
2D Turbulence ≃ 2-D Conformal Field Theory

Pushkar Soni∗

(Dated: November 19, 2023)

Turbulence, a universal phenomenon, has perplexed scientists across various scales, from everyday
fluids to celestial bodies. The Navier-Stokes equation governs turbulent dynamics, challenging us
due to its lack of exact solutions. A. Kolmogorov’s pioneering work established statistical insights,
such as energy spectra, for 3D and 2D turbulence. This review spotlights A. Polyakov’s work [1],
which unites 2D Conformal Field Theory (CFT) and 2D turbulence. By considering 2D CFT as
isomorphic to 2D turbulence in the inertial range, Polyakov not only reconfirms Kolmogorov’s energy
spectrum but also unveils some exact results. Exploring this merger between two seemingly distinct
fields, we unveil the hidden harmony between turbulent complexities and the elegance of conformal
field theory, promising profound insights into the interconnected worlds of fluid dynamics and field
theory.

Introduction: Turbulence is a state of the fluid flow
where the system is highly chaotic. This is a very fun-
damental phenomenon, and it can be observed from ev-
eryday fluids to celestial bodies. The force law of the
fluids goes by the name of the Navier-Stokes Equation
(1). We have the inertial forcing (non-dissipative), vis-
cous force (dissipative) and the Driving force (stirring).
The viscous coefficient ν, when non-dimensionalised, is
the inverse of the Reynolds Number(Re). Fluids with
very high Reynolds Number show turbulence. Therefore,
ν −→ 0 is the limit of turbulence.

∂tv +
(
v · ∇⃗

)
v = −1

ρ
∇p+ ν∇2v + Fext, (1)

There is a slight subtlety in the above statement because
it is a limit, not the exact value of the ν. It follows from
the fact that we have a source term in (1), and if ν is
set to zero, then the energy of the system will keep on
increasing, and eventually, it will diverge. But if we have
a limit, then no matter at what scale the dissipation will
be effective, in the end, the energy will be dissipated from
the system, and the energy won’t diverge. Therefore,
we have two scales in the system. The infrared scale is
where the Forcing is done, and the UV scale is where the
dissipation occurs. We will eventually see that these will
regularise our theory.

ω̇ + (v · ∇)ω = (ω · ∇)v + ν∇2ω, (2)

ω̇ + eαβ∂αψ∂β∂
2ψ = ν∂2ω, (3)

Our main focus will be 2D turbulent flows, and the form
of the Navier-Stokes Equation that we will be dealing
with is called the vorticity equation. To obtain this equa-
tion, we need to take the curls of (1), and we will obtain
(2), where ω = ∇× v. In 2D, using the stream function,
we can write it as (3).

vx = −∂ψ
∂y

, vy =
∂ψ

∂x
, eαβ =

[
0 −1
1 0

]
, (4)
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The stream function is defined in 2D flows for in-
compressible fluids. It is defined as (4). Just by
looking at the definition, our previous statement is jus-
tified. Finally, in (3), eαβ is an antisymmetric matrix (4).

Inertial Range: Kolmogorov’s turbulence theory
posits that small-scale structures exhibit statistical
properties of homogeneity, isotropy, and independence
from large-scale structures. Under these assumptions,
he derived the energy spectrum of the 3D turbulent
fluids as E(k) ∝ k−5/3 and in 2D it is E(k) ∝ k−3. The
range in which this relation holds is called as the inertial
region. The term inertial comes because we are away
from the length scale where the forcing is done and the
viscous scale where the dissipation is done, leaving only
the inertial force term on the RHS of (1).
Moreover, the numerical simulations yield a slightly
different result. Instead of -3, it gives exponents ranging
from -3 to -4. Hence, it can be expected that the
equivalent field theory won’t be unique.

Hopf equation: It is believed that at the high
Reynolds Number, we are dealing with the statistically
stationary regime; therefore, the probability distribution
is time-independent.

⟨ω(x1)ω(x2)ω(x3)...ω(xN )⟩ , (5)

⟨ω̇(x1)ω(x2)...ω(xN )⟩+ ⟨ω(x1)ω̇(x2)...ω(xN )⟩
+ ... ⟨ω(x1)ω(x2)...ω̇(xN )⟩ = 0

(6)

As a consequence of this, correlations like (5) are time-
independent. This results in the obvious result, The
Hopf equation [2]. It looks like (6). It is an important
result because we can use (2) to substitute ω̇ in (6), and
this will relate the N point functions with the N+1 point
functions.
Using CFT, we will try to satisfy (6) exactly, assuming
that the developed turbulence in the inertial range
possesses conformal symmetry. No formal proof says
that the fluids will have a conformal symmetry. This is
somewhat a kind of ansatz that we put. The argument
that makes our assumption reasonable is that the
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enstrophy cascade in the inertial range is independent
of the length scale, and, hence, the turbulent dynamics
must be the same at each scale.

