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Abstract

A variety of wireless interfaces are available for today’s mobile user to access Internet content. When

coverage areas of these different technologies overlap, a terminal equipped with multiple interfaces can

use them simultaneously to improve the performance of its applications. In this paper, we motivate

the advantages that can be had through simultaneous use of multiple interfaces and present a network

layer architecture that enables diverse multi-access services. In particular, we explore in depth one such

service provided by the architecture: Bandwidth Aggregation (BAG) for real-time applications.

An important aspect of the architecture when providing BAG services for real-time applications is

the scheduling algorithm that partitions the traffic onto different interfaces such that the QoS requirements

of the application are met. We propose one such algorithm Earliest Delivery Path First (EDPF), that

ensures packets meet their playback deadlines by scheduling packets based on the estimated delivery

time of the packets. We show through analysis that EDPF performs close to an idealized Aggregated

Single Link (ASL) discipline, where the multiple interfaces are replaced by a single interface with same

aggregated bandwidth. A prototype implementation and extensive simulations carried using video and

delay traces show the performance improvement BAG with EDPF scheduling offers over using just the

Highest Bandwidth Interface (HBI) and other scheduling approaches based on weighted round robin.

Index Terms

Network Architecture and Design, Video, Scheduling, Algorithm/Protocol Design and Analysis,

Implementation, Simulation
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I. INTRODUCTION

The explosive growth of Internet has been a major driving force in the proliferation of a variety

of wireless technologies. Examples include 802.11, Bluetooth, GPRS, CDMA2000, UMTS etc.

Several research challenges [1]–[4] related to the use of a single wireless technology at the

mobile client have been explored so far. With the incidence of a variety of wireless technologies,

seamless migration of connections [5] (vertical handoff) from one interface to another, content

adaptation [6] to suit the characteristics of the interface have also been addressed. However, the

basis of most of the research in this domain has been confined to single interface use at any

given time to meet all the connectivity requirements of the applications.

Existing wireless technologies differ widely in terms of services offered - bandwidth, coverage,

QoS support, pricing etc. Restricting usage to one single interface at a time limits the flexibility

available to the end user in making the best use of all available resources on his interfaces. The

use of multiple interfaces simultaneously opens new way of addressing some of the limitations

of wireless media and can enable other new and interesting possibilities:

• Bandwidth Aggregation: Bandwidth offered by the multiple interfaces can be aggregated to

improve quality or support demanding applications that need high bandwidth.

• Mobility Support: The delay associated with handoff can be significantly reduced when an

alternate communication path is always kept alive.

• Reliability: For applications requiring strict reliability guarantees, some or all packets can

be duplicated/encoded and sent on the multiple paths.

• Resource Sharing: While the above scenarios involve a single client host, the idea can be

extended to broader scenarios. For instance, in an ad-hoc network of nodes connected via

their local interfaces (LAN - 802.11 or Bluetooth), a subset of nodes may have wide area

(WAN) connections. These WAN bandwidth resources can be shared effectively across the

nodes to access Internet.

• Data-Control Plane Separation: Similarly, the WAN interfaces in an ad hoc/sensor network

can also be used for out of band control communication (via an infrastructure proxy) to aid

distributed ad hoc protocols such as routing. The LAN interface can thus mostly be used

for data, thereby achieving a clean separation between control and data planes.

We term the services enabled by such simultaneous use of multiple interfaces as Multi-Access
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Services. To realize in practice the services listed above, we need an architecture to support

multiple communication paths. In this paper, we begin by providing a general framework in

the form of such an architecture. In particular, we focus our attention on one of the services

provided by the architecture: Bandwidth Aggregation (BAG) for real-time applications.

The architecture can be addressed at different layers of the protocol stack. We choose a

network layer approach as opposed to transport/application layer solution to introduce minimal

changes in the existing infrastructure thus providing application transparency. Our network layer

architecture consists of an infrastructure proxy. A proxy may provide services to a set of mobile

clients equipped with multiple interfaces, and multiple proxies may be provisioned for reliability

and scalability. Some of the features of the network proxy are similar in spirit to that provided

by Mobile IP [7]. The client uses a fixed IP address acquired from the proxy in establishing

connections with the remote host. The proxy captures the packets destined for the client and uses

IP-within-IP encapsulation to tunnel them to the client. However unlike Mobile IP, the proxy can

manage multiple care-of-addresses and perform intelligent processing and scheduling of packets.

One of the services provided by the architecture is that of aggregating bandwidth available

on multiple interfaces to increase application throughput. We explore in depth this particular

service in the context of real-time applications. While the use of multiple interfaces can increase

one’s bandwidth, the use of multiple paths, each with varying characteristics introduces new

problems in the form of excess delay due to potential packet reordering. Streaming applications

that employ smoothing buffers can tolerate this reordering to an extent. However, for interactive

applications if care were not taken to minimize the delay resulting from reordering, such delay

is often equivalent to a packet loss. In the context of our architecture, we look at this issue in the

form of the scheduling algorithm at the network proxy (or mobile client in the uplink direction)

that partitions the data stream onto the multiple paths corresponding to the different network

interfaces. We propose the Earliest Delivery Path First (EDPF) algorithm that has the explicit

objective of reducing delay due to reordering. It estimates the delivery time of the packets on

each Internet path (corresponding to each interface), and schedules each packet on the path that

delivers it the earliest. This approach effectively minimizes reordering and thereby the delay and

jitter experienced by the application.

To understand the behavior of EDPF, we perform both analysis and simulation/implementation.

The ideal scheduling algorithm would aggregate bandwidth such that the performance is similar
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to the case where a single link with the same aggregate bandwidth is used – we call this the

Aggregated Single Link (ASL) algorithm. We analyze the performance difference between EDPF

and the idealized ASL algorithm in terms of several metrics: the number of bits serviced, delay

experienced by the packets, the jitter under buffering, and the maximum buffer requirement for

in-order delivery. In addition to the analysis, we study the performance of EDPF through a

prototype implementation and trace-based simulations for both real-time streaming and interac-

tive applications. Our results show that EDPF mimics ASL closely and outperforms round-robin

based approaches [8] by a large margin.

