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INTRODUCTION

Truncated Conformal Space Approach(TCSA) is a
Hamiltonian truncation method originally introduced by
Zamolodchikov and Yurov [ 1]. This is a very useful tool
to study some deformed CFT where conformal perturba-
tion theory could not be directly applied due to strong
coupling. This is a non-perturbative method in the sense
that it does not calculate the correction of energy as a
power series in the coupling. In many cases (especially for
the minimal models) the full Hilbert space of some CFTs
are known in terms of the primaries and their descen-
dants. If a 2-d CFT is deformed by a relevant operator
(conformal dimension < 2), the spectrum of the deformed
CFT can be obtained by using TCSA. The spectrum and
the eigenstates of the deformed CFT can be found after
some matrix diagonalisation. We can extract other in-
formation such as entanglement entropy, and we can also
study the CFT in IR fixed point using TCSA, starting
from a UV CFT. Here one example is checked.

In this project we will like to use TCSA (Truncated
Conformal Space Approach) to find the non-perturbative
truncated spectrum of non-integrable deformations of the
Sine-Gordon model. First we shall review the model and
it’s spectrum in the integrable limit. We will review the
TCSA and how it reproduces the integrable limit.

THE METHOD

To apply TCSAm, we have to know the spectrum of
the initial CFT, along with the different OPE coefficients
of the primaries of the CFT. If a 2-d CFT has a set of
primary operators given by {(hi, hi)}, the Full Hilbert

space of the CFT can be written as a direct sum,

H = ⊕iL−n1
L−n2

. . . L−np
L−m1

. . . L−mq
|hi, hi⟩ (1)

Where the state |hi, hi⟩ is created by a primary operator
Φhi,hi

acting on vacuum at infinite past.

L−na
and L−mb

are the Virasoro generators corre-
sponding to the holomorphic and antiholomorphic. The
state L−n1

L−n2
. . . L−np

L−m1
. . . L−mq

|hi, hi⟩ is called
a descendant with conformal dimensions (hi + n1 . . . +
np), (hi +m1 . . .+mq).

The descendants are neither orthogonal nor normal-
ized. The descendants form a overcomplete basis set, due
to the presence of null states for some particular primary
operators at some particular levels. The states corre-
sponding to different levels are orthogonal. But different
states at same level might not be orthogonal. A orthog-
onal basis can be formed in such cases by Gram-Schmidt
procedure, which is diagonalisation of Kac matrix at that
level. The unperturbed CFT Hamiltonian is already di-
agonal in this basis.

The deformed CFT Hamiltonian can be given by H =
H0 + V , now the operator V can be expressed in terms
of primary and their descendants. The basis states can
also be written as the linear combinations of primaries
and their descendants. Thus the matrix elements of V
and the full Hamiltonian H are some 3 point functions
of CFT. If the OPE coefficients (Cϕ1,ϕ2,ϕ3) are known,
then to get the complete spectrum the full Hamiltonian
matrix is calculated and diagonalised.

⟨ϕ1(z1)ϕ2(z2)ϕ3(z3)⟩ =
Cϕ1,ϕ2,ϕ3

(z12)h1+h2−h3(z23)h2+h3−h1(z13)h3+h1−h2
× 1

(z12)h1+h2−h3(z23)h2+h3−h1(z13)h3+h1−h2
(3)

THE SINE-GORDON MODEL

The lagrangian density for the Sine-Gordon model can
be given as

L =
1

2
(∂tϕ)

2 − 1

2
(∂xϕ)

2 − (1− cosϕ) (4)

The potential U(ϕ) = (1 − cosϕ) is a periodic function
of the field variable ϕ. The Euler-Lagrange equation of
motion is,

∂2ϕ

∂t2
− ∂2ϕ

∂x2
+ sinϕ = 0 (5)

The above equation(5) is very similar to the Klein Gor-
don equation of motion except the sinϕ term, and hence



2

the name Sine-Gordon model. The canonical stress ten-
sor is,

Tµν =

(
∂L

∂(∂µϕ)

)
∂νϕ− ηµνL

= ∂µϕ∂νϕ− ηµνL
(6)

Total energy of the system is

E =

∫
dxT00 =

∫
dx

[
1

2
(∂tϕ)

