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The supersymmetry algebra and its representation theory is introduced. We construct Lagrangian
theories which are simultaneously invariant under supergauge transformations and under Yang-
Mills transformations. Finally, a few properties of the N = 4 Super Yang-Mills theory, such as its
spectrum, conformal invariance and its importance in the AdS-CFT correspondence are summarised.

INTRODUCTION

The familiar conserved quantities, such as energy-
momentum, angular momentum, and charge, transform
as vectors, tensors, and scalars under the Lorentz group.
It is also possible for a conserved quantity to transform
as a spinor. The Haag-Lopuszanki-Sohnius theorem[1]
states that such fermionic symmetry generators can only
belong to the (0,1/2) and (1/2,0) representations and
that the supersymmetry algebra generated by them is
the only symmetry of the S-matrix consistent with rel-
ativistic quantum field theory. In this report, we shall
discuss this algebra and its consequences.

We first present the supersymmetry algebra:

{Qαr, Q̄β̇s} = 2σµ

αβ̇
Pµδrs

{Qαr, Qβs} = {Q̄α̇r, Q̄β̇s} = 0

[Pµ, Qαr] = [Pµ, Q̄α̇r] = 0

(1)

The indices (α, β, . . . , α̇, β̇, . . . ) run from one to two and
denote two-component Weyl spinors. Those with dotted
indices transform under the (0, 1/2) representation of the
Lorentz group, while those with undotted indices trans-
form under the (1/2, 0) conjugate representation. The
indices r, s, . . . distinguish different generators; they run
from 1 to some number N ≥ 1. The algebra with N = 1
is called the supersymmetry algebra, while those with
N > 1 are called extended supersymmetry algebras.

REPRESENTATIONS OF THE
SUPERSYMMETRY ALGEBRA

The energy-momentum four-vector Pµ commutes with
the supersymmetry generators Qαr and Q̄α̇r. The mass
operator P 2 is a Casimir operator, so irreducible rep-
resentations of the supersymmetry algebra are of equal
mass. We shall construct these irreducible representa-
tions considering fixed timelike and null momenta. It
can be proved that every such representation contains an
equal number of bosonic and fermionic states (see Ap-
pendix A).

Massive states Consider a massive, one-particle state
with P 2 = −M2. Boost to the rest frame, where Pµ =

(−M, 0, 0, 0). (1) becomes

{Qαr, Q̄β̇s} = 2Mδαβ̇δrs

{Qαr, Qβs} = {Q̄α̇r, Q̄β̇s} = 0.
(2)

Rescale the generators

aαr =
1√
2M

Qαr

a+αr =
1√
2M

Q̄α̇r

(3)

to show that (2) is isomorphic to the algebra of 2N
fermionic creation and annihilation operators:

{aαr, a+β̇s} = δαβ̇δrs

{aαr, aβs} = {a+α̇r, a
+

β̇s
} = 0.

(4)

The representations of this algebra are well known. They
are constructed from a ’vacuum’ Ω, defined by the con-
dition

aαrΩ = 0.

The states are built by applying the creation operators:

Ω(n)α1...αn
r1...rn =

1√
n!
a+α1r1 . . . a

+
αnrnΩ.

Because the a+αr anticommute, Ωn is antisymmetric un-
der the exchange of two pairs of indices αiri, αjrj . Each
pair of indices takes 2N different values, so n ≤ 2N . For
any given n, there are

(
2N
n

)
different states. Summing

over all n, gives the dimension of the representation to
be 22N . The state with the highest spin is obtained by
symmetrizing in as many spinor indices as possible. Be-
cause we simultaneously antisymmetrize in the second
index, we may only symmetrize in N spinor indices. This
leads to spin- 12N . The highest spin in the above irre-
ducible massive multiplet is then j + 1

2N , where j is the
spin of Ω; it occurs exactly once.
Massless states We shall now analyze the mass-

less case, P 2 = 0. Boost to the frame where Pµ =
(−E, 0, 0, E). (1) becomes

{Qαr, Q̄β̇s} = 2

(
2E 0
0 0

)
δrs

{Qαr, Qβs} = {Q̄α̇r, Q̄β̇s} = 0.

