CUBIC SPLINE COALESCENCE FRACTAL INTERPOLATION THROUGH MOMENTS

A. K. B. CHAND* and G. P. KAPOOR†

Department of Mathematics
Indian Institute of Technology Kanpur
Kanpur-208016, India
*akbachand@gmail.com
†gp@iitk.ac.in

Received April 25, 2006
Accepted September 18, 2006

Abstract

This paper generalizes the classical cubic spline with the construction of the cubic spline coalescence hidden variable fractal interpolation function (CHFIF) through its moments, i.e. its second derivative at the mesh points. The second derivative of a cubic spline CHFIF is a typical fractal function that is self-affine or non-self-affine depending on the parameters of the generalized iterated function system. The convergence results and effects of hidden variables are discussed for cubic spline CHFIFs.

Keywords: Iterated Function Systems; Fractal Interpolation Functions; Coalescence; Cubic Spline; Moments; Self-Affine; Non-Self-Affine; Convergence.

1. INTRODUCTION

Fractals represent powerful techniques to approximate natural objects such as trees, clouds, landscapes, glaciers, and waves that cannot be described by using classical geometry. With the introduction of the term fractals by Mandelbrot,1 the fractal geometry has been successfully used in various domains such as economics,2 physics,3 graphics,4 life sciences,5 signal processing,6 image processing,7 etc. Fractal interpolation function (FIF) is

*Presently at Departamento de Matemática Aplicada, Centro Politécnico Superior de Ingenieros, Universidad de Zaragoza. C/María de Loma, 3, 50018. Zaragoza, España. Mailing address for offprints: Plot No.: 3824/5090 (Subediha Nivas), Jharana Sali, Badagada Brit colony, Bhubaneswar, Orissa, India–751018.
introduced by Barnsley and Harrington. CHFIF is introduced (see for instance Refs. 13 from self-affine or non-self-affine functions. The interpolation data might be generated simultaneously from self-affine or non-self-affine functions. The construction data since the values of hidden variable FIF continuously depend on all parameters which define it. Since the HFIF is the projection of a vector valued function, it is usually non-self-affine in nature. However, in practical applications of FIFs, the interpolation data might be generated simultaneously from self-affine or non-self-affine functions. To approximate self-affine or non-self-affine functions simultaneously, the coalescence hidden variable FIF (CHFIF) is introduced (see for instance Refs. 13 and 14).

The existence of a differentiable FIF or spline FIF (SFIF) is introduced by Barnsley and Harrington. However, the construction of SFIFs with only a fixed type of boundary conditions is allowed in their construction. The construction of SFIFs with any type of boundary conditions is given in Refs. 14, 16 to 18. The derivative of a SFIF is a typical self-similar fractal functions. The construction and boundary conditions of the associated cubic spline CHFIFs on two classes of sequence of meshes in Sec. 3. Finally, effects of hidden variables on the cubic spline CHFIFs are illustrated through suitably chosen examples in Sec. 4.

2. CUBIC SPLINE HFIF

First, we discuss in Sec. 2.1 the basics of CHFIFs. The construction of cubic spline CHFIFs is described in Sec. 2.2.

2.1. Basics of CHFIFs

Let \(x_0 < x_1 < \cdots < x_N \) be a partition of an interval \(I = [x_0, x_N] \subset \mathbb{R} \) and \(\{(x_n, y_n) \in I \times \mathbb{R} : n = 0, 1, 2, \ldots, N\} \) be a set of data points. This data set is extended to a generalized set of data \((x_n, y_n, z_n) \in \mathbb{R}^3 : n = 0, 1, 2, \ldots, N\) with real parameters \(z_n, n = 0, 1, 2, \ldots, N \). Set, \(h_1 = \min_x y_n, \quad h_2 = \max_x y_n, \quad h_1 = \min_x z_n, \quad h_2 = \max_x z_n \), and \(K = I \times D \), where \(D = J_1 \times J_2 \). \(J_1 \) and \(J_2 \) are suitable compact sets in \(\mathbb{R} \) such that \([h_1, h_2] \subseteq J_1, [h_1, h_2] \subseteq J_2\). Let \(L_n : L_0 = [x_{n-1}, x_n] \) be a contraction map satisfying

\[
L_n(x_0) = x_{n-1}, \quad L_n(x_N) = x_n.
\]

In order to define the data generating function \(\Phi(x) \), where \(\Phi \in C^r[x_0, x_N] \), for \(r = 2, 3, \) or 4.

The organization of this paper is as follows. In Sec. 2, we discuss the construction of cubic spline CHFIFs through its moments. Our construction admits all types of boundary conditions as in classical cubic splines. The convergence results of cubic spline CHFIFs are described on two classes of sequence of meshes in Sec. 3. Finally, effects of hidden variables on the cubic spline CHFIFs are illustrated through suitably chosen examples in Sec. 4.

In Sec. 2, we discuss the construction of cubic spline CHFIFs. The construction and boundary conditions, one can have infinite number of cubic spline CHFIFs that are self-affine or non-self-affine, depending on choice of hidden variables and boundary conditions of the associated cubic spline fractal functions. The convergence results of cubic spline CHFIFs on two classes of sequence of uniform or non-uniform meshes are proved for the data generating function \(\Phi(x) \), where \(\Phi \in C^r[x_0, x_N] \), for \(r = 2, 3, \) or 4.

