Solution to Preliminary Test and Grading Scheme

1. $\sqrt{7}$. $\left[c^{2}=a^{2}+b^{2}-2 a b \cos C.\right]$
2. $\frac{x}{-4 / 3}+\frac{y}{16}=1$. [Verify that the point is on the curve. Find slope $\frac{d y}{d x}=12$ (at that point) and the tangent $y+8=12(x+2)$.
(5 marks)
Re-arrange the equation to get it in intercept form, or solve $y=0$ for x-intercept and $x=0$ for y-intercept.]
3. One. [Show that $g^{\prime}(t)<0 \forall t \in R$, hence g is strictly decreasing. Show existence. Show uniqueness.]
(5 marks)
Comment: Graphical solution is also acceptable, but arguments must be rigorous.
4. $4 \pi(9-2 \sqrt{6})$ or 16.4π or $51.54 \mathrm{~cm}^{3}$. $\quad\left[V=\int_{0}^{2 \pi} \int_{0}^{R_{h}} 2 \sqrt{R^{2}-r^{2}} r d r d \theta, R=3, R_{h}=\sqrt{3}\right.$. Sketch domain.
(5 marks)
$V=4 \pi \int_{0}^{R_{h}} \sqrt{R^{2}-r^{2}} r d r$, substitute $R^{2}-r^{2}=t^{2}$.
Evaluate integral $V=-4 \pi \int_{R}^{\sqrt{R^{2}-R_{h}^{2}}} t^{2} d t$.]
5. (a) $(2,1,8)$. [Consider $\vec{p}-\vec{q}=\vec{s}-\vec{r}$.]
(b) $\sqrt{3 / 5} . \quad\left[\cos Q=\frac{\overrightarrow{Q P} \cdot \overrightarrow{Q R}}{\|\overrightarrow{Q P}\| \| \overrightarrow{Q R \|}}\right]$
(c) $\frac{9}{5}(\mathbf{j}+2 \mathbf{k}) . \quad[$ Vector projection $=(\hat{Q P} \cdot \hat{Q R}) \hat{Q R}$.]
(d) $6 \sqrt{6}$ square units. $\quad[$ Vector area $=\overrightarrow{Q P} \times \overrightarrow{Q R}$.]
(e) $7 x+2 y-z=8$.
[Take normal \mathbf{n} in the direction of vector area and $\mathbf{n} \cdot(\mathbf{x}-\mathbf{q})$.]
Comment: Parametric equation $\mathbf{q}+\alpha(\mathbf{p}-\mathbf{q})+\beta(\mathbf{r}-\mathbf{q})$ is also acceptable.
(f) 14, 4, 2 on $y z, x z$ and $x y$ planes. [Take components of vector area.]
6. 1.625%. $\quad\left[A=\pi a b \Rightarrow \frac{d A}{A}=\frac{d a}{a}+\frac{d b}{b}\right.$.

Put $a=10, b=16$ and $d a=d b=0.1$.]
7. 9/2. [Sketch domain: region inside the ellipse $x^{2}+4 y^{2}=9$ and above the x-axis. (5 marks)

By change of order, $I=\int_{-3}^{3} \int_{0}^{\frac{1}{2} \sqrt{9-x^{2}}} y d y d x$.
Then, evaluate $I=\int_{-3}^{3} \frac{9-x^{2}}{8} d x$.]
8. Connect $(\infty, 1),(0,1),(-1 / 2,0),(0,-1),(\infty,-1)$ by straight segments. [Split: for $y \geq 0, y=$ $1+x-|x|$ and for $y<0, y=-1-x+|x|$.
(5 marks)
Next, split in x to describe these two functions.]
Comment: y is undefined for $x<-\frac{1}{2}$.

