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In this project report, we will do a comparative analysis of three non-relativistic (NR) conformal
algebras which are the Schrödinger algebra, Galilean conformal algebra (GCA) and conformal Carroll
algebra (CCA). This will be followed by the derivation of the two-point correlators in NR-CFTs
which respect the abovementioned algebras. In the end, we will discuss OPEs in Schrödinger CFTs.

I. INTRODUCTION

Non-relativistic conformal field theories (NR-CFT)
play a central role in understanding several condensed
matter systems [1]. By utilizing the scaling symme-
try present in NR (non-relativistic) systems, it becomes
possible to provide an explanation for critical phenom-
ena—for example, ferromagnetic phase transition, NR
fermions at unitarity, helium near superfluid transitions
[2]. It was shown in [3] that the NR Naviers-Stokes
equation is invariant under Galilean conformal algebra
(GCA), a branch of NR-CFT. In [4], the authors iden-
tify modified Mellin amplitude with the time-dependent
correlation functions of primaries in a Carrollian CFT,
another branch of NR-CFT. This result establishes a con-
nection between the two lines of research in flat hologra-
phy. This brief introduction serves as a compelling reason
to study NR-CFTs.

II. SCHRÖDINGER ALGEBRA

The Schrödinger symmetry group [5–7] is defined by
the following transformation rules

r⃗ −→ r⃗′ =
Rr⃗ + v⃗t+ a⃗

γt+ δ
, t −→ t′ =

αt+ β

γt+ δ
,

αδ − βγ = 1

(1)

where α, β, γ, δ, v⃗ and a⃗ are real parameters and R is the
rotation matrix in d dimensions. Niederer [6] showed that
this forms the group of symmetries of free Schrödinger
wave operator in d+1 dimensions. The generators of
Schrödinger algebra in d+1 dimensions are given in table
I. It is important to note that in the Schrödinger group,

Symmetries Generators

Rotations Jij = −(xi∂j − xj∂i)

Translations Pi = ∂i

Galilean boosts Bi = t∂i

Hamiltonian H = −∂t

Dilatations D = −(2t∂t + xi∂i)

Schrödinger SCT K = −(txi∂i + t2∂t)

TABLE I: Generators of Schrödinger Algebra

the special conformal transformation functions as a scalar

operator, which leads to a reduced number of generators
in comparison to the relativistic conformal group. There-
fore, we can anticipate that the correlation functions will
not be determined exactly.

III. SCHRÖDINGER VIRASORO ALGEBRA

There exists an infinite-dimensional extension to the
Schrödinger algebra called the Schrödinger-Virasoro al-
gebra [7]. In d+1 dimensions with R = 1, the generators
are given by

Xn = −tn+1∂t −
n+ 1

2
tnri∂ri −

n(n+ 1)

4
Mtn−1r2i (2)

Y i
m = −tm+ 1

2 ∂ri −
(
m+

1

2

)
Mtm− 1

2 ri (3)

Mn = −tnM. (4)

Here, m takes half-integer values and n takes integer val-
ues. When M = −im, this gives the infinite-dimensional
extension of the Schrödinger algebra, where m is inter-
preted as the mass. The Lie algebra of the Schrödinger
group is spanned by {X±1,0, Y± 1

2
,M0}. The non-trivial

commutation relations are given as

[Xn, Xm] = (n−m)Xn+m

[Xn, Y
i
m] =

(n
2
−m

)
Y i
n+m

[Xn,Mm] = −mMm+n

[Y i
n, Y

j
m] = (n−m)Mn+mδ

ij

(5)

IV. GALILEAN CONFORMAL ALGEBRA

Scaling the coordinates in a particular manner con-
tracts the relativistic conformal group to the Galilean
conformal group, we will refer to this scaling as the NR
limit.

t→ t and xi → ϵxi in the limit ϵ→ 0. (6)