2 − 1

2
(∂xϕ)

2 + U(ϕ)

]
(7)

The vacuum solution is the stationary point of the po-
tential U(ϕ). The vacuum solution is infinitely degener-
ate with ϕ0 = 2nπ with n ∈ Z. The vacuum solution
of the SG model is trivial solution and is not interest-
ing. But there can be solutions interpolating between 2
different vacuum configurations in the 2 extreme ends of
the space. For example if we consider, the space to be
spanned from 0 to L i.e. x ∈ [0, L) and consider a current
of the form, jµ = ϵµν∂νϕ, then this current is conserved
identically [2].

∂µj
µ = ϵµν∂µ∂νϕ = 0 (8)

This is not a Noether current for any continuous sym-
metry. If there is no degrenerate vacua then this type
of current conservation does not conatain any interesting
information. But for SG model we can define a conserved
charge,

Q =
1

4π

∫ L

0

dx∂xϕ =
1

4π
[ϕ(L)− ϕ(0)] (9)

The trivial vacuum solution has Q = 0, but if the field
is interpolating between two different vacua then Q ̸= 0.
In general field configurations corresponding to Q = +1
is soliton and Q = −1 is called anti-soliton. Q = 0
sector also has a non-trivial solution called breather. The
conserved charge Q is called topological charge [2].

SOLITONS AND BREATHERS

Classical SG theory on infinite flat space has exact so-
lutions in terms of quasi-particles which propagates as
lump of energy. These solutions correspond to differ-
ent topological charges. For example, Q = 1 solution
is soliton, Q = −1 is called anti-soliton and Q = 0 has
non-trivial solution called breather. If we can somehow
obtain one solution say ϕ which satisfies the equation of
motion(10) then we can generate other solutions from
that through Backlund transformation(11). This can be
understood in a transformed coordinate τ = 1

2 (x+ t) and

ρ = 1
2 (x−t). In this transformed coordinate the equation

of motion (5) becomes,

∂ρ∂τϕ = sinϕ (10)

If we have some field ϕ̃ satisfying the below equa-
tion(11) then ϕ1 = ϕ+ϕ̃ would be another solution of the
equation of motion. We start by trivial solution ϕ = 0.
The parameter ϵ in equation(11) is related to the veloc-
ity of the quasi-particle. These solutions are often called
kinks, because the energy is mostly localized in a very
narrow region and doesn’t spread over time.

∂τϕ1 = ∂τϕ− 2ϵ sin

(
ϕ+ ϕ1

2

)
∂ρϕ1 = ∂ρϕ+

2

ϵ
sin

(
ϕ− ϕ1

2

) (11)

The one-kink solution obtained this way is given in equa-
tion(12). This has topological charge Q = 1. The
energy(E) and momentum(P ) of the kink solution are
also given. For any arbitrary constant δ (position of the
peak of the kink at time t = 0),

ϕ(τ, ρ) = 4 arctan exp(ϵτ − ρ

ϵ
+ δ)

v =
1− ϵ2

1 + ϵ2

E =
8√

1− v2
; P =

8v√
1− v2

(12)

starting from a kink solution we can obtain kink anti-kink
solution by another Backlund transformation with ϵ2 =
−ϵ. The total energy and momentum for this solution
is the sum of individual energies and momenta of the
kink and anti-kink. Both the solutions are taken to be
centered at x = 0 at t = 0, at large times t → ±∞ the
kinks and anti-kinks are well separated.

ϕkk̄ = 4arctan
sinh(γvt)

v cosh(γx)

γ =
1√

1− v2

(13)

Taking the analytic continuation of parameter v in the
kink anti-kink solution(13) as v → iω√

1−ω2
we obtain the

breather solution which is considered as the bound state
of the kink and anti-kink. The kink anti-kink solution
and the breather solutions are the non-trivial solutions
corresponding to topological charge Q = 0.

ϕB = 4arctan

(
1− ω2

ω2

sin(ωt)

cosh(x
√
1− ω2)

)
Eω = 16

√
1− ω2

(14)
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Solutions of SG theory on finite compact space is dif-
ferent from these, but as we take the length of the space
larger and larger, the energy spectrum (for Q = 0)
asymptotically reaches the breather solutions.