The term "hidden variable" has been introduced by Barnsley et al. A. K. B. Chand & G. P. Kapoor
determined by using Eq. (2.2). We choose \(\alpha_n \) as free variable with \(|\alpha_n| < 1 \) and \(\beta_n \) as constrained free variable with respect to \(\gamma_n \) such that \(|\beta_n| + |\gamma_n| < 1 \). The generalized IFS that is needed for construction of a CHFIF corresponding to the data \(\{(x_n, y_n, z_n): n = 0, 1, \ldots, N\} \) is now defined as

\[
\{\mathbb{R}^3; \omega_n(x, y, z) = (L_n(x), F_n(x, y, z)), \quad n = 1, 2, \ldots, N\} \tag{2.4}
\]

It is known that the IFS defined in Eq. (2.4) associated with the data \(\{(x_n, y_n, z_n): n = 0, 1, \ldots, N\} \) is hyperbolic with respect to a metric \(\tau \) that is equivalent to the Euclidean metric on \(\mathbb{R}^3 \). Hence, there exists a unique non-empty compact set \(G \subseteq \mathbb{R}^3 \), called as attractor of the IFS (2.4), such that \(G = \bigcup_{n=1}^{N} \omega_n(G) \). This attractor \(G \) provides the existence of a unique vector valued interpolant \(f \) in the following proposition.

Proposition 2.1. The attractor \(G \) of the IFS defined by Eq. (2.4) is the graph of the continuous vector valued function \(f: I \rightarrow D \) such that \(f(x_n) = (y_n, z_n) \) for all \(n = 1, 2, \ldots, N \), i.e., \(G = \{(x, y, z): x \in I \text{ and } f(x) = (y(x), z(x))\} \).

Proof. Proposition 2.1 gives that the graph of the vector valued function \(f(x) = (f_1(x), f_2(x)) \) is the attractor of the IFS \(\{\mathbb{R}^3; \omega_n(x, y, z), n = 1, 2, \ldots, N\} \) if and only if the fixed point of Read-Bajraktarević operator \(T \) on the space of continuous vector valued functions from \(I \) to \(D \) satisfies

\[
Tf(x) = f(x) = F_n(L_n^{-1}(x), f(L_n^{-1}(x))), \quad x \in I_n, \quad n = 1, 2, \ldots, N. \tag{2.5}
\]

The image \(Tf \) of the vector valued function \(f \) can be written component wise as \((T_1f_1, T_2f_2) \), where \(T_1 \) and \(T_2 \) are component wise Read-Bajraktarević operators from \(I \) to \(\mathbb{R} \). The function \(f_2(x) \) in the projection \(\{(x, f_1(x)): x \in I\} \) of the attractor \(G \) on \(\mathbb{R}^2 \), is called coalescence FIF or coalescence hidden variable FIF (CHFIF) for the given data \(\{(x_n, y_n): n = 0, 1, \ldots, N\} \). It is easily seen that CHFIFs satisfy the following functional equation for \(x \in I \).

\[
T_1f_1(L_n(x)) = f_1(L_n(x)) = F_n^1(x, f_1(x), f_2(x)) = a_n f_1(x) + \beta_n f_2(x) + p_n(x). \tag{2.6}
\]

Similarly, the function \(f_2(x) \) in the projection \(\{(x, f_2(x)): x \in I\} \) of the attractor \(G \) is a self-affine fractal function that interpolates the data \(\{(x_n, z_n): n = 0, 1, \ldots, N\} \) and satisfies the following functional equation.

\[
T_2f_2(L_n(x)) = f_2(L_n(x)) = F_n^2(x, f_1(x)) = \gamma_n f_2(x) + q_n(x), \quad x \in I. \tag{2.7}
\]

Since the projection of the attractor is not always union of affine transformations of itself, CHFIFs are generally non-self-affine by nature. By choosing \(y_n = z_n \) and \(\alpha_n + \beta_n = \gamma_n \), CHFIF \(f_1(x) \) obtained as the projection on \(\mathbb{R}^2 \) of the attractor of the IFS (2.4) coincides with a self-affine fractal function \(f_2(x) \) for the same interpolation data. Hence, the CHFIF is self-affine or self-similar in this case. This type of CHFIFs can be used to approximate the random steps of Gaussian, increments of the fractional Brownian function and wave-height functions.

2.2. Construction of Cubic Spline CHFIFs

A function \(S(x) \) is said to be a cubic spline on a grid \(x_0 < x_1 < \cdots < x_N \) if it satisfies (i) \(S(x) \) is a polynomial of degree 3 on each subinterval \([x_{n-1}, x_n] \) and (ii) \(S'(x) \) is continuous on \([x_0, x_N] \) for \(r = 0, 1, 2 \). The following proposition provides the existence of a SFIF.

Proposition 2.2. Let \(\{(x_n, y_n): n = 0, 1, 2, \ldots, N\} \) be the interpolation data with \(x_0 < x_1 < \cdots < x_N \). Suppose for some integer \(r \geq 0 \), \(|\alpha_n| < a_n^r \) and \(a_n \in C[r, x_N]; n = 1, 2, \ldots, N \). Let

\[
F_n(x, y) = \alpha_n a_n^{k(r)} \frac{q(k)}{\alpha_n}, \quad x_0 = \frac{q(k)}{\alpha_n}; \quad a_n^{k(r)} = a_n^r \quad k = 1, 2, \ldots, r.
\]

