PSet-02 \& 03, Due on 27/09/2023, 11PM

[42+35 points], Kindly put in my mailbox near FB-382

1. Derive the z^{-1} term in the $T(z) \phi(0)$ operator product expansion, using the same annulus construction as done in class for dilatations to generate the $1 / z^{2}$ term. In this case, use translations, which means α^{μ} is independent of z, thus get the term from a statement on the contour integral of just $T(z) \phi(0) .[2 \mathrm{pts}]$
2. (a) Find the Schwartzian for the transformation:

$$
z \rightarrow \frac{a z+b}{c z+d}
$$

[1 pts]
(b) Given $\langle T\rangle=0$ on the full complex plane, find its value under the map : $z \rightarrow e^{2 \pi z / \beta}$. [2 pts]
3. Consider the CFT Hamiltonian (with space being on a circle of circumference L) : $H=\int_{0}^{L} h(x) d x$.
(a) This in terms of generators is proportional to $L_{0}+\bar{L}_{0}$. Derive this. [1 pts]
(b) Let us now deform the Hamiltonian to

$$
H_{1}=\int_{0}^{L} 2 \sin ^{2}\left(\frac{\pi x}{L}\right) h(x) d x
$$

Write the Hamiltonian that you get in terms of the Virasoro generators. [3 pts]
(c) After going to the plane, find a further conformal transformation, such that in the new frame the Hamiltonian once again becomes proportional to $L_{0}^{\prime}+\bar{L}_{0}^{\prime}$. [5 pts]
(d) Consider the evolution operator $U(T)=e^{-i H_{1}\left(T-t_{0}\right)} e^{-i H t_{0}}$. Find the correlator :

$$
\left\langle\left(U(T)^{\dagger}\right)^{n} O_{h, \bar{h}}\left(z_{1}\right)(U(T))^{n} O_{h, \bar{h}}\left(z_{2}\right)\right\rangle .
$$

[10 pts]
4. Write a Mathematica or a Python code from scratch, that will take as an input a series of positive and negative integers in the format, e.g.:

```
>> 2, 3, 5, 7, -4, -10, -3
```

And output the result of the correlator:

$$
\langle 0| L_{2} L_{3} L_{5} L_{7} L_{-4} L_{-10} L_{-3}|0\rangle
$$

Please email the code to sarkara@iitk.ac.in. [5 pts]
5. Express in terms of local fields, $\phi_{n}^{\left(k_{1}, k_{2} \ldots\right)}(z)$ and its derivatives the result of infinitesimal conformal transformation parametrized by $\epsilon(z)$ on :

$$
\prod_{k=1}^{N}\left(L_{-k}(z)\right)^{j_{k}} \phi_{n}(z)
$$

[13 pts]

PSet-03

1. Write a Mathematica or a Python code from scratch, that will take as an input three sets of negative integers in the format, e.g.:
```
>> -4, -3, -2
>> -2
>> -5, -7
```

Next it will take as an input the values of conformal dimensions of three primary operators, e.g.,
>> 2.62, 1.32
>> 1, 0
>> 23.54, 0.23
And output the result of the correlator modulo the OPE coefficient:

$$
\left\langle\phi_{1}^{(-4,-3,-2)}\right| \hat{L}_{-2} \phi_{2}(1)\left|\phi_{3}^{(-5,-7)}\right\rangle .
$$

In the above example the conformal dimensions are : $h_{1}=2.62, \bar{h}_{1}=1.32$ and so on. Remember to take into account the correct definition of the conjugate state, i.e., along with appropriate normalizations. Please email the code to sarkara@iitk.ac.in. [20 pts]
2. Write a code that will compute the (holomorphic) Kac matrix and the determinant at level N for highest weight h which will be taken as an input from the user. Please email the code to sarkara@iitk.ac.in. Estimate the complexity of your code. [10 pts]
3. Consider a state :

$$
\left|\psi_{n}\right\rangle=L_{-2 n}|h\rangle+a L_{-n}^{2}|h\rangle
$$

Derive the value (real) of a which minimizes the norm of this state. [5 pts]

