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In this review paper of this paper[1], important features of two-dimensional bond percolation on
an infinite square lattice at its critical point within a conformal field theory (CFT) approach are
presented. This approach is a level three null vector interpretation for Watts’ differential equation
describing the horizontal vertical crossing probability Πhv. We will show that this differential
equation can be derived from a level three null vector condition of a rational c = −24 CFT and see
how this solution may be fitted into known properties of percolation.

INTRODUCTION

What is percolation?

In 1957, Broadbent and Hammersley were the first to
formulate the percolation problem by asking the question
of how probable it is for the center of a porous stone to
be wet when laid into a jar of water. So “percolation”
means a process of random walks through a material de-
pending on the likelihood of ways to be opened or closed.
Obviously, the probability depends on the size, shape,
and number of open pores of the material.

It is usually modeled based on a lattice, e.g. a subset
of Z2 (the plane square lattice) or the triangular lattice,
whose bonds or sites are opened (or closed) with a prob-
ability p (or (1 − p)), p ∈ [0, 1]. In the following we will
consider bond percolation on the square lattice, since the
square lattice is dual to itself, it makes things much easier
to calculate. Due to its finite size a stone may only be rep-
resented by a large but finite subset of Z2, but in physics,
it is often easier to deal with infinitely large systems or
with less dimensions. Thus, in our model, a vertex of the
stone will be wet iff there exists a path in Z2 to some ver-
tex at the boundary running through open bonds. This
random subgraph obviously depends on the probability
of the bonds being opened or closed and on the aspect
ratio(r) of our two-dimensional rectangular stone. Solv-
ing the system numerically, it is found that there exists
a critical probability for the bonds or sites to be opened.
Suppose we have bonds connecting nearest neighboring
sites with a probability p. Now let Πh(r) be the prob-
ability of having a cluster of open bonds spanning from
left to right and thus establishing a horizontal crossing
through the lattice. In the limit, the lattice sizes ap-
proach infinity, there exists a critical probability pc such
that Πh(r) = 0 for p < pc and Πh(r) = 1 for p > pc. For
pc = 1/2 one may find that Πh(r) = 1/2.

Application of Percolation

Percolation is useful as the Q → 1 limit of the Q states
Potts model or as a usage of SLE(κ, ρ). It can also be
used as a model for the conductivity of random resistance

networks, the spreading of diseases, and forest fires. An-
other application is the error probability in wafer pro-
duction.

A BRIEF REVIEW OF PERCOLATION
PROPERTIES

According to Langlands et al[2], critical percolation
in two dimensions has interesting features in conformal
field theory such as the conformal invariance of the three
independent crossing probabilities 1, Πh, Πhv. As for Πh,
Cardy[3] has derived an exact solution using boundary
conformal field theory which agrees with numerical data
to a high accuracy. Motivated by this, Watts[4] tries to
construct boundary operators for Πhv in the context of
theQ → 1 limit of the Q states Potts model. He managed
to derive one of the fifth-order differential equations that
agrees with the simulation. Additionally, he observed
that the three physically relevant solutions already satisfy
a third-order differential equation.

In the previous literature, several arguments have
been given to describe the crossing probabilities in two-
dimensional critical percolation as conformal blocks of a
four-point correlation function of (h = 0)-operators in a
c = 0 conformal field theory, using a second (third) level
null vector to get Πh (Πhv). The most prominent are

• (for c = 0) the Beraha numbers Q = 4 cos2 π
n (with

n usually denoted as m+1 = 2, 3, 4... which in most
Potts models are related to the central charge by
c = 1− 6

m(m+1)

• (for c = 0) Πh can be derived mathematically by
the Stochastic/Schramm Loewner Evolution(SLE)
which strengthens the first argument

• (for h = 0) the proportionality of the partition
functions for free boundary condition to Z = 1,
where Z is the partition function of percolation.

• (for c = h = 0) the interpretation of the central
charge as describing the finite size effects of the
energy which are believed to be absent.
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BOND PERCOLATION AND THE Q-STATE
POTTS MODEL[5]

Bond percolation can be explained by taking the Q →
1 limit of the Q-state Potts model. In this model on each
site of the lattice, there is a discrete variable σi(spin) that
takes one of the Q possible values. So, the energy of the
system is

E = J
∑
⟨ij⟩

δσiσj
(1)

It means that the same spin linking bonds have energy J
and other bonds have zero energy. The partition function
may be expressed as follows:

Z =
∑
⟨σ⟩

∏
⟨ij⟩

(1 + exp(−βJ)δσiσj
) (2)

This partition function can be realized in a different way
similar to the percolation problem. Let p and (1-p) be the
probability of activation and deactivation of each bond
respectively. Also, each bond can be ’color’ with Q pos-
sible values. So a given cluster of bonds is ’colored’ ac-
cording to the value of σ it supports. Then the partition
function is given by