If \(F_n(x, y) \) satisfies Eq. (2.1) and \(\alpha_n = a_n^r + q(k) \) for \(n = 1, 2, \ldots, N \), then \(\{(L_n(x), F_n(x, y))\}_{n=0}^{N} \) determines a FIF \(f \) in \(C[r, x_N] \). Based on the Proposition 2.2, we define the cubic spline CHFIF \(f_1 \) through moments, \(M_n^3 = f_1(x_n), n = 0, 1, 2, \ldots, N \), as follows.
Definition 2.1. A function \(f_1(x) \) (or \(f_1(Y; x) \)) is called a cubic spline CHFIF interpolating to the data set \(\{(x_n, y_n) : n = 0, 1, \ldots, N\} \) with mesh \(\Delta : x_0 < x_1 < x_2 < \cdots < x_N \), if (i) \(f_1 \in C^2([x_0, x_N]) \); (ii) \(f_1 \) satisfies the interpolation conditions \(f_1(x_i) = y_i, n = 0, 1, \ldots, N \); and (iii) the graph of \(f_1 \) is the projection of the attractor of a IFS, \(\{R^3; \omega_n(x, y, z), n = 1, 2, \ldots, N\} \) to \(\mathbb{R}^2 \), where for \(n = 1, 2, \ldots, N \), \(\omega_n(x, y) = (L_n(x), F_n(x, y), I_n(x)) \), \(L_n(x) \) is defined as in Eq. (2.1), \(F_n^1(x, y, z) = [a^2_n \alpha_n y + \beta_n z + p_n(x)] \), \(a^2_n (\alpha_n y + \beta_n z + p_n(x)) \), \(0 < |\alpha_n| < 1 \), \(0 < |\beta_n| + |\gamma_n| < 1 \), and \(p_n(x), q_n(x) \) are suitable cubic polynomials.

\[
F_n^1(x, y, z) = a_n^2 \left\{ \alpha_n y + \beta_n z + \frac{(M_n^2 - \alpha_n M_n^3 - \beta_n M_n) (x - x_0)^3}{6(x_N - x_0)} + (M_n^2 - \alpha_n M_n^3 - \beta_n M_n) \right\} \nonumber
\]

\[
\times \left(\frac{N_n^2 - \alpha_n M_n^2 - \beta_n M_n (x - x_0)}{6(x_N - x_0)} \right) \nonumber
\]

\[
+ \frac{y_{n-1} - \alpha_n y_0 - \beta_n z_0}{a_n^2} \frac{N_n^2 - \alpha_n M_n^2 - \beta_n M_n (x - x_0)}{6(x_N - x_0)} \nonumber
\]

\[
= \frac{y_{n-1} - \alpha_n y_0 - \beta_n z_0}{a_n^2} \frac{N_n^2 - \alpha_n M_n^2 - \beta_n M_n (x - x_0)}{6(x_N - x_0)} \nonumber
\]

\[
+ \frac{y_{n-1} - \alpha_n y_0 - \beta_n z_0}{a_n^2} \frac{N_n^2 - \alpha_n M_n^2 - \beta_n M_n (x - x_0)}{6(x_N - x_0)} \nonumber
\]

\[
\times \left(\frac{N_n^2 - \alpha_n M_n^2 - \beta_n M_n (x - x_0)}{6(x_N - x_0)} \right) \nonumber
\]

The projection of the attractor \(G \) of the IFS given by Eq. (2.8), i.e. \(\{(x, f_1(x)) \mid x \in I \} \) is the graph of the required cubic spline CHFIF that may be self-affine or non-self-affine depending on the hidden variables. Suppose that the data \(\{(x_n, y_n) : n = 0, 1, 2, \ldots, N\} \) is generated by a continuous function \(\Phi \) that is approximated by the cubic spline CHFIF \(f_1 \). Then \(f_1 \) is called (i) the complete cubic spline CHFIF if it has boundary conditions of Type-I, i.e. \(f_1(x_0) = \Phi(x_0), f_1(x_N) = \Phi(x_N) \); (ii) the natural cubic spline CHFIF with \(M_0^2 = M_N^2 = 0 \) if it has boundary conditions of Type-II, i.e. \(f_1(x_0) = \Phi(x_0) = M_0^2, f_1(x_N) = \Phi(x_N) = M_N^2 \); and (iii) the periodic cubic spline CHFIF if it has boundary conditions of Type-III, i.e. \(f_1(x_0) = f_1(x_N), f_1(x) = f_1(x_N), f_1(x) = f_1(x_N) \).

Remark 2.1. (1) If free variables \(\alpha_n = 0 \) and constrained free variables \(\beta_n = 0 \); \(n = 1, 2, \ldots, N \), \(F_n^1(x, y, z) \) reduces to a cubic polynomial in each sub-interval of \(I \). Hence, the IFS (2.8) generates the classical cubic spline \(S(x) \) as a special case of the cubic spline CHFIF.

(2) In general, a cubic spline CHFIF is not self-affine as it is the projection of attractor of a non-diagonal IFS. But, if \(y_{n-1} = \omega_n, n = 0, 1, 2, \ldots, N \), \(\alpha_n + \beta_n = \gamma_n \) for \(n = 1, 2, \ldots, N \), and \(f_1 \); \(f_1 \) have the same boundary conditions, the cubic spline CHFIF is self-affine in nature, i.e. second derivative of the cubic spline CHFIF is a typical self-affine fractal function.

(3) If \(f_1 \) is periodic, the necessary condition for the existence of the periodic cubic spline CHFIF for prescribed moments \(M_n \) is given by

\[
\sum_{n=1}^N (h_n + h_{n+1}) M_n^2 - 2a_n h_n M_n^2 - 2a_n h_n (f_1'(x_N) - f_1'(x_0)) - \beta_n (M_0^2 + M_N^2) = 0. \nonumber
\]

With \(\alpha_n = 0 \) and \(\beta_n = 0 \) for \(n = 1, 2, \ldots, N \), Eq. (2.11) reduces to the necessary condition for
the existence of the periodic classical cubic spline associated with M_n. Also, for $\beta_n = 0$ for $n = 1, 2, \ldots, N$, Eq. (2.11) reduces to the necessary condition for the existence of the periodic SFF associated with M_n.