While we have introduced BAG in the context of wireless interfaces, wired (e.g. dialup) links

can also be included in bandwidth aggregation. Further, the scheduling algorithm EDPF can

be used to provide QoS in many systems that use multiple paths. Examples of such systems

include high-end storage (host connected to RAID server via multiple channels), Ethernet/ppp

link aggregator systems [9], [10].

The rest of the article is organized as follows. In section II, we describe our architecture.

The scheduling algorithm EDPF along with several properties is presented in section III. We

describe a prototype implementation of the architecture in section IV and use it to demonstrate

the use of BAG (with EDPF) for real-time streaming applications. Section V presents an extensive

simulation based evaluation of EDPF for interactive applications. We describe related work in

section VI and present concluding discussions in section VII.

II. ARCHITECTURE AND SERVICES

In this section, we first motivate our choice of a network layer architecture that enables

multi-access services and then proceed to discuss the functional components that make up our

architecture. We also elaborate on one of the services provided by the architecture - BAG, which

is the focus point of this paper. Additional details of the architecture can be found in [11].

A. Why a Network Layer Architecture?

The architecture can potentially be addressed at different layers of the protocol stack. Link

layer solutions are infeasible in this setup, as the networks span different domains, controlled

by different service providers. An application-level solution is a possible design alternative.

Making applications aware of the presence of multiple interfaces can lead to application specific
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optimization and can be very efficient. However, given the diversity of applications, this approach

would mean modifying/rewriting the various applications while ensuring compatibility with

existing infrastructure, making wide spread deployment a difficult job. Further, the applications

need to keep track of the state of different interfaces, which increases their complexity. And

when multiple applications share common client resources (interfaces), they have to be designed

carefully to avoid negative interaction among flows.

Transport layer solutions (e.g. for use with TCP-based applications) share some of the same

features as application layer solutions. While they can be efficient, they still need all server

software to be upgraded to use the new transport protocols and cooperation during standardization

to prevent negative interaction.

With IP as a unifying standard, a network layer proxy based approach has the advantages

of being transparent to applications and transport protocols and doesn’t need any changes to

existing server software. Our choice of a network layer solution mainly stems from its ease of

deployment. Legacy applications in particular can benefit with this approach as they have no

other design alternative. Another advantage with a network layer setting is a centralized approach

to end user flow management that can potentially prevent any negative interaction.

While the network layer approach overcomes most limitations of the other approaches, it may

not always be very efficient as it operates further down the stack. However, we believe that

with careful design, most inefficiencies can be minimized. Our design choice as such does not

preclude further optimization at the higher layers. In fact, our architecture can lend support to

higher layer approaches in terms of mobility support when handling multiple interfaces. In the

absence of this solution, higher layer approaches may have to handle mobility themselves or

rely on multiple Mobile IP initiations (one for each interface, which to our knowledge is not

supported by Mobile IP).

We now proceed to discuss the main details of our architecture.

B. Architecture

Fig 1 shows a high level overview of the architecture. The network proxy provides many

different services (Bandwidth Aggregation, mobility support, resource sharing etc) to the client

(equivalently, the MH), which is connected to the Internet via multiple network interfaces. The

MH, when using the services of the network proxy, acquires a fixed IP address from it and
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Fig. 1. Architecture to support multiple communication paths

Fig. 2. Functional Components of the Architecture

uses it to establish connections with the remote server. The MH also registers the care-of IP

addresses of its multiple active interfaces with the proxy. When the application traffic of the MH

passes through the domain of the proxy, the proxy intercepts the packets and performs necessary

application specific processing. It then tunnels them using IP-within-IP encapsulation to the

client’s different interfaces. This mechanism is similar to that used in Mobile IP but has been

extended to handle multiple interfaces. Note that this mechanism is needed in our architecture

not just for mobility support but for simultaneous use of interfaces - it is essential even when

the client is stationary.

The functional components that make up our architecture, which reside on the MH and

on the network are as shown in figure 2. For each application the MH starts, the Profile

Manager generates a profile based on user input and application needs. The profile carries

information that specifies how to handle the flows generated by the application - the interfaces

to use, the granularity of sharing (per packet or per session) while scheduling, any additional

functionality (reliability, content adaptation etc) needed. Based on the profile generated, the
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necessary interfaces are activated (if not already up) by the Access Selection in conjunction with

Access Discovery. The acquired care-of IP addresses are registered by the Mobility Manager at

the Mobility Server residing on the service network. The Profile Manager also conveys the profile

information to the Profile Server to facilitate it in handling the application traffic that passes

through the proxy. The Traffic Manager performs the necessary processing and scheduling of

the traffic onto the multiple interfaces based on the input from the Profile Manger/Server and

the Performance Monitoring Unit. The Performance Monitoring Units on both ends monitor the

characteristics (throughput, delay, power consumption etc) of the path from the proxy to the

different interfaces and communicate with each other periodically to keep this information up

to date.

BAG services: One of the services provided by the architecture towards increasing application

throughput is that of Bandwidth Aggregation (BAG). While we have come a long way in terms

of peak data rates in mobile networks, 9.6kbps (GSM-TDMA) in 2G to 2Mbps(UMTS) in 3G,

the typical rates one can expect to see in a loaded network are still very small [12] - 40kbps in

1xRTT, 80kbps in EDGE, 250kbps in UMTS. Supporting real-time applications with stringent

QoS requirements, large file transfers, intense web sessions is a difficult task and may not even be

possible if confined to a single interface. Using bandwidth available from all possible sources may

be the only option to increase one’s bandwidth and support demanding applications. In this paper,

we focus our attention on two such demanding applications - real-time streaming, and interactive

video. In concurrent work [13] we have considered BAG services for TCP applications. In the

context of the overall architecture, a crucial aspect that dictates real-time video performance is

the scheduling algorithm that resides in Traffic Manager which splits traffic across the different

paths. We now turn to a discussion of the design of this algorithm.

III. THE SCHEDULING ALGORITHM

For real-time applications, the scheduling algorithm not only has to effectively aggregate

bandwidth of the interfaces but also minimize delay experienced by packets due to potential

reordering caused by varying characteristics (delay, bandwidth, loss) of the multiple paths. We

first present a scheduling algorithm under ideal conditions, that achieves our desired objectives

(Sec. III-A), along with some useful properties (Sec. III-B). In subsequent sections, we explain

how the algorithm fits in practical scenarios.
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Fig. 3. A simplified view of the network between proxy and MH

A. The Earliest Delivery Path First (EDPF) Scheduling Algorithm

The overall idea behind EDPF is to (1) take into consideration the overall path characteristics

between the proxy and the MH – delay, as well as the wireless bandwidth, and (2) schedule

packets on the path which will deliver the packet at the earliest to the MH. In explicit terms,

EDPF can be described as follows.

