Stiff Differential Equations

Let us consider the IVP
E+ct+kr=0, 20)=0, 20 =1, (1)

of a simple mass-spring-damper system, the re-
sponse of which we want to study. We consider
the following three cases of the parameter val-
ues. The obvious solutions are also given along-
side.

(a)c=3k=2 z=e'—e %,
(b) c =49, k =600: z=e 2 —¢e72" and

6_2t—6_300t
(¢) c =302, k =600: z= 503

Fig. 1 shows these solutions (by solid lines), their
components (by dashed and dotted lines) and
the nodes of an adaptive RK4 solution marked
with asterisks. 1]



(a) Case of ¢ = 3, (b) Case of ¢ = 49,
k=2 k = 600

(¢) Case of ¢ = 302, (d) Case (c) with
L = 600 implicit method

Figure 1: Solutions of a mass-spring-damper system

In case (a), the rate of decay of each compo-
nent as well as the complete solution is moder-
ate. Therefore, RK4 solves the case quite casu-



3

ally with the originally suggested mesh of ten in-
tervals, without subdividing any interval, which
is evident from the uniform spacing of the aster-
isks falling on the solution curve. 2]

In case (b), the spring is ‘stiffer’ compared to
case (a). So, the response changes more rapidly.
In the example, the damping coeflicient c is also
increased so as to keep the solution exponen-
tial, to make a reasonable comparison. Even it
c is kept small, the solution would still change
rapidly, except that it would oscillate. In any
case, in order to capture a rapidly changing so-
lution (or a component of it), it is reasonable to
expect adaptive RK4 to reduce the step size, as

noticeable from the higher density of asterisks in
the plot of Fig. 1(b). 3]

Note that the term ‘stiffness’ in the jargon of
differential equations owes its name to the stiff-
ness of this spring. Still, it can be argued that
case (b) in this example is qualitatively no dif-
ferent from case (a), except for a change in the
time scale. For example, if you measure time
in a different unit (say, in ‘deciseconds’, rather



4

than seconds), such that 7 = 10¢, then the ODE
becomes 2112;5 + 4.92? + 62 = 0, not very different
from case (a) in terms of the order of magnitude
of the coefficients. Therefore, in a true sense,
the ‘differential equation’ in case (b) is not really
stiff, even if the ‘spring’ is. Adaptive RK4 cor-
rectly reflects this fact by its successful solution
with reduced step size. Such cases do not pose
a great problem, because all components of the
solution changing equally fast also brings down
the total time span of the simulation that is rel-
evant. Similar is the situation with a single first
order ODE, any stiff behaviour of which results
purely from a gross difference of order between
its characteristic time scale and the duration for
which it is being integrated. 4]

The true colours of a stiff differential equa-

tion are exhibited in case (¢). The rapidly vary-

e300t

208 7

and there is a Slowl'y changing cc.nrnpoment7 Sog
that keeps on slogging and constitutes the com-
plete solution in the long run. Here, the ac-
tual solution, and its accuracy, depends upon the

dies down extremely fast
—2t

Ing component, —



5

slowly varying component, but the step size is de-
cided by the eigenvalue Ay = —300 correspond-
ing to the rapidly varying component, even af-
ter the ‘magnitude’ of that component has died
off. Apart from increasing the computational
cost, extremely small steps promote round-off er-
rors and collect a lot of garbage in the solution.
This is why adaptive RK4 produces innumerable
small steps in this case and fails to capture the
actual solution, as evident from a high density
of asterisks in Fig. 1(c), most of them in wrong
places. In this trivial case, we clearly know the
source of the trouble. In an actual (nonlinear)
problem, it may not be possible to decouple the
components, so there is no question of solving
the components separately. 5]

Note that a change in the time scale will
not help in case (¢). But, an implicit method
will. To complete this study, observe the solution
of the equation of case (¢) by backward Euler’s
method in Fig. 1(d). In this case, the accuracy is
reasonable (with a step size of 0.05) and stability
is perfect. 6]



6

Thus, to summarize, a stiff system of dif-
ferential equations is characterized by solution
components with widely varying rates of change,
or widely varying orders of magnitude of the
eigenvalues of the Jacobian g}f,. For such a sys-
tem, the slowly varying components make it nec-
essary to solve the system for a sufficiently large
domain, while the rapidly varying components
put a severe limitation on the allowable step size
of explicit methods. As a result, the solution pro-
cess becomes extremely inefficient on one hand,
while round-off errors spoil the solution quality
on the other. Therefore, explicit methods are not
suitable for solving stifft ODE systems. Implicit
methods are found stable and fairly insensitive
to the stiffness of a problem. 7]

Then, what do you do with your old RK4?
Should you pack it off from your desk? Quite
the contrary. For most of the routine problems
that you encounter, adaptive RK4 is likely to be
applicable and efficient. Therefore, if you con-
tinue using it for the usual ODE solutions as
a routine matter, you enjoy our full moral sup-



7

port. But, when you encounter a stiff system,
if you still insist on executing a billion steps of
picoseconds, then we revise our moral support.
In such a situation, you should switch over to an
implicit method, the higher cost of which ‘per
step” will bring a huge payoff. 8]

In actual serious computational research, you
are likely to use professional library routines for
solving your ODE systems. The programmers of
those routines know the programs better. But
you know your system. Depending upon the na-
ture of your problem and also upon the diagnosis
of test runs, you need to call the correct library
routines, in the correct manner. For example, an
implicit method needs the Jacobian, and a cor-
responding library routine may ask for it. It may
not be very difficult to estimate the Jacobian by
finite differencing f(x,y) itself, but it will be of
overall advantage, if you can provide a more ef-
ficient and accurate Jacobian, possibly based on
analytical derivatives. 9]

Professional stift ODE solvers do not treat
the modest backward Euler’s method as the last



8

word, of course. Implicit generalizations of Runge-
Kutta and Bulirsch-Stoer methods are typically
employed for the purpose. Among multi-step
methods, Gear’s backward differentiation method
is found suitable for stiff problems. See [?, 7, ?,
?], if you are interested in details. 10]

Before we close the topic, we need to discuss
one important point. How to choose an appro-
priate step size in an implicit method? As you
can see from Fig. 77, there is no upper limit
on the step size from the stability requirement.
But, accuracy suffers if a large step size is cho-
sen. Besides, large steps may not be efficient,
either. With a large step size, Newton’s method
may need more iterations to solve Eqn. 77, and
its convergence properties may also suffer. Thus,
there is a trade-off between the number of steps
and the necessity of keeping Newton’s method in
the safe ‘local’ zone, besides the lower limit on
step size in the presence of any positive eigen-
value. As you know, there is no free lunch. We
simply look for good and cheap restaurants. [11]



