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This article is a project report on scale vs conformal invariance, which briefly summarizes their
distinction and possible equivalence. It aims to understand how a scale invariant theory implies
conformal invariance. To study these characteristics, it starts by formulating the structure of the
energy momentum tensor. Specifically, it tries to emphasize how the trace of this tensor behaves
in various theories and backgrounds by describing its relevant anomalies and symmetric properties.
Finally, at the end, it provides proof of the enhancement of conformal invariance from the scale
invariance.

I. INTRODUCTION

This article discusses the problem of scale vs con-
formal invariance in relativistic quantum field the-
ories. It distinctly clarifies the conditions under
which a given scale invariant field theory has the en-
hanced conformal symmetry. It emphasizes the trace
of energy momentum tensor captures the condition
through a local operator called Virial current. Fur-
ther, it provides strategy to show the enhancement
of conformal invariance from scale invariance under
which the theory is considered. The improvement of
energy momentum tensor also takes account of other
suitable theorems and renormalization group effects,
which we have to consider in order to understand the
complete picture of enhanced conformal invariance in
any arbitrary dimension. Therefore, it is crucial to
understand how to compute the trace of energy mo-
mentum tensor. Its significance to the renormalization
scheme is thoroughly presented in [1].

II. SCALE AND CONFORMAL INVARIANCE
IN QFT

In QFTs, the Poincare invariance give rise to the fol-
lowing algebra on the background of spacetime sym-
metry.

i[Jµν , Jρσ] = ηνρJµσ − ηµρJνσ − ησµJρν + ησνJρµ

i[Pµ, Jρσ] = ηµρPσ − ηµσP ρ

[Pµ, P ν ] = 0 (1)

In this Poincare transformation, one can further ex-
tend the symmetry to a Dilatation current using the
generator D as

i[Pµ, D] = −Pµ

[Jµν , D] = 0 (2)

Further, a full symmetry group can be enhanced from
here by augmenting Kµ; a special conformal transfor-
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mation

[Kµ, D] = −iKµ

[Pµ,Kν ] = 2iηµνD + 2iJµν

[Kµ,Kν ] = 0

[Jρσ,Kµ] = iηµρKσ − iηµσKρ (3)

This closure structure of this group suggests that
conformal invariance indeed implies scale invariance.
However, the converse of this situation is also possible
in some theories which will be briefly discussed in the
coming sections.

One of the important way to make a distinction in
these symmetries is by closely studying the energy-
momentum tensor. We know by Noether prescription
spacetime symmetries leads to conserved em tensor;
∂µTµν = 0. For a scale invariant theory, it requires to
satisfy that,

Tµ
µ = ∂µJµ when xµ → λxµ (4)

whose corresponding conserved scale current is
Dµ = xρTµρ − Jµ. Here, Jµ is known as the Virial
current [2]. For a conformal invariant theory, it re-
quires;

Tµ
µ = 0 when xµ → xµ + vµx2

1 + 2vµxµ + v2x2
(5)

and the corresponding special conformal current is
Kµ =

[
ρνx

2 − 2xν(ρσx
σ)
]
T ν
µ . However, this will not

always the case, because the em tensor are not unique
in general. This non-uniqueness leads to important
consequences in conformal invariance. This can be
avoided by improving the em tensor by employing the
method similar to construction of Belinfante tensor
[3]. Suppose, the trace of em tensor appears in the
form as [Appendix-A]:

Tµ
µ = ∂µ∂νLµν (for d ≥ 3),

Tµ
µ = ∂µ∂µL (for d = 2) (6)

Where L and Lµν are local operators and the im-
provement on these tensors will lead to the respective
traceless and symmetric tensors [Appendix-B] given
that the conservation of Tµν is still preserved [4].

Θµν = Tµν +
1

d− 2
(∂µ∂αL

α
ν + ∂ν∂αL

α
µ

−∂2Lµν − ηµν∂α∂βL
αβ)

+
1

(d− 2)(d− 1)

(
ηµν∂

2L− ∂µ∂νL
)

(for d ≥ 3)

& Θµν = Tµν +
(
ηµν∂

2L− ∂µ∂νL
)

(for d = 2) (7)
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III. WEYL ANOMALY AND CURVED
BACKGROUND

We have argued that the tracelessness condition of
em tensor is governed from the conformal invariance.
This condition easily yields from Weyl invariance of
a flat metric. However, if we invoke the CFT on a
curved background, this will result into non-vanishing
trace, known as Weyl anomaly [5, 7]. In 2d we can
easily show how this anomaly appears, by letting the
curved background varying infinitesimally close to the
flat space. So then considering the infinitesimal Weyl
transformation as δgαβ = 2ωδαβ , consequently will
lead to the following variation in em tensor as briefly
shown in [Appendix-C].