The network between the proxy and the MH can be simplified as shown in Fig. 3. Each path

l (between the proxy and the MH) can be associated with three quantities: (1) Dl, the one-way

wireline delay associated with the path (between the proxy and Base Station - BS), (2) Bl, the

bandwidth negotiated at the BS 1, and (3) a variable Al, which is the time the wireless channel

becomes available for the next transmission at the BS. If we denote by ai, the arrival instance

of the ith packet (at the proxy) and by Li, the size of the packet, this packet when scheduled

on path l would arrive at the MH at dl
i.

dl
i = MAX(ai + Dl, Al) + Li/Bl (1)

The first component computes the time at which transmission can begin at the BS, and the

second component computes the packet transmission time (we ignore the wireless propagation

delay). EDPF schedules the packet on the path p where, p = {l : dl
i ≤ dm

i , 1 ≤ m ≤ N}, N being

the number of interfaces. That is, the path with the earliest delivery time. EDPF then updates Ap

to dp
i i.e. the next transmission can begin only at the end of the current packet reception. EDPF

tracks the queues at each of the base-stations through the Al variable. By tracking the queues at

the base-stations and taking it into account while scheduling packets, EDPF ensures that it uses

1The client negotiates certain bandwidth from the access network at the beginning of connection, which the access network

guarantees for the duration of connection. Real-time applications cannot be supported without such QoS guarantees.
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all the available path bandwidths, while achieving minimal packet reordering. The explanation

so far focused only on downlink transmission where the MH acts as a sink. The same algorithm

can also be used for the uplink case where the MH acts as the server.

B. Properties of EDPF

We now analyze some of the properties of EDPF. Our goal is to bound the performance

behavior of EDPF, as well as to compare it with the idealized ASL case. In the analysis below,

we carry over the notations N , Bl, Al, ai and Li from above. In addition, we use the following

notation. We define the links corresponding to the highest and lowest bandwidth as hb = {l :

Bl ≥ Bm, 1 ≤ m ≤ N} and lb = {l : Bl ≤ Bm, 1 ≤ m ≤ N} respectively. We define

Bmax = Bhb and Bmin = Blb. Each link l has a weight, wl = Bl/Bmin. We let Lmax be the

maximum packet size.

For simplicity of analysis, we assume that the wireline delay Dl experienced by the packets

is 0. In general, the wireline delay is time varying, however if this quantity is upper bounded by

some constant, the results can easily be extended. Let Tl(t) = max{t, Al}. Tl(t) is in essence

the time at which a packet arriving at time t can begin transmission on link l. Note that when

packet i is scheduled on link l, if di is its delivery time at the client, Tl(a
+

i ) = di, where a+

i

refers to the time instant just after ai ( arrival time of packet i at proxy). When buffering is used

with EDPF, we distinguish between the delivery time to the client (di), and the receive time at

the application, denoted ri. Thus ri ≥ di. We set the initial value of Al = 0, and let the first

packet arrive at time 0 (a1 = 0).

We first present a useful lemma that is used to derive some of the properties of EDPF.

Lemma 1: At any time t, if Tn(t) ≤ Tm(t), then Tm(t) − Tn(t) ≤ Lmax/Bn.

Proof: We prove the above lemma by induction on the packet number i, as follows. We

will show that in the interval [0, a2], the lemma holds. Assuming that it holds in [0, ai], we will

then show that it holds in the interval (ai, ai+1]. (Recall that a1 = 0.)

Basis: The first packet is scheduled on the link with the highest bandwidth i.e hb, to deliver

it the earliest. Ahb would now take on the value L1/Bmax and Am6=hb = 0. Consequently,

Thb(0
+) − Tm(0+) = L1/Bmax ≤ Lmax/Bm. The lemma holds at time 0+. For any 0 < t ≤ a2,

since Tm(t) = max{t, Am}, the difference between Tm’s decreases linearly with t.
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Inductive step: Assume that the lemma holds for packets 1, 2, . . . , i − 1 i.e. it holds in the

interval [0, ai]. Let l be the link chosen for transmission of packet i. Then according to EDPF,

di = Tl(ai) + Li/Bl ≤ Tm(ai) + Li/Bm, 1 ≤ m ≤ N

At time a+

i , Tl(a
+

i ) takes on the value of di and the other T ′s do not change. Hence we have:

Tl(a
+

i ) ≤ Tm(a+

i ) + Li/Bm (2)

We now consider the following two cases,

Case1: Tl(a
+

i ) > Tm(a+

i ). According to 2, Tl(a
+

i ) − Tm(a+

i ) ≤ Li/Bm.

Case2: Tl(a
+

i ) ≤ Tm(a+

i ). Since the lemma holds at time ai, we have Tm(ai) − Tl(ai) ≤

Lmax/Bl. Since Tl(ai) < Tl(a
+

i ) ≤ Tm(a+

i ) = Tm(ai), from above inequality we get, Tm(a+

i ) −

Tl(a
+

i ) ≤ Lmax/Bl.

Thus the lemma holds at time a+

i in both cases. As in the basis, at any time (ai < t ≤ ai+1),

the difference between T ’s decreased linearly with t, and hence the lemma follows.

When packets are of constant size, it is easy to see that with EDPF, they will arrive in order

at the client. Consider two packets {i, j : j > i}. Packet j may arrive before i only if it

were scheduled on a different link. If packet sizes are the same and the link on which j was

transmitted delivers packets the earliest, EDPF when scheduling i would have picked that link

for its transmission. Thus packets will always arrive in order. Note that this property does not

hold for other scheduling schemes based on Weighted Round Robin (WRR) or variants of it

such as Surplus Round Robin (SRR) [8], Longest Queue First.

When packets are of variable size, it is important that the scheduling algorithm distribute

the bits across the links properly. Given P packets of variable size for transmission, we can

say the algorithm achieves good bandwidth aggregation if the maximum difference between the

normalized bits allocated to any two pairs of links m,n is at most a constant. The constant should

not be a function of P . The following theorem upper-bounds this constant by Lmax for EDPF.

