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We review the embedding formalism for conformal field theories and we have shown an efficient
way of computations with symmetric traceless operators of arbitrary spin. We encoded the tensors
into polynomials using auxiliary vectors. This formalism is efficient for computing the tensor
structures allowed in n-point conformal correlation functions of tensor operators. Conservation
of tensor structure is also addressed using the differential equations in embedding space. Finally,
the number of independent tensor structures of conformal correlators in d dimensions and the
number of independent structures in scattering amplitudes of spinning particles in (d+1)-dimensional
Minkowski space, matches.

1. INTRODUCTION

We know that Conformal Field Theories(CFT) put se-
vere constraints on the correlation functions in the theory.
These correlation functions are extremely important to
study because they are the observables in the theory. Here
we presented a formalism in general d ≥ 3 Euclidean
dimensions that will make CFT computations with tensor
fields as easy as computations with scalars. Finally, we
show that the number of tensor structures for three-point
correlators of tensor operators is equal to the number of
tensor structures for three particle S-matrix elements in
one higher dimension.

2. EMBEDDING FORMALISM

In this paper, we consider CFT in d ≥ 3 Euclidean
dimensions, so that the conformal group is SO(d + 1, 1).
Now, we will develop the ‘embedding formalism’ which
makes the nonzero spin case easier. The conformal group
SO(d + 1, 1) can be realized as the group of Lorentz

symmetry in the embedding space Rd+2
[1]. On the (d+ 1)

dimensional light cone any vector will satisfy P 2 = 0.
To connect this (d + 2) embedding space with our d
dimensional physical space, we can quotient out the null
cone by the rescaling P ∼ λP ; λ ∈ R. Hence, we can use
this rescaling property to map from light cone coordinate,
P = (P+, P−, Pµ) to the projected light cone coordinate,
Px =

(
1, x2, xµ

)
.

Next we should establish the correspondence between

fields on Rd
and Rd+2

, which is done as follows[2]:

1. Defined on the cone P 2 = 0.

2. Homogeneous of degree −∆: FA1...Al
(λP ) =

λ−∆FA1...Al
(P ), λ > 0.

3. Symmetric and traceless.

4. Transverse: (P · F )A2...Al
≡ PAFAA2...Al

= 0.

Projection of F onto the Poincaré section is given by,

fa1...al
(x) =

∂PA1

∂xa1
. . .

∂PAl

∂xal
FA1...Al

(Px) . (2.1)

P
+P

−

FIG. 1: Light cone in the embedding space; light rays
are in one-to-one correspondence with physical space

points. The Poincaré section (projected light cone) of the
null cone is also shown where the metric is flat.

This operation has two important properties. First, any
tensor proportional to PA projects to zero. We will call
such SO(d+1, 1) tensors pure gauge. Second, the projected
tensor is traceless, as long as F is traceless and transverse.

3. ENCODING TENSORS BY POLYNOMIALS

Any symmetric, traceless tensor in Rd
can be encoded

by a d-dimensional polynomial using some auxiliary vector
field:

fa1...al
(x) ↔ f(x, z) ≡ fa1...al

za1 · · · zal . (3.1)

Due to tracelessness of the tensor we can restrict z2 = 0.
Hence, a given tensor is the same as a polynomial in z up
to a vanishing z2 term.
Now, define a differential operator[3]:

Da =

(
h− 1 + z · ∂

∂z

)
∂

∂za
− 1

2
za

∂2

∂z · ∂z
;h =

d

2
(3.2)

This differential operator will project the polynomial onto
the tensor:

fa1...al
(x) =

(h− 1)!

l!(h− 1 + l)!
Da1

· · ·Dal
f(x, z) (3.3)

Similarly, We can encode a general symmetric, traceless
tensor in the embedding space by a (d + 2)-dimensional
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polynomial

FA1...Al
(P ) ↔ F (P,Z) ≡ FA1...Al

(P )ZA1 . . . ZAl (3.4)

