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Abstract
In the present paper, the bounds on fractal dimension of Coalescence Hidden-variable Fractal
Interpolation Surface (CHFIS) in R

3 on a equispaced mesh are found. These bounds determine
the conditions on the free parameters for fractal dimension of the constructed CHFIS to become
close to 3. The results derived here are tested on a tsunami wave surface by computing the lower
and upper bounds of the fractal dimension of its CHFIS simulation.

Keywords : Interpolation; IFS; Attractor; Fractal Surface; Fractal Dimension; Tsunami Wave;
Hölder Exponent.

1. INTRODUCTION

Among the major recent developments in under-
standing the structures of objects found in nature,
the notion of fractals occupies an important place.
Since the introduction of the term Fractal by Man-
delbrot,1 an increasing number of research papers
have demonstrated the fractal nature of many

systems with different physical properties. Fractal
dimension is widely used to quantify the roughness
of natural objects and structures. It was demon-
strated by Mandelbrot2 himself that the notion
of fractal dimension is quite useful in quantifying
the roughness of irregular patterns such as that of
tortuous lines, crumpled surfaces, intricate shapes.
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Breslin and Belward3 used fractal dimension to
model rainfall time series and discussed suitability
of fractal analysis for these type of data. Arakawa
and Krotkov4 discussed natural terrain modeling
using fractal geometry and gave methods of estima-
tion of fractal dimension and fractal surface recon-
struction. Lung and Zhang5 discussed the origin of
the negative correlation between fractal dimension
and toughness of fractured surfaces of materials.
Zahouani et al.6 modeled a random surface topogra-
phy and showed that fractal dimension can be used
as an indicator of the real values of different scale-
dependent parameters such as length, surfaces and
volume of roughness.

Barnsley and Harrington7 used shifted com-
position to express affine Fractal Interpolation
Functions (FIFs) and computed their fractal dimen-
sions. Bedford8 extended Barnsley’s definition of
self-affine fractal function to use non-linear scal-
ings and showed that for a class of such functions,
the Hölder exponents are related to the box dimen-
sion of the function. However, most of the natural
objects like surfaces of rocks, sea surfaces, clouds
and many naturally occurring structures are made
up of both self-affine and non-self-affine parts. In
most of the cases, the computation of fractal dimen-
sion of these surfaces by existing methods is not
practically feasible. The present work is aimed at
overcoming this inadequacy by finding the bounds
on Fractal Dimension of a Coalescence Hidden Vari-
able Fractal Interpolation Surface (CHFIS), which
is generated from a non-diagonal IFS on a equis-
paced mesh that generates both self-affine and non-
self affine FIS simultaneously, depending on free
variables and constrained variable.

The organization of the paper is as follows: A
brief introduction on construction of CHFIS and
its smoothness is given in Sec. 2. Our main results
on bounds of Fractal Dimension of CHFIS on equi-
spaced mesh are derived in Sec. 3. Using these
bounds, certain conditions on the free parame-
ters are determined that lead the fractal dimension
of the constructed CHFIS to become close to 3.
Finally, in Sec. 4, to substantiate our results, the
bounds on fractal dimension of CHFIS of a Tsunami
wave surface are computed.

2. CONSTRUCTION OF CHFIS

Let {(x0, y0, z0,0), (x1, y0, z1,0), . . . , (x0, y1, z0,1),
. . . , (x0, yN , z0,1), . . . , (xN , yN , zN,N )}, N ∈ N, be
an interpolation data in R

3 such that

x0 < x1 < · · · < xN , y0 < y1 < · · · <
yN and the independent variables on X and Y
axis are equally spaced on a square mesh [0, 1

2 ] ×
[0, 1

2 ]. For the construction of Coalescence Hidden-
variable Fractal Interpolation Surface (CHFIS),
a set of real parameters {ti,j}, called hidden-
variables, are introduced and the generalized inter-
polation data {(xi, yj , zi,j , ti,j) : i, j = 0, 1, . . . ,
N} is considered. Define the Iterated Function
System (IFS)

{R4, ωn,m = (φn(x), ψm(y), Gn,m(x, y, z, t)) : n,
m = 1, 2, . . . N}, (2.1)

where the functions φn : [x0, xN ] → [xn−1, xn],
ψm : [y0, yN ] → [ym−1, ym] are

φn(x) = xn−1 +
xn − xn−1

xN − x0
(x− x0),

ψm(y) = ym−1 +
ym − ym−1

yN − y0
(y − y0)

and the function Gn,m : [x0, xN ] × [y0, yN ] × R
2 →

R
2 is

Gn,m(x, y, z, t)

=




Fn+1,m(x0, y, z, t), x = xN , n = 1, . . . , N − 1,
m = 1, . . . , N

Fn,m+1(x, y0, z, t), y = yN , n = 1, . . . , N,
m = 1, . . . , N − 1

Fn,m(x, y, z, t), otherwise,

with the function Fn,m(x, y, z, t) = (F 1
n,m(x, y),

F 2
n,m(x, y)) given by

F 1
n,m(x, y, z, t) = αn,m z + βn,m t+ en,m x

+ fn,m y + gn,m xy + kn,m,

F 2
n,m(x, y, t) = γn,m t+ ẽn,m x+ f̃n,m y

+ g̃n,m xy + k̃n,m.