(5)
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The operators Q2r and Q̄2̇r are totally anticommuting
and must therefore be represented by zero. Rescale the
generators

ar =
1

2
√
E
Q1r

a+r =
1

2
√
E
Q̄1̇r

(6)

to show that (2) is isomorphic to the algebra of N
fermionic creation and annihilation operators:

{ar, a+s } = δrs

{ar, as} = {a+r , a+s } = 0.
(7)

As before, the operators ar and a+r raise and lower the
helicity of a state by 1

2 and we have

arΩλ = 0

for the state of lowest helicity, say, λ. The states are built
by applying the creation operators on the vacuum Ωλ:

Ω
(n)

λ+ 1
2n,r1...rn

=
1√
n!
a+r1 . . . a

+
rnΩλ. (8)

This state has helicity λ + 1
2n, is antisymmetric in

r1, . . . , rn, and is
(
N
n

)
-times degenerate. The state with

highest helicity in this representation has helicity λ̄ =
λ+ 1

2N , The representation has dimension 2N , so we see
that one massive representation splits into 2N massless
representations. In CPT-invariant theories, the number
of states must be doubled, for CPT reverses the sign of
the helicity; except if the multiplet is already CPT com-
plete.

We showed that the dimension for massless represen-
tations is 2N . A corollary of a theorem of Weinberg
and Witten[2] is : A quantum field theory without grav-
ity cannot contain massless states with helicity |λ| > 1.
λ̄ = λ+ 1

2N then shows that we must have N ≤ 4.

Note that the SUSY algebra (1) is invariant under a
group U(N) of internal symmetries

Qαr →
∑
s

VrsQas,

with Vrs an N ×N unitary matrix. This is known as R-
symmetry. It may or may not be a good symmetry of the
action. (For N = 4, we will see that the diagonal U(1) is
broken, and only SU(4) acts as an internal symmetry.)
For N = 1, the conserved bosonic charge is called R:

[Qα, R] = Qα, [Q̄α̇, R] = −Q̄α̇.

N = 4 SPECTRUM

As told above, the N = 4 case is maximal. Clearly
there is only one possible supermultiplet, having λ = −1,
λ̄ = 1. From (8) we see that this supermultiplet contains
1 boson of each helicity ±1, 4 fermions of each helicity
±1/2, and 6 bosons of helicity 0. This is a gauge multiplet
because it contains helicity-1, and we conclude that the
only interaction can be that of a non-Abelian gauge field
Aµ, in interaction with itself and its superpartners in the
multiplet, the four fermions and six scalars, all in the
adjoint representation of the gauge group.
We will restrict ourselves to U(N) as the gauge group.

As told above the field content is:

1. Gauge field Aµ : µ = 0, . . . , 3 is a Lorentz vector
index.

2. Weyl spinors λi
α : i = 1, . . . , N = 4, α is a spinor

index.

3. Scalars Xi : i = 1, . . . , 6.

As the gauge field is necessarily in the adjoint repre-
sentation of the gauge group U(N), all of these fields
are N × N matrices in the adjoint representation. The
R-symmetry is SU(4) (not U(4); can be seen from the
Lagrangian (9): any further U(1) does not leave it in-
variant), it acts on the fermions λi

α in the fundamental
representation of SU(4). Indeed SU(4) ∼ SO(6) and the
fundamental representation of SU(4) is the spinor rep-
resentation of SO(6). From (8), the X’s are obtained by
the action of two antisymmetrized Q’s on the (SU(4) sin-
glet) Aµ, we expect it to transform in the antisymmetric
tensor representation of SU(4). This works out to be the
standard vector 6 of SO(6), which acts on the i index on
Xi.
The Lagrangian density (which is completely deter-

mined by SUSY, up to the parameter g) is

L =
1

g2
(Tr[F 2 + (DXi)2 + iλ̄��Dλ

−
6∑

i<j

[Xi, Xj ]2.
(9)

The superpotential V = 1
g2Tr

∑6
i<j [X

i, Xj ]2 is non-
negative.
Suppressing the indices and Pauli matrices, the SUSY

transformation laws essentialy are:

[Q,X] = λ

{Q,λ} = F+ + [X,X]

{Q, λ̄} = DX

[Q,A] = λ

(10)

(9) is the most general renormalizable Lagrangian den-
sity consistent with N = 4 supersymmetry.
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CONFORMAL INVARIANCE OF N = 4 SYM

The beta function for N = 4 Yang-Mills (9) vanishes
identically by cancellation between the gauge field and
matter contributions. Consequently, the coupling con-
stant is scale-independent and the theory is conformally
invariant.1