SINE-GORDON MODEL AS DEFORMED CFT

In QFT the SG model can be treated as an integrable
deformation of a free boson CFT [ 3], [ 4]. We put the
field theory on top of a cylinder to avoid IR divergences.
Let the circumference of the cylinder be L. The action
for a free boson on a cylinder is given by,

S =

∫ +∞

−∞
dt

∫ L

0

dx

[
1

2
(∂tϕ)

2 − 1

2
(∂xϕ)

2

]
(15)

The stress tensor is given as equation(6). We make
a change of coordinates as ξ = 1√

2
(t + ix) and ξ̄ =

1√
2
(t − ix). The mapping from a cylinder to a complex

plane is obtained as weyl transformation of {ξ, ξ̄}. Which
is given as z = e

2πξ
L , z̄ = e

2πξ̄
L . This conformal mapping

maps infinite past (t = −∞) to origin (z = 0) and infi-
nite future (t = +∞) to the point at infinity (z = ∞).
Conservation laws in {t, x} coordinate is given by,

∂µT
µν = 0 (16)

There will be 2 such equations. In {z, z̄} coordi-
nates the stress tensor and the corresponding conserva-
tion equations have the form,

Tzz =
1

2
∂zϕ∂zϕ

Tzz̄ = Tz̄z = 0

Tz̄z̄ =
1

2
∂z̄ϕ∂z̄ϕ

∂zTzz = 0 , ∂z̄Tz̄z̄ = 0

(17)

Above equation(17) indicate that Tzz is purely holo-
morphic and Tz̄z̄ is anti-holomorphic function in complex
plane. Thus Tzz has Laurent expansion. The series solu-
tions are given as,

Tzz = T (z) =

∞∑
k=−∞

Lkz
−k

Tz̄z̄ = T̄ (z̄) =

∞∑
k=−∞

Lkz̄
−k

(18)

The most general solution of the field ϕ in terms of the
complex coordinates is given as,

ϕ(z, z̄) = Φ(z) + Φ̄(z̄)

Φ(z) =
1

2
ϕ0 + p+lnz + i

+∞∑
k=−∞
k ̸=0

1

k
akz

−k

Φ̄(z̄) =
1

2
ϕ0 + p−lnz̄ + i

+∞∑
k=−∞
k ̸=0

1

k
ākz̄

−k

(19)

We study the field configuration having quasi-periodic
boundary condition. The topological charge Q and the
total momentum Π0 are related to two quantum num-
bers n and m, which specify the field configurations. The
constants ϕ0, p+, p− are related to these quantum num-
bers [ 3].

Q =
1

4π

∫ L

0

dx ∂xϕ = m

Π0 =

∫ L

0

dx ∂tϕ = 2πn

p± = n± m

2

(20)

PRIMARY OPERATORS AND DESCENDANTS

Primary operator in a CFT is defined by the transfor-
mation property of the operator under a general confor-
mal transformation of coordinate system. In (1 + 1)-d
a local conformal transformation is given by, z → z′ =
f(z), z̄ → z̄′ = f̄(z̄), where f(z) and f̄(z̄) are holomor-
phic and anti-holomorphic functions of z and z̄ respec-
tively. The transformation property of primary field is
given by,

X(z′, z̄′) =

(
∂f

∂z

)−h(
∂f̄

∂z̄

)−h̄

X(z, z̄) (21)

The numbers h and h̄ are called weights of the pri-
mary field X. This values can be determined by consid-
ering infinitesimal coordinate transformation and look-
ing at the OPE (operator product expansion) with the
stress tensor(17). The two point function in free boson
CFT is exactly known. It can be easily checked that the
field ϕ is not primary. But ∂ϕ is primary with weights
(h, h̄) ≃ (1, 0). From the state-operator correspondence
in CFT any primary operator X acting on vacuum is an
eigenstate of the Hamiltonian, and has the property,

X(z, z̄) |0⟩ = |h, h̄⟩
L0 |h, h̄⟩ = h |h, h̄⟩ , L̄0 |h, h̄⟩ = h̄ |h, h̄⟩
Ln |h, h̄⟩ = L̄n |h, h̄⟩h = 0 ∀n > 0

(22)
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Here Ln are the Virasoro generators on a plane. They
form the Virasoro algebra. Ln for n < 0 acting on |h, h⟩
forms a tower of eigenstates of the Hamiltonian. These
are called descendants. The primary along with it’s de-
scendants together form an overcomplete basis set (over-
complete because there might be null states in some lev-
els) called Verma module. The complete Hilbert space of
the whole system is collection of all such modules for all
primary operators in the system.

