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In this article, we try to identify signatures of chaos in 2D CFTs. The Gultzwiller trace formula
gives us an identity followed by chaotic systems in the semi-classical limit. Here, we find an analogous
identity for 2D CFTs which arise from the SL(2, Z) symmetry of Virasoro primary density of states.
We also draw an analogy from Berry’s diagonal approximation by extracting coarse-grained spectral
statistics of individual 2D CFTs and thus identifying signatures of chaos.

Contents

Introduction 1

Spectral Decomposition of SL(2, Z) 1

Trace Formulas for Chaotic Systems 2
Semiclassical Systems 2
2D CFTs 2

Berry Diagonal Approximation [1] 4

Appendix A: The Random Matrix Theory
(RMT) 4
Wigner-Dyson level statistics 4
Ratio of level spacing [5] 5

References 5

INTRODUCTION

The random matrix theory (RMT) suggests that the
Hamiltonian of a chaotic quantum system, within an en-
ergy window where the density of states remains con-
stant, looks like a random matrix in a generic basis. For
systems that satisfy time-reversibility, the random ele-
ments of the matrix are going to follow the Gaussian
orthogonal ensemble (GOE), whereas, for systems not
satisfying time-reversibility, the elements will follow the
Gaussian unitary ensemble (GUE). It was proposed that
the elements of an operator following the RMT will have
a form of,

Omn = Ōδmn +

√
Ō2

D
Rmn. (1)

In Eqn. (1), Omn is the mnth element of the operator
matrix. Ō is the ensemble average of O, and Rmn is
a random number following a particular distribution
depending upon the system’s symmetries.

Gutzwiller trace formula [2]: Gutzwiller 1971 intro-
duced a trace formula for the dynamics of a classically
chaotic system in its semiclassical limit. The Gutzwiller

trace formula expresses the density of states of the system
in the semiclassical limit as,

ρ(E) = ρ̄(E) + ρosc(E). (2)

In Eqn. (2), ρ̄(E) is the mean density, and ρosc(E)
is the oscillatory part given by a sum over the periodic
orbits in the semiclassical limit γ as,

ρosc(E) =
1

π
Re

(∑
γ

Aγe
iSγ(E)

)
(3)

The oscillatory part encodes the information regard-
ing the correlation between various energy levels of the
system.

In the next section, we will explore the spectral de-
composition of the SL(2, Z) group. Using SL(2, Z) spec-
tral decomposition of torus partition functions of parity-
invariant Virasoro CFTs, we show that spectral decom-
position of the density of states is directly analogous to
a trace formula.

SPECTRAL DECOMPOSITION OF SL(2, Z)

The SL(2, Z) group comprises all transformations pro-
duced by a matrix of the form,

M =

[
a b
c d

]
,

where a, b, c, d ∈ Z, and det(M) = ad− bc = 1.

A square-integrable function that is invariant under
SL(2, Z) transformation is given by [1] [3],

f(τ) = ⟨f⟩+
∫
{f,Es}E∗

s (τ) ds+

∞∑
n=1

(f, ϕn)ϕn(τ). (4)

In Eqn. (4), τ = x+ iy, ⟨f⟩ is the modular average of
f . E∗

s (τ) is the completed Eisentein series, and ϕn(τ)

are the Maas cusps. {f,Es} = (f,Es)
Λ(s) , where, (f,Es)
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and (f, ϕn) are Peterson inner products with hyperbolic
measure dx dy/y2.

Considering a torus partition function Z(τ), the pri-
mary partition function, after removing the Virasoro
symmetries, is given by,

Zp(τ) =
√
y|η(τ)|2Z(τ).

Zp(τ) can be written in a modular invariant fashion
as,

Zp(τ) = ẐL(τ) + Zspec(τ). (5)

In Eqn. (5), ẐL(τ) is the ’modular completion’ of the
’light states’. This is first done by constructing a parti-
tion for light primaries defined as,

ZL(τ) =
√
y

∑
min(h,h̄)≤ξ

qh−ξ q̄h̄−ξ,

where, q = ei2πτ , and ξ = c−1
24 . Then, we attain mod-

ular completion by taking the Poincare sum over all the
SL(2, Z) images of the light partition functions as,

ẐL(τ) =
∑

γ∈SL(2,Z)

ZL(γτ).