(2.2)

In Eq. (2.2), αn,m and γn,m are free variables chosen
such that |αn,m| < 1 and |γn,m| < 1, |βn,m|
is a constrained variable chosen such that |βn,m| +
|γn,m| < 1 and the real coefficients en,m, fn,m, gn,m,

kn,m, ẽn,m, f̃n,m, g̃n,m and k̃n,m are obtained by the
join-up conditions:

Fn,m(x0, y0, z0,0, t0,0) = (zn−1,m−1, tn−1,m−1)
Fn,m(xN , y0, zN,0, tN,0) = (zn,m−1, tn,m−1)
Fn,m(x0, yM , z0,M , t0,M ) = (zn−1,m, tn−1,m)

Fn,m(xN , yM , zN,M , tN,M ) = (zn,m, tn,m).




(2.3)
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It is known9 that there exists a metric τ on
R

4, equivalent to the Euclidean metric, such that
the IFS, given by Eq. (2.1), is hyperbolic with
respect to the metric τ and there exists a unique
non-empty compact set G ⊆ R

4 with respect
to the metric τ such that G = ∪N

n=1 ∪N
m=1

ωn,m(G). The set G, called the attractor of the
IFS for the given interpolation data, is the graph
of a continuous function F : [x0, xN ] × [y0, yN ] →
R

2 such that F (xi, yj) = (zi,j , ti,j) for i, j =
0, 1, . . . , N, i.e, G = {(x, y, F (x, y)) : (x, y) ∈
[x0, xN ] × [y0, yN ] and F (x, y) = (z(x, y), t(x, y))}.
Now, expressing the function F (x, y) component-
wise as F (x, y) = (F1(x, y), F2(x, y)), the Coales-
cence Hidden-variable Fractal Interpolation Surface
(CHFIS) for the given interpolation data is defined
as follows:

Definition 2.1. The Coalescence Hidden-
variable Fractal Interpolation Surface
(CHFIS) for the given interpolation data {(xi,
yj, zi,j) : i, j = 0, 1, . . . , N} is defined as the func-
tion F1(x, y) whose graph is the projection of the
graph of the function F (x, y) on R

3.

A set S of points x = (x1, x2, . . . , xn) in a Euclidean
space of dimension n is called self-affine if S is
union of N distinct subsets, each identical with
aS = {(a1x1, a2x2, . . . , anxn) : a = (a1, a2, . . . , an),
ai > 0 and x ∈ S} up to translation and rotation. If
S is not self-affine, then it is called non-self-affine.
The function F1(x, y) occurring in Definition 2.1 is
called a CHFIS as it exhibits both self-affine and
non-self-affine nature. We observe that the function
F2(x, y) for the same interpolation data is always a
self-affine function.

Fractal Dimension of a CHFIS F1(x, y) is the box
counting dimension10 of its graph defined as

D(Graph(F1(x, y)))

= lim
n→∞

log(Nn(Graph(F1(x, y)))
log 2n

;

provided the limit exist, Nn(Graph(F1(x, y))) being
the smallest number of closed boxes in R

3 of side 1
2n

that intersect the graph of CHFIS F1(x, y).
A function F : R2 → R is said to be a Lip-

schitz function of order δ (written as Lip δ) if
|F (X) − F (X̄)| ≤ K (dM (X, X̄))δ where, K is a
constant, δ ∈ (0, 1] and dM (X, X̄) = |x− x̄|+ |y− ȳ|
for X = (x, y), X̄ = (x̄, ȳ). The function F is
said to be a Lip∗

k δ function, if |F (X) − F (X̄)| ≤
K̄([dM (X, X̄)]δ[1 + log(dM (X, X̄))k]), where K̄ is a

constant, δ ∈ (0, 1] and k ∈ N. Denote,

pn,m(x, y) = en,m x+ fn,m y + gn,m xy + kn,m

qn,m(x, y) = ẽn,m x+ f̃n,m y + g̃n,m xy + k̃n,m.

}

(2.4)

It is observed that the functions pn,m(x, y) and
qn,m(x, y), given by Eq. (2.4), belong to