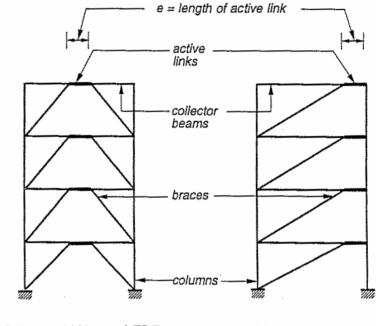


### Development of Design Provisions of Eccentric Braced Frames

Presented by - Manjari Guided by - Dr. Dugresh C. Rai




• To develop design provisions of eccentric braced frames as per Indian standards

### **Eccentric Braced Frames**

- Braced frame in which at least one stable deformable link is formed in the beam.
- Incorporates both stiffness and ductility into a single bracing system
- Deliberate eccentricity is introduced

### **Structural Elements**

- Link
- Collector Beam
- Brace
- Column
- Connections



(a) inverted V-braced EBF

(b) D-braced EBF

### Classification

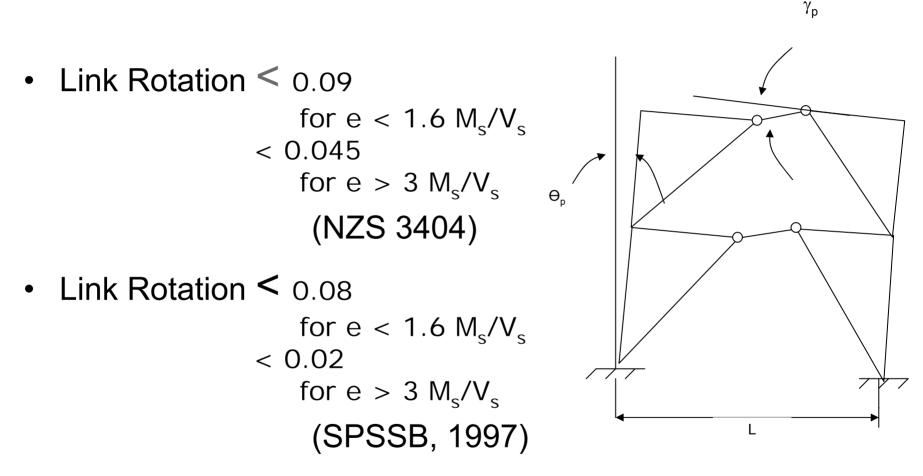
• Eccentric Flexure Braced Frames

• Eccentric Shear Braced Frames

# **Design Philosophy**

- The active link is primary seismic energydissipating element
- All other members are designed to resist the over strength design action generated by yielding of the active link plus design gravity loading.

### **Comparison of Codes**


### • Link:

| Mode of failure of<br>link      | New Zealand Standard<br>3404                      | Uniform Building<br>Code 1994                                                                                 | Seismic Provisions<br>for Struc. Steel<br>Building, AISC |
|---------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Shear Yielding                  | $e < =1.6 M_{s}/V_{s}$                            | e<1.3 M <sub>s</sub> /V <sub>s</sub><br>(recommended<br>upper limit)<br>e< 1.6 M <sub>s</sub> /V <sub>s</sub> | e< 1.6 M <sub>s</sub> /V <sub>s</sub>                    |
| Balanced yielding               | $e = 2 M_s / V_s$                                 | $e= 2 M_s/V_s$                                                                                                | $e = 2 M_s / V_s$                                        |
| Flexural Yielding               | $e > 3 M_s/V_s$                                   | $e > 3 M_s/V_s$                                                                                               | $e > 3 M_s/V_s$                                          |
| Link Rotation Angle<br>(radian) | 0.09<br>for e < 1.6 $M_s/V_s$                     | 0.06                                                                                                          | 0.08<br>for e < 1.6 $M_{s}/V_{s}$                        |
|                                 | 0.045<br>For e > 3 M <sub>s</sub> /V <sub>s</sub> |                                                                                                               | 0.02<br>For e > 3 $M_s/V_s$                              |

### Link contd..

- The web of link should be single without doubler plate.
- Shear Section capacity is equal to nominal shear strength as per NZS 3404
- Shear section capacity is equal to 0.9 times nominal shear strength as per SPSSB.