In case of WRR, this quantity is a function of P and can grow without bound. To understand

why, consider the case of two links with equal weights, where packet sizes alternate between

maximum and minimum size. For SRR it is 2Lmax (proof not presented).

Theorem 1: For EDPF, given P packets to transmit, the maximum difference between the
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normalized bits allocated to any two pairs of links m,n is upper bounded by Lmax.

maxm,n
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Since Bl/wl = Bmin and since the difference between the T ’s cannot exceed Lmax/Bmin from

lemma 1, the right hand side is at most Lmax . This proves the theorem.

The behavior of a system with multiple links differs from its single link counterpart ASL on

several grounds. For one, packets no longer arrive in order due to multiple paths. Two, work

can accumulate as packets may be serviced at a rate less than in ASL. This accumulation can

result in packets experiencing excess delay on average. The low service rate also increases the

jitter experienced by the packets. In the rest of this section, we compare EDPF with ASL by

providing upper-bounds on the above mentioned differences - work, delay, jitter, and buffering

required. For better readability, we just state the theorems here and discuss the results at the end

of the section. The interested reader can find the proofs in Appendix I.

Theorem 2: For any time t, the difference between the total number of bits W serviced by

ASL and EDPF is upper bounded as

WASL(0, t) − WEDPF (0, t) ≤ Lmax(
N

∑

l=1

wl − 1)

Proof: See Appendix I

Theorem 3: The difference in delay experienced by a packet i in ASL and EDPF is upper

bounded as

dEDPF
i − dASL

i ≤
Lmax(

∑N

l=1
wl − 1)

∑N

l=1
Bl

+
(N − 1)Li
∑N

l=1
Bl

Proof: See Appendix I

Jitter is defined as the difference in delay experienced by two consecutive packets, i.e Ji =

(ri−ri−1)−(ai−ai−1). It is easy to see that if the packets are not buffered (ri = di), Ji ≤ Li/Bmin.

The worst case jitter happens when both the packets are transmitted on the link corresponding

to lb.
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Theorem 4: When buffering is employed, the jitter experienced by a packet i is upper bounded

by Li/Bmax.

Proof: See Appendix I.

Theorem 5: The buffer size needed (at the client) to deliver the packets in order (to the

application) is at most (N − 1)Lmax.

Proof: See Appendix I.

Discussion

An important property a scheduling algorithm should have is that it utilize the bandwidths

of the links properly. EDPF ensures that this difference in normalized bits allocated to any two

links is a small constant Lmax (Theorem 1). Further, Theorem 2 shows that the work carried

over in EDPF in comparison to ASL is again a constant independent of time. Another property

the scheduling algorithm should have is that it minimize reordering and thus the delay and

jitter experienced by the packets. Here too, EDPF performs close to ASL. The difference in

delay experienced by the packets, between EDPF and ASL, is bounded (Theorem 3). The bound

is proportional to the bandwidth asymmetry as well as the number of interfaces. The jitter is

bounded by a small constant if buffering is used (Theorem 4), and the amount of buffering

required to achieve this is only linear in the number of interfaces, and independent of other

factors.

Though looked at in the context of bandwidth aggregation, EDPF can also be used in Queuing

disciplines to provide QoS. What we have analyzed is the performance of a “single queue -

multiple server system” based on EDPF scheduling. We have compared such a system with one

that employs a single server but which serves the queue at a rate equal to the sum of the rates

of the multiple servers.

IV. PROTOTYPE IMPLEMENTATION

In this section, we present a prototype implementation of our architecture as a proof of

concept for BAG services. Specifically, we experiment with streaming applications to quantify

the performance improvement BAG services bring over conventional single interface use. We

show that BAG can help streaming applications by significantly reducing the buffering time

needed to ensure continuous playback, thereby enhancing end-user experience.
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A. Implementation Details

We implemented a prototype of the setup as depicted in Fig. 1 for streaming video. The video

server is trace-driven – it uses frame size traces of several video sequences taken from [14]. It

reads generation-time/size information from the trace file, generates appropriate sized packets,

and streams them to the client using a UDP socket. The duration of the video sequences used

in this experiment is 30 min.

The client machine (MH) connects to the Internet using multiple interfaces. It binds the

multiple care-of addresses to a virtual IP address (that of the proxy) and uses the virtual address

to talk to the video server (via proxy if interfaces are NAT enabled). We used two 1xRTT cards

(CDMA2000) in our experiments. Ideally we would have liked to use two separate technologies,

but other available interfaces were not very conducive. HDR based 1xEVDO had no Linux

drivers and GPRS was unstable (while shorter runs showed good performance improvement,

in longer runs, the delay experienced by some packets were in excess of 20 seconds possibly

due to a bug in the implementation). The purpose of this experiment is to demonstrate proof of

concept of BAG – we believe that similar performance as shown in this paper can be achieved

with other stable interfaces.

The functional components that make up our architecture (Fig. 2) have been implemented

as Linux loadable kernel modules. The Traffic Manager (TM) is the main components relevant

to this experiment. So we elaborate on it. For ease of implementation, we integrated some

parts of the Performance Monitoring Unit with the TM. The TM resides in kernel space and

intercepts all incoming packets before the routing module. At the proxy, the TM encapsulates

the captured packets with a header whose destination IP address is determined by the EDPF

algorithm implemented within. At the MH, it removes the outer IP header and collects interface

statistics. After the appropriate processing, the TM passes control of the packet to the routing

module to be handled as usual. The MH’s TM module also communicates with the proxy TM

using UDP to pass on the parameters needed by EDPF (Dl and Bl). We use the average values

of delays and throughput observed on the interfaces as values for these parameters. Note that

reordering is not much of an issue in streaming applications, given the buffering of packets. So

EDPF does not really need an accurate estimation of these parameters.
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B. Metrics of Evaluation

The client application at the MH, buffers incoming packets and begins video display after

a fixed delay which we term Startup Latency, and denote by L. Once the display begins, the

application displays frames consecutively every t seconds (frame period). If at one of these

epochs, the client’s buffer does not have the complete frame, the frame is considered lost (we

discard its dependent frames as well). At the next epoch, the client will attempt to display the

next frame.

