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Causality imposes significant limitations on Quantum Field Theory (QFT), one of which is lead-
ing to the determination of the signs of specific terms in the low-energy Lagrangian. In the context
of d-dimensional Conformal Field Theory, we illustrate how these constraints manifest through the
principle of crossing symmetry and reflection positivity in Euclidean correlation functions. Addition-
ally, we can analytically derive equivalent constraints by applying the techniques of the conformal
bootstrap.

INTRODUCTION

Quantum field theories that exhibit causal propaga-
tion when analyzed in vacuum may exhibit violations of
causality in non trivial states. Imposing the condition
of causality in all possible states places restrictions on
the permissible interactions within the theory. It is ev-
ident that the constraints associated with causality are
fundamentally linked to the Lorentzian signature.

In the first section, we talk about the holographic mo-
tivation behind this project. The next section gives a
pedagogical review of causality in position-space quan-
tum field theory. Proceeding that, we review the con-
formal bootstrap in Euclidean signature and discuss its
extension to Lorentzian signature with timelike separated
points.

HOLOGRAPHIC MOTIVATION

After the discovery of AdS/CFT correspondence, there
has been several studies in which physicists tried to find
correspondence to CFT in different areas, specifically us-
ing crossing symmetry. For example, the effective field
theories in the bulk are in one-to-one correspondence
with solutions of crossing symmetry in CFT, order by
order in 1/N, or for each flat-space scalar S-matrix, there
is a corresponding crossing-symmetric CFT correlator in
Mellin space. In the bulk, causality dictates that certain
interactions come with a fixed sign. This property can
also be translated, by using crossing symmetry, into a
constraint on CFT data, giving a holographic motivation
for the topic. To do that, we first need to study the con-
straints that causality can bring on CFT, which is our
goal for this project.

CAUSALITY REVIEW

To be causal, all the spacelike operators shall commute,
i.e, [O1(x)O2(y)] = 0,∀(x− y)2 > 0
This report is a study of scalar four point function
⟨ψOOψ⟩
In this section we will review how the commutator re-
quirement is encoded in the analytic structure of corre-
lation functions, first in a general Lorentz-invariant QFT
and then in CFT.

FIG. 1: All ti’s zero except t2

FIG. 2: Singularities (red dots) are branch points, and branch
cuts (blue) are oriented almost vertical

Euclidean and Lorentzian Correlators

The Euclidean correlator, denoted by G is
G(x1, ..., xn) = ⟨O1(x1), ..., On(xn)⟩
By performing an analytical continuation τi → iti we
can compute Lorentzian correlators. When expressed as
functions of the complex τi, these correlators exhibit a
complex network of singularities and branch cuts, intro-
ducing ambiguities in the analytic continuation which are
responsible for non-vanishing commutators.
In Figure 2, the correlator, when considered as a function
of τ2 while keeping all other parameters fixed, displays
singularities aligned with the imaginary axis of τ2. These
singularities occur precisely at the points where the oper-
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FIG. 3: Possible contours

ator O2 intersects the light cones of the other operators.
Each time we encounter one of these singularities, we
must make a decision on whether to transition to the
right or to the left. Assuming t2 > 0, passing to the
right makes operators into time ordering and left puts it
in anti-time order.

The contours shown in the figure 3 correspond to the fol-
lowing Lorentzian correlators:
(a) ⟨O2O1O3...⟩ = ⟨T [O1O2O3...]⟩
(b) ⟨O3O2O1...⟩
(c) ⟨O1O2O3...⟩
(d) ⟨O1O3O2...⟩
As we pass a branch cut, we move to another sheet on
which the location of next singularity might be shifted.
If it shifts upward, the theory faces a time delay which is
fine, but if it shifts downwards, the time is advanced and
points which are acausal appear to be causal. To avoid
this situation, we need to put constraints in such a way
that the next singularity never moves downwards.

iϵ prescription

The Osterwalder-Schrader reconstruction theorem
states that well behaved Euclidean correlators, upon
analytic continuation, result in Lorentzian correlators
that obey the Wightman axioms. The results were
extended to CFT by Luscher and Mack. A byproduct of
these reconstruction theorems is a simple iϵ prescription
to compute Lorentzian correlators, with any ordering,
from the analytically continued Euclidean correlators:

⟨O1(t1, x⃗1)...On(tn, x⃗n)⟩ = lim
ϵj→0

⟨O1(t1 − iϵ1, x⃗1)...On(tn − iϵn, x⃗n)⟩

where ϵ1 > ϵ2 > ... > ϵn > 0

Example: Conformal 2-point function

The Euclidean 2-point function in CFT is (τ2+x2)−∆.
Using the iϵ prescription, the Lorentzian correlators for
t1 > x1 are
⟨O(t1, x1)O(0, 0)⟩ = exp(−∆ log(−(t1 − iϵ)2 + x21))

