Shaking Table Studies of Shear-Link Braced Frame

Praveen Kiran Annam and Durgesh C Rai Department of Civil Engineering, Indian Institute of Technology Kanpur

SLBF Specimen Mounted on the Shaking Table

12 m

Prototype Building In N-S direction, the bracing frame systems were designed to 18 m provide the code IS 1893 (Zone V) level lateral resistance.

Earthquake Simulation Test Program

Taft earthquake time axis was compressed by applying a scale factor of $1/\sqrt{24}$ 1111

Second Floo

0.8 0.9 1 PGA(g)

D OCB

• SLBF

Comparison of OCBF and SLBF

Peak Response value of Floor Accelerations

Base shear **Overturning Moment** PGA(g) **Increasing Severity Increasing Severity**

The SLBF system showed a significantly enhanced performance compared to OCBF system in terms of lower floor accelerations, base shear and overturning moment.

Shear-links at Different Excitation Levels

Shear-links after TAFT-17 test (model PGA=1.7g and prototype PGA=0.85g)

First Storey

Second Storey

Conclusions

- The SLBF system attracted lees base shears during all simulation tests. Moreover, the peak base shears were observed to be progressively decreasing with increasing severity of ground motion.
- Overturning moments and floor accelerations of SLBF were also substantially smaller than OCBF.
- Inelastic activities were confined to shear-link in SLBF, while the other structural members remained in the elastic range even upto 1.7g PGA of simulated motions.

Acknowledments

The Ministry of Human Resource Development of Government of India, New Delhi provided funds for the research.