Department of Mathematics
 Indian Institute of Technology Kanpur
 MTH101R, 2nd Mid Term Test
 March 8, 2011

Marks: 40
Time: 1 Hour

Answer all questions. All the parts of each question must be answered in continuation; otherwise they will not be graded.

1. (a) Show that there is no continuous $f(x)$ such that $\int_{0}^{1} x^{n} f(x) d x=\frac{1}{\sqrt{n}}$ for all natural numbers n.

Solution: Suppose such a function exists. Let $\sup _{x \in[0,1]} f(x)=M$. Then,

$$
\begin{aligned}
& \frac{1}{\sqrt{n}}=\left|\int_{0}^{1} f(x) x^{n} d x\right| \leq M\left|\int_{0}^{1} x^{n} d x\right|=\frac{M}{n+1} \\
& \Rightarrow 1 \leq \frac{\sqrt{n} M}{n+1} \rightarrow 0 \text { as } n \rightarrow \infty \Rightarrow \text { a contradiction. }
\end{aligned}
$$

(b) Determine the limits (i) $\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{n y^{n-1}}{1+y}$ and (ii) $\int_{0}^{1} \lim _{n \rightarrow \infty} \frac{n y^{n-1}}{1+y}$.

Solution: (i) Integrating by parts, $\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{d\left(y^{n}\right)}{1+y}=\frac{1}{2}+\lim _{n \rightarrow \infty} \int_{0}^{1} \frac{y^{n}}{(1+y)^{2}} d y \quad$ [1 mark]

$$
\text { and } \int_{0}^{1} \frac{y^{n}}{(1+y)^{2}} d y \leq \int_{0}^{1} y^{n} d y=\frac{1}{n+1} \rightarrow 0
$$

(ii) For $0<y<1, \ln \left(n y^{n-1}\right)=(n-1)\left[\ln y+\frac{\ln n}{n-1}\right] \rightarrow-\infty$, as $n \rightarrow \infty \quad$ [2 marks]

$$
\Rightarrow \lim _{n \rightarrow \infty} \frac{n y^{n-1}}{(1+y)}=0 \text { for } 0<y<1
$$

2. (a) A curved wedge is cut from a cylinder of radius 5 by two planes. One plane is perpendicular to the axis of the cylinder. The second plane crosses the first plane at 45° angle at the center of the cylinder. Find the volume of the wedge.

Solution: Each cross section is a rectangle of area $A(x)=x \times 2 \sqrt{25-x^{2}}$.

Therefore, \quad Required Volume $=\int_{0}^{5} 2 x \sqrt{25-x^{2}} d x=\frac{250}{3}$ [2marks]
(b) A regular hexagon is inscribed in the circle $x^{2}+(y-3)^{2}=1$ and is rotated about x-axis. Using Pappus Theorem, find the volume and surface area of the solid so formed.

Solution: Area A of the hexagon is $\frac{3 \sqrt{3}}{2}$ and the perimeter L is 6 . [2 mark]

The distance ρ of centroid from the axis of rotation is 3 .
Therefore, by Pappus Theorem, generated volume $V=2 \pi \rho A=9 \sqrt{3} \pi$ [1 mark] generated surface area $S=2 \pi \rho L=36 \pi$
3. (a) Sketch the region D that is bounded by the curve $r^{2}=|\sin \theta|$ but is not included in the circle $r=\frac{1}{\sqrt{2}}$. Determine the area of region D.

Solution:

Correct Sketch:
[2 marks]

Point of intersection in the first quadrant: $\sin \theta=1 / 2 \Rightarrow \theta=\pi / 6$
[1 mark]
$\begin{aligned} \text { Required Area } & =4 \int_{\pi / 6}^{\pi / 2} \frac{1}{2}\left(r^{2}-\frac{1}{2}\right) d \theta=2 \int_{\pi / 6}^{\pi / 2}\left(\sin \theta-\frac{1}{2}\right) d \theta \\ & =2\left[\left(\cos \frac{\pi}{6}-\cos \frac{\pi}{2}\right)-\left(\frac{\pi}{4}-\frac{\pi}{12}\right)\right]=\sqrt{3}-\frac{\pi}{3}\end{aligned}$ [2 marks\}
(b) Using the parametric form of the equation of the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$, find the surface area generated by revolving this ellipse about x-axis. Leave your result in the form of the definite integral, do not evaluate it.

Solution: Required Surface Area of Revolution =
2 times the Surface Area of revolution of the part of ellipse in the first quadrant
$=2 \int 2 \pi y d s$
$=4 \pi \int_{0}^{\pi / 2}(2 \sin \varphi) \sqrt{\left(\frac{d x}{d \varphi}\right)^{2}+\left(\frac{d y}{d \varphi}\right)^{2}} d \varphi$,
[2 marks]
The parametric equation for the part of ellipse in the first quadrant,
$x=3 \cos \varphi, y=2 \sin \varphi, 0 \leq \varphi \leq \frac{\pi}{2}$.
$\Rightarrow\left(^{*}\right)=8 \pi \int_{0}^{\pi / 2}(\sin \varphi) \sqrt{9 \sin ^{2} \varphi+4 \cos ^{2} \varphi} d \varphi$
[2 marks]
4. (a) Let the power series $\sum_{n=0}^{\infty} a_{n} x^{n}$ converges for some x_{0}. Prove that it converges for all x such that $|x|<\left|x_{0}\right|$.
Solution: $\left|a_{n} x^{n}\right|=\left|a_{n} x_{0}^{n}\right|\left|\frac{x}{x_{0}}\right|^{n} \leq M\left|\frac{x}{x_{0}}\right|^{n}$, for all n.
[3 marks]
The result follows by comparison test.
[2 marks]
(b) Test the convergence of improper integral $\int_{0}^{1} \frac{\ln x}{\sqrt{x}} d x$.

Solution: Consider the integral $-\int_{0}^{1} \frac{\ln x}{\sqrt{x}} d x$
[1 mark]
Use Limit Comparison Test with $\frac{1}{x^{p}}$, where $\frac{1}{2}<p<1$,
$\lim _{x \rightarrow 0} \frac{-\ln x}{x^{(1 / 2)-p}}=\lim _{x \rightarrow 0} \frac{1}{p-(1 / 2)} x^{p-(1 / 2)}=0$, for $p>\frac{1}{2}$
and
$\int_{0}^{1} \frac{1}{x^{p}} d x$ Converges, for $p<1$.
\Rightarrow Given Integral converges.

