From the prediction of complex weather patterns to the design of swimsuits, modeling has, over the years, quietly but steadily become an essential part of almost every field and industry—and steelmaking is no exception. Factors such as visual opacity, high operating temperature, and the relatively large size of industrial reactors often preclude direct experimental observation in steel manufacturing. Therefore the industry is overwhelmingly dependent on modeling to quickly and cost-effectively provide insight into analysis, design, optimization, and control of processing. However, few, if any, books offer the adequate coverage of modeling.

Addresses Fundamental Principles of Physical and Mathematical Modeling in Steelmaking Processes

Modeling of Steelmaking Processes meets that ever-present demand and provides a solid knowledge base on which to build. With content designed to serve professionals and students, this book starts with an overview of steelmaking and develops into a focused description of underlying scientific fundamentals and applications.

This powerful learning tool:

- Presents an overview of steelmaking, the relevance of modeling and measurements, the evolution of steelmaking, and modern technology
- Discusses emerging issues, such as environmental emissions, recycling, and product development and quality
- Analyzes mechanistic, AI-based, and macroscopic models, to provide a holistic view of steelmaking process modeling
- Provides useful questions and problems, as well as a practice session on modeling, to reinforce understanding

Developed as a self-tutorial, this text explores thermodynamic principles, analysis of metallurgical kinetics and transport phenomena, and key numerical methods, helping readers easily navigate a generally complex subject.

Features

- Describes modern steelmaking technology including types of models and their applications
- Presents elements of physical and mathematical modeling with illustrative examples
- Discusses computational fluid dynamics (CFD) software
- Features worked examples, homework problems, and a solutions manual

About the Authors

Professor Mazumdar has been teaching process modeling and steelmaking at the Indian Institute of Technology, Kanpur, India, for more than two decades. He has coauthored a book, and has written book chapters and numerous articles in peer-reviewed journals. He is well known for numerous original contributions in the area of ladle metallurgy, steelmaking, and continuous casting. Professor Mazumdar is a fellow of the Indian National Academy of Engineering and works as a consultant to several Indian steel plants.

Professor Evans holds the P. Malozemoff chair in the Department of Materials Science and Engineering at the University of California, Berkeley. During his four-decade-long career in metals and materials research, he has made numerous original contributions, and has authored and coauthored several books and monographs. Professor Evans is well known for his contributions to modeling in process metallurgy and aluminum metallurgy. He has to his credit more than 300 publications and has won several awards and honors including the Brimacombe Award, the Berkeley Citation, and the Douglas Gold Medal of Advances in Mechanical Engineering.

See Table of Contents on reverse...

Catalog no. 62433, August 2009, c. 500 pp.
ISBN: 978-1-4200-6243-4, $139.95 / £89.00

Standard Shipping is FREE when you Order Online at:

www.crcpress.com
Mechanistic Modeling of Steelmaking Processes
Numerical Solution
Uncertainties in Mathematical Modeling
Commercial Software

Mathematical Modeling I: Fluid Flow
Modeling of Laminar Flow
Modeling of Turbulent Flow
Modeling of Turbulent Multiphase Flows
Magnetohydrodynamics

Mathematical Modeling II: Liquid-State Processing Operations
Motion of Solid Addition in Steel Melt
Melting and Dissolution of Solid
Thermal Energy Transport and Temperature Distribution
Transport and Removal of Inclusion

Bubble Population Balance Model
Mass Transfer and Mixing
Mass Transfer with Chemical Reaction
Solidification and Continuous Casting

Mathematical Modeling III: Solid-State Processing Operations
Modeling of Diffusive Heat Transfer Phenomena
Modeling of Simultaneous Diffusive Heat and Mass Transfer Phenomena

Modeling of Mechanical Working
Modeling of Microstructural Phenomena

Mathematical Modeling IV: Macroscopic Modeling of Ladle Metallurgy Steelmaking
Modeling Approach
Macroscopic Models
Application of Macroscopic Models to High Temperature Melts

Intelligent Modeling: Neural Network and Genetic Algorithm in Steelmaking
Artificial Intelligence
Artificial Neural Network
Optimization and Genetic Algorithm
Application of ANN and GA in Steelmaking
Integration of ANN, GA, and CFD: Application in Modeling of Steelmaking Processes

Practice Sessions on Physical and Mathematical Modeling
Practice Session on Physical Modeling
Practice Session on Mathematical Modeling

FLAT-ROLLED STEEL PROCESSES
Advanced Technologies
Vladimir B. Ginsburg

This book outlines the basic principles of metallurgical design of flat rolled steels to obtain flat steel products with required metallurgical and mechanical properties. It reviews the current theories and experimental works conducted in this area and gives a comparative analysis of the obtained results in application to a large variety of steels produced around the world. The author illustrates equations developed by various researchers and compares them in both table and graphic forms.

Catalog no. DK1187, 2005, 726 pp.
ISBN: 978-0-8247-5847-9, $209.95 / £134.00

STEEL HEAT TREATMENT HANDBOOK
Second Edition (Two-Volume Set)
George E. Totten

This reference presents the classical perspectives that form the basis of heat treatment processes, incorporating the latest advances to impact this enduring technology. The second edition of the bestselling Steel Heat Treatment Handbook offers abundantly updated and extended coverage in two self-contained volumes: Metallurgy and Technologies and Equipment and Process Design. A well-rounded resource for process design, new topics include treatments for tool steels, stainless steels, and powder metallurgy components.

ISBN: 978-0-8247-2741-3, $209.95 / £134.00