This scaling limit is equivalent to taking c → ∞. Here,
the number of generators do not change on performing
the contraction, unlike the Schrödinger algebra. [1, 8].
The generators of Galilean conformal algebra in d+1 di-
mensions are given in table II.
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Symmetries Generators

Rotations Jij = −(xi∂j − xj∂i)

Translations Pi = ∂i

Galilean boosts Bi = t∂i

Hamiltonian H = −∂t

Dilatations D = −(t∂t + xi∂i)

Galilean temporal SCT K = −(2txi∂i + t2∂t)

Galilean spatial SCT Ki = t2∂i

TABLE II: Generators of Galilean Conformal Algebra

V. VIRASORO-KAC-MOODY TYPE ALGEBRA

There exists an extension of GCA that is infinite-
dimensional. The extension of GCA is similar to the
Virasoro-Kac-Moody type algebra [1, 8].

L(n) = −(n+ 1)tnxi∂i − tn+1∂t, (7)

M
(n)
i = tn+1∂i, (8)

J (n)
a := J

(n)
ij = −tn(xi∂j − xj∂i). (9)

Here n takes integer values and a labels the generators of
the spatial rotation group SO(d). The non-trivial com-
mutation relations are given as

[L(n), L(m)] = (n−m)L(n+m)

[L(n), J (m)
a ] = −nJ (m+n)

a

[J (n)
a , J

(m)
b ] = f c

ab J
(n+m)
c

[L(n),M
(m)
i ] = (n−m)M

(n+m)
i

(10)

VI. VIRASORO TO GCA IN 2D

The two-dimensional relativistic conformal algebra is
an infinite-dimensional algebraic structure that com-
prises two copies of the Virasoro algebra. Using the
NR contraction as portrayed above one can derive the
infinite-dimensional GCA in 1+1 dimensions from the
Virasoro algebra. The generators of the Witt algebra are
given by

Ln = −zn+1∂z and L̄n = −z̄n+1∂z̄. (11)

To perform the abovementioned contraction, consider the
coordinate transformation given as z = t+x and z̄ = t−x.
One can obtain the generators of 2D GCA by-

1. Expressing Ln and L̄n in (x, t) coordinates.

2. Considering the combinations Ln+L̄n and Ln−L̄n.

3. On scaling ϵ→ 0,

Ln + L̄n → Ln and ϵ(Ln − L̄n) → −Mn. (12)

At the quantum level, the two Virasoro algebras have a
central extension

[Ln,Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn,−m, (13)[

L̄n, L̄m

]
= (n−m)L̄n+m +

c̄

12
n(n2 − 1)δn,−m. (14)

Using the abovementioned linear combination of the Vi-
rasoro generators one can derive the centrally extended
GCA in 2D.

[Ln, Lm] = (n−m)Ln+m + C1n(n
2 − 1)δn,−m,

[Ln,Mm] = (n−m)Mn+m + C2n(n
2 − 1)δn,−m,

[Mn,Mm] = 0

where C1 =
c+ c̄

12
and C2 = ϵ

c̄− c

12
.

(15)

For non-zero C2, c̄ − c ∝ O( 1ϵ ) + O(ϵ), the second
proportionality can be motivated from the form of Ln −
L̄n in (x, t) coordinates and for finite C1, c̄ + c ∝ O(1).
For the proportionalities to hold, we require c and c̄ to
be large and of opposite sign. Hence, the original 2D
relativistic CFT cannot be unitary.

VII. CONFORMAL CARROLL ALGEBRA

The conformal Carroll algebra (CCA) is obtained from
the relativistic conformal algebra by scaling the coordi-
nates in the opposite manner [4], that is,

t→ ϵt and xi → xi in the limit ϵ→ 0 (16)

This scaling limit is equivalent to taking c → 0, we will
refer to this scaling as the ultra-relativistic (UR) limit.
The generators of the algebra are given in table III.