FIG. 4: iϵ prescription for (c) contour

= e−iπ∆(t21 − x21)−∆

⟨O(0, 0)O(t1, x1)⟩ = exp(−∆ log(−(t1 + iϵ)2 + x21))
= eiπ∆(t21 − x21)−∆

CFT 4 PT FUNCTIONS

We now specialize to 4-point functions in a conformal
field theory. Take the operators O1, O3 and O4 to be fixed
and spacelike separated at τ = 0, while O2 is inserted at
an arbitrary time:
x1 = (0, ..., 0)
x2 = (τ2, y2, 0, ..., 0)
x3 = (0, 1, ..., 0)
x4 = (0,∞, 0, ..., 0)
with 0 < y2 <

1
2

The conformal cross ratios are

u =
x2
12x

2
34

x2
13x

2
24

= zz̄,

v =
x2
14x

2
23

x2
13x

2
24

= (1− z)(1− z̄)

For our case, this becomes z = y2 + iτ2, z̄ = y2 − iτ2

In Euclidean, τ2 is real and z̄ = z∗ and in Lorentzian z,
z̄ are independent real numbers.

The Euclidean correlator G(z, z∗) has singularities

G(z, z∗) ∼ (zz∗)−
1
2 (∆1+∆2) as z → 0

G(z, z∗) ∼ ((1− z)(1− z∗))− 1
2 (∆2+∆3) as z → 1

To get the Lorentzian correlators, we do analytic contin-
uation τ2 → it2. Denoting G(z, z̄) as the time-ordered
correlator for contour (a) of figure 3, we have
(a) G(z, z̄) = ⟨O2O1O3O4⟩
(b) G(z, z̄)|(z̄−1)→e−2πi(z̄−1) = ⟨O3O2O1O4⟩
(c) G(z, z̄)|z→e−2πiz = ⟨O1O2O3O4⟩
(d) G(z, z̄)|z→e−2πiz,(z̄−z̄0)→e−2πi(z̄−z̄0) = ⟨O1O3O2O4⟩

These follow from the fact that the first singularity above
the real axis is z=0 and the second in z̄ = 1
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Here, in the (d) contour, as we encounter the branch cut
of first singularity we move to another sheet on which the
second singularity has shifted to z̄0. To ensure the con-
straint that it should never shift downwards as discussed
earlier, it should satisfy-

Re z̄0 ≥ 1

THE LORENTZIAN OPE

In this section, we provide an overview of the Euclidean
OPE in the context of a d-dimensional CFT. We then
deduce certain outcomes stemming from the principle of
reflection positivity and explore the extent to which the
OPE can be employed in Lorentzian correlation func-
tions. In the scenario where only a single operator ex-
hibits spacelike separation from the rest, we demonstrate
the existence of a convergent OPE channel and employ it
to establish a connection between causality and reflection
positivity.

Conformal block expansion

OPE in CFT is O1(x1)O2(x2) = Σf12k(x1−x2)Ok(x2)
Applied inside a 4-point correlation function, the OPE
gives the conformal block expansion as

⟨O1(x1)O2(x2)O3(x3)O4(x4)⟩ =
1

x∆1+∆2
12 x∆3+∆4

34

(
x24
x14

)∆12
(
x14
x13

)∆34

Σc12pc34pg
∆12,∆34
∆p,lp

(z, z̄)

The Euclidean z-expansion

Consider a 4-point function with two species of opera-
tors :
G(z, z̄) = ⟨Ψ(0)O(z, z̄)O(1)Ψ(∞)⟩

s channel: OPE O(z, z̄)→ Ψ(0)

G(z, z̄) = (zz̄)−
1
2 (∆o+∆ψ)ΣpcψOpcOψpg

∆ΨO,−∆ΨO

∆p,lp
(z, z̄)

The sum converges for Euclidean points z̄ = z∗ with
|z| < 1.

t channel: OPE O(z, z̄)→ O(1)
G(z, z̄) = ((1−z)(1−z̄))−∆oΣpcoopcψψpg

0,0
∆p,lp

(1−z, 1−z̄)
This is obtained by relabeling x1 ←→ x3. This sum con-
verged for Euclidean points with |1− z| < 1.

u channel: OPE O(z, z̄)→ Ψ(∞)

G(z, z̄) = (zz̄)−
1
2 (∆o−∆ψ)ΣpcOψpcψOpg

∆ΨO,−∆ΨO

∆p,lp
( 1z ,

1
z̄ )

This sum is convergent for Euclidean |z| > 1

Problem: For a given z, only 2 of the 3 expansions con-
verge and s and u channels have no overlapping range of
convergence. This is overcome by the ρ expansion.