After explicitly constructing ẐL(τ), we can obtain
Zspec(τ) from Zp(τ) by subtracting. Now, Zspec(τ) being
square integrable, follows the spectral decomposition of
SL(2, Z) (Eqn. (4)) as,

Zspec(τ) = ⟨Zspec⟩+
∫
{Zspec, Es}E∗

s (τ) ds

+

∞∑
n=1

(Zspec, ϕn)ϕn(τ).

Zspec(τ) is used to probe the chaotic high energy
spectrum.

TRACE FORMULAS FOR CHAOTIC SYSTEMS

Semiclassical Systems

As mentioned, the Gutzwiller trace formula gives us a
relation for the density of chaotic systems in the semi-
classical limit, mentioned in Eq.. (2), as [2],

ρ(E) = ρ̄(E) + ρosc(E).

The correlation between the various energy levels of
the system can be extracted by micro-canonical coarse-
graining the spectrum over an energy window δE. One
important use of this trace formula is to find the coarse-
grained micro-canonical spectral form factor, which is de-
fined as,

K(E) =

∫ ∞

−∞
eiϵT ρosc

(
E +

ϵ

2

)
ρosc

(
E − ϵ

2

)
dϵ, (6)

where the overline denotes the average over an ensem-
ble of statistically similar systems. Replacing Eqn. (3) in
Eqn. (6), we get,

K(E) =
1

4π2

∫ ∞

−∞
eiϵT

×

(∑
γ1,γ2

ei(Sγ1
(E+ ϵ

2 )−Sγ2
(E− ϵ

2 )) + c.c.

)
dϵ.

The leading order contribution in level statistics comes
from the periodic orbits for which ∆S = (Sγ1−Sγ2) = 0.
Berryu showed that when we restrict the summation to
the orbits only when γ1 = γ2, at large times (when T →
∞), we approximately get a linear ramp in the spectral
form factor as,

K(E)|diagonal ≈
T

2π
CRMT ,

where CRMT is a constant depending on the type
of the RMT distribution, and hence the Hamiltonian.
CRMT = 2 for GOE and CRMT = 1 for GUE ensembles.
This is known as Berry’s diagonal approximation.

Berry’s analysis takes the oscillatory behaviour of the
density of states and uses it to extract, without ensem-
ble averaging, the random matrix behaviour of a single
chaotic quantum system. Despite the apparent factorisa-
tion of the original double sum over orbits, the diagonal
approximation shows an emergent non-factorization by
removing minute details from the spectrum. Now we ask
if there is a similar relation between the density of states
of a 2D CFT as in Eqn. (2).

2D CFTs

The partition function for primary density of states
with spin-j (ρj(∆)) in a CFT is defined as,

Zp(τ) =
√
y

∞∑
j=0

(2− δj,0) cos(2πjx)

∫ ∞

j

e−2πy(∆−2ξ)

× ρj(∆) d∆ (7)
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We first try transforming the spectral decomposition
in Eqn. (4) into a microcanonical ensemble. The density
equation can be written as,

ρj(t) = ρ̂L,j(t) + ρspec,j(t). (8)

Here, t is the ”reduced twist” defined as,

t =
∆− j

2
− ξ.

Using inverse Laplace transform, the spectral part of
the density matrix decomposition is given by [1],

ρspec,j(t) =

∫
{Zspec, E 1

2+iω}ρ∗1
2+iω,j(t)

+

∞∑
n=1

(Zspec, ϕn) ρn,j(t), (9)

where, for J ̸= 0,

ρ∗1
2+iω,j(t) = a

(s)
j θ(t)

cos
(
ω cosh−1

(
2t
j + 1

))
√
t(t+ j)

ρn,j(t) = b
(s)
j θ(t)

cos
(
ωn cosh

−1
(

2t
j + 1

))
√
t(t+ j)

.