We use two metrics for comparison: (1) The buffering time (BT ) needed to ensure continuous

playback of received frames. In other words, with L = BT , no received frame misses its playback

deadline. And, (2) The Frame Loss ratio (FL) for a given Startup Latency. This ratio includes

frames lost en route as well as frames lost due to late arrivals.

C. Experimental Results

Table I shows the first metric – the buffering time needed (in sec) to ensure continuous

playback of received frames for various video sequences. The mean and peak bit rates in kbps

of the video sequence are also shown. We compare BAG/EDPF with the use of just a single

interface – the Highest Bandwidth Interface (HBI). As can be seen, BAG with EDPF achieves

a much lower startup latency than HBI. BAG achieves twice the bandwidth of HBI in this

experiment (two similar interfaces), and the performance improvement in terms of BT is more

than proportionate – in most cases it is over a factor of two lesser.

TABLE I

BUFFERING TIME (IN SEC) FOR CONTINUOUS PLAYBACK

Alg/Video Lecture Star Trek Star Wars Susi & Strolch

〈58, 690〉 〈69, 1200〉 〈53, 940〉 〈79, 1300〉

EDPF 2.3 3.1 2.9 4.6

HBI 7.9 8 8.3 8.6

The variation of FL with L for the “Lecture” video is as shown in Fig. 4. At L = 0.5sec, EDPF

has a FL of 0.5%, while HBI has 7.3%. At L = 2sec, EDPF achieves FL of 0.04% while HBI
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still suffers a high 6.6% frame loss. Streaming applications that support VCR functions require

one way delays in the range of 1-2 sec. If less than 1% frame loss is required, BAG can support

this, while using just one interface cannot.

Another interesting result we observed is that the packets discarded en-route was much higher

for HBI, than in EDPF for all the runs. For example, 8 packets were discarded for EDPF

as compared to 326 packets fro HBI. We believe this to be caused due to buffer overflow at

the wireless base-station. When using multiple interfaces, the load gets uniformly distributed

resulting in lesser losses. Another advantage of simultaneous interface use.

V. INTERACTIVE VIDEO

In the previous section, we have demonstrated on an experimental testbed the benefits of

BAG services for streaming video applications. We now consider an important class of real-time

applications: interactive multimedia.

Interactive applications like video telephony, video conferencing have very stringent delay

requirements - they need one way latency under 150ms for excellent quality of service and

under 400ms for acceptable quality. Present mobile systems (GPRS,CDMA2000,HDR), as they

stand today are best effort based with one way delays in the range of a few hundred ms to

excess of 1sec. It is in general very difficult to support interactive applications on systems that

provide no QoS guarantees. Efforts are now underway to integrate QoS support in both the core

backbone as well as radio access segment of the next-generation systems. In line with efforts



16

in this direction, we consider an appropriate simulation setup and study the performance of

interactive video when using BAG services. We now describe the experimental methodology

and present experimental results subsequently.

A. Experimental Methodology

The network topology shown in Fig. 1 captures the vision of next generation networks where

the Base Station (BS) is an extension of IP based Internet. We implement/simulate each of the

components that make up the topology. We assume that the radio access network provides QoS

support and that the wireless hop is the bottleneck link.

The Server: As in the previous section, we simulate video server behavior using frame size

traces. We consider a high quality MPEG4 “Office Cam” [14] video, which captures the activity

of a person in front of a terminal. The mean and peak bit rates of this video are 400kbps and

2Mbps respectively. The reason for choosing this video is 1) Interactive video applications like

video telephony/conference will be similar in nature. 2) The bandwidth it needs compares to

that we can obtain by aggregation in next-generation Radio Access Networks (RANs).

The Internet Paths: In the next generation networks, the BS is considered to be an extension of

the Internet. Accordingly, we used delay traces collected on different Internet Paths to simulate

the delay experienced by the packets up to the BS. The mean value of this delay between server

and proxy is 15 ms and between proxy and BSs is 22ms (the same trace file was used on all the

paths between proxy and BSs). The traces were collected by generating packets of appropriate

size (derived from the frame size trace) and measuring the round trip time (RTT) on paths

between hosts located at the following universities: UCSD, UCB, CMU and Duke.

Base-Stations & the Wireless Channels: Since we assume that the underlying network provides

QoS, the BSs are simulated to have a link capacity equal to negotiated rate and no cross traffic.

They serve the packets in their queue on a first-come-first-served basis. This is a reasonable

assumption because, in systems that provide QoS, once QoS (bandwidth/loss) is negotiated,

the channel is retained for the whole session (no release/grant happens). Fluctuating channel

conditions and resulting losses are overcome by FEC, limited ARQ and increasing power of

transmission (to maintain loss rate below the negotiated value). In appropriate experiments, we

also simulate channel losses – the base-stations introduce errors in the packets and may retransmit

the packet based on the retransmission policy in place.
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The Network Proxy: The proxy implements two types of scheduling algorithms - EDPF

and Surplus Round Robin (SRR) (for comparison purposes). Surplus Round Robin (SRR) was

proposed in [8] as a generic bandwidth aggregation algorithm, it is similar to WRR but adjusted

to account for variable sized packets, where the surplus (unused bandwidth) is carried on to

the next round. SRR needs the negotiated bandwidth Bl of the interfaces in its calculations.

EDPF in addition to Bl, also needs wireline delay Dl. In the simulations, we use the average

value of the internet path delay traces for EDPF calculations. In practice, Dl can be estimated

by sending signaling packets to the MH during connection setup (clock synchronization is not

required since only the relative delay between the different paths matters). This in general suffices

because Internet path delays are known to vary only slowly, over several tens of minutes [15].

The Client: The packets arriving at the client are placed in a buffer to overcome any reordering

and passed in order to the video application.

Application Performance metrics: To measure the quality of the video reception, we use the

following performance metrics. (1)The one-way delay experienced by the packets between the

server and the client application. (2) Floss - the fraction of frames that were discarded because

packets that make up the frame experience delay in excess of maximum delay bound (DBmax,

a configurable parameter) or were lost en route. Note that when a frame is discarded, we also

discard its dependent frames (P/B frames are discarded when the corresponding I frame is lost).

This metric mainly captures the effect excessively delayed packets have on the overall quality

of the video. (3) Glitch duration (Gd) and Glitch Rate (g). We define Gd as the number of

consecutive frames that were discarded. We define g as the number of glitches that occur per

ms.