Symmetries Generators

Rotations Jij = −(xi∂j − xj∂i)

Translations Pi = ∂i

Carrollian Boosts Bi = −xi∂t

Hamiltonian H = ∂t

Dilatations D = −(t∂t + xi∂i)

Carrollian SCT (Temporal) K = xixi∂t

Carrollian SCT (Spatial) Ki = −2xi(t∂t + xi∂i) + xjxj∂i

TABLE III: Generators of Conformal Carroll Algebra

VIII. BMS ALGEBRA

Conformal Carrollian isometries are isomorphic to
BMS (Bondi Metzner Sachs) symmetries in one higher
dimension [9, 10]. Bondi, van der Burgh, Metzner and
Sachs discovered the symmetries of the asymptotically
flat 4D spacetimes. This forms an infinite-dimensional
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group and is known as the BMS group. The BMS al-
gebra of a 4D asymptotically flat spacetime at the null
boundary is given as

[Ln, Lm] = (n−m)Ln+m,[
L̄n, L̄m

]
= (n−m)L̄n+m,

[Mr,s,Mt,u] = 0,

[Ln,Mr,s] =

(
n+ 1

2
− r

)
Mr+n,s,[

L̄n,Mr,s

]
=

(
n+ 1

2
− s

)
Mr,n+s.

(17)

Hence, the 3D CCA has an infinite-dimensional exten-
sion and the generators are given as

M00 = H, M01 = Bx + iBy, M10 = Bx − iBy,

M11 = K, L0 =
1

2
(D + iJ), L−1 =

1

2
(Px + iPy),

L1 =
1

2
(Kx + iKy), L̄0 =

1

2
(D − iJ),

L̄−1 =
1

2
(Px − iPy), L̄1 =

1

2
(Kx − iKy).

(18)

Here, the BMS generators of 4D asymptotically flat
spacetimes are on the LHS and the finite-dimensional
conformal Carroll generators are on the RHS. In the UR
limit, the Virasoro algebra gives the CCA in 2D [11–13].
The derivation is similar to the one in section VI

IX. CORRELATION FUNCTIONS

In this section, we will report the two-point correla-
tion function for all three cases. Refer to table IV for the
correlation functions and the appendix for all the deriva-
tions.

X. A COMPARATIVE ANALYSIS OF ALL THE
CORRELATION FUNCTIONS

1. All except conformal Carroll two-point correlators
(the second channel) vanish for unequal scaling di-
mensions.

2. The exponential in the correlators (except CCA)
arises due to invariance under Galilean boost.

3. The Schrödinger three-point function is not com-
pletely fixed, unlike the GCA and CCA correla-
tors. The correlator is given in terms of cross-ratios
as given in the argument of the H function. This
is because Schrödinger algebra has less number of
generators.

4. The Carroll correlators in the second channel are
ultralocal and vanish if the spins do not add up to
zero. Similarly, there is an additional mass supers-
election rule in the Schrödinger correlators.

XI. OPE IN SCHRÖDINGER CFT

In this section, we analyze the OPEs of primary scalar
operators in Schrödinger CFT [14]. This section does not
follow the same algebraic interpretation as in the previous
section. Refer [15] for the algebraic interpretation. The
OPE of two operators can be expanded as

O2(0)O3(x) = (C0(x) + Ci
1(x)∂i + C2(x)∂t

+ Cjk
3 (x)∂j∂k....)O1(0).

