PSet-01, Due on 19/08/2023, 11PM

[42 points], Kindly put in my mailbox near FB-382

- 1. Argue Kepler's law from dimensional analysis starting from $F \propto 1/r^2$. What kind of scales are being ignored? [2 pts]
- 2. Prove that Fourier transform of $K^{-1}(r-r')$ is given by $1/\tilde{K}(k)$ where $\tilde{K}(k)$ is the Fourier transform of K(r-r'). [1 pt]
- 3. List all the typos that you spot in https://www-thphys.physics.ox.ac. uk/people/JohnCardy/rgft.pdf [4 pts]
- 4. You have seen that the tree level RG eigenvalue of the ϕ^4 coupling is $4 \mathcal{D}$ in \mathcal{D} dimensions. Find the tree level RG eigenvalue of the coupling corresponding to a term of the form $\nabla^m \phi^n$. [2 pts]
- 5. Perturbative RG
 - (a) Consider

$$Z = \operatorname{Tr} e^{-H_* - \sum_i g_i \sum_r a^{\Delta_i} \phi_i(r)}$$

around the fixed point. $\phi_i(r)$ are scaling operators of dimension $(\text{length})^{-\Delta_i}$. What is the dimension of g_i ? [1 pt]

- (b) Expand Z in powers of g_i . Show that the linear order term can be expressed as sum (both over *i* as well as lattice sites *r*) of one point functions. Write the expansion till $O(g_ig_jg_k)$. Express in continuum limit, i.e. replace the lattice sum \sum_r appropriately. Note that the continuum integrals have in-built in them the lattice cut-off, points cannot come closer than a. [3 pts]
- (c) Note, that we are expanding analytically in g_i of a function around a point where it is supposed to be non-analytic in g_i [since this is a critical point]. What is the resolution to this puzzle? [2 pts]
- (d) Now change cut-off : $a \to a + \delta l$ and let us ask how g_i need to change to preserve Z. First identify where a dependence comes in both explicitly as well as implicitly.
 - i. Show that the explicit dependence can be compensated via $g_i \rightarrow g_i + (\mathcal{D} \Delta_i)g_i\delta l$ in the infinitesimal δl limit. Next the implicit dependence which enters through the continuum integrals :

$$\int_{|r_1 - r_2| > a(1 + \delta l)}$$

can be made to look like the older cut-off by doing the split :

$$\int_{|r_1 - r_2| > a(1 + \delta l)} = \int_{|r_1 - r_2| > a} - \int_{a(1 + \delta l) > |r_1 - r_2| > a}$$

. The first term gives back original contribution as the second order term in $O(g_ig_j)$, for the shell integral term, find how this can be re-absorbed by change of coupling into the one-point function term. Hint: Use

$$\phi_i(r_1)\phi_j(r_2) = \sum_k c_{ijk}\phi_k(\frac{r_1+r_2}{2}).$$

and split integrals $d^{\mathcal{D}}r_1d^{\mathcal{D}}r_2$ into sum and difference variables and do integral over the difference. [3 pts]

ii. Plugging everything together derive:

$$dg_k/dl = (\mathcal{D} - \Delta_k)g_k - \sum_{ij} c_{ijk}g_ig_j$$

[2 pts]

- 6. Prove that the density of states in momentum space for $\Delta = 2$ can be expressed as convolution of two δ functions. [2 pt]
- 7. Special conformal transformations (SCT):
 - (a) Derive the constrained form for $c_{\mu\nu\rho}$ which parametrizes the quadratic part of ϵ_{μ} . What degree of freedom is still left? [2 pt]
 - (b) From here derive $\delta x^{\mu} = 2(x \cdot b)x^{\mu} b^{\mu}x^2$. [2 pt]
 - (c) Under the SCT show that the metric indeed changes by a conformal factor $\Lambda(x) = (1 2b \cdot x + b^2 x^2)^2$. [2 pt]
 - (d) From the definition of generator : $iG^a\phi = \frac{\delta x^a}{\delta\epsilon^a}\partial_\mu\phi \frac{\delta R}{\delta\epsilon^a}$ assuming that field does not change, derive : $K_\mu = -i(2x_\mu x^\nu \partial_\nu x^2 \partial_\mu)$. [3 pt]
 - (e) Derive the relationship of |x'_i x'_j| in terms of |x_i x_j| under SCT.
 [3 pt]
 - (f) Starting from assuming the action of conformal generators at x = 0 find action $K_{\mu}\phi(x)$. [4 pt]
 - (g) Verify the commutator : $[K_{\mu}, P_{\nu}]$ and $[K_{\mu}, L_{\rho\sigma}]$. [2+2 pt]