Here, aj ’s and bj ’s are sporadic numbers with no defi-
nite structure. While, for j = 0, b0 = 0, and,

ρ∗1
2+iω,j(t) =

ζ(2iω

t
(4t)iω.

Now, we analyse these formulas. Both ρ̂L,j(t) and
ρspec,j(t) are continuous in t. In the asymptotic spec-
trum, the mean level spacing of ρj(t) goes approximately
as exp(

√
t). Thus, while there is an exponential growth

of ρ̂L,j(t) with t, we observe a highly oscillatory be-
haviour in ρspec,j(t).

The trace formula: The smooth exponential growth
of ρ̂L,j(t) and the oscillatory behaviour of ρspec,j(t) is
analogous to those in Eq. (2). The connection can be
drawn (for every value of j) as:

ρ̄(E)←→ ρ̂L,j(t),

ρosc(E)←→ ρspec,j(t).

FIG. 1: Schematic figure showing the behaviour of ρ(t) and
those of ρ̂L(t) and ρspec(t) [1].

Now we write Aγ as A′
γTγ(E), where A′

γ is the one-
loop determinant over the orbit and Tγ(E) is the time
period of the γth orbit. Thus,

Tγ(E) =
∂Sγ(E)

∂E
.

Now we make the following identifications,

Sω,j = ω cosh−1

(
2t

j
+ 1

)
+ ω log(j) (10)

Tω,j =
ω√

t(j + t
(11)

A′
ω,j =

π

ω
c
(s)
j j−iω, (12)

c
(s)
j can be aj ’s or bj ’s depending on whether we are

dealing with the Eisenstein terms or the Maas cusps.

Using these, we can write ρ∗1
2+iω,j

(t) as,

ρ∗1
2+iω,j(t) =

1

π
Re
(
A′

ω,jTω,je
iSω,j(t)

)
.

Thus, for any j, Eqn. (9) can be written as,

ρspec,j(t) =
1

π
Re

(∫
{Zspec, E 1

2+iω}A′
ω,jTω,je

iSω,j(t)

)
+

1

π
Re

( ∞∑
n=1

(Zspec, ϕn)A
′
ω,jTω,je

iSω,j(t)

)
. (13)

We should note here that while the Gutzwiller trace
formula is only valid for states at the high energy limit
of the spectrum in the semiclassical limit, the 2D CFT
trace, thus derived from the SL(2, Z) spectral decompo-
sition, is valid for all energies.
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BERRY DIAGONAL APPROXIMATION [1]

We now come to the last section of this article. Here,
we try to find an analogous condition for Berry’s diagonal
approximation in 2D CFTs. We understand that averag-
ing the oscillatory part over a large enough energy win-
dow renders the oscillatory contribution zero for chaotic

systems in the semiclassical limit. Thus, eiSγ(E) = 0, or,
ρosc(E) = 0. We draw an analogy and claim that the sec-
ond term in Eqn. (8) is rendered zero when averaged over
a large enough window δt (which depends on the spec-
trum). we show this by averaging it over (t− δt, t+ δt).
Thus,

ρ∗1
2+iω,j

(t) =
1

πδt
Re

(
A′

ω,j

∫ t+δt

t−δt

Tω,j(t
′)eiSω,j(t

′) dt′

)
= 0. (14)

This implies that ρspec,j(t) = 0. Hence, ρj(t) = ˆρL,j(t).
The behaviour of ˆρL,j(t) is self-averaging, like in a micro-
canonical ensemble with an exponential argument rather
than an oscillatory one.