⟨Tµ
µ ⟩ = − c

12
R (8)

where the scalar curvature R = −2∂2ω and c is the
central charge which arises from the OPE calculations.

Similarly, in d = 4 dimension, the most generic pos-
sibility of Weyl anomaly is [5, 6]

⟨Tµ
µ ⟩ = cC2 − aE + bR2 + b̃Dµ

µR

+dϵµνρσRαβ
µν + dϵµνρσRαβ

µνRαβρσ (9)

where the Weyl tensor C is expressed as C2 = R2
µνρσ−

2R2
µν + 1

3R
2 and the Euler scalar is E = R2

µνρσ −
4R2

µν +R2.

Now, for a Weyl inavriant theory, the important
thing it ensures that the metric of flat space still re-
mains invariant by an overall Weyl scalar. This in-
duces the diffeomorphism as

ds2 = Ω(x̃)ηµνdx̃
µdx̃ν = ηµνdx

µdxν (10)

Thus, the em tensor need not to be unique for a
given CFT. We can still able to couple a CFT to
gravity in a non-Weyl invariant way. Also, we can
obtain the required conformal invariance structure by
remaining on this background. So, covariantly, we can
employ the curved space prescription to the problem
of scale vs conformal invariance. Suppose, the action
is scale invariant (i.e. gµν → e2σ̄gµν), where σ̄ is a
spacetime independent constant and the action den-
sity is scale invariant up to a total derivative term
δL = −σ̄DµJµ

Tµ
µ =

2√
|g|
gµν

δS

δgµν
= DµJµ (11)

This is the origin of Virial current from the viewpoin
of curved background. While if the action is Weyl in-
variant, as gµν → e2σ(x)gµν , where σ(x) is spacetime
dependent arbitrary scalar function, then the em ten-
sor is traceless.

Tµ
µ =

2√
|g|
gµν

δS

δgµν
= 0 (12)

IV. SOME EXAMPLES

A. Free Massless Scalar Theory

In d dimension, the action of such system which is
minimally coupled with gravity is given as:

S =
1

2

∫
ddx

√
|g|(∂µϕ∂µϕ) (13)

The canonical em tensor is

Tµν =
2√
|g|

δS

δgµν

∣∣∣∣
gµν=ηµν

= ∂µϕ∂νϕ− ηµν
2

(∂ρϕ)
2 (14)

The trace will then follow as

Tµ
µ =

2− d

2
(∂µϕ)

2 =
2− d

4
(□ϕ2) (15)

This gives us the scale invariant free massless scalar
theory, whose Virial current is given by

Jµ =
2− d

2
ϕ∂µϕ (16)

Here, the theory can be also conformal invariant in
any dimension as the form of trace is Tµ

µ = ∂µ∂νLµν ,
where

Lµν =
2− d

4
ηµνϕ

2 (17)

B. Free Massless Dirac Theory

The em tensor can be studied in the exact same way
and it will take the form as:

Tµν = i
1

2
ψ̄(γµ∂ν + γν∂µ)ψ − iηµνψ̄γ

ρ∂ρψ (18)

Unlike free scalar theory, here the traceless feature
exist in all dimension, thus the massless free fermion
is conformal invariant in any dimension.

C. Free Maxwell Theory

The action for this free U(1) theory in d dimension
and its corresponding canonical gauge invariant em
tensor are given as

S =
1

2

∫
ddx

√
|g|1

4
FµνFµν (19)

Tµν = FµρF
ρ
ν − ηµν

4
(Fρσ)

2 (20)

The trace of this em tensor do not vanish when
d ̸= 4, because

Tµ
µ =

4− d

4
(Fρσ)

2 =
4− d

8
∂µ(AρF

µρ) (21)

However, it is still a divergence of a current. There-
fore, this theory is scale invariant with virial current:

