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In this article, I introduced the Liouville theory as a conformal field theory point of view. I found
equation of motion, the primary operator, calculated the stress-energy tensor and how they change
in cylindrical coordinates. How the picture changes in quantum theory has also been discussed. I
talked about three point functions and DOZZ formula at the end. Some future directions are given
in later section.

INTRODUCTION

Over the last few decades, Liouville field theory drew
huge attention of researchers in the advancement of
critical and non-critical string theory and in general
relativity. It can be shown that for quantizing 2-d grav-
ity, the main problem eventually boils down to, finding
characteristics of Liouville field theory. As string theory
is all about working on 2-d worldsheets, there is a direct
coupling between Liouville fields and the worldsheet
geometry. Also, in phase transition of some statistical
models, it has profound applications, which make the
theory worth studying. Liouville field theory (LFT)
also is the simplest non-minimal conformal field theory
(CFT) with a continuous spectrum of primary fields that
serves as a prototype to develop techniques that can be
helpful in the study of more complicated CFTs. In this
short article, I will provide an introduction to Liouville
theory from the angle of a conformal field theory. I will
start with 2-d gravity to provide a motivation to study
LFTs.

2-DIMENSIONAL GRAVITY

The action for a 2-d gravity can be written as

A[gab] = µ

∫
d2σ

√
g + k

∫
d2σ

√
gR

+ l

∫
d2σ

√
g[R2 +∇a∇aR+ other higher degree terms].

The first term gives us the total surface area of the mani-
fold. The second term using Gauss-Bonet theorem, eval-
uates to ∫

d2σ
√
gR = 4πχ,

where χ = 2(1 − g), g =genus of the manifold. So, first
two terms are surface terms, are related to topology of
the manifold. The last terms are very small to show any
significant influence and also very complicated to work
with. In 2-d we don’t get non-trivial dynamical vacuum
solutions by generalizing Einstein’s gravity. But, we can

always use a coordinate transformation locally, to make
the metric in the following form,

gab(σ) = eϕ(σ)δab. (1)

Here, for simplicity we are working on a manifold with
Euclidean signature. The Ricci scalar can be calculated
from this metric,

R(σ) = −eϕ(σ)(∂2
0 + ∂2

1)ϕ(σ),

=⇒ (∂2
0 + ∂2

1)ϕ(σ) +R(σ)eϕ(σ) = 0.

The last equation matches with familiar Liouville equa-
tion,

(∂2
0 + ∂2

1)ϕ(σ) + Λeϕ(σ) = 0. (2)

So in this gauge (1), Liouville field ϕ(σ) specifies a man-
ifold with constant curvature R(σ) = Λ (a constant).
To examine properties of Liouville field ϕ(σ), we need
to find an action which is diffeomorphism invariant and
in conformal gauge (1) produces Liouville equation. It’s
difficult to find such action. We can at the best do, is to
factorise the physical metric as

gµν = e2bϕhµν

and write an action with hµν metric,

S =
1

4π

∫
d2σ

√
h
(
hµν∂µϕ∂νϕ+QRϕ+ 4πµe2bϕ

)
and at the end take hµν = δµν . The validity of this
action comes from the fact that it indeed produces Li-
ouville equation in conformal gauge. We will see that
later. Here, R is the Ricci scalar associated with the
background metric hµν and Q = 1

b , is a constant, called
the background charge. b and µ(> 0) are arbitrary con-
stants.

LIOUVILLE THEORY

The classical Liouville field theory is described by this
action,

S =
1

4π

∫
d2σ

√
h
(
hµν∂µϕ∂νϕ+QRϕ+ 4πµe2bϕ

)
(3)
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Here, we considered the theory is coupled to 2-d gravity
with non-minimal coupling. The physical metric on 2-d
surface is gµν and as the action must be diffeomorphism
invariant, it will be a gauge theory. We can fix the gauge
by choosing the conformal gauge condition,

gµν = e2bϕhµν (4)

where hµν is fixed, is called fiducial or non-physical met-
ric. In conformal gauge, the action have another symme-
try, called Weyl symmetry

hµν → e2ωhµν , ϕ → ϕ−Qω. (5)

I note here that this Weyl symmetry is not fundamental
and is emerging from the theory in conformal gauge.
Diffeomorphism and Weyl symmetry makes the theory
conformally invariant[4].

The central charge of the theory can be calculated us-
ing Coulomb gas representation

cL = 6Q2.

Because of invariane under (5), we can use Weyl trans-
formation to make the metric locally flat,

hµν = δµν .

Then the action (3), becomes

S =
1

4π

∫
d2σ

(
∂µϕ∂

µϕ+QRϕ+ 4πµe2bϕ
)
.

We keep the Ricci curvature even if R = 0 because it will
have contributions to energy-momentum tensor.

EQUATION OF MOTION

We can now calculate equation of motion for the field
ϕ and the stress-energy tensor. For that, we vary the
action (3) w.r.t. hµν and ϕ,

δhS =
1

4π

∫
d2σ

√
hδhµν

[
− 1

2
hµν

(
hρσ∂ρ∂σϕ+QRϕ

+ 4πµe2bϕ
)
+
(
∂µϕ∂νϕ+QRµνϕ

+Q(hµν∆ϕ−∇µ∇νϕ)
)]

(as we know, δR = Rµνδh
µν

−∇µ∇νδh
µν + hµν∇2δhµν),

δϕS =
1

4π

∫
d2σ

√
hδϕ(−2∆ϕ+QR+ 8πµbe2bϕ).