Now, let us turn to the two-point functions. We define
the two-point functions from the product of two densities
and integrate them over a mean t of t1+t1

2 and a difference
ϵ = t1−t2

2 . Thus,

ρ∗1
2+iω1,j1

(t+ ϵ)ρ∗1
2+iω2,j2

(t− ϵ)

=
Aω1,j1Aω1,j1

4π2
Tω1,j1Tω1,j1e

i(Sω1,j1
(t+ϵ)−Sω2,j2

(t−ϵ))

+ c.c. (15)

The terms with the sum of actions are zero because
they are highly oscillatory. Instead, the terms with dif-
ferences contribute more. The leading order contribution
comes from the terms with ∆S = Sω1,j1−Sω2,j2 = 0. This
is analogous to Berry’s diagonal approximation.

Appendix A: The Random Matrix Theory (RMT)

Wigner proposed that within an energy window
in which the density of states of the system remains
constant, then the Hamiltonian of a non-integrable
system, on a generic basis, would look like a random
matrix. Hence, the properties of a non-integrable system
can be studied by studying the statistical properties of
the random matrix [4].

Wigner-Dyson level statistics

We take the example of a 2× 2 matrix where the ele-
ments have been randomly chosen from a Gaussian dis-
tribution,

H =

[
ϵ1

V√
2

V ∗
√
2

ϵ2

]
.

The eigenvalues of the matrix are

E1,2 =
ϵ1 + ϵ2

2
± 1

2

√
(ϵ1 − ϵ2)2 + |V |2.

Defining ω = |E1 − E2|, we can find the probability
of having an energy difference of ω between two levels
(P (ω)). If we have time-reversal symmetry, the Hamil-
tonian would be symmetric and V = V ∗. Thus,

P1(ω) =
1

(2π)3/2σ3

∫∫∫
dϵ1 dϵ2 dV exp

(
−ϵ21 + ϵ22 + V 2

2σ2

)
δ
(√

(ϵ1 − ϵ2)2 + |V |2 − ω
)
.

We have chosen the matrix elements from a Gaussian
ensemble with 0 mean and variance σ2. This forms our
Gaussian orthogonal ensemble (GOE).
In the case where H ̸= H∗, the probability distribution
will be given by,

P2(ω) =
1

(2π)3/2σ3

∫∫∫∫
dϵ1 dϵ2 d(Re(V )) d(Im(V ))

exp

(
−ϵ21 + ϵ22 + |V |2

2σ2

)
δ
(√

(ϵ1 − ϵ2)2 + |V |2 − ω
)
,

where |V |2 = (Re(V ))2 + (Im(V ))2. The extra integral
comes from the freedom of choice of V ’s real and imag-
inary parts of V separately. This forms our Gaussian
unitary ensemble (GUE).
Solving the integrals for GOE, we have,

P (ω) =
ω

2σ2
exp [− ω2

4σ2
], (16)

and for GUE,

P (ω) =
ω2

2
√
π(σ2)3/2

exp [− ω2

4σ2
]. (17)

In either of the cases, we see at ω → 0, P (ω) = 0. In
other words, as the level spacing vanishes, the probabil-
ity of having two closely spaced energy states vanishes.
This phenomenon is known as level repulsion and is a
characteristic of a non-integrable system. Both Eq. (16)
and Eq. (17) are Wigner-Dyson distributions.
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FIG. 2: P (r) vs rn) plots for different distributions. The blue
line represents Poisson distribution, and the red and green
curves represent the Wigner-Dyson distributions for GOE and
GUE, respectively.

Ratio of level spacing [5]

If si is the difference in energy between the ith and the
(i + 1)th energy levels, i.e. si = (Ei+1 − Ei), then the
ratio of level spacing ri is defined as,

ri =
min(si, si+1)

max(si, si+1)
. (18)

For random matrices with matrix elements chosen from
Gaussian distributions, the eigenvalues will also have a
Gaussian behaviour, and for a GOE, the probability dis-
tribution of the r values comes out to be,

P (r) =
1

AGOE

(r + r2)

(1 + r + r2)5/2
, (19)

and,

P (r) =
1

AGUE

(r + r2)2

(1 + r + r2)4
,

for GUE, where AGOE and AGUE are the normalising
constants. These are shown in Fig. 2.
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