Using (2.1) we get on the section Zz,x ≡ (0, 2x · z, z).
Due to the tracelessness of the tensor, Z2 = 0. Due to
transversality of the tensor, Z.P = 0 and P 2 = 0 due to
null cone restriction. So the polynomial for a given tensor
is unique up to these vanishing conditions.
The following diagram relates embedding and physical
tensors and polynomials[2]:

FA1...Al
(P )

(3.4)
//

(2.1)

��

F (P,Z)

(2.1)

��

fa1...al
(x) f(x, z)

(3.3)
oo

(3.5)

Here, f(x, z) = F (Px, Zz,x). For convenience, we choose
to work with the (d+2) dimensional polynomial structure.
The physical space result always can always be retrieved
using the steps in this diagram.

4. CORRELATION FUNCTIONS OF SPIN l
PRIMARIES

In this section, we will compute the n-point correlation
function of spin l1, · · · , ln primaries. For n > 3, there are
n(n − 3)/2 independent conformally invariant cross-ratios
ua. For n ≤ 3 we won’t encounter these cross ratios.
A generic n-point function in the embedding space,
Gχ1,...,χn

(P1, · · · , Pn) is isomorphic to a polynomial,

G̃χ1,...,χn
(P1, Z1 · · · , Pn, Zn). The lorentz invariance,

transversality and homogeneity of the polynomial in the
embedding space ensure that,

G̃χ1,...,χn
({Pi;Zi}) = G̃χ1,...,χn

({Pi.Pj , Zi.Zj , Pi.Zj})

Now, we claim that G̃χ1,...,χn can be expanded as:

G̃χ1,...,χn
=

n∏
i<j

P
−αij

ij

∑
k

fk(ua)Q
(k)
χ1,...,χn

({Pi;Zi}) (4.1)

Where, αij =
τi + τj
n− 2

− 1

(n− 1)(n− 2)

n∑
k=1

τk ;n > 2

Pij = Pi.Pj , τi = ∆i + li

(Here, we will show an explicit calculation for n = 3 in this section.

Example for n = 2-point function is given in the (appendix A).)

To justify our claim in (4.1), we choose the pre-factor, Q(k)

have weight li in each point Pi. They are also identically
transverse:

Q(k)
χ1,...,χn

({λiPi;αiZi + βiPi})

= Q(k)
χ1,...,χn

({Pi;Zi})
∏
i

(λiαi)
li (4.2)

Now, we claim that Q
(k)
χ1,...,χn({Pi;Zi}) can be built out of

two types of basic building blocks, Hij , Vi,jk, satisfying the
condition in (4.2).

Hij = −2
[
(Zi · Zj)(Pi · Pj)− (Zi · Pj)(Zj · Pi)

]
(4.3)

Vi,jk =
(Zi · Pj)(Pi · Pk)− (Zi · Pk)(Pi · Pj)

(Pj · Pk)
, (4.4)

Note that, Hij = Hji & Vi,jk = −Vi,kj .
For each i all the Vi,jk are not linearly independent. For
simplicity, we will show an example of a 3-point function,
where we have only one Vi,jk for each i.

4.1. Example:

A 3-point function G̃χ1,χ2,χ3({Pi, Zi} of spin l1, l2, l3
primaries can be written following the above rules as,

G̃χ1,χ2,χ3
(Pi;Zi) =

Qχ1,χ2,χ3({Pi;Zi})
(P12)

τ1+τ2−τ3
2 (P23)

τ2+τ3−τ1
2 (P31)

τ3+τ1−τ2
2

(4.5)
According to above discussion the general solution for
Qχ1,χ2,χ3

can be written as a linear combination of∏
i

V mi
i

∏
i<j

H
nij

ij . (4.6)

Since Q must have degree li in each Zi, the exponents must
satisfy the three constraints

mi +
∑
j ̸=i

nij = li . (4.7)

Now, this is a counting problem to find all the inequivalent
structures in the 3-point function.
For 3-point function of identical spin-2 operators we have
5 inequivalent structures,