Another non-trivial primary operator in the free boson
CFT is the vertex operator. They are given by,

Vβ = exp[iβϕ]

V(n,m) = exp[i(p+Φ(z) + p−Φ̄(z̄))]
(23)

In the region where topological charge is zero, p+ =
p− = β = n equation(20). The weigths of this primary
are h = h̄ = β2

2 . Ideally for non-compact space β can
take any value from continuous real line. But for free
boson on a cylinder due to the boundary condition β can
take only integer values.

TRUNCATED CONFORMAL SPACE APPROACH

The Hamiltonian for the free boson CFT can be writ-
ten as,

HCFT =
2π

L
(L0 + L̄0 −

c

12
) (24)

And the Hamiltonian of the SG theory is given in equa-
tion(7). Apart from an additional constant 1, this is a
perturbation of cosϕ potential. However for our case we
consider a more general form of the potential 1

β2 cosβϕ.

The weights of the deformation is (β
2

2 , β2

2 ) The deforma-
tion can be written as a sum of two primary operators.
The total Hamiltonian [ 3] becomes,

H = HCFT + V

V = −
∫ L

0

dx cosϕ = −1

2

∫ L

0

dx
[
V(β,0) + V(−β,0)

]
(25)

Now we take finite number of low energy states from
the Hilbert space spanned by the descendants of all pri-
mary operators, and calculate the matrix elements of H
(24) in that basis. Diagonalising that matrix would yield
the energy spectrum of the theory in low energy sector.
The matrix elements of the deformation V are three point
functions in CFT. For free boson the three point function
with vertex operators is given as,

< Vβ1
(z1)Vβ2

(z2)Vβ3
(z3) >

= δ(β1 + β2 + β3)
∏
i<j

|zij |βiβj (26)

Once a three point function of primary operators are
known, then the three point functions of the descendants
of those primary operators are also known.

< {L−kX1(z1)2(z2)X3(z3) >

= L−k < X1(z1)X2(z2)X3(z3) >

L−k =
∑
i ̸=1

{
(k − 1)hi

(zi − z1)k
− 1

(zi − z1)k−1
∂zi

}
(27)

The deformation operator V should have a conformal
dimension ∆ = h + h̄ < 2. Otherwise the deformation
would not be relevant. Couplings with dimension more
than 2 will not be renormalizable in (1 + 1)-d field the-
ory. In our case β = 1

2 So the conformal dimension of
deformation is ∆ = 1

2 . The low energy spectrum as a
function of r (circumference of the cylinder) is obtained
as the below figure.

FIG. 1. The TCSA spectrum of the quantum SG model on
a cylinder plotted as a function of the system size r(the cir-
cumference of the cylinder).

CONCLUSION

TCSA is a numerical procedure. We obtain the spec-
trum numerically. However, SG model on a cylinder
can be solved exactly. It is very similar to a 6-vertex
model on a closed 2-d euclidean space. We can ob-
tain the exact energy spectrum using thermodynamic
Bethe Ansatz(TBA) and corresponding Non Linear In-
tegral Equations(NLIE) [2], [ 3], [5]. The energy eigen-
values can be given in terms of the roots of the Bethe
equations. We can compare those results. Though the
SG theory is exactly solvable, certain variations of that
(such as double sine gordon model) can not be solved
analytically. For 1+1-d field theories TCSA is a reliable
method to numerically estimate few low energy eigen-
states with great accuracy. TCSA can be used to obtain
solutions of many other models. This way of calculating
eigenstates numerically might help us to have a deeper
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insight into the effect of deformation in any integrable
theory.

The mathematica code which is used for above calcula-
tions is given here. Part of the code is originally written
by Matthew Headrick.
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