We will show that the 1-loop β function forN = 4 SYM
vanishes. For a gauge theory with Nf Weyl fermions and
Ns complex scalars([4]),

µ
dg

dµ
= − b

16π2
g3 +O(g5), (11)

where

b =
11

6
T (adj)− 1

3

∑
a

T (ra)−
1

6

∑
n

T (rn) (12)

a runs over fermions, n over scalars, and T (r) is the
Dynkin index of the representation r. In our case ev-
erything is in the adjoint, and we obtain

b =
T (adj)

6
(11− 2Nf −Ns). (13)

In our case Nf = 4, Ns = 3, giving b = 0.
A similar argument shows that the 3-loop contribution

to the β-function also vanishes([5]). A non-perturbative
proof can be found in [7].

Therefore N = 4 SYM has the following symmetries:

1. Conformal Symmetry, forming the group
SO(2, 4) ∼ SU(2, 2) is generated by transla-
tions Pµ, Lorentz transformations Jµν , dilations D
and special conformal transformations Kµ,

2. R-symmetry, forming the group SO(6) ∼ SU(4),

3. Poincaré supersymmetries generated by the super-
charges Qαr and their adjoints Q̄α̇r, r = 1, . . . , 4,

4. Conformal supersymmetries generated by the su-
percharges Sαr and their adjoints S̄α̇r. The pres-
ence of these symmetries results from the fact
that the Poincaré supersymmetries and the spe-
cial conformal transformations Kµ do not com-
mute.(Because [Q, Q̄] = P and [P,K] ̸= 0.) Since
both are symmetries, their commutator must also
be a symmetry, and these are the S generators. So
instead of the 16 supercharges of N = 4 SUSY,
we have 32 fermionic symmetry generators. (See
Appendix B)

1 Classically for renormalizable relativistic field theories, scale in-
variance implies conformal invariance. Quantum effects alter
both symmetries, but in the present case the theory is exactly
scale invariant at the quantum level, and the conformal group
SO(2, 4) is a fully quantum mechanical symmetry. See [3].

CONCLUSION

The particle content of the N = 4 supermultiplet re-
veals a difficulty in incorporating N = 4 supersymmetry
in realistic theories of particles at accesible energies. The
helicity +1/2 fermions belong to the supermultiplet along
with helicity +1 gauge bosons. Gauge bosons belong to
the adjoint representation of the gauge group, so if the
supersymmetry generators are invariant under the gauge
group then the helicity +1/2 fermions must also belong
to the adjoint representation, which is real. This is in
conflict with the fact that the known quarks and leptons
belong to a representation of SU(3)×SU(2)×U(1) which
is chiral i.e. complex, hence different from the represen-
tation furnished by their CPT-conjugates, the helicity
-1/2 fermions.
Nevertheless, the maximal N = 4 gauge theory has

many interesting properties, like the conformal invariance
demonstrated above, which also holds at the quantum
level; thus providing a non-trivial example of a 4D CFT.
Given the huge successes in understanding 2D CFTs, one
might hope that at least some of the aspects allowing
their treatment in D = 2 might fruitfully reappear in
D = 4. One of the many intriguing features of 2D CFTs
is that they are intimately connected to integrable 2+0D
lattice models in statistical mechanics, or, equivalently,
to 1 + 1D quantum spin chains. Thus it is hoped that
integrability might also play a role in N = 4 SYM([6]).
N = 4 SYM also appears in the AdS-CFT

correspondence([7]) which states that at low energy N =
4 SYM is equivalent to IIB string theory in AdS5×S5. In
string theory, open strings(i.e. strings with a boundary)
can start or end on Dp-branes, which are subspaces of
the 10D spacetime with p spatial dimensions. The phys-
ical world should then correspond to D3-branes. Open
strings spectra contain massless vector fields. The open
strings that end onDp-branes then correspond to a gauge
field propagating in p + 1-dimensions. Strings have two
ends. Each end can be labelled by which brane it ends
on. This means that the string states are N×N matrices,
where N is the number of D-branes. The reason N = 4
SYM appears in the AdS-CFT correspondence is because
the low energy effective action for open strings on a stack
of N D3-branes in type IIB string theory turns out to
be precisely (9).
To see why, imagine placing a single D3-brane in R3,1.