B. Experimental Results

We first address the issue of how much bandwidth to allocate to support QoS requirements

of the application. We then fix the bandwidth at a suitable value and evaluate the performance

using a set of metrics. Later we measure the sensitivity of the scheduling algorithms to bandwidth

asymmetry, number of interfaces, delay variation and channel losses.

1) Bandwidth Allocation: To enable continuous video playback, appropriate bandwidth must

be allocated to the video stream. Allocating just the average rate for Variable Bit Rate encodings
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TABLE II

AVERAGE BANDWIDTH REQUIRED (IN KBPS) FOR ASL, EDPF, AND SRR

Alg/DBmax(ms) 150 200 300 400 500

ASL 707 645 605 579 569

EDPF 872 696 624 591 574

SRR 1513 1129 805 674 616

would not in general satisfy the maximum delay requirements of the video. Peak allocation on

the other hand result in very low bandwidth utilization.

We have calculated the bandwidth needed for EDPF, SRR, and ASL for various delay bounds

(DBmax) and bandwidth splits. Since ASL is the ideal case, we express the bandwidth required

in the other two cases as a percentage over that required for ASL. Fig. 5 shows this percentage

for the case of 3 interfaces when the bandwidth is split among them in different ratios. Note

that the y-axis is set to log-scale. We see that EDPF performs close to the ideal case ASL, and

outperforms SRR by a huge margin in most cases.

We have performed a range of experiments, varying the number of interfaces as well as the

bandwidth splits. The nature of the results remains the same. Table II summarizes the results for

all these runs by averaging the bandwidth needed over these experimental runs – the averaging

is done across various bandwidth splits. We considered 20 different splits as summarized in

Table III.
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TABLE III

BANDWIDTH SPLITS

Ifaces Split 1 Split 2 Split 3 Split 4 Split 5

2 1:1 3:1 5:1 7:1 9:1

3 1:1:1 3:2:1 5:3:1 7:4:1 9:5:1

4 1:1:1:1 3:1:1:1 5:2:1:1 7:2:2:1 9:3:2:1

5 1:1:1:1:1 3:2:1:1:1 5:2:1:1:1 7:3:2:2:1 9:5:3:2:1

2) Application Performance Measures: While the previous sub-section looked at the band-

width required to satisfy a given delay bound, we now look at application behavior for a given

bandwidth allocation. For the rest of this section, we fix the aggregate bandwidth at 600kbps

(1.5 times mean). A choice of a much lower bandwidth than this results in > 1% of the packets

experiencing delay in excess of 500ms, maximum permissible for interactive video. The number

of wireless interfaces considered is three for most experiments. The use of two interfaces has less

scope for reordering than three interfaces, hence we present results for three interfaces (the nature

of the results remains the same for two interfaces). We now present the various performance

metrics in turn.

Delay Distribution: The Cumulative Distribution Function (CDF) of the delay experienced by

the packets (including buffering delay needed to deliver the packets in order) is shown in Fig. 6.

The different plots in each graph are for the different algorithms, and for different values of the

bandwidth split. For ASL, 99.8% of the packets have delay less than 200 ms. In case of EDPF,

this value ranges between 99.2% to 99.6% for different splits. For SRR, its between 56.5% and

99.2%.

Another point worth mentioning here is the amount of reordering seen in the experiments.

Since buffer size directly correlates to reordering, we present the average and maximum buffer

occupancy. When averaged over the different splits (Table. III), EDPF had an average buffer

occupancy of 0.32 packets, maximum of 4 packets. SRR on the other hand had an average

buffer occupancy of 0.71 packets, maximum of 12 packets.

Frame Discard Ratio: Fig. 7 shows Floss as a function of different DBmax when the number

of interfaces is fixed at 3. As expected, Floss decreases as DBmax increases. When DBmax is
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set at 200ms, EDPF achieves a Floss less than 0.6% while for SRR it can be as high as 20%

loss (for ASL it is 0.2%).
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Glitch Statistics: The glitch rate is another useful metric that captures the disruption in the

video presentation due to discarded frames. Table. IV shows the glitch statistics when the number

of interfaces used is 3 and for 300 ms delay bound. In terms of the glitch rate too, SRR performs

very poorly. Though EDPF has higher average glitch duration than SRR, it should be looked in

relation to the glitch rate. For EDPF, glitches happen less often and when they do, they span

on average 3-6 frames. While in SRR, glitches happen more often and on average span small

intervals 1-3 frames. Usually, the number of occurrences when glitch durations exceeds 3 is

about the same for EDPF as in SRR.



21

TABLE IV

# INTERFACES = 3, STARTUP LATENCY = 0.3 SEC

Algo. ASL EDPF EDPF EDPF SRR SRR SRR

1:1:1 5:3:1 9:5:1 1:1:1 5:3:1 9:5:1

g (per ms) 0.55 0.55 2.78 7.22 3.89 140 1809

Avg Gd 4 6 3.2 2.77 2.14 1.063 1.089

Max Gd 4 6 8 8 7 6 9
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3) Bandwidth Asymmetry and Number of Interfaces: In order to capture the sensitivity of

the system performance to bandwidth asymmetry and the number of interfaces, we compute

Floss under different splits (see Table. III) for a given number of interfaces and delay bound.

The standard deviation of the obtained values (expressed in %) in shown in Fig. 8 for different

number of interfaces. As can be seen in the figure, the standard deviation increases and then falls

with DBmax, for both EDPF and SRR. When DBmax is small, the percentage of lost frames

is quite large irrespective of the bandwidth split, and hence we don’t see much variation in

loss across splits. But as DBmax is increased, the variation becomes more apparent. For large

values of DBmax, the frame loss goes down closer to zero and so does the variation. But overall,

compared to SRR, EDPF is more robust to bandwidth asymmetry. This is a desirable feature

since it allows the client more freedom to make bandwidth requisitions on the various network

interfaces.
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To measure the sensitivity of the algorithms to the number of interfaces we measured the mean

value of Floss as a function of the number of interfaces. As the number of interfaces increases,

so does the scope for reordering and hence Floss. However EDPF is more tolerant of increase

in number of interfaces than SRR. For instance, for a DBmax of 200ms, when increasing the

number of interfaces from 3 to 4, EDPF showed an increase in Floss of only 2.1% while SRR

showed an increase of 5.2%.