### Link contd..



where  $\gamma_p$  = ( L/e) \*  $\Theta_p$ 

### **Link Stiffener**

 Full depth web stiffeners should be provided on both the sides of the link web at the diagonal brace ends of the Link.

| Stiffener<br>dimensions | New Zealand<br>Standard 3404                                                                                                   | Seismic<br>Provisions for<br>Struc. Steel<br>Building, AISC                                                                   |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Thickness               | > 0.75 t <sub>w</sub>                                                                                                          | >Min (0.75 t <sub>w</sub> , 3/8<br>in)                                                                                        |
| Combined<br>Thickness   | $>b_{f}-2 t_{wb}$                                                                                                              | $> b_f - 2 t_{wb}$                                                                                                            |
| Spacing                 | < (38 t <sub>wb</sub> – d <sub>b</sub> /5) for<br>0.09 radian<br>< (56 t <sub>wb</sub> – d <sub>b</sub> /5) for<br>0.03 radian | < (30 t <sub>wb</sub> – d <sub>b</sub> /5)for<br>0.08 radian<br>< (52 t <sub>wb</sub> – d <sub>b</sub> /5)<br>for 0.02 radian |

## Link to Column Connection

- When the link is adjacent to column, the welds should be designed for over strength shear capacity of member web as per NZS 3404.
- Rotation capability is enhanced by 20% of design Story Drift as per SPSSB, AISC (1997).

## Lateral Support of Link

- Top and bottom flange of EBF active link members shall be laterally restrained at ends of active link.
- Design strength of end support should be 6% of the expected nominal strength of the link flange as per SPSSB.
- The design axial force shall be equal to 2.5 % of beam flange design capacity with a lateral displacement of 4mm as per NZS 3404.

 Study of codes suggests that guidelines have very slight variations at few places and are similar to a great extent.

### Link:

- Compact section
- Specified minimum yield stress of steel used for Link shall not exceed 350 Mpa.
- Single thickness web

Nominal Section Capacities:

- a) Required shear strength, Vu of the link shall not be greater than design shear strength of the link.
  Vn = Min (Vs, 2 Mp/e)
  Vs = fy Av/√3
  - Vd = Vn/ mo

Where

Vs = nominal shear strength of link

Vd = design shear strength of link

b) Nominal Moment capacity

```
If n < 0.2
Mndy = Mdy
If n > 0.2
Mndy = 1.56 Mdy (1-n) (n+0.6)
Where
N = axial force applied on link
Nd = design axial force
```

- Length of link should not exceed-[1.15 - 0.5  $\rho(A_w/A_g)$ ]1.6  $M_s/V_s$  for  $\rho(A_w/A_g) > 0.3$ 1.6  $M_s/V_s$  for  $\rho(A_w/A_g) > 0.3$
- Minimum length of the link shall not be less than the depth of the beam.

- Link Rotation Angle
  - $\gamma_p$  < 0.09 radians when e < 1.6 M<sub>s</sub>/V<sub>s</sub>
    - $\gamma_p$  < 0.045 radians when e > 3 M<sub>s</sub>/V<sub>s</sub>
- Interpolation shall be followed for  $\gamma_p$  when link length lies between 1.6 M<sub>s</sub>/V<sub>s</sub> to M<sub>s</sub>/V<sub>s</sub>
- If link is connected to column flange and e < 1.6  $M_s/V_s$ ,  $\gamma_p$ < 0.09 radians
- if link is connected to column web and e < 1.6 Ms/Vs,  $\gamma_p$ < 0.045 radians

### **End Stiffeners**

- Full depth end stiffeners shall be provided both sides on diagonal brace ends of link web.
- The combined width >  $(b_f 2t_w)$
- thickness >  $0.75 t_w$ .

### **Intermediate Stiffeners:**

a)  $e < 1.6 M_s/V_s$ 

- Spacing of intermediate stiffeners should not exceed  $(30t_w d/5)$  for link rotation angle of 0.09 radians and  $(56t_w d/5)$  for link rotation angle 0.03 radians.
- The combined width of these stiffeners shall not be less than (bf-  $2t_w$ ) and thickness shall not be less than 0.75  $t_w$ .

#### b) e> 2.6 Ms/Vs

In this case, Intermediate stiffeners shall be provided at a distance of  $1.5 b_f$  from each end of link.

c)1.6 Ms/Vs < e < 2.6 Ms/Vs

Stiffeners provided shall meet the requirements of both a) and b).

d) e > 5 Ms/Vs

Intermediate stiffeners are not required in this case.