3. CONVERGENCE OF CUBIC SPLINE CHIFIFS

Let $\mathcal{G} = \{ f \in C^2(I, \mathbb{R}^2) : f(x_n) = (y_n, z_n), n = 0, 1, 2, \ldots, N \}$, where $I = [x_0, x_N]$. Let f_1 and f_2 be the components of the vector valued function f such that $f = (f_1, f_2)$. From Eqs. (2.6) and (2.9), the cubic spline CHIFF satisfies the implicit relation

$$f_1(L_n(x)) = a_0^2(\alpha_n f_1(x) + \beta_n f_2(x) + p_n(x)), \quad x \in I \quad (3.1)$$

and from Eqs. (2.7) and (2.10), the self-affine cubic spline fractal function satisfies the functional relation

$$f_2(L_n(x)) = a_0^2(\gamma_n f_2(x) + q_n(x)), \quad x \in I, \quad (3.2)$$

where $p_n(x)$ and $q_n(x)$ are cubic polynomials for $n = 1, 2, \ldots, N$. In this section, we assume that for $n = 1, 2, \ldots, N; |\beta_n| + |\gamma_n| \leq 1$ and $|\alpha_n| \leq s^* < 1$, where s and s^* are some fixed real numbers. In view of Eqs. (2.9) and (2.10), denote $p_n(\alpha_n, \beta_n, x) \equiv p_n(x)$ and $q_n(\gamma_n, x) \equiv q_n(x)$ for $n = 1, 2, \ldots, N$. Further, let for $x \in I_n, n = 1, 2, \ldots, N, q_n(x)$ satisfies

$$|\partial^{1+}q_n(\gamma_n, x)| \leq K_\gamma, \quad (3.3)$$

where $|\gamma_n| \in (0, s^*\alpha_n)$ and K_γ is a positive constant. We need the following lemma to prove our main convergence Theorems 3.1 to 3.3.

Lemma 3.1. Let $f_1(x)$ be the cubic spline CHIFF through generalized interpolation data and $S(x)$ be the classical cubic spline with respect to the mesh $\Delta : x_0 < x_1 < \ldots < x_N$ interpolating $\{y_0, y_1, \ldots, y_N\}$ at the mesh points with same type of boundary conditions. Suppose, there exist positive constants $K_\gamma, K_\beta, r = 0, 1, 2$ such that

$$\left| \frac{\partial^{1+}p_n(\alpha_n, \beta_n, x)}{\partial \alpha_n} \right| \leq K_\gamma, \quad (3.4)$$

The above inequality gives

$$\|f_1(\alpha_n) - S(\alpha_n)\|_\infty \leq \frac{\|\Delta\|^2}{\|x\|^2} \max_{1 \leq n \leq N} |\alpha_n| \|f_1 - S\|_\infty. \quad (3.7)$$
Now, using the mean value theorem and Eq. (3.5), for \(x \in I_n, n = 1, 2, \cdots, N, \)
\[
|T_{i_{(x,y)}}^* S(x) - T_{i_{(x,y)}}^* S(x)| = a_n^2 |\alpha_n S(L_n^k(x)) + \beta_n f_2(L_n^k(x)) + p_n(\alpha_n, \beta_n, L_n^k(x)) - p_n(0, 0, L_n^k(x))|
\]
\[
\leq a_n^2 \left\{ |\alpha_n| ||S||_{\infty} + |\beta_n| \|f_2\|_{\infty} + |\alpha_n| \left| \frac{\partial p_n(\alpha_n, \beta_n, L_n^k(x))}{\partial \alpha_n} \right| + |\beta_n| \left| \frac{\partial p_n(\alpha_n, \beta_n, L_n^k(x))}{\partial \beta_n} \right| \right\}
\]
\[
\leq \frac{||S||_{\infty}^2 \max_{1 \leq i \leq N} |\alpha_i| + K_0}{||f_2||_{\infty}} \left(\frac{\|f_2\|_{\infty} + K_0^*}{||f_2||_{\infty}} \right). \tag{3.8}
\]
Using inequalities (3.7) and (3.8) in
\[
|f_1 - S|_{\infty} = ||T_{i_{(a,b)}}^* f_1 - T_{i_{(a,b)}}^* S||_{\infty}
\]
\[
\leq ||T_{i_{(a,b)}}^* f_1 - T_{i_{(a,b)}}^* S||_{\infty} + ||T_{i_{(a,b)}}^* S - T_{i_{(a,b)}}^* S||_{\infty}
\]
resulted into
\[
|f_1 - S|_{\infty} \leq \frac{\|f_2\|_{\infty} \max_{1 \leq i \leq N} |\alpha_i| + K_0}{||f_2||_{\infty}} + \frac{\|f_2\|_{\infty} + K_0^*}{||f_2||_{\infty}}. \tag{3.9}
\]
when \(f_2 \) and \(S \) are constructed with the same boundary conditions.

Let \(\Delta_k \) be a sequences of meshes on \([x_0, x_N]\) as
\[
\Delta_k : x_0 = x_{k,0} < x_{k,1} < \cdots < x_{k,N_k} = x_N.
\]

Class A. \(\{\Delta_k\} : \max_{1 \leq i, k \leq N_k} |\alpha_{i,k}\| + |\beta_{i,k}\| \leq \|\Delta_k\| < 1 \) for each \(k \).