4) Miscellaneous issues:

Channel Losses: So far we have not considered channel losses. In this setup, it may not be

possible to alter the scheduling to overcome channel losses as the time granularity over which

the channel state changes is likely to be finer than the feedback loop between the MH and the

proxy. Normally, radio networks that support real-time applications do try to achieve loss rate

less than some negotiated value by using efficient FEC, limited ARQ or through an increase in

transmit power. We have run a set of experiments to see the performance of the system under

channel losses with limited ARQ. Retransmissions may alter EDPF’s estimate of the variable

Al (time when channel becomes available). However we observed that the effect is very minor,

masked by the gains that can be had through retransmissions. For a DBmax of 300 ms, 5:3:1

split, 1% uniformly distributed channel losses, no retransmissions gave us a Floss of 1.9%, while

retransmissions brought it down to 0.2%.

Wireline Delay Variations: EDPF uses the estimated delay between proxy and the BSs in

determining the delivery time of packets. It may seem that large delay variations may affect

EDPF’s performance. However, we argue that this is not the case. To perceive good quality

video, we would like to achieve Floss < 1%. The bandwidth needed to guarantee such low

loss rate should overcome the queuing delay (induced at BS). The delay variation will likely

be masked by this queuing delay. In equation 1 of section III, Al dominates ai + Dl for most

packets that experience excess delay. We observe this through experiments as well. At a DBmax

of 225ms, for a truncated Guassian delay distribution with mean 22ms and no delay variation

Floss was 0.26% frame loss and for 10 ms standard deviation in delay, it was 0.28%.

Extensions to EDPF: It is possible to improve the performance of EDPF further by taking

into consideration additional parameters. If the MH provides EDPF with additional information

such as maximum tolerable delay, EDPF can drop packets that are unlikely to meet their delay

constraints (EDPF already maintains an estimate of it). This saves scarce bandwidth and helps
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other packets to meet their delay constraints. We have extended EDPF (EDPF EXT) to support

this feature. Fig. 9 shows the relative improvement. Also, if frame priority information can be

conveyed in the packets, EDPF can perform appropriate filtering - dropping lower priority frames

in presence of congestion.

In addition to the “Office Cam” video trace, we have experimented with other video traces

from [14] as well as H.263 encoding. We obtained similar results as shown above. EDPF in all

cases, effectively aggregated bandwidth while minimizing delay experienced by the packets.

VI. RELATED WORK

Bandwidth aggregation across multiple channels has its origins as a link layer solution in the

context of analog dial-ups, ISDN, and ATM [9], [16], [17]. Link Layer solutions are infeasible

in our present scenario, where the RANs in question belong to different domains controlled by

different service providers.

The Stripe protocol [8] is a generic load-sharing protocol that can be used over any logical

First-In-First-Out (FIFO) channels, it was implemented in some routers in the context of Multilink

PPP. It is based on Surplus Round Robin (SRR) and provides FIFO delivery of these packets to

higher layers with minimum overhead in the form of packet processing (looking up the packet

sequence number). The design goals of stripe are different from those considered in this paper,

it achieves its objective at the expense of introducing additional delay. For real-time interactive

applications, this approach will not work well as was shown in the previous sections.
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Contemporary to our initial work [18] that explored some of the ideas presented in this paper,

some transport and network layer solutions have been proposed to achieve bandwidth aggregation

in a similar setting. A network layer solution based on tunneling was proposed in [19] and per-

formance of TCP has been evaluated. Though similar in spirit to our architecture, this work does

not look into real-time application support or address in depth the architecture components that

enable diverse services. The Reliable Multiplexing Transport Protocol (RMTP) [20] is a reliable

rate-based transport protocol that multiplexes application data onto different channels. Parallel

TCP (pTCP) [21] is another transport layer approach that opens multiple TCP connections one for

each interface in use. The focus of this paper is on supporting real-time applications which may

not employ TCP as the transport protocol because of their delay constraints. Further, our main

goal is to introduce minimal changes to the infrastructure while enabling diverse functionalities,

which these approaches cannot achieve.

VII. DISCUSSION AND CONCLUSIONS

In this article, we motivate the advantages of simultaneous use of multiple interfaces and

propose a network-layer architecture that enables such use. Our network layer architecture

provides many different services - bandwidth aggregation, reliability support, resource sharing,

data-control plane separation to the end MH. Further, it is transparent to applications and involves

minimum changes to the infrastructure. Only changes needed are the MH and deployment of

proxies, no changes are needed in the radio network or server software.

One of the services provided by the architecture is BAG (bandwidth aggregation) for real-

time applications. Implementation/simulations show that BAG services can bring in significant

performance improvements over conventional single interface use. The scheduling algorithm that

BAG employs (EDPF) mimics closely the idealized Aggregated Single Link (ASL) case and

outperforms by large margin approaches based on weighted round robin. EDPF is a light weight

algorithm that incurs minimal overhead. The per-packet computation complexity is proportional

to the number of interfaces, which is likely to be two to three in most cases. In terms of network

overhead, the (relative) one-way delay and bandwidth information need to be passed from the

client to the network proxy only once during setup for interactive applications and once every

few seconds for streaming applications.

Though introduced in the context of wireless interfaces, BAG and EDPF are applicable in
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broader contexts. Any system with multiple paths can use the EDPF scheduling algorithm to

provide QoS support.

APPENDIX I

PROPERTIES OF EDPF: DETAILS OF PROOFS

Details of proof for Theorem 2: WASL takes on a maximum value when the link becomes

idle. Let t be such a time. Since ASL is idle, all packets serviced must have arrived before t.

We now have the following two cases

Case1: One or more of the links in EDPF are idle at t.

The deficit over ASL, EDPF has to serve after t is maximum when: 1) All links except one

are busy serving the deficit. 2) The idle link corresponding to lb. Using lemma 1, this difference

in time Tl(t) − Tlb(t) for which any link l 6= lb is busy is bounded by Lmax/Bmin. The overall

deficit in bits is thus bounded by: Lmax

∑

l 6=lb Bl/Bmin = Lmax(
∑N

l=1
wl − 1).

Case2: All the links are busy at t.