(19)

Commuting both sides with Ki and C and rearranging

yields Ci
1(x), C2(x) and Cjk

3 (x) in terms of C0(x). The
rest of the coefficients can be found in the similar manner.
The expression for C2(x) is explicitly given below

C2(x) =
i

N1(2∆1 − d)
[t2(−2iN1∂t + ∂2)− 2iN2txi∂i

+ i(N3d− 2N1∆3)t+N3N2x
2]C0(x)

(20)

where N2 +N3 = N1.
It is seen that if O1 has dimension d/2 then the equation
can be treated as a restriction on C0(x). Therefore, for
the OPE of any two primary operators, the coefficients of
an operator of dimension d/2 can be calculated exactly.
In the theory of fermions at unitarity, the aforementioned
fact is utilized. Here, O1 refers to a fermion field ψ with
N1 = −1 and ∆1 = d/2. By utilizing equation (20)
and a scale-invariant form of C0(x, t), it becomes possible
to calculate the exact expression of C0, which, in turn,
enables the determination of all the other coefficients.
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Appendix

Derivation of Correlation Functions

Schrödinger Algebra

The content covered in this section follows from [7].
Consider a 1+1 dimensional field (in this case spin = 0).
ϕ(r, t) with scaling dimension x and mass M. The action
of the generators on the field is as follows:

[Xn, ϕ(r, t)] =

(
tn+1∂t +

n+ 1

2
tnr∂r +

n(n+ 1)

4
Mtn−1r2

+(n+ 1)tn
x

2

)
ϕ(r, t)

[Ym, ϕ(r, t)] =

(
tm+ 1

2 ∂r +

(
m+

1

2

)
Mtm− 1

2 r

)
ϕ(r, t).

(21)

ϕ(r, t) is a primary field if it follows the above equations
for all integers n and half integers m and quasi-primary
if it satisfies the above equations for n = ±1, 0 and m =
± 1

2 .
Consider the two-point function given as

F (r1, r2; t1, t2) = ⟨ϕ1(r1, t1)ϕ∗1(r2, t2)⟩. (22)

Space and time translation symmetry restrict F as a
function of r = r1 − r2 and t = t1 − t2. Invariance under
scaling (X0) requires(

t∂t +
1

2
r∂r + x

)
F (r, t) = 0, (23)

with x = 1
2 (x1 + x2). The solution of F (r, t) can be

written as

F (r, t) = t−xG

(
r2

t

)
. (24)

Invariance under boosts (Y1/2) imposes two conditions

M1 −M2 = 0 and (t∂r +M1r)F (r, t) = 0. (25)

Combining this with (26) we get,

G(u) = G0exp

(
−M1

2
u

)
. (26)
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Invariance under Schrödinger SCT (X1) gives three con-
ditions

x = x1 = x2, M1 −M2 = 0 and (∂u +
1

2
M1)G = 0.

(27)
These equations determine the two-point function up to
a normalization constant ϕ0

F (r, t) = δx1,x2δM1,M2ϕ0t
−xexp

(
−M1r

2

2t

)
. (28)

Using the same analysis the three-point function
⟨ϕ(ra, ta)ϕ(rb, tb)ϕ∗(rc, tc)⟩ can be determined for three
scalars up to a function H.

F (r, s, τ, σ) =δMa+Mb,Mcτ
− 1

2 (xa+xc−xb)σ− 1
2 (xb+xc−xa)

∗ (τ − σ)−
1
2 (xa+xb−xc)

exp

[
−Mar

2

2τ
− Mbs

2

2σ

]
H

(
(rσ − sτ)2

(σ − τ)στ

)
.

(29)

Here r = ra − rc, s = rb − rc, τ = ta − tc and σ = tb − tc.

Galilean Conformal Algebra

The content covered in this section follows from [16].
Consider a d+1 dimensional spacetime, from the algebra,
we see that L0 defines the dilatation operator and M i

0

defines Galilean boosts ([L0,M
i
0] = 0). The eigenvalues

of these operators are called the scaling dimension ∆ and
rapidity ξi. From the commutation relations, it can be
derived that Ln and M i

n lower the scaling dimension by
n and L−n and M i

−n raise the scaling dimension by n.
Primary operators Op are defined as [Ln,Op] = 0 and
[M i

n,Op] = 0. We label primary states as |∆, ξi⟩.
The action of the generators for n ≥ 0 is,

[Ln,O(x, t)] = [tn+1∂t + (n+ 1)tnxi∂i

+ (n+ 1)(tn∆− ntn−1xiξ
i)]O(x, t)

[M i
n,O(x, t)] = [−tn+1∂i + (n+ 1)tnξi]O(x, t).