The equation of motion for ϕ gives

QR[h]− 2∆ϕ = −8πµbe2bϕ. (6)

Here, ∆ = 1√
h
∂µ(

√
hhµν∂νϕ) is Laplace-Beltrami opera-

tor. For hµν = δµν the last equation reduces to

∂µ∂
µϕ = 4πµbe2bϕ,

which has exactly the same form of Liouville equation
(2). We now compute the stress-energy tensor using

Tµν = − 4π√
h

δS

δhµν
.

Which gives

Tµν = −
(
∂µϕ∂νϕ− 1

2
hµνh

ρσ∂ρ∂σϕ
)

+Q
(
∇µ∇νϕ− hµν∆ϕ

)
+ 2πµhµνe

2bϕ.

Trace of this tensor is

T = hµνTµν = −Q∆ϕ+ 4πµe2bϕ.

Using (6), we have

T = −Q2

2
R. (7)

So, on-shell in conformal gauge the trace is zero. To use
the techniques of usual CFT, we use complex coordinates
z = σ1 + iσ2 and z̄ = σ1 − iσ2 We recall that the metric
will take the form

ds2 = hµνdσ
µdσν = hzz̄dzdz̄.

Under the change, z → w(z) and z̄ → w̄(z̄) metric be-
comes hww̄ = dw

dz
dw̄
dz̄ hzz̄. We get the conformal factor

ω = ln
∣∣∣dwdz ∣∣∣. As a consequence the Liouville field trans-

forms as

ϕ′ = ϕ−Q ln
∣∣∣dw
dz

∣∣∣ (8)

This is not a primary field. We can see that the primary
fields will be e2aϕ since

e2aϕ(z) → e2aϕ
′(w) =

∣∣∣dw
dz

∣∣∣2aQe2aϕ(z)
We consider only the holomorphic part. For each value
of a we have a primary field. The spectrum is continuous
so Liouville theory is not a minimal model.

Let’s compactify one dimension to put the CFT on the
cylinder

σi = (τ, σ)

τ ∈ R, σ ∈ [0, 2π].

The cylindrical coordinates will be w = τ + iσ. We again
map it to a plane z = ew = eτ+iσ. The metric in z
coordinate becomes

ds2 = dzdz̄.
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In this coordinate the stress energy tensor takes the form

T = −(∂ϕ)2 +Q∂2ϕ+ 2πµe2bϕ.

On-shell, it will be,

T = −1

2
(∂ϕ)2 +Q∂2ϕ.

If we had put R = 0 initially then we would have missed
the last term. Using (8), the primary fields vb = e2bϕ on
the cylinder transform to vb = e(2bϕ−a).

All the above discussions were done for classical Liou-
ville theory. If we try to quantize the theory, many sym-
metries break down. The traceless energy-momentum
tensor in (7) gains trace in quantum theory because of
trace anomaly. The quantum expectation value becomes

⟨Tµ
µ ⟩ = −cL

12
R = − 1

12
− Q2

2
R.

The value of Q also changes,

Q = b+
1

b
.

Because of this, the theory starts to have an additional
symmetry b → 1

b . The signatures of quantum theory can
be found in this paper [2].

The most important aspect about a CFT, that is find-
ing the correlation functions, becomes very difficult for
Liouville theory. To obtain a closed form of three point
function took many years to succeed.

THREE POINT FUNCTION

The form of three point function is completely deter-
mined by the conformal symmetry,

Gα1α2α3
(z1, z2, z3) = |z12|2γ3 |z31|2γ2 |z32|2γ1c(α3, α2, α1)

where

γ1 = ∆α1−∆α2 −∆α3 ; γ2 = ∆α2 −∆α3 −∆α1 ;

γ3 = ∆α3 −∆α1 −∆α2 .

Determination of c(α3, α2, α1) depends on particular the-
ories. In two papers[1, 8] by D-O-Z-Z, for the first
time, an explicit formula for this functions were proposed.
These were given by

c(α3,α2, α1) =
[
πµγ(b2)b2−2b2

]Q−α1−α2−α3
b

γ0γb(2α1)γb(2α2)γb(2α3)

γb(α1 + α2 + α3 −Q)γb(α1 + α2 − α3)

× 1

γb(α1 + α3 − α2)γb(α2 + α3 − α1)
.

Here, γ(x) = Γ(x)/Γ(1− x) and γb functions are defined
as

log γb(x) =

∫ ∞

0

dt

t

[(Q
2
− x

)2

e−t −
sinh2

(
Q
2 − x

)
t
2

sinh bt
2 sinh t

2b

]
.

There are many important properties of these γb func-
tions that are worth noticing. These properties can be
found in [6], also in [5].

We can move on to calculate four-point functions.
Though a compact form of the function have not been
found yet, great amount of work has been done on it.
Interested readers can refer [5] for more information.

FUTURE WORKS

This was a very short introduction to Liouville theory,
discussing only basic topics. Many important aspects of
Liouvillle theory could have been covered in great detail
such as quantizing the theory, proving DOZZ formula,
using conformal blocks to find four point functions, con-
formal bootstrap procedure etc. Applications to some
statistical models such as 2-d Ising model have not been
done here. They are reserved for future works.
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