotes the rectangle with vertices a, b, c, d. Apply the Runge’s

Theorem to an appropriate holomorphic function on an open set containing

the compact set Kn.

Exercise 4.4. For λ ∈ C, consider the set S := {λn : n ≥ 0}. If z ∈ C \ {0}
is such that |z| /∈ {|λ|n : n ≥ 0} then z does not belong to the closure of S.

Conclude that S is nowhere-dense in the complex plane.

Exercise 4.5. Let S, T ∈ B(X). If there exists an invertible operator U ∈
B(X) such that SU = UT then S is hypercyclic if and only if so is T.

Exercise 4.6. Show that a linear operator on a real, finite-dimensional

vector space can not be hypercyclic.

Hint. The idea of the proof is due to Rolewicz. If x is a hypercyclic

vector for T then x, Tx, · · · , Tn−1x form a basis for Rn. If Tnkx→ αx then

verify that Tnky → αy for every y ∈ Rn. Conclude that Tnk → αI and then

use the continuity of the determinant.

Exercise 4.7. Suppose X = X1⊕X2 for closed subspaces X1 and X2 of X.

Show that P (x⊕ y) = x (x ∈ X1, y ∈ X2) is continuous.

Hint. Use the Closed Graph Theorem.

Exercise 4.8. Prove: If T = T1 ⊕ T2 ∈ B(X1 ⊕X2) is hypercyclic then so

are T1 ∈ B(X1) and T2 ∈ B(X2).

Hint. Use the last exercise.

Exercise 4.9. Suppose N is bounded linear operator on a Hilbert space. If

N∗N = NN∗ then show that N is never hypercyclic.
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Hint. There are elementary ways to obtain far generalizations of this

exercise [3]. However, to illustrate the power of the functional calculus of a

normal operator, we sketch an alternative proof.

Suppose N is hypercyclic with a hypercyclic vector h. Consider K =

χ(N)H, where χ is the characteristic function of the D∩σ(N), and χ(N) is

given by the functional calculus ofN.Note thatN = N1⊕N2 onH = K⊕K⊥.
By Exercise 4.8, both N1 and N2 are hypercyclic. The norm of N1 is at most

1. Also, if K ( H then N2 is invertible with the norm of N−1
2 at least 1.

Exercise 4.10. Let X denote a normed linear space with the norm ‖ · ‖. If

X satisfies the Parallelogram Law

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 (x, y ∈ X),

then the function

〈x, y〉 :=
1
4
(
‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2

)
(x, y ∈ X)

satisfies
√
〈·, ·〉 = ‖ · ‖ and defines an inner-product on X.

In other words, norm on any normed linear space is induced by an inner-

product if and only if it satisfies the Parallelogram Law.

Hint. We divide the verification into four steps:

(1) 〈x, y〉 = 〈y, x〉 (x, y ∈ X).

(2) 〈x/2, y〉 = 1/2〈x, y〉 (x, y ∈ X).

(3) 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 = (x, y ∈ X).

Note that x+ y + z = x+ y/2 + y/2 + z etc...

(4) 〈αx, y〉 = α〈x, y〉 for any α ∈ C.
Use density of {m/2n : m ∈ Z, n ∈ N ∪ {0}} in R to conclude

that 〈αx, y〉 = α〈x, y〉 for any real α.

Exercise 4.11. Show that if T ∈ B(X) is hypercyclic and non-invertible

then its spectrum is uncountable.

Hint. Use Theorem 2.4.

5. Comments

The basic purpose for writing these notes is to give a brief introduction

to this rapidly evolving branch of functional analysis in a short time-span.

Undoubtedly, our main source is the masterful exposition [1]. However,

there are a few exceptions.

1. Example 1.1 of Tent Map is from [4].

2. Corollary 1.8 is from [2].

3. Although the proof of Theorem 2.4 is an adaptation of that of The-

orem 1.18 from [1], the statement is apparently new.
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4. Theorem 3.5 and Corollary 3.6 are from [3].

Finally, for beginners, we recommend the excellent introductory text [3].
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