Class B. \(\{\Delta_k\} : |\alpha_i| > \|\Delta_k\| \) or \(|\beta_i| > \|\Delta_k\| \) for some \(i, j \), \(1 \leq i, j \leq N_k \) and for each \(k \).

For the function \(\Phi \) in \(C^2([x_0, x_N]) \) generating the interpolation data, the convergence result of cubic spline CHFIFs are given in the following theorem if cubic spline fractal functions \(f_{2,k} \) satisfy any boundary conditions of Type-I, Type-II, or Type-III on a sequence of meshes.

Theorem 3.1. Let \(\Phi \in C^2([x_0, x_N]) \) and cubic spline CHFIFs \(f_{1,k}(\Delta_k) \) satisfy any boundary conditions of

- **Type-I.** when \(f_{1,k} \) on \([x_0, x_N]\) with \(\lim_{k \to \infty} \|\Delta_k\| = 0 \) if \(\{\Delta_k\} \) is in Class A, then
 \[
 \|\Phi^{(r)} - f_{1,k}^{(r)}\|_{\infty} = O(\|\Delta_k\|^{2-r}), \quad r = 0, 1, 2, \tag{3.10}
 \]
 and if \(\{\Delta_k\} \) is in Class B, then
 \[
 \|\Phi^{(r)} - f_{1,k}^{(r)}\|_{\infty} = O(\|\Delta_k\|^{2-r}), \quad r = 0, 1, 2. \tag{3.11}
 \]
follows from the above inequality. Finally, the convergence result (3.11) for Class B satisfies, any boundary conditions of Type-I, Type-II, or Type-III

\[\omega(\Delta_k) \leq 5|\Delta_k|^{2-s}\omega(\Phi; \|\Delta_k\|) \]

where \(\omega(\Phi; x) \) is the modulus of continuity of \(\Phi(x) \). Inequality (3.13) gives

\[\|S^{(r)}_{\Delta_n}\|_\infty \leq \|S^{(r)}_{\Omega}\|_\infty + 5|\Delta_k|^{2-s}\omega(\Phi; \|\Delta_k\|) \]

Using inequality (3.14), \(\|S^{(r)}_{\Delta_n}\|_\infty \) exists as \(k \to \infty \) for \(r = 0, 1, 2 \). Inequalities (3.12) to (3.14) together with inequality (3.9) gives

\[\|S^{(r)}_{\Delta_n}\|_\infty \leq \frac{\|\Delta_k\|^{2-s}}{|\Delta_k|^{2-s}} \times \left(\|S^{(r)}_{\Omega}\|_\infty + K_\gamma \right) \]

By the assumptions \(\Phi \in C^2(I) \) and \(\max_{1 \leq n \leq N} \{ |\alpha_{n,0}|, |\beta_{n,0}| \} \leq \|\Delta_k\| < 1 \), the right hand side of inequality (3.15) tends to zero as \(k \to \infty \). Hence, the convergence result (3.10) for the Class A follows from inequality (3.15). Since \(\max_{1 \leq n \leq N} |\alpha_{n,0}| \leq s^* < 1 \) and \(\max_{1 \leq n \leq N} |\beta_{n,0}| < s \), inequality (3.15) reduces to

\[\|\Phi^{(r)} - f^{(r)}_{\Delta_n}\|_\infty \leq \|\Delta_k\|^{2-s} \max \left\{ \|s^{*}; s\|, \|\Delta_k\|^{2-s}; s^{*} \right\} \]

Finally, the convergence result (3.11) for Class B follows from the above inequality.

The convergence results of cubic spline CHIFs to the function \(\Phi \) in \(C^3[\Omega, x_N] \) are given in the following if cubic spline fractal functions \(f_{\Delta_n} \) satisfy any boundary conditions of Type-I, Type-II, or Type-III on a sequence of meshes.

Theorem 3.2. Let \(\Phi \in C^3[\Omega, x_N] \) and cubic spline CHIFs \(f_{\Delta_n}(x) \) satisfy boundary conditions of Type-I, Type-II or Type-III on a sequence of meshes \(\{\Delta_{n}\} \) on \([a, x_N] \) with

\[\lim_{n \to \infty} \|\Delta_{n}\| = 0 \quad \text{and} \quad \frac{\|\Delta_{n}\|}{\min_{1 \leq n \leq N} h_{n,0}} < \theta < \infty \]

\[\|\Phi^{(r)} - f^{(r)}_{\Delta_n}\|_\infty \leq \|\Delta_k\|^{2-s} \max \left\{ \|s^{*}; s\|, \|\Delta_k\|^{2-s}; s^{*} \right\} \]

where \(K_\gamma = 8\theta^2(1 + 2\theta)(1 + 3\theta) \). From inequalities (3.9) and (3.16), it is clear that \(\|S^{(r)}_{\Omega}\|_\infty \) and \(\|f^{(r)}_{\Delta_n}\|_\infty \) are bounded. Thus, the following error estimate holds for cubic spline CHIFs with boundary conditions of Type-I, Type-II or Type-III:

Proof. It is known (Ref. 21, pp. 32) that classical cubic splines with boundary conditions of Type-I, Type-II or Type-III, satisfy

\[\|S^{(r)}_{\Omega}\|_\infty \leq \frac{5}{3}|\Delta_k|^{3-s}(3 + \bar{K})\omega(\Phi; \|\Delta_k\|) \]

where \(\bar{K} = 8\theta^2(1 + 2\theta)(1 + 3\theta) \). From inequalities (3.9) and (3.16), it is clear that \(\|S^{(r)}_{\Omega}\|_\infty \) and \(\|f^{(r)}_{\Delta_n}\|_\infty \) are bounded. Thus, the following error estimate holds for cubic spline CHIFs with boundary conditions of Type-I, Type-II or Type-III:
The above estimate gives the convergence results of Theorem 3.2 depending on the sequence mesh of Class A or Class B.