A1 = (V1.V2.V3)
2, A2 = H12V1.V2.V

2
3 + · · ·

A2 = H12.H13.V2.V3 + · · · , A3 = H12H13H23

A4 = H2
12V

2
3 + · · ·

Hence, 3 point function of identical spin-2 operators in
embedding space is,

G̃χ1,χ2,χ3
({Pi;Zi}) =

α.A1 + β.A2 + γ.A3 + ρ.A4 + σ.A5

3∏
i<j,k ̸=i,j

i,j,k=1

(Pij)(τi+τj−τk)/2

(4.8)
(An interesting way of counting these conformally invariant structures

has been shown by an example in (appendix C).)

Note that, for n-point correlation function, the 2n vectors
Zi and Pi can not be linearly independent in the (d + 2)-
dimensional embedding space if n > d

2 + 1. Here we

have considered n < d
2 + 1 to write down the independent

conformally invariant structures for a given correlator from
(4.7). For n > d

2 + 1, there should be a reduction in the
number of possible conformally invariant structures[2].
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5. CONSERVED TENSORS

In unitary CFTs, the dimensions of spin l primaries must
satisfy the unitarity bound : ∆ ≥ l+d−2 (l ≥ 1) . When
∆ takes the lowest value allowed by this bound for a given
l, the corresponding primary field is conserved. Physically
important examples of such fields are the stress tensor (l =
2) and global symmetry currents (l = 1).
Let us begin by considering the conservation condition for
a spin l dimension ∆ primary:

(∂ · f)a2...al ≡ ∂

∂xa1
fa1a2...al(x) = 0 (5.1)

We have shown the following result in (appendix B)

(∂ · f)a2...al
(x) =

∂PA2

∂xa2
. . .

∂PAl

∂xal
RA2...Al

(Px) , (5.2)

Where,

RA2...Al
(P ) =

[
∂

∂PA1

− 1

P · P̄
(P̄ · ∂

∂P
)PA1

− (l + d− 2−∆)
P̄A1

P · P̄

] (5.3)

Where, P̄ = (0, 2, 0).
Now we see what is special about ∆ = l+ d− 2 from (5.3):
precisely for this dimension R becomes an SO(d + 1, 1)
invariant tensor. Hence, for ∆ = l + d − 2, and only for
this dimension, the conservation condition ∂ · f = 0 can
be imposed in a way that is consistent with the conformal
symmetry.
All the tensors are encoded to polynomial structures in the
embedding space. So, we have to encode the tensor R also
via the identically transverse function R̃(P,Z).
It can be shown that[2],

R̃(P,Z) =
1

l(h+ l − 2)
(∂ ·D)F (P,Z) (5.4)

where ∂ ·D ≡ ∂
∂PM

DM . AndDM is the differential operator

in Z defined in Eq. (3.2).
Let us consider the simplest nontrivial example of a three-
point function between two vector currents at points x1 and
x2 and a scalar operator at x3, ⟨v1a(x1)v

2
b (x2)ϕ(x3)⟩ . Here

we assume that ϕ has dimension ∆, while v’s necessarily
have dimension d− 1.

According to the results of section 4.1, the embedding
function encoding this three-point function (for the sym-
metric case under current exchange) has the form

G̃(P1, P2, P3;Z1, Z2) =
αV1V2 + βH12

(P12)
d−∆

2 (P13)
∆
2 (P23)

∆
2

, (5.5)

For conservation of currents we can compute the divergence
at P1 and drop the terms of O(Z2

1 , Z1·P1), we find the result

(∂P1 ·DZ1) G̃ →
(
d

2
− 1

)
(α(d− 1−∆) + β∆) · V2

(P12)
d−∆

2 (P13)
∆
2 (P23)

∆
2

.

(5.6)

Hence, conservation of currents implies that,

α(d− 1−∆) + β∆ = 0. (5.7)

This conservation condition constraint the 3-point
correlator,⟨v1a(x1)v

2
b (x2)ϕ(x3)⟩ to have one independent

tensor structure instead of two.