Z =
∑
R

pB(R)(1− p)B−B(R)QNc(R) (3)

where B is the total number of bonds, B(R) is the to-
tal number of activated bonds, R is the subset of bonds
that are activated, and Nc(R) is the number of disjoint
clusters in R. We have to also take clusters of size zero
in order to have perfect correspondence with the Q-state
Potts model. This correspondence allows us to formulate
the problem of the crossing probability(Πh(r)) in terms
of the partition function with different boundary condi-
tions. Suppose Zαβ is the partition function on a rect-
angular lattice for the given boundary conditions- spins
on the left side are in state α and on the right side are in
state β and spins on the top and bottom sides are free.
Then the crossing probability(Πh(r)) is given by

Πh(r) = lim
Q→1

(Zαα − Zαβ) (4)

Where α ̸= β. From boundary CFT we know that the
partition functions of systems with boundary conditions
can be given by the correlator of the boundary operators
given at the points at which the conditions change. So
the partition functions are given by
Zαα = Zf ⟨ϕfα(x0)ϕαf (x1)ϕfα(x2)ϕαf (x3)⟩
Zαβ = Zf ⟨ϕfα(x0)ϕαf (x1)ϕfβ(x2)ϕβf (x3)⟩
Now Q-state Potts model is nothing but the mini-
mal model M(m,m − 1) with Q = 4 cos2(π/m)(m =
3, 4, 6,∞). It can be shown that the correct choice for

the boundary operator for Πh(r) is ϕαf = ϕ(1,2). Assum-
ing scale invariance, c = 0 and using level two null vector
condition for ϕ(1,2) we get for Πh(r)

η(1− η)g
′′
+

2

3
(1− 2η)g′ = 0 (5)

It has two independent solutions,
η1/32F1(1/3, 2/3, 4/3; η) and 1. Taking into account
correct asymptotic behavior we get

Πh(r) =
3Γ(2/3)

Γ2(1/3)
η1/32F1(1/3, 2/3, 4/3; η) (6)

Next, we are going to show that this exact expression
for horizontal crossing probability can be obtained using
level three null vector condition on the boundary opera-
tors and using c = −24 instead of c = 0.

THE WATTS DIFFERENTIAL EQUATION

As mentioned before, Watts derived a fifth-order differ-
ential equation for Πhv, using a c = 0 theory with h(1,2) =
0 boundary changing operators following Cardy’s ansatz
for Πh. In a c = 0 theory, Πhv boundary operators can-
not be identified directly contrary to Πh. Considering
the asymptotic behavior, one can find the correct ex-
pressions for Πh and Πh[6] by taking linear combinations
of the three physically relevant solutions of

d3

dx3
(x(x− 1))4/3

d

dx
(x(x− 1))2/3

d

dx
F (x) (7)

where x is the crossing ratio and F is the conformally
mapped crossing probability. The equation can be fur-
ther factorized into

(
d2

dx2
(x(x− 1)) +

1

2x− 1

d

dx
(2x− 1)2)

d

dx
(x(x− 1))1/3

d

dx
(x(x− 1))2/3

d

dx
F (x)(8)

where the rightmost part gives us the three expected so-
lutions for the crossing probabilities in percolation.

Interpretation as a level three null vector

If we simplify the third-order equation and compare
it to the generic form of a level three null vector in the
minimal model, it is found that there is no level three null
vector in c=0 which could give rise to Watt’s differential
equation. Now, we will show that it can be derived from
the null vector of an h = h(1,3) = −2

3 field acting on a

correlator containing h1 = h2 = h(1,3) = −2
3 and h3 =

h(1,5) = −1 in an c(p,1) = −24 LCFT, which is a unique
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solution for level three null vector condition. According
to [7], the level three null vector is given by

|χ(3)
(h,c)⟩ = (L3

−1 − 2(h+1)L−2L−1 + h(h+1)L−3|h⟩ (9)

The differential operators L−n are defined by

L−n(z) = Σ(
(n− 1)hi

(zi − z)n
− 1

(zi − z)n−1
∂zi) (10)

Letting them act on the four-point function
F (z, z1, z2, z3) ≡< ϕh(z)ϕh1

(z1)ϕh2
(z2)ϕh3

(z3) > yields
a quite lengthy expression. Replacing again all deriva-
tives ∂zi by expressions only containing the derivative ∂z
and taking the limits z1 → 0, z2 → 1and z3 → ∞,
we get the third order differential equation for
F (z) ≡ F (z, 0, 1,∞)

0 =
d3

dz3
F (z) + 2(h+ 1)

2z − 1

z(z − 1)

d2

dz2
F (z)

+(h+ 1)(
h− 2h1

z2
+

h− 2h2

(z − 1)2
− 2

h3 − h− h1 − h2

z(z − 1)
+

h

z(z − 1)
)
d

dz
F (z) + h(h+ 1)(−2h1

z2
− 2h2

(z − 1)3
+

(2z − 1)(h+ h1 + h2 − h3)

z2(z − 1)2
)F (z)(11)