- Intermediate stiffeners shall be of full depth.
- If depth of link < 650 inches, stiffeners are required only on one side of web.

if depth of link > 650 mm stiffeners shall be provided on both sides of link web.

• Thickness of one sided stiffeners > t<sub>w</sub>

• width > { (bf/2) - 
$$t_{w_{-}}$$
 }

- Design strength of fillet weld which connects the link stiffener to web of link shall be able to withstand a force of f<sub>v</sub> A<sub>st</sub>.
- fillet weld which connects link stiffener to flanges of link shall be able to resist a force of fy f<sub>y</sub> A<sub>st</sub> /4.

### Link to Column Connection:

 Link to column connection should be designed for 20% greater than required inelastic rotation capability.

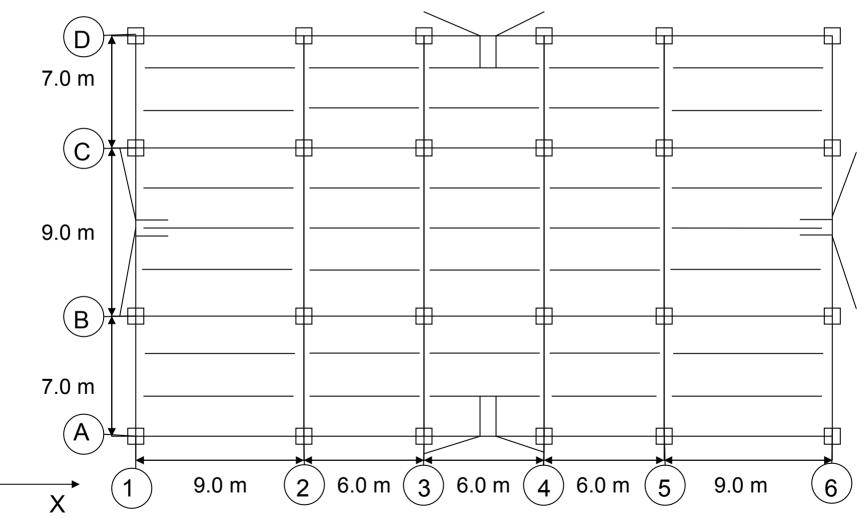
### Lateral Support

- Top and bottom flange of EBF active link members shall be laterally restrained at ends of active link.
- Design strength of end support should be 6% of the expected nominal strength of the link flange.
- The design axial force shall be equal to 2.5 % of beam flange design capacity with a lateral displacement of 4mm.

### **Diagonal Brace and Beam Outside the Link**

- Design axial and flexural strength should be 25 % more than the axial forces and moments generated by nominal shear strength of link to account for strain hardening.
- Beam outside the link shall be designed to withstand the forces generated by at least 1.1 times the nominal shear strength of link.

### Column


- Design of the column shall take demand generated by coincident formation of yielding regions in link at appropriate number of levels.
- Design strength of column shall not be less than that required by 1.1 times of nominal strength of link to account for strain hardening.

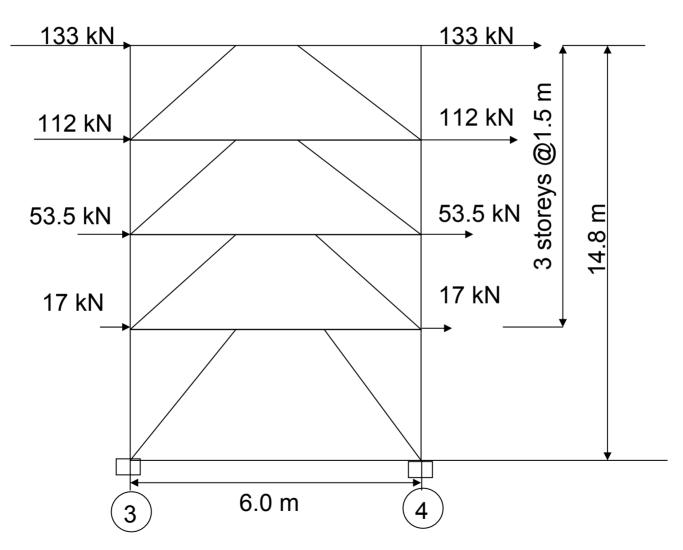
### **Problem statement**

Plan Dimension of a four storey building is given. The height of first storey of building is 4.3 m and rest of storeys are 3.5 m each. Building is located in seismic zone III on a site with medium soil. Design the building for seismic loads.