(30)

Primaries satisfy the above relation for all n ≥ 0 and
quasi-primaries satisfy the above relation for n = 1, 0.

The two-point correlation function between two
quasi-primary operators O1(x

i
1, t) and O2(x

i
2, t) with

scaling dimension and rapidity (∆1, ξ
i
1) and (∆2, ξ

i
2) is

given by the function G(2)(xi1, x
i
2, t1, t2). Translational

symmetry in space and time restrict G(2) = G(2)(τ, ri)
where τ = t1 − t2 and ri = xi1 − xi2. Invariance under
Galilean Boosts (M i

0) gives,

M i
0G

(2) = (−τ∂i + ξi)G
(2) = 0,

=⇒ G(2) = C(τ)exp

(
ξir

i

τ

)
,

(31)

C(τ) is a function of τ . Invariance under dilatation im-
plies,

(τ∂τ + ri∂i +∆)G(2) = 0

=⇒ G(2)(ri, τ) = C(2)τ−∆exp

(
ξir

i

τ

)
,

(32)

where C(2) is an arbitrary constant, ∆ = ∆1 + ∆2 and
ξi = ξi1 + ξi2. M

i
1 and L1 impose ∆1 = ∆2 and ξi1 = ξi2.

Finally, the two-point function reads,

G(2)(ri, τ) = δ∆1,∆2
δξi1,ξi2C

(2)τ−∆exp

(
ξir

i

τ

)
. (33)

By a similar analysis, the three-point function can be
fixed up to a constant C(3)

G(3)(ri, si, τ, σ) =C
(3)τ−(∆1−∆2+∆3)σ−(∆2+∆3−∆1)

∗ (τ − σ)−(∆1+∆2−∆3)

exp

(
(ξi1 − ξi2 + ξi3)ri

τ
+

(ξi2 − ξi1 + ξi3)si
σ

+
(ξi1 − ξi3 + ξi2)(ri − si)

(τ − σ)

)
.

(34)

Both the three and two-point functions in 2D can be
derived from the corresponding correlation functions in
2D relativistic CFT, by performing the non-relativistic
scaling [1].

Conformal Carroll Algebra

The content covered in this section follows from
[4]. In this section, we derive the two-point correlator
G(u, z, z̄, u′, z′, z̄′) of primary fields in 3D Carroll CFT.
The action of the generators on primaries with scaling
dimension (h, h̄) is given as

Lnϕh,h̄(u, z, z̄) =

[
zn+1∂z + (n+ 1)zn

(
h+

1

2
u∂u

)]
ϕh,h̄,

Mr,sϕh,h̄(u, z, z̄) = [zr z̄s∂u]ϕh,h̄(u, z, z̄).

(35)

Combining the constraints due to Carroll time transla-
tional symmetry and Carroll boosts leads to

(z−z′)∂uG(u−u′, z−z′, z̄−z̄′) = 0+anti-holomorphic part
(36)

This gives rise to two channels of Carroll correlators

∂uG = 0 and ∂uG = f(u− u′)δ2(z − z′). (37)

On applying the restrictions from other symmetry oper-
ations, the first channel leads to the two-point correlator
in 2D relativistic CFT.



6

In the second channel, demanding invariance under
L0,±1, L̄0,±1 it is seen that,

(∆ +∆′ − 2)f(u− u′) + (u− u′)∂uf(u− u′) = 0,

(σ + σ′)f(u− u′) = 0
(38)

where ∆ = h+ h̄ and σ = h− h̄. Solving the above equa-
tions determines the correlation function up to a constant

G(u, z, z̄, u′, z′, z̄′) =
Cδ2(z − z′)

(u− u′)∆+∆′−2
δσ+σ′,0. (39)