FIG. 5: Idea for implementation of ρ variable

The Euclidean ρ expansion

Figure 5 shows how picking different origin of the z-
plane instead of z=0, we can always find a circle that
encloses ψ(0) and O(z, z̄) without hitting any other op-
erators. Choosing the middle of this circle as the origin
for radial quantization will give a convergent expansion.
Taking ρ as a complex number with |ρ| < 1, we define

H(ρ, ρ̄) = ⟨ψ(−ρ)O(ρ)O(1)ψ(−1)⟩

Let the summation term in the conformal block expan-
sion formula be S, then we can write

H(ρ, ρ̄) = 1

(2ρ)∆ψ+∆o (2)∆ψ+∆o

(
ρ+1
ρ−1

)∆ψ−∆o (
ρ−1
ρ+1

)∆o−∆ψ
S

=
(
ρ+1
ρ−1

)2(∆ψ−∆o)
1

(4ρ)∆ψ+∆o S

=
[
(1+ρ)(1+ρ̄)
(1−ρ)(1−ρ̄)

]∆ψO
1

(16ρρ̄)
1
2
(∆O+∆ψ)

S

In the s channel, G(z, z̄) was calculated previously as

G(z, z̄) = (zz̄)−
1
2 (∆O+∆ψ)S

= (zz̄)−
1
2 (∆O+∆ψ)H(ρ, ρ̄)

[
(1+ρ)(1+ρ̄)
(1−ρ)(1−ρ̄)

]−∆ψO
1

(16ρρ̄)−
1
2
(∆O+∆ψ)

=
(

zz̄
16ρρ̄

)− 1
2 (∆ψ+∆O) [

(1+ρ)(1+ρ̄)
(1−ρ)(1−ρ̄)

]−∆ψO
H(ρ, ρ̄)

The ψ(−ρ)O(ρ) OPE converges inside the 4-point
function for any |ρ| < 1, which maps to the full z plane,
minus the line [1,∞]. Similarly, on calculating for all
three channels, we get the convergence for Euclidean
z ∈ C\[1,∞]
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POSITIVE COEFFICIENTS

G(z, z̄) = (zz̄)−
1
2 (∆ψ+∆O)Σh,h̄≥0ah,h̄z

hz̄h̄

where h = 1
2 (∆± l), h̄ = 1

2 (∆∓ l)

We want to know the sign of the coefficient (ah,h̄) to
bound the magnitude of the correlator and to know
when the expansion converges in Lorentzian (where z, z̄
are independent).
Lets define a state |f⟩ in radial quantization.

|f⟩ =
∫ 1

0

dr1

∫ 2π

0

dθ1r
∆ψ+∆O
1 f(r1, θ1)O(r1e

iθ1 , r1e
−iθ1)ψ(0) |0⟩

In radial quantization, conjugation acts on operators by
inversion across the unit sphere as
[O(z, z̄)]† = (zz̄)−∆oO† ( 1

z ,
1
z̄

)
Hence the conjugate becomes

⟨f | = ⟨0|ψ(∞)
∫ 1

0
dr2

∫ 2π

0
dθ2r

∆ψ−∆O
2 f∗(r2, θ2)O

(
1
r2
eiθ2 , 1

r2
e−iθ2

)
Reflection positivity says ⟨f |f⟩ > 0, hence∫ 1

0
dr1

∫ 1

0
dr2

∫ 2π

0
dθ1

∫ 2π

0
dθ2r

−2∆o
2 (r1r2)

(∆ψ+∆O)

f(r1, θ1)f
∗(r2, θ2) ⟨ψ(0)O(x, x∗)O(y, y∗)ψ(∞)⟩ > 0

where x = r1e
iθ1 , y = 1

r2
eiθ2

By a conformal transformation, the 4-point function in
the integrand can be related to the canonical insertion
points as

⟨ψ(0)O(x, x∗)O(y, y∗)ψ(∞)⟩ = r2∆o2 G
(
x
y ,

x∗
y∗

)
= r2∆o2

(
r21
1
r22

)− 1
2 (∆o+∆ψ)

Σh,h̄≥0ah,h̄(r1r2e
i(θ1−θ2))h

(r1r2e
−i(θ1−θ2))h̄

=
r
∆o−∆ψ
2

r
∆o+∆ψ
1

Σh,h̄≥0ah,h̄(r1r2)
h+h̄ei(θ1−θ2)(h−h̄)

Putting this in the reflection positivity condition -∫ 1−ϵ
ϵ

dr1
∫ 1−ϵ
ϵ

dr2
∫ 2π

0
dθ1

∫ 2π

0
dθ2f(r1, θ1)f ∗

(r2, θ2)Σh,h̄≥0ah,h̄(r1r2)
h+h̄ei(θ1−θ2)(h−h̄) > 0

=⇒ Σh,h̄≥0ah,h̄

∣∣∣∫ 1

0
dr
∫ 2π

0
dθrh+h̄ei(h−h̄)θf(r, θ)

∣∣∣2 > 0

=⇒ ah,h̄ > 0 (with a few in between steps skipped)

In a similar way we can show that bh,h̄ > 0 in

H(ρ, ρ̄) = (16ρρ̄)−
1
2 (∆o+∆ψΣh,h̄≥0bh,h̄ρ

hρ̄h̄

CONCLUSION

In this project, on extending the study of causality
from QFT to CFT, we found several constraints on the
OPE coefficients, conformal block expansion and location
of singularities. The first constraint that we studied was
that the next singularity should always shift upward in
another sheet leading to time delay and not time advance-
ment. The second major result was to find a region where
s, t and u channel converge altogether. In our example,
this was found to be the whole complex axis except the
region greater than 1. The third and strongest constraint
found was that the full correlator has an expansion with
each coefficient being always positive.
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