Jµ =
4− d

8
AνFµν (22)

Therefore, for dimensions d ̸= 4, the free Maxwell
theory is only scale invariant and not conformal in-
variant, but in d = 4, it is conformal invariant.
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V. PROOF OF ENHANCEMENT OF
INVARIANCE

To understand the possible proof of enhancement
from scale to conformal invariance, we can restrict to
the well established proof in d = 2 dimension. Let
us consider the two-point function of the em tensor
Tµν in complex coordinates. We define T ≡ Tzz and
Θ ≡ Tµ

µ . Following Zamolodchikov [8], we can define:

F (|z|2) = z4⟨T (z, z̄)T (0)⟩
G(|z|2) = z3z̄⟨T (z, z̄)Θ(0)⟩
H(|z|2) = z2z̄2⟨Θ(z, z̄)Θ(0)⟩ (23)

From Poincare invariance, we know that Tµν is con-
served

∂̄T + 4∂Θ = 0 (24)

Now by taking the correlation function between this
equation of motion and either T or Θ, one can derive
the equations

Ḟ + 1
4 (Ġ− 3G) = 0 & Ġ−G+ 1

4 (Ḣ − 2H) = 0 (25)

where Ẋ ≡ zz̄X ′(z, z̄)

In a theory with coupling constants gi, we can write
the renormalization group equation for a function C,
defined as C ≡ 2F −G− 3

8H;(
R
∂

∂R
+ βi(g)

∂

∂gi

)
C(g,R) = 0 (26)

where R ≡
√
zz̄ and βi are the renormalization group

beta functions. Also, using the equations of motion in
(25), we can show Ċ = − 3

4H.
According to Zamolodchikov’s C-theorem, if renor-

malization flows connect different conformal field the-
ories, then C decreases from the ultraviolet to the in-
frared with C equals to the central charge c at critical-
ity. So, at a scale-invariant fixed point, we can assume
the stress-energy tensor scales canonically so that Tµν
has a scaling dimension ∆ = 2 and C is constant. This
follows [9]

⟨Θ(z, z̄)Θ(0)⟩ = 0 (27)

Since, Θ is the trace of the em tensor, hence the
scale invariance implies conformal invariance. Simi-
larly in d = 4 dimension, from the analysis of Local
renormalization group, it can be perturbatively shown
how a-theorem holds true, such that scale invariance
implies conformal invariance.

VI. CONCLUSION

Finally, this article attempted a very brief demon-
stration of how scale and conformal invariance arises
in QFTs. With the help of some examples, it has con-
veyed how scale invariance indeed leads to conformal
invariance. But, when it does not, it could be due
to the possible inconsistent with some important as-
sumptions of QFT. This is well argued in [1] with more

effective examples. There is always a deep spacetime
structure behind the enhancement of conformal invari-
ance from scale invariance. As we see Zamolodchikov
c-theorem in 2d, its higher dimensional analogues can
also be presented which would play a significant role
in understanding the enhancement.
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on the basics of scale and conformal invariance, due
to which I was able to conveniently finish this project.

Appendix A: Trace of stress tensor and Virial
current

The infinitesimal scale transformation is given by
δxµ = ϵxµ.
Following the Noether procedure, the dilatation

current Sµ corresponding to scale invariance is

Sµ = xνTµ
ν (x) +Kµ(x) (A1)

where Tµ
ν (x) is the canonical em tensor and Kµ is

the local Virial operator, so the conservation of scale
current ensures that

Tµ
µ = −∂µKµ (A2)

For infinitesimal conformal transformation, we have
δxµ = ϵbµ(x), such that

∂µbν(x) + ∂νbµ(x) =
2

d
gµν∂.b(x) (A3)

Similarly, from Noether’s prescription, we can cal-
culate the following current

jµb (x) = bν(x)Tµ
ν (x) + ∂.b(x)K ′µ + ∂ν∂.b(x)L

νµ(x)(A4)

Again, from the conservation of conformal current,
we have

Tµ
µ = −∂µK ′µ, K ′µ = −∂νLνµ(x) (A5)

This leads to the conditions on the trace of em ten-
sor as given in (6).

Appendix B: Improved stress tensor

In defining the new energy momentum tensor, we
have to ensure that it is still conserved and symmetric.
The weakest requirement which was given by [2], to
improve this tensor is by a fourth rank tensor field
Cλρµν(x), similar to Belinfante tensor.