Next, we compare equation.(11) to Watt’s differential
equation in a suitable form

(
d3

dz3
+

5(2z − 1)

z(z − 1)

d2

dz2
+

4

3z(z − 1)

d

dz
)F (z) = 0 (12)

Clearly, these equations can not be compared in this
form. Using the generic form of the four-point function
due to its conformal invariance F (z) can be written as
F (z) = zµ01(z − 1)µ02H(z) and inserting it in the equa-
tion.11 gives us a modified differential equation for H(z)
for which an appropriate choice of the h, h1, h2, h3 is pos-
sible and that is h = h1 = h2 = −2/3 and h3 = −1. This
means that all four weights can be chosen from the Kac-
table of one and the same minimal CFT. The equation
belongs to c(6,1) = −24 because the highest weight rep-
resentation (-2/3) has indeed a third-level null vector.

Holding on to c = 0 in a tensor model

As shown above, the differential equation that gives us
the correct solution for the Πhv directs towards a c = −24
LCFT. But if we want to stick to c = 0 CFT, we may do
so via giving a tensor ansatz of two CFTs, one of them
being c = −24 as needed to satisfy Watt’s differential
equation and the other being c = 24. In this scenario,
any correlation function or any field factorizes into two
parts belonging to two CFTs respectively, i.e. Φh(z) =

Φh,c=−24(z) ⊗ ΦH−h,c=+24(z). We also assume that the
second factor of the third-level differential equation is

Gc=+24(z) = ⟨Φh(z)Φh1(0)Φh2(1)Φh3(∞)⟩c=+24 (13)

But all information is contained in the first factor given
by

Fc=−24(z) = ⟨Φ−2/3(z)Φ−2/3(0)Φ−2/3(1)Φ−1(∞)⟩c=−24(14)

A perfect match would be to find

H(z) = Fc=−24(z)Gc=+24(z) =⇒ Gc=+24(z) = z−1/3(z−1)−1/3

(15)
A possible solution will be if G(z) is a three-point func-
tion, i.e. ⟨Φ1/3(z)Φ1/3(0)Φ1/3(1)I(∞)⟩c=+24 It remains
to clarify whether such a correlator exists and is non-
vanishing in a c = +24 theory.

Cardy’s formula and c = −24

We see that there are two differential equations numer-
ically ’proven’ to be correct but coming from two different
CFTs, both assumed to describe percolation. So the nat-
ural question will be which one is correct? Is there an
interpretation of Cardy’s formula[3] for Πh in c = −24?
In general, Cardy’s formula arises from a level two null
vector condition applied to a four-point correlation func-
tion,

(
3

2(2h+ 1)

d2

dz2
+

2z − 1

z(z − 1)

d

dz
− h1

z2
− h2

(z − 1)2

+
h+ h1 + h2 − h3

z(z − 1)
)F (z) = 0 (16)

For c = −24, we have ϕ(1,2) with weight h = h(1,2) =
−3/8. Now we have to check whether the solutions of
c = −24 span the solution space as those for c = 0 since
the latter has been proven to be correct by the numerical
simulation of Langlands et. al.[2]. Hence F (z) should be
of the form 2F1(1/3, 2/3, 4/3, z). From the above equa-
tion it can be shown h1 = h2 = h3 = h(1,4) = − 7

8

and F1(z) = (z(z − 1))1/4z1/32F1(1/3, 2/3, 4/3, z) and
another solution will be F2(z) = (z(z − 1))1/4. So, by
comparing with Cardy crossing probability for percola-
tion is given by their quotient Πh ∝ F1/F2. Our solution
has same asymptotic behavior, i.e. vanishes for z → 1
and goes to one for z → 0. The normalization is ob-
tained by considering the identity

3Γ(2/3)

Γ2(1/3)
2F1(1/3, 2/3, 4/3, z) = 1− 3Γ(2/3)

Γ2(1/3)
(1− z)1/3

2F1(1/3, 2/3, 4/3, 1− z)(17)

which gives 3Γ(2/3)
Γ2(1/3) as a normalization factor. This result

is remarkable, since it contains the two fields for critical
exponents in percolation, i.e. h(1,2) = −3/8 and h(1,4) =
−7/8 in the c = −24 theory.
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CONCLUSION

In this review paper, we have shown that if we want to
describe two-dimensional bond percolation within a con-
formal field theory, using a level three null vector condi-
tion to get a differential equation for horizontal-vertical
crossing probability Πhv that fits the numerical data, we
have to take c = −24. This solution is unique. Also,
there are no strict arguments contradicting our result,
even not from the derivation of the horizontal crossing
probability Πh whose form has already been proven in
the literature, since it can be explained in our c = −24
CFT proposal as well. Hence the question remains if we
should consider percolation being rather a c = −24 than
the commonly assumed c = 0 theory of percolation.
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