#### **Plan of Building**

Y




| Loads:                       |          |                   |
|------------------------------|----------|-------------------|
|                              |          |                   |
| Roof Loading:                |          |                   |
|                              |          | 2                 |
| Roofing and insulation       | 0.3      | kN/m <sup>2</sup> |
| Metal deck                   | 0.1      | kN/m <sup>2</sup> |
| Concrete fill                | 2.1      | kN/m <sup>2</sup> |
| Ceingling and mechanical     | 0.2      | kN/m <sup>2</sup> |
| Steel framing and fire proof | fing 0.4 | kN/m <sup>2</sup> |
| Total Dead Load              | 3.2      | kN/m <sup>2</sup> |
|                              |          |                   |
| Live Load                    | 1.0      | kN/m <sup>2</sup> |
| Toal Load                    | 4.2      | kN/m <sup>2</sup> |
|                              |          |                   |

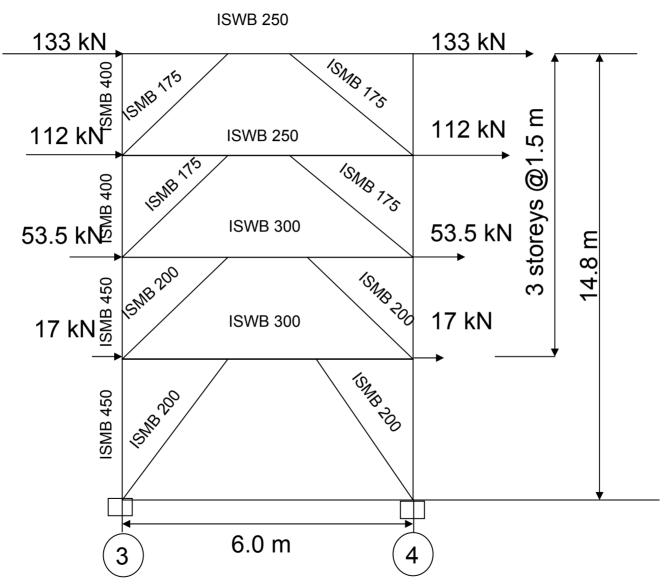
| Floor Loading:           |     |                   |
|--------------------------|-----|-------------------|
| Matal da alz             | 0.1 | kN/m <sup>2</sup> |
| Metal deck               | 0.1 | KIN/III           |
| Concrete fill            | 2.1 | kN/m <sup>2</sup> |
| Ceingling and mechanical | 0.2 | kN/m <sup>2</sup> |
| Partition Load           | 1.0 | kN/m <sup>2</sup> |
| Steel framing inc.beams  | 0.6 | kN/m <sup>2</sup> |
| and columns              |     |                   |
| Total Dead Load          | 4.0 | kN/m <sup>2</sup> |
|                          |     |                   |
| Liave Load               | 2.4 | kN/m <sup>2</sup> |
| Total Load               | 6.4 | kN/m <sup>2</sup> |
|                          |     |                   |
| Wall:                    |     |                   |
| Avergae weight           | 0.7 | kN/m <sup>2</sup> |
|                          |     |                   |

## **Design Steps**

- Calculation of Seismic weight of building
   Total weight of building = 16335 kN
- Calculation of lateral load
   Lateral Load = 1225 kN
- Vertical and horizontal distribution of load






## **Design Steps**

- Calculation of beam gravity load
- Calculation of column gravity load

## **Design Steps**

- Determination of shear force in the link  $V_u = F_x h/L$
- Link design as per required shear capacity
- Collector beam design check
- Design of Braces
- Design of Column

### Design



### References

- Egor P.Popov, Michael Engelhardt "seismic Eccentrically Braced frames", J Construct, Steel research, 1998.
- Steel Structures Standards, New Zealand Standards, NZS 3404 part 1, 1997
- Criteria for Design for earthquake Resistant Design of Structure, IS 1893 (part 1), 2002.
- Uniform Building Code, Vol 2, 1997
- Becker, Isher "Seismic Design Practice for Eccentrically Braced Frames", Steel Tips, 1996
- Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction Inc, 1997.
- Duggal S.K, "Design of Steel Structures", 2<sup>nd</sup> edition
- HERA design guide R4-76 "Seismic Design of Steel Structures"

### **THANK YOU!**