The convergence results of cubic spline CHIFs to the function \(\Phi \) in \(C^4[x_0, x_N] \) are given in the following if cubic spline fractal functions \(f_2 \Delta k \) satisfy any boundary conditions of Type-I or Type-II on a sequence of meshes.

Theorem 3.3. Let \(\Phi \in C^4[x_0, x_N] \) and cubic spline CHIFs \(f_1 \Delta k(x) \) satisfy boundary conditions of Type-I or Type-II on a sequence of meshes \(\{ \Delta k \} \) on \([x_0, x_N] \) with \(\lim_{k \to \infty} \| \Delta k \| = 0 \) and \(\min_{m \leq k \leq N} \| \Delta k \| \leq \eta < \infty \). If \(\{ \Delta k \} \) is in Class A or Class B, then respectively for \(r = 0, 1, 2 \),

\[
\| \Phi^{(r)} - f_1(\Delta k) \|_\infty \leq \| \Delta k \|^{2 - r} \left\{ L_r \| \Phi^{(r)} \|_\infty \| \Delta k \|^{2} + \max_{1 \leq m \leq N_k} \{ |a_{m,i}|, |b_{m,i}| \} \left[\| \sum_{j=1}^{r} (\Delta k)^{-j} \right] + \| f_2(\Delta k) \|_{\| x \|_{\infty}} + \| f_2(\Delta k) \|_{\| x \|_{\infty}} + K_{x}^{*} + K_{x}^{**} \right\},
\]

Thus, the above inequality gives the convergence results of Theorem 3.3.

Remark 3.2. The spline CHIF \(f_1 \) uniformly converge in the \(C^4 \) norm to the data generating function \(\Phi \) if \(\{ \Delta k \} \) is in Class B. If there exists a positive number \(u \) such that \(\max_{1 \leq m \leq N_k} \{ |a_{m,i}|, |b_{m,i}| \} \leq \| \Delta k \|^{u} \) for all \(k = 0, 1, 2, \ldots \), then \(f_1 \) converge uniformly to \(\Phi \) in the \(C^4 \) norm on \(l \).

4. EXAMPLES OF CUBIC SPLINE CHIFs

In this section, we construct examples of cubic spline CHIFs as the fixed point of the IFS given by Eq. (2.8). Suppose that \(\{ (0,0), (1,1), (2,1), (1,1) \} \) is the given interpolation data for cubic spline CHIFs. Chose free variables \(a_0 = 0.8, n = 1, 2, 3 \); hidden variables \(x_0 = 3, z_1 = 2, z_2 = 8, z_3 = 5, z_4 = 0.3, z_5 = 0.35, z_6 = 0.4 \); and constrained free variables \(z_2 = 0.4, z_3 = 0.6, z_4 = 0.5 \). Using Eq. (2.1), each IFS has \(L_1(x) = \frac{2}{3} x \), \(L_2(x) = \frac{2}{3} x + \frac{1}{3} \), and \(L_3(x) = \frac{1}{3} x + \frac{2}{3} \). For the first two examples, we compute \(F_n(x, z) \) for the self-affine cubic spline fractal function \(f_2 \) with a boundary condition \(f_2(x_0) = 10 \) and \(f_2(x_1) = 5 \). The moments are evaluated (Table 1) by using the system of equations (see Appendix). These moments are used in Eq. (2.10) for the construction of \(F_n(x, z) \) (Table 2). For constructing an example of the cubic spline CHIF with boundary conditions of Type-I, we chose \(f_1(x_0) = 2 \) and \(f_1(x_1) = 5 \). Equations (A.3) are solved with these choices to get