This breaks 10 (total) − 4 (along the brane) = 6 transla-
tional symmetries, and so we expect to have 6 Goldstone
bosons in the theory of the D3 branes– these are the Xis!
Similarly, the full 10D theory had 32 supercharges (from
N = 2 supergravity in 10D(equivalent to N = 8 SUSY
in 4D which has 32 charges)), but we only see 16 super-
charges remaining in the N = 4 theory. To understand
where they went, consider the supercharges Q :

{Q,Q} ∼ γµPµ.
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Those Q whose anticommutators generate translations
along the 6 broken translational symmetries are broken,
and this leaves us with 16 unbroken supersymmetries. By
“Goldstino’s theorem”, this breaking results in 16 mass-
less fermions, which can be rearranged into the 4λi

αs.
This is another way to understand the N = 4 spectrum.

Acknowledgements The argument for how N = 4
SYM spectrum can be obtained from string theory is
from McGreevy’s course notes [8].

APPENDIX A

Define a fermion number operator NF , such that
(−1)NF has eigenvalue +1 on bosonic states and -1 on
fermionic states. We have

(−1)NFQαr = −Qαr(−1)NF (14)

Using (14) and the cyclic property of the trace, it follows
that

Tr[(−1)NF {Qαr, Q̄β̇s}] = 0 (15)

From (1),

Tr[(−1)NF {Qαr, Q̄β̇s}] = 2σµ

αβ̇
δrsTr[(−1)NFPµ]

= 0.
(16)

For fixed non-zero Pµ, this reduces to

Tr(−1)NF = 0, (17)

proving that supersymmetry representations contain
equal number of bosonic and fermionic states.

APPENDIX B

In this appendix, we shall explore the N = 1 supercon-
formal algebra, and then generalise the result to N > 1.

Notation For any N , we can define Majorana 4-
spinors:

Qr =

(
Qαr

Q̄α̇r

)
; Q̄r = Q†

rγ
0 =

(
Qαr, Q̄α̇r

)
. (18)

The SUSY algebra becomes

{Qr, Q̄s} = 2δrsγ
µPµ ; [Q,R] = iγ5Q. (19)

Usually, one introduces anticommuting spinor param-
eters ξαr , ξ̄α̇r. For a Majorana spinor ξr derived from ξαr ,
we use the summation convention:

ξαr Qαr + ξ̄α̇rQ̄
α̇
r = ξ̄Q ; ξ̄ = ξ†γ0. (20)

For a field ϕ in a supermultiplet, we can then define
infinitesimal supersymmetry variations:

δϕ = −i[ϕ, ξαr Qαr + ξ̄α̇rQ̄
α̇
r ] = −i[ϕ, ξ̄Q]. (21)

Supercurrent As for any continuous symmetry, there
should be a Noether supercurrents Jµr associated with
the SUSY transformations (21):

Qr =

∫
d3xJ0r(x). (22)

From (21),

δJµr = −i[Jµr, ξ̄Q], (23)

we get by integration over x,∫
d3xδJ0r = −i[Qr, ξ̄Q] = −2iγµξPµ. (24)

The momentum four-vector, on the other hand, is the x
integral over components of the energy-momentum ten-
sor (stress tensor):

Pµ =

∫
d3xT0µ. (25)

We will assume that Jµr are γ−traceless, and Tµν is sym-
metric and traceless:

0 = ∂µJµr = ∂µTµν

0 = γµJµr = Tµν − Tνµ = Tµ
µ .

(26)

The symmetry of Tµν allows the construction of a fur-
ther conserved current as a first moment of Tµν :

mµνρ = xµTνρ − xνTµρ ; ∂ρmµνρ = 0

Jµν =

∫
d3xmµν0.

(27)

The tracelessness conditions (26) allow the construction
of further conserved moments:

dµ = xνTµν ; ∂µdµ = 0

kµρ = xµx
νTνρ − x2Tµρ ; ∂ρkµρ = 0

sµr = ixνγνJµr ; ∂µsµr = 0

.

(28)

The conserved charges are:

D =

∫
d3x d0

Kµ =

∫
d3x kµ0

Sr =

∫
d3x s0r

.

(29)
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(Note: S is has a spinor index: (29) reads Sα =
∫
d3x s0α.

This comes from the spinor index on Jµ. For instance (27)
is 0 = (γµ)αβJµβ .)

N = 1 superconformal algebra From (25),(27), as-
suming that the action of Pµ on fields is given by the
derivative, and assuming surface integrals vanish, we ob-
tain:

[Pµ, Pν ] =

∫
d3x [T0µ, Pν ] = i

∫
d3x ∂νT0µ

= 0

[Jµν , Pρ] = i

∫
d3x (xµ∂ρTν0 − xν∂ρTµ0)

= i(ηνρPµ − ηνρPµ)

.