6. S-MATRIX RULE FOR COUNTING
STRUCTURES

We propose the following generalization: The number of
independent structures in a three-point function containing
operators of spins {l1, l2, l3} is equal to the number of
independent on-shell scattering amplitudes for particles of
spins {l1, l2, l3} in d + 1 flat Minkowski dimensions. The
particles should be taken massless or massive depending on
whether or not the corresponding operator is conserved.
To demonstrate this, let us first consider the case of a scat-
tering amplitude between 3 massive particles of arbitrary
spin. It is a Lorentz invariant function of the momentum
pi and polarization tensor ζi of each particle. Here we
can treat the polarization tensor, ζi as the auxiliary vector
zi, mentioned in section 3. Moreover, the transversality
condition (pi)µ1

ζ
µ1...µl1
i = 0 translates to zi · pi = 0.

Therefore, we must count polynomials such that

S({Pi;λiZi}) =
3∏

i=1

λli
i S({Pi;Zi}) (6.1)

where zi · pi = 0 p1 + p2 + p3 = 0 and p2i = −M2
i

Therefore, the general solution is a linear combination of

S(n12, n13, n23) =

n∏
i<j

((zi · pj)mi · (zi · zj)nij ) (6.2)

Where, mi = li −
∑
j ̸=i

nij ≥ 0 . (6.3)

Since this is the same condition as Eq. (4.7), the number
of solutions is given by exactly the same combinatorial
problem that we solved for non-conserved CFT three-point
functions.

Let us now study massless particles. In this case,
the scattering amplitude must be invariant under the
infinitesimal gauge transformation

ζµ1...µl
→ ζµ1...µl

+ p(µ1
Λµ2...µl) . (6.4)

This corresponds to invariance under

zµ → zµ + ϵ pµ (6.5)

to first order in ϵ. The problem of finding gauge invariant
3-particle scattering amplitudes is then reduced to finding
linear combinations of the structures (6.2) that are invari-
ant under (6.5) to first order in ϵ.
An explicit calculation in (appendix E) shows that the num-
ber of possible scattering amplitudes between 3 massless
higher spin particles is 1 + min(l1, l2, l3) . In general this
will match the counting of conformal three-point functions
of conserved tensors in d ≥ 4[4].
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Appendix A: 2 point correlation of spin 1 operators:

From the discussion of section 4, we can understand that
the two-point correlation of two operators can be built
using Hn

12 only. Hence, two operators should have the same
spin (l) as n ,for nonzero correlation.
In the light cone two point function of two operators can
be encoded using polynomial,

Gχ(P1, P2;Z1, Z2)

= ZA1
1 · · ·ZAl

1 ZB1
2 · · ·ZB2

2 GA1...Al,B1...Bl
(P1, P2)

(A.1)

According to section 4 discussion this polynomial has to
satisfy certain condition,

Gχ({λiPi;βiZi+αiZi}) = (λi)
−∆(βi)

lGχ({Pi;Zi}) (A.2)

This condition can be satisfied by claiming,

Gχ(P1, P2;Z1, Z2) = const
(H12)

l

P∆+l
12

(A.3)

For l = 1 we will have,

Gχ(P1, P2;Z1, Z2)

= const
−2

[
(Z1 · Z2)(P1 · P2)− (Z1 · P2)(Z2 · P1)

]
(P1 · P2)∆+1

(A.4)

Here,

Pµ
1 = (1, x2

1, x
µ
1 ), Pµ

2 = (1, x2
2, x

µ
2 )

Zµ
1 =

∂P ν
1

∂xµ
1

(z1)ν = (0, 2x1 · z1, zµ1 )

Zµ
2 =

∂P ν
2

∂xµ
2

(z2)ν = (0, 2x2 · z2, zµ2 )

Substituting these in the (A.4) we get,

Gχ(x1, x2; z1, z2) = const

[
(−1

2 )(z1 · z2)(x2 − x1)
2 − (x1 · z2 − x2 · z2)(x2 · z1 − x1 · z1)

]
(x2 − x1)2∆+2

(A.5)