To compile the fluids discussion, we can say that
to trust the CFT, which we will call the isomorphic
theory, must satisfy (6), and it should not be violated
near the regulating scales. Also, we will also see that
the Energy Spectrum formula E(k) ∝ k−3 is satisfied,
but not necessarily exactly the same; the exponent could
have a value ranging from -3 to -4. Remember, this
is the best we can do to test our field theory, and it
was mentioned by Polyakov in [1] that whatever the
model we will be discussing in the later sections is not
”The theory” for the turbulence in 2D. There can be
multiple field theories that satisfy these conditions and
are the possible contenders. It is even possible that the
model will fail for some constraints that we do not know
as of now. Keeping this in mind, let’s delve into the CFT.

Minimal Model: The minimal models are the class of
CFTs with a finite number of primary operators. These
primaries have their own Verma Modules.

c = 1− 6
(p− q)2

pq
, hr,s(p, q) =

(pr − qs)2 − (p− q)2

4pq
,

(7)
The (p,q) minimal model in CFT has the central charge
and highest weight of the Verma Modules for the primary
ϕr,s are (7).Here, 1 ≤ r ≤ q − 1 and 1 ≤ s ≤ p− 1. Now,
there is a further classification of the minimal models,
whether they are unitary or non-unitary. In the unitary
theory, the norm of each state is positive semi-definite,
or it is non-unitary. If in (7) p = m + 2, q = m + 3
with m ≥ 1, then the theory is unitary, or else it is non-
unitary.
The OPE for these models are highly constrained because
of the unitarity condition. Following is the fusion rule for
the minimal models.

[
ϕ(p1,q1)

]
×
[
ϕ(p2,q2)

]
=

p1+p2−1∑
k=1+|p1−p2|
k+p1+p2 odd

q1+q2−1∑
l=1+|q1−q2|
l+q1+q2 odd

[
ϕ(k,l)

]
,

(8)
First Contender: We have all the tools to deal with
the problem of turbulence in the inertial limit using 2D
CFT. We will consider the (2,5) minimal model. The
central charge for such a theory is c = −22/5. It is
a non-unitary theory with the two primaries with the
complex dimensions (0,0) and (-1/5,-1/5). Now we map
ψ ←→ primary(-1/5,-1/5).

⟨ψ(x)ψ(0)⟩ = −|x|4/5, (9)

Before going on further, let us look at the two-point func-
tions. In position space, it is (9). To obtain the mo-
mentum space representation of the two-point function,
we must first regularise the theory to avoid the contract

terms.

⟨ψ(-k)ψ(k)⟩ = const

|k|2+4/5
, (10)

⟨ψ(x)ψ(0)⟩ = const
[
R4/5 − |x|4/5

]
, (11)

Similarly, if we write a two-point function in the momen-
tum space (10) first, we have to set a cutoff in the k
integral to the Fourier transform. To transform it back
by cutting off the k-integral at some infrared point, de-
fined by the large scales, kmin ∼ 1/r. This would give
(11) Therefore, the physical correlators differ by a term
popping up because of the infrared cutoff. It is also well
understood that the conformal expression is valid only
for the |k| << kmax ∼ 1/a. This is the UV cutoff setup
due to the viscosity. This means we have to use the two-
point splitting to make things work. To check the Hopf
equation, we need to calculate ω̇ and for that we will use
(3), RHS is zero because of the ν −→ 0 limit. Therefore
we have (12)

ω̇ = −eαβ∂αψ∂β∂2ψ, (12)

To calculate the RHS in (12) we have to use the two-point
splitting,

eαβ∂αψ(x)∂β∂
2ψ(x) = lim

a−→0
eαβ∂αψ(x+a/2)∂β∂

2ψ(x−a/2),
(13)

Next, we will use the fusion rule of our primary (14), and
then we have to use it to calculate (13). This can be done
by taking derivatives on both sides of (15) and searching
for the similar order term of eαβ∂αψ(x)∂β∂

2ψ(x).

[ψ]× [ψ] = [ψ] + [I] , (14)

ψ(x+ a/2)ψ(x− a/2) = |a|4/5(I + C1a
2L−2I + ...)