(30)

Similarly we can show that:

[Jµν , Jρσ] = i(ηνρJµσ − ηµρJνσ − ηνσJµρ + ηµσJνρ)

[Kµ, Jρσ] = i(ηµρKσ − ηµσKρ))

[D,Jµν ] = [Kµ,Kν ] = 0

[Pµ, D] = iP]mu ; [Kµ, D] = −iKµ

[Pµ,Kν ] = 2i(ηµνD − Jµν)

.

(31)

(30),(31) give the algebra of the conformal group. The re-
lationship of supersymmetry with the conformal algebra
is completely defined by the commutator [Q,Kµ]. From
(21),(28),(29):

[ξ̄Q,Kµ] = −i

∫
d3x (2xµx

νδTν0 − x2δTµ0) = ξ̄γµS

=⇒ [Q,Kµ] = γµS.

(32)

This is sufficient to determine all relationships of the alge-
bra of conformal supersymmetry, once the SUSY algebra
(19) and the conformal algebra (30),(31) are given:

[Q, Jµν ] =
1

2
σµνQ; [S, Jµν ] =

1

2
σµνS

[Q,D] =
1

2
iQ; [S,D] = −1

2
iS

[Q,Pµ] = 0; [S, Pµ] = γµQ

[Q,Kµ] = γµS; [S,Kµ] = 0

[Q,R] = iγ5Q; [S,R] = −iγ5S

[R, Jµν ] = [R,Pµ] = [R,D] = [R,Kµ] = 0

{Q, Q̄} = 2γµPµ; {S, S̄} = 2γµKµ

{S, Q̄} = 2iD + σµνJµν + 3iγ5R.

(33)

We did not define a current for R, instead can use the
last equation in (33) to define the charge R. Cannot set
R = 0, since the commutator [Q,R] is not zero.

N > 1 superconformal algebra Define 4-component
conformal spinors:

Σ =

(
Qα

S̄α̇

)
. (34)

Also define additional ’Lorentz’ generators:

Jµ5 =
1

2
(Pµ −Kµ); Jµ6 =

1

2
(Pµ +Kµ); J56 = −D.

(35)
Conformal algebra (30),(31) can then be written in a sin-
gle line:

[Jab, Jcd] = i(ηbcJad − ηacJbd − ηbdJac + ηadJbc). (36)

The conformal group is thus SO(2, 4). Also define:

σµ5 = iγµγ5; σµ6 = γµ; σ56 = γ5. (37)

N = 1 superconformal algebra (33) can then be written
in three lines:

[Σ, Jab] =
1

2
σabΣ; [Σ̄, Jab] = −1

2
σabΣ̄

[Σ, R] = Σ; [Σ̄, R] = −Σ̄; [Jab, R] = 0

{Σ,Σ} = {Σ̄, Σ̄} = 0; {Σ, Σ̄} = σabJab − 3R.

(38)

For N > 1, we have Σr, r = 1, . . . , N. One possible ex-
tension of the algebra (35) is:

[Σr, Jab] =
1

2
σabΣr; [Σ̄r, Jab] = −1

2
σabΣ̄r

{Σr,Σs} = {Σ̄r, Σ̄s} = 0; {Σr, Σ̄s} = δrsσ
abJab − 4Rrs.

(39)

As before the last equation defines the charges Rrs. The
Jacobi identities fix the remaining commutators. From
Hermiticity property of the last equation,

R†
rs = Rrs. (40)

Thus the traceless part of the Rrs are SU(N) generators.
Superconformal Multiplets (33) shows that

{Sr, S̄s} = 2δrsγ
µKµ, just like the Qr. Then, as for Q’s,

successive application of S to any operator must at some
point yield 0. Therefore one defines a superconformal pri-
mary operator O such that:

[S,O]± = 0, O ̸= 0, (41)

± if O is bosonic and fermionic respectively. This is a
stronger condition than annihilation by the Kµ as for
conformal primary operators. An operator O is called a
superconformal descendant operator of an operator O′ if:

O = [Q,O′]±. (42)

Clearly O,O′ belong to the same superconformal multi-
plet.
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A superconformal primary operator cannot the Q-
commutator of another operator. From (10), the super-
conformal primary operators of N = 4 SYM involve only
the Xi.
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