Here we have projected our lightcone result for two point
function,(A.4) onto the Poincaré section. Now we can
extract the tensorial structure from this polynomial using
the differential operator defined in (3.3). Hence,

Gχ(x1, x2) = ⟨V µ
1 (x1)V

ν
2 (x2)⟩

=
1

(h− 1)2
Dµ

z1D
ν
z2 Gχ(x1, x2; z1, z2)

(A.6)

Here Dz1 ,Dz2 are operators in (3.2) with z1 and z2.
Now, equating (A.6) we get,

Gχ(x1, x2) = const

[
( 12 )(x2 − x1)

2 δµν + (xµ
1 − xµ

2 )(x
ν
2 − xν

1)
]

(x2 − x1)2∆+2

(A.7)
This result matches the two point correlation of vector
operators mentioned in [5].

Appendix B: Derivation of RA2...Al(P )

In the projected light cone we have the following result,

∂PA

∂xc
= (0, 2xc, δ

a
c ) (B.1)

Hence,
∂

∂xb
(
∂PA

∂xc
) = P̄A δbc (B.2)

Here, P̄A = (0, 2, 0).
Now, we claim the following result

KAB ≡ δab
∂PA

∂xa

∂PB

∂xb
= ηAB + PAP̄B + PBP̄A (B.3)

This claim can be justified by contracting both sides with
PA, PB .
Now, using (5.1) condition on (2.1) we get,

∂

∂xa1

fa1a2...al
(x) = 0

=⇒ ∂

∂xa1

(
∂PA1

∂xa1
. . .

∂PAl

∂xal
FA1...Al

(P )) = 0

=⇒ ∂

∂xa1

(
∂PA1

∂xa1
) . . .

∂PAl

∂xal
FA1...Al

(P )

+
∑
i ̸=1

∂PA1

∂xa1
· · · ∂

∂xa1

(
∂PAi

∂xai
) . . .

∂PAl

∂xal
FA1...Al

(P )

+
∂PA1

∂xa1
. . .

∂PAl

∂xal

∂PB

∂xa1

∂FA1...Al
(P )

∂PB
= 0

=⇒ d · ∂P
A2

∂xa2
. . .

∂PAl

∂xal
P̄A1FA1...Al

(P )

+
∑
i ̸=1

∂PA1

∂xa1
. . . P̄Aiδa1

ai
· · · ∂P

Al

∂xal
FA1...Al

(P )

+
∂PA2

∂xa2
. . .

∂PAl

∂xal
KA1B

∂FA1...Al
(P )

∂PB
= 0
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=⇒ − d

P · P̄
· ∂P

A2

∂xa2
. . .

∂PAl

∂xal
P̄A1FA1...Al

(P )

− 1

P · P̄
∂PA2

∂xa2
· · · ∂P

Al

∂xal
P̄A1

[
FA2A1...Al

(P )

+ FA3A2A1...Al
(P ) + · · ·+ FAlA2...A1

(P )
]

+
∂PA2

∂xa2
. . .

∂PAl

∂xal
KA1B

∂FA1...Al
(P )

∂PB
= 0

=⇒ ∂PA2

∂xa2
. . .

∂PAl

∂xal
RA2...Al

(P ) = 0

Here,

RA2...Al
(P ) =

[
∂

∂PA1

− 1

P · P̄
(P̄ · ∂

∂P
)PA1

− (l + d− 2−∆)
P̄A1

P · P̄

] (B.4)

Note that, P · P̄ = −1 and we have divided this quantity
in the derivation to maintain the homogeneity in P . In
the second last line of the derivation we have used the
expression of KA1B and we have also used the symmetry
property of FAlA2...A1(P ).

The derivation of R̃(P,Z) is shown in section 5.2 of [2].