Let τ < t, be the earliest time instant at which all links in EDPF got busy. Between [τ, t],

WASL(τ, t) ≤ WEDPF (τ, t) =
∑N

l=1
Bl(t − τ). Thus the difference at t cannot exceed that at

τ , i.e. WASL(0, t) − WEDPF (0, t) ≤ WASL(0, τ) − WEDPF (0, τ). And Case 1 bounds the right

hand side by Lmax(
∑N

l=1
wl − 1).

Details of proof for Theorem 3: In case of EDPF, the following two cases arise,

Case 1: When packet i arrives, it finds one or more of the links in EDPF idle. If it were

scheduled on the idle link, its delivery time will not exceed ai +Li/Bmin. Since EDPF schedules

the packet on the link which delivers its the earliest, the departure time of this packet when

scheduled on other links would also not exceed this amount i.e dEDPF
i ≤ ai + Li/Bmin. In case

of ASL, dASL
i ≥ ai + Li/

∑N

l=1
Bl. Thus,

dEDPF
i − dASL

i ≤
Li(

∑N

l=1
wl − 1)

∑N

l=1
Bl

Case2: When packet i arrives it finds all the links busy, let j < i be the latest packet whose

arrival busies all the links. Let lj be the link on which j was scheduled and li be the link on

which i was scheduled. We now consider the worst case delay that can be experienced by packet

i. This happens if
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• When j arrives, the number of bits P that still need to be serviced is maximum possible.

This essentially increases the time before the system can serve packets j to i. This event

happens when lj = lb and for l 6= lb, Tl(aj)−Tlj(aj) = Lmax/Bmin (from lemma 1). Hence

P =
∑N

l=1
Tl(aj) − Tlj(aj) ≤ Lmax(

∑N

l=1
wl − 1).

• All packets between i and j (inclusive) are delivered ahead of i i.e. di ≥ dk for j ≤ k < i.

So we have, di = Tli(ai+) = max{Tl(ai+), for 1 ≤ l ≤ N}. If we denote by δli,l the

time spent by link l 6= li in the interval [aj, di] either idle (or serving packets k > i). We

have δli,l = Tli(a
+

i ) − Tl(a
+

i ). The packet i is delayed further if δli,l is maximum possible,

this essentially pushes further the delivery time of packet i, as some of the work (serving

packets j to i) that needs to be done on links l 6= li got pushed onto link li. If we denote

by F , the overall idle time in bits in the interval [aj, di] , we have F =
∑

l 6=li
δli,l ∗ Bl.

From lemma 1 (case1), we have δli,l ≤ Li/Bl. Thus F ≤ (N − 1)Li.

During the interval [aj, di], the system was busy serving load P , packets from j to i and either

staying idle or serving packets k > i. Hence, we have,

(dEDPF
i − aj)

∑

Bl =
i

∑

k=j

Lk + P + F

dEDPF
i ≤ aj +

∑i

k=j Lk
∑

Bl

+
Lmax(

∑

wl − 1)
∑

Bl

+
(N − 1)Li

∑

Bl

In case of ASL, dASL
i ≥ aj +

∑i
k=j Lk
∑

Bl
. Thus the theorem follows.

Details of proof for Theorem 4: The jitter experienced by a packet i is given by Ji = (ri −

ri−1)− (ai − ai−1). If the packet i is buffered, we will have ri = ri−1 and the jitter will be non

positive as ai ≥ ai−1. So in the proof below, we only look at the case where i is not buffered

i.e ri = di. Note that i − 1 could still be buffered. Also note that Ji is maximum when ri−1 is

minimum and ai = ai−1.

We consider the following 4 different cases based on whether packets i−1 and i are transmitted

on link hb.

Case 1. Both packets (i − 1) and i are transmitted on hb. If ri = di = ai + Li/Bmax i.e

packet i begins transmission immediately on arrival. Then Ji < Li/Bmax as ri−1 − ai−1 > 0.

Otherwise, we have di = di−1 + Li/Bmax. Since ai − ai−1 ≥ 0 and ri−1 ≥ di−1, we have

Ji ≤ di − ri−1 ≤ di − di−1 = Li/Bmax.
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Case 2. Packet (i − 1) is transmitted on hb and packet i is transmitted on some other link

(l 6= hb). Since we assume packet i is not buffered, di ≥ di−1. We have ai < di−1 as otherwise

packet i would have been transmitted on hb. Therefore di−1 = Thb(a
+

i ) and di = Tl(a
+

i ). From

lemma 1 (case1), we have di − di−1 = Tl(a
+

i ) − Thb(a
+

i ) ≤ Li/Bmax. Since ri−1 ≥ di−1,

Ji ≤ di − ri−1 ≤ di − di−1 ≤ Li/Bmax.

Case 3. The (i−1)th packet is transmitted on link l(6= hb) and the ith packet is transmitted on

hb. Let j < i − 1 be the packet that was transmitted latest on link hb. If di = ai + Li/Bmax, as

mentioned in case 1, Ji < Li/Bmax. Otherwise, if di > ai+Li/Bmax, we have di = dj+Li/Bmax.

Packet i−1 can be passed up only after j, hence ri−1 ≥ dj . Therefor, Ji ≤ di−ri−1 ≤ di−dj =

Li/Bmax.

Case 4. Packet (i − 1) is transmitted on link l(6= hb) and the packet i is transmitted on link

k(6= hb). Again let j < i− 1 be the packet that was transmitted latest on link hb. Since packet i

is not transmitted on hb, ai < dj . From lemma 1 (case1), we have dj = Thb(a
+

i ) and di = Tk(a
+

i )

and hence di−dj ≤ Li/Bmax. As before, ri−1 ≥ dj and hence Ji ≤ di−ri−1 ≤ di−dj = Li/Bmax.

Since, in all the four cases the bound holds, the theorem is proved.

Details of proof for Theorem 5: At any time t, let Tmax(t) = max{Tl(t)}. After t, any

packet transmitted on a link l 6= max, if it is delivered before Tmax(t) needs to be buffered.

Let δmax,l = Tmax(t)− Tl(t). Thus all packets transmitted on link l after t whose summation of

packet lengths is less than δmax,l∗Bl will need to be buffered. From lemma 1, δmax,l ≤ Lmax/Bl.

Thus the total buffer size would be
∑

l 6=max δmax,l ∗ Bl ≤
∑

l 6=max Lmax = (N − 1) ∗ Lmax.
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