<table>
<thead>
<tr>
<th>(f_n'(x_0))</th>
<th>(f_n'(x_1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>
Table 2 \(F_n(x, y, z) = (F_1(x, y, z), F_2(x, z)) \) for Cubic Spline CHFFs.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(F_1(x, y, z) = (0.129y + 0.064z - 1.718x^3 - 5.375z^2 - 3.0406x - 0.192, 0.048 + 7.1175x^3 - 11.7385z^2 + 3.52z + 2.856))</td>
</tr>
<tr>
<td>2</td>
<td>(F_2(x, y, z) = (0.05y + 0.0313z - 5.026x^3 + 8.184z^2 - 0.3205x - 0.03088, 0.0429x - 13.9398z^3 - 18.9927z^2 + 0.8413x + 1.8714))</td>
</tr>
<tr>
<td>3</td>
<td>(F_3(x, y, z) = (0.128y - 0.096z + 6.265z^2 - 6.8335x^2 - 1.504x + 0.288, 0.048 + 7.1155x^3 - 11.7315z^2 + 3.52z + 2.856))</td>
</tr>
<tr>
<td>4</td>
<td>(F_4(x, y, z) = (0.05y + 0.0313z - 5.026x^3 + 8.184z^2 - 0.3205x - 0.03088, 0.0429x - 13.9398z^3 - 18.9927z^2 + 0.8413x + 1.8714))</td>
</tr>
<tr>
<td>5</td>
<td>(F_5(x, y, z) = (0.128y + 0.064z - 27.2463x^3 + 28.1503z^2 - 0.096z + 0.448, 0.048 + 16.9564x + 21.4544x^2 + 3.52z - 6.664))</td>
</tr>
<tr>
<td>6</td>
<td>(F_6(x, y, z) = (0.05y + 0.0313z - 17.9506x^3 + 33.9448z^2 - 13.059x - 0.7813, 0.025x + 19.0457z^3 - 20.8914x^2 - 15.1293z - 0.07))</td>
</tr>
<tr>
<td>7</td>
<td>(F_7(x, y, z) = (0.128y + 0.064z + 10.06x^3 - 1.8558x^2 - 1.035x - 0.192, 0.048 + 3.6989z^3 - 0.7521x + 3.0289z + 2.856))</td>
</tr>
<tr>
<td>8</td>
<td>(F_8(x, y, z) = (0.05y + 0.0313z - 10.1125x^3 - 13.9722z^2 + 0.9237 + 0.7795, 0.012z - 5.9516x^3 + 7.7987z^2 + 4.0761z + 1.8714))</td>
</tr>
<tr>
<td>9</td>
<td>(F_9(x, y, z) = (0.05y + 0.0313z - 1.2489x^2 + 1.3365z^2 + 2.7497 - 0.1988, 0.025z + 1.5994z^3 - 5.2041z^2 - 0.547z + 1.925))</td>
</tr>
<tr>
<td>10</td>
<td>(F_{10}(x, y, z) = (0.128y + 0.064z - 2.8378x^2 + 3.5879z^2 - 0.096x - 0.192, -0.08x + 11.882z^3 - 17.272z^2 + 4.8x + 3.24))</td>
</tr>
<tr>
<td>11</td>
<td>(F_{11}(x, y, z) = (0.05y + 0.0313z - 3.2652x^3 + 4.663z^2 - 1.0003 - 1.9098, -0.025z + 5.6159z^3 - 8.068z^2 - 0.599z + 0.07))</td>
</tr>
<tr>
<td>12</td>
<td>(F_{12}(x, y, z) = (0.09y + 0.048z + 1.464x^3 - 1.246z^2 + 0.544z + 0.128 + 1.464z^3 - 1.246z^2 + 0.544z))</td>
</tr>
<tr>
<td>13</td>
<td>(F_{13}(x, y, z) = (0.049y + 0.049z + 11.83z^3 - 16.48z^2 + 2.455z + 1, 0.098 + 11.83z^3 - 16.48z^2 + 2.455z + 1))</td>
</tr>
<tr>
<td>14</td>
<td>(F_{14}(x, y, z) = (0.0167y + 0.0313z - 0.9999x^2 + 0.8177z^2 + 3.809x - 1, 0.05z - 0.9999x^2 + 0.8177z^2 + 3.809x - 1))</td>
</tr>
</tbody>
</table>
the values of moments $M_0^*, M_1^*, M_2^*, M_3^*$ (Table 1). These moments are now used in Eq. (2.9) for the construction of $F_1^n(x, y, z)$ (Table 2). Iterations of the IFS code (2.8) generates the desired cubic spline CHFIF (Fig. 1). To illustrate the effect of constrained free variables on the shape of the cubic spline CHFIF in comparison with Fig. 1, we take $\beta_1 = \beta_2 = -0.6$, and $\beta_3 = 0.2$. Using the computed values of moments $M_0^*, M_1^*, M_2^*, M_3^*$ (Table 1), we evaluate $F_1^n(x, y, z)$, $n = 1, 2, 3$ (Table 2). Iterations of the IFS code (2.8) generates the desired cubic spline CHFIF (Fig. 2). Similarly, perturbations in the free variables α_n would affect the shape of the cubic spline CHFIF.

The effect of change in hidden variables, i.e. parameter z_n, boundary conditions of fractal function f_2 and free variables γ_n, on the shape of the cubic spline CHFIF are illustrated in Figs. 3, 4 and 5, respectively by comparing these with Fig. 1. In Fig. 3, we only modify free parameters as $z_0 = -7$, $z_1 = -10$, $z_2 = 9$, $z_3 = -8$. In Fig. 4, we choose boundary conditions for self-affine fractal function f_2 as $M_0 = 10$, $M_3 = 1$ instead of $f_2'(x_0) = 10$, $f_2'(x_3) = 1$. In Fig. 5, we change only free variables $\gamma_1 = -0.5$, $\gamma_2 = 0.3$ and $\gamma_3 = -0.4$. Depending on changes in hidden variables, moments of the self-affine cubic spline fractal function and cubic spline CHFIF are calculated (Table 1). These are used to determine $F_\alpha(x, y, z)$ (Table 2) for the IFS code (2.8). Finally, we assume $y_n = z_n$ for $n = 0, 1, 2, 3$, $\alpha_n + \beta_0 = \gamma_n$, i.e. $\alpha_1 = \beta_3 = 0.5$, $\alpha_2 = \beta_2 = 0.4$ and $\alpha_3 = \beta_1 = 0.5$.
with the same boundary conditions. In this case, the projection of the attractor generates the self-affine cubic spline CHFIF (Fig. 6). Hence, our approach offers more flexibility and diversity in the choice of self-affine or non-self-affine cubic spline CHFIFs to an experimenter depending on the need of the problem.

5. CONCLUSION

The construction of the cubic spline CHFIF through moments is initiated for the first time to approximate non-self-affine smooth objects. This construction allows admissibility of any kind of boundary conditions and generalizes results of the classical cubic spline.