Θµν = Tµν + 1
2∂λ∂ρC

λρµν (B1)

where Cλρµν = −Cλµρν = −Cνρµλ (B2)

& ∂λ∂ρC
λρµν = ∂λ∂ρC

λρνµ (B3)
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For d = 4, the fourth rank tensor field defined as:

Cλρµν = ηλρσµν
+ − ηλµσρν

+ − ηρνσλµ
+ + ηµνσλρ

+

−1

3
ηλρηµνσα

+α +
1

3
ηλµηρνσα

+α (B4)

Here, σµν
+ is similar to local operator Lµν of equa-

tion (6), and it is related to the Virial current (in
equation (4)), as Jµ = ∂νσ

µν . However, we need the
symmetric part of this operator which is denoted as
σµν
+ .
For an arbitrary d dimension, this is given by;

Cλρµν = A
(
ηλρσµν

+ − ηλµσρν
+ − ηρνσλµ

+ + ηµνσλρ
+

)
+B

(
ηλµηρνσα

+α − ηλρηµνσα
+α

)
(B5)

where, A = 2
d−2 and B = A

d−1 = 2
(d−2)(d−1) .

This leads to the final expression as;

∂λ∂ρC
λρµν = A

(
∂2σµν

+ − ηµν∂λ∂ρσ
λρ
+ − ∂µ∂ρσ

ρν
+ − ∂ν∂ρσ

ρµ
+

)
+B

(
∂µ∂νσα

+α − ηµν∂2σα
+α

)
(B6)

Using the properties of four field tensor, it can be

proved that there are d2(d−1)2

4 independent compo-

nents. In d = 2 dimension, C0101 is the only unique
non-zero independent component, thus in d = 2, the
stress tensor becomes

Θµν = Tµν − 1

2
ϵµλϵνρ∂λ∂ρC

0101 (B7)

where ϵµν is anti-symmetric Levi-Civita pseudo tensor
with ϵ01 = +1 and C0101(x) is a scalar field.

Appendix C: Weyl Trace Anomaly

starting from the conservation of em tensor, we have

∂Tzz̄ = −∂̄Tzz (C1)

Using OPE, we can write,

∂zTzz̄∂wTww̄ = ∂̄z̄Tzz∂̄w̄Tww

= ∂̄z̄∂̄w̄

(
c/2

(z − w)4
+ .....

)
(C2)

Further, we can also write;

∂̄z̄∂̄w̄
1

(z − w)4
=

1

6
∂̄z̄∂̄w̄

(
∂2z∂w

1

z − w

)
=

π

3
∂2z∂w∂̄w̄δ

(2)(z − w) (C3)

=⇒ Tzz̄(z, z̄)Tww̄(, w̄) =
πc

6
∂z∂̄z̄δ

(2)(z − w) (C4)

Now, we can compute the variation in the trace
of em tensor w.r.t. a small shift in the metric, i.e.,
some infinitesimally curved background close to the
flat space.

δ⟨Tµ
µ (σ)⟩ = δ

∫
Dϕe−STµ

µ (σ)

= 1
4π

∫
Dϕe−S

(
Tµ
µ (σ)

∫
d2σ′√gδgαβTαβ(σ′)

)
(∵ δgαβ = −2ωδαβ , for Weyl transformaton)

= − 1
2π

∫
Dϕe−S

(
Tµ
µ (σ)

∫
d2σ′ω(σ′)T ν

ν (σ
′)
)
(C5)

To compute the Weyl anomaly, we change the co-
ordinates:

Tµ
µ (σ)T

ν
ν (σ

′) = 16Tzz̄(z, z̄)Tww̄(w, w̄) (C6)

Also using the fact; 8∂z∂̄w̄δ
(2)(z−w) = −∂2δ(2)(σ−

σ′). Substituting these we get,

Tµ
µ (σ)T

ν
ν (σ

′) = −cπ
3
∂2δ(σ − σ′) (C7)

Then plugging this into the expression forδ⟨Tµ
µ (σ)⟩

and integrating by parts, we are left with

δ⟨Tµ
µ (σ)⟩ =

c

6
∂2ω (C8)

Finally, we use the fact that we are working in-
finitesimally to replace e−2ω = 1, so that R = −2∂2ω.
Then

⟨Tµ
µ (σ)⟩ = − c

12
R (C9)
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