Appendix C: Visualization of Conformally invariant
structure in embedding space

We have seen that the n-point correlation function’s
numerator is fixed by the fundamental building blocks
Hij , Vi,jk which satisfy (4.2). All the conformally invariant
allowed structures in the embedding space can be calcu-
lated for a n-point correlation function using (4.7). Note
that we have derived (4.7) for 3-point function only, but
this treatment can be followed generally, and there we will
get a similar expression.
Now, Instead of solving (4.7) we can visualize a schematic
representation of one of the tensor structures appearing in
the (spin 5)-(spin 3)-(spin 7) three-point function as Fig.2.

3l=

5l=

7l=

FIG. 2

In this diagram, Vi’s are represented as disconnected dots
at the vertices and Hij ’s as lines joining the vertices.

Appendix D: Conservation of 3-point function for
(spin 2)-(spin 2)-(spin 0)

According to the discussion of of section 4.1, the 3-
point function of spin-2, spin-2, spin-0 operators has 3
inequivalent polynomial structures,

G̃({Pi;Zi}) =
α.V 2

1 V
2
2 + β.H2

12 + γ.H12V1V2

(P12)d+2−∆
2 (P13)

∆
2 (P23)

∆
2

(D.1)

Here, we have assumed the spin two operators to be the
same with scaling dimension d and the scalar operator has
scaling dimension ∆.
This structure is symmetric under the exchange of P1 ↔ P2

and Z1 ↔ Z2 because under the exchange Hij is symmetric
and Vi is antisymmetric.
For conservation of spin-2 operators, we can compute the
divergence at P1 and drop the terms of O(Z2

1 , Z1 · P1), we
find the result using (5.4)

(∂P1 ·DZ1) G̃

=
(−2α+ 2dα− 2∆α− 2γ)V1V

2
2 − (2∆β + γ)H12V2

(P12)
d+2−∆

2 (P13)
∆
2 (P23)

∆
2

.

(D.2)

Hence the conservation of spin-2 stress tensor implies that,

2α+ 2dα+ 2∆α+ 2γ = 0 (D.3)

2∆β + γ = 0 (D.4)

From (D.3) & (D.4), we can say that the three independent
tensor has been turned into only one independent tensor
structure for 3 point function of two conserved spin-2
operator with one scalar operator. This matches the result
in [4].

Appendix E: Scattering amplitude for massless
particles

For massless particles scattering, we have additional
gauge symmetry (6.5) to invoke in (6.2).
Using (6.5) in (6.2) we get,

δ1S(n12, n13, n23) = ϵ1

[
n13 S1(n12, n13 − 1, n23)

− n12 S1(n12 − 1, n13, n23)
]

(E.1)

δ2S(n12, n13, n23) = ϵ2

[
n12 S2(n12 − 1, n13, n23)

− n23 S2(n12, n13, n23 − 1)
]

(E.2)
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δ3S(n12, n13, n23) = ϵ3

[
n23 S3(n12, n13, n23 − 1)

− n13 S3(n12, n13 − 1, n23)
]

(E.3)

where Si is given by the same expression as S but with
li → li − 1.
Let’s take an ansatz of the following linear combination,
which will be invariant under the gauge transformation
mentioned above.

k∑
i=0

ai S(i, k − i, n23) (E.4)

to impose gauge invariance for particle 1. We then find
that

k∑
i=0

(ai i S1(i− 1, k − i, n23)− ai (k − i)S1(i, k − i− 1, n23))

=

k∑
i=1

(ai i− ai−1 (k − i+ 1)) S1(i− 1, k − i, n23) = 0,

(E.5)

which fixes all the coefficients up to an overall normaliza-
tion,

ai =
k − i+ 1

i
ai−1 =

k!

i!(k − i)!
a0 . (E.6)

Notice that this solution only exists for k ≤ l1.

Imposing gauge invariance also on particle 2, we find the
amplitude

Tk =

k∑
i=0

k−i∑
j=0

k!

i!j!(k − i− j)!
S(i, j, k − i− j) . (E.7)

Gauge invariance of particle 3 is automatic. Note that
this solution only exists for k smaller (or equal) than all
the spins li. Therefore, the number of possible scattering
amplitudes between 3 massless higher spin particles is

1 + min(l1, l2, l3) .
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