For a data generating function $\Phi \in C^r[x_0, x_n]$, $r = 2, 3,$ or 4, it is proved that, cubic spline CHFIFs converge to Φ with arbitrary degree of accuracy when the step size approaches zero on two different classes of mesh. These upper bounds on error in approximation of Φ and its derivatives by the cubic spline CHFIF and its derivatives respectively with different boundary conditions are also obtained. If the data generating function $\Phi(x)$ satisfies $\omega(\Phi^{(2)}, t) = O(|t|^n \log |t|)^n)$, $n = 0, 1,$ or 2, $0 < \mu < 1$, Φ can be approximated satisfactorily by a cubic spline CHFIF $f_1(x)$ by choosing only free variables α_n and γ_n suitably, since β_n and τ_n do not affect the smoothness of the CHFIF $f_1(x)$.

Hidden variables, free variables and constrained variables play an important role in determining the shape of the cubic spline CHFIF. For prescribed boundary conditions, an infinite number of cubic spline CHFIFs can be constructed interpolating the same data by changing free variables α_n, constrained free variables β_n, hidden variables γ_n, free parameter λ_n or boundary conditions of self-affine cubic spline fractal function. Thus, for simulating objects having non-self-affine or self-affine smooth shapes, the cubic spline CHFIF offers more flexibility. It is felt that spline FIF should find rich applications since classical splines have vast applications in CAM/CAD and other mathematical, engineering applications. The self-affine and non-self-affine nature of smooth objects in various scientific applications can also be effectively captured with the use of cubic spline CHFIFs.

ACKNOWLEDGMENTS

The authors are thankful to the referee for his/her valuable suggestions. The work was partially supported by the CSIR, India, Grant No.: 9/92(160)/98-EMR-I.

REFERENCES

2. B. B. Mandelbrot, Fractals and Scaling in Finance (Springer-Verlag, New York, 1997).
APPENDIX

In this section, the details of employing moments M^*_n and M_n^*, $n = 0, 1, 2, \ldots, N$ in the construction of cubic spline CHFIFs in Sec. 2 are given. Since f'_1 is affine,

$$f'_1(L_n(x)) = \alpha_n f'_1(x) + \beta_n f'_2(x) + \frac{k_n(x - x_0)}{x_N - x_0} + h_n,$$

$$n = 1, 2, \ldots, N. \quad (A.1)$$

Using Eq. (2.1) and Eq. (A.1), $k_n = M^*_n - M^*_{n-1} - \alpha_n(M^*_n - M^*_n) - \beta_n(M_N - M_0)$ and $l_n = M^*_{n-1} - \alpha_n M^*_n - \beta_n M_0$. So, Eq. (A.1) reduces to

$$f'_1(L_n(x)) = \alpha_n f'_1(x) + \beta_n f'_2(x) + \frac{(M^*_n - \alpha_n M^*_n - \beta_n M_0)(x - x_0)}{x_N - x_0} + \frac{(M^*_{n-1} - \alpha_n M^*_n - \beta_n M_0)(x_N - x)}{x_N - x_0}.$$

Integrating the above equations twice and using Eq. (2.1), the cubic spline CHFIF satisfies

$$f_1(L_n(x)) = \alpha_n^2 \left\{ \alpha_n f_1(x) + \beta_n f_2(x) + \frac{(M^*_n - \alpha_n M^*_n - \beta_n M_0)(x - x_0)^2}{6(x_N - x_0)} \right\} + \frac{(M^*_n - \alpha_n M^*_n - \beta_n M_0)(x_N - x)}{6(x_N - x_0)} + \frac{(M^*_{n-1} - \alpha_n M^*_n - \beta_n M_0)(x_N - x_0)}{6(x_N - x_0)} + \frac{(y_n - \alpha_n M^*_n - \beta_n M_0)(x_N - x_0)}{6(x_N - x_0)} + \frac{(y_{n-1} - \alpha_n M^*_n - \beta_n M_0)(x_N - x_0)}{6(x_N - x_0)}, \quad n = 1, 2, \ldots, N. \quad (A.2)$$

Introduce the following notations:

$$h_n = x_n - x_{n-1}, \quad C_n = \frac{-6a_n + 2a_n h_{n+1}}{h_n + h_{n+1}}, \quad C_{n+1} = \frac{-6a_n + 2a_n h_{n+1}}{h_n + h_{n+1}}, \quad \lambda_n = \frac{h_{n+1}}{h_n + h_{n+1}}, \quad \beta_n = \frac{h_{n+1}}{h_n + h_{n+1}}.$$
The system of Eqs. (A.3) consisting of \((N+1)\times(N+3)\) coefficient matrix has unknowns \(f'_1(x_0), M_0, M_1, \ldots, M_N, f'_1(x_N)\). First an analogue of Eq. (A.3), can be constructed for the self-affine fractal function \(f_2\) by taking \(\beta_n = 0\) and \(\alpha_n = \gamma_n\). The solution of the corresponding system of equations with suitable boundary conditions determines \(f'_2(x_0)\) and \(f'_2(x_N)\) and moments \(M_n, n = 0, 1, 2, \ldots, N\) of \(f_2\). Next, using values of \(f'_2(x_0), f'_2(x_N), M_0, M_N\), with suitable boundary conditions, the system of Eqs. (A.3) is solved and \(f'_1(x_0), M_0, M_1, \ldots, M_N, f'_1(x_N)\) are determined. These values of \(M_n\) and \(M_N; n = 0, 1, 2, \ldots, N\) are finally used in the construction of a cubic spline CHFIF from the IFS that is given by Eq. (2.8).