
Internetworking

Kameswari Chebrolu Dept. of Electrical Engineering, IIT Kanpur

Service Model

- Underlying networks can
 - Lose packets
 - Reorder packets
 - Deliver same packet more than once
 - Can delay packets arbitrarily
- Connectionless Datagram service (Best Effort)
 - No state maintained in the network
 - Packet switching core
 - No guarantees to data delivery

Simple Internetworking

Advantages of Best-effort service

- Reconfigurable after a failure without concern for state
- Provides basic building block from which a variety of services can be implemented
- Minimum network service assumption helps in heterogeneous network integration
- IP can "run over anything"
 - Pigeon powered Internet: 1hr. 42 minutes to transfer 64 bytes

Addressing

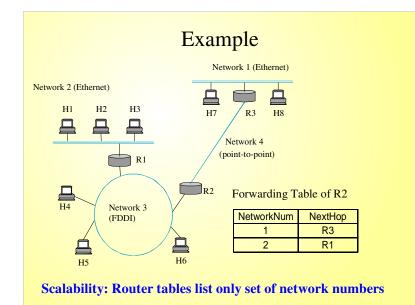
- Globally unique
- Hierarchical (32 bit binary number):
 - Consists of two parts: network and host
 - Network part: Identifies the network of the host
 - Host part: Identifies the host within the network
- IP address space divided into 5 classes (A,B,C,D,E)

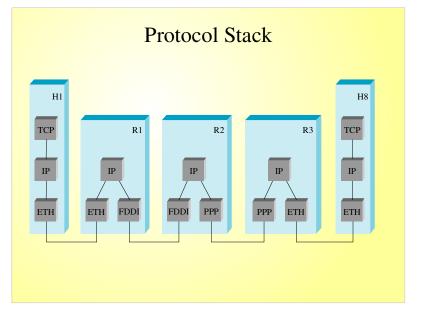
	7 24	
Class A	0 Network Host	10.0.0.1
	14 16	
Class B	14 16 1 0 Network Host	128.32.12.89
	21 8	
Class C	1 1 0 Network Host	192.43.54.06

Datagram Forwarding

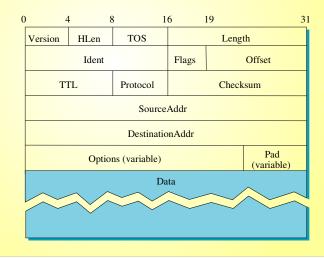
- Host
 - Computers that execute application programs on behalf of users
 - Examples: Personal computers, workstations, batch systems etc
- Routers
 - Building blocks that interconnect networks
 - Receive datagrams from hosts and routers on one network
 - Forward datagrams to hosts or routers on other networks

Datagram Forwarding Cont..


- Forwarding algorithms employed by hosts different from those of gateways
 - Number of hosts far exceed gateways
 - Algorithms change with time
 - Resource constraints


Host Forwarding

- On receipt of a packet
 - If (NetworkNum of destination = NetworkNum of my interface) then deliver packet to destination on that interface
 - else deliver packet to default router
- A host maintains a cache of recently used routes
- If cache lookup fails, use default router


Router Forwarding

- When a packet arrives at a router A,
 - If (NetworkNum of destination = NetworkNum of one of my interfaces) then deliver packet to destination on that interface
 - else chooses another router B, such that
 - B is closer to the destination address
 - B is directly reachable from G
- B is next hop for the packet
- Process of selecting next hop host or router is called ROUTING

IP Packet Format

Address Resolution Protocol (ARP)

- Translates IP addresses to link-level addresses
- Each host maintains a table of address pairs
 - Manual configuration is tedious
 - Dynamical learning of tables achieved by ARP
- ARP relies on broadcast
 - Broadcast request if mapping missing
 - Destination machines responds with the mapping
 - Table entries are discarded is not refreshed

Summary

- Problem: How to build huge networks by interconnecting smaller networks
- Challenges: Heterogeneity and Scale
- Solution: Internet Protocol (IP)
 - Connectionless datagram service
 - Hierarchical addressing
- ARP mechanism to translate IP to link-level addresses