+ |a|2/5(ψ + C2L−1ψ + a2(C3L−2 + C4L
2
−1)ψ + ...) + a.h,

(15)
Doing the order matching, we get,

eαβ∂αψ(x)∂β∂
2ψ(x) = lim

a−→0
const|a|2/5(L−2L̄

2
−1−L̄−2L

2
−1)ψ,

(16)
Luckily, in our case, we have the second-level null state
in the (2,5) model. Therefore, equation (16) is zero.
Hence, the Hopf equation is satisfied. We must consider
the influence of viscosity and stirring forces as crucial
boundary conditions for our solutions. Currently, we lack
a rigorous methodology for their precise implementation,
which necessitates us to make educated conjectures.
These conjectures should ideally yield solutions that are
both more generic and physically realistic than those
discussed above.

Constant Flux: Now, as we know, the standard
picture that we have of the turbulence involves the Kol-
mogorov idea of constant flux condition. The condition
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of matching the perfect fluid and the viscous fluid near
the cutoff requires the constant flux condition. In 2D,
the relevant flux is the enstrophy flux.

H =

∫
ω2d2x, (17)

Enstrophy is a conserved quantity given by (17) for the
perfect fluids.

d

dt
⟨ω(x+ a/2)ω(x− a/2)⟩ = constant, (18)

[ψ]× [ψ] = [ϕ] + ..., (19)

ω̇ ∼ (L−2L̄
2
−1 − L̄−2L

2
−1)ϕ, (20)

The constant flux condition says that the total time
derivative of the < ω ω > is length scale independent.
Taking into account the UV cutoff the condition it boils
down to (18). Now consider some CFT with the fusion
rule (19), and we have already argued above that the ω̇
is given by (20),

⟨ω̇(x+ r)ω(r)⟩ = r0, (21)

(∆ϕ + 2) + (∆ψ + 1) = 0, (22)

The constant flux condition says (21), now from this we
get (22). Unlike our last example, we won’t demand the
second-level degenerate condition. Instead, we need the
condition (23), which essentially means the RHS of (19)
will vanish under the limit a −→ 0. This gives ∆ψ < −1.

∆ϕ > 2∆ψ, (23)

Now we know that the energy spectrum is given by,

E(k) ∼ k4∆ψ+1, (24)

E(k) ∼ k−3, (25)

This we were expecting since it is steeper than the
Kraichan-Kolmogorov approximation (25) because
in the numerical simulations, this exponent is found
somewhere between -3 to -4. Therefore, the primary
with the scaling dimension satisfying the condition (23)
and its value is greater than -5/4 will work.

(2,2N+1) Model: We have already seen an ex-
ample of a non-unitary minimal model, which is the
possible field dual of the 2D turbulence. Polyakov, in
his paper [1], mentioned that he also does not have a
proper classification of the dual CFT, but he gave the
most appealing example of (2,2N+1) models. In this
model, we have N-primaries.

−∆s =
(2N − s)(s− 1)

2(2N + 1)
(26)

[ψs]× [ψs] = [ψ2s−1] + [ψ2s−3] + ..., (27)

With the scaling dimensions given as (26) and the fusion
rule is given as (27) with 2s− 1 ≤ N . The constant flux
condition requires,

∆s +∆2s−1 = −3, (28)

∆ψ = ∆4 = −8/5, ∆ϕ = ∆7 = −13/7, (29)

E(k) ∼ k−(3+4/7), (30)

The solution to this equation is (29). The energy
spectrum is given as (30). This result is well under
the range of the numerical results. Hence, such models
are more eligible to be called the Field dual of the 2D
turbulence in the inertial range.

Discussions: In the realm of inviscid Hopf equa-
tions, a multitude of formal solutions exists. Among
these solutions, certain instances emerge where the
function ϕ exhibits level-two degeneracy, rendering
them more stable than their counterparts. However,
the crucial distinction arises when we impose the right
boundary conditions in momentum space, a prerequisite
for seamless integration with the viscous region. This
scenario closely parallels the challenges encountered in
laminar flows, wherein delineating the accurate inviscid
solution necessitates meticulous consideration of the
boundary layer. Just as in the case of laminar flows,
here, too, a thorough examination of boundary condi-
tions becomes pivotal to elucidate the correct inviscid
solution. In the series of this paper, Yutaka Matsuo, in
his paper [3], gave a table of some of the solutions that
can possibly be a field dual. This makes this area of
research more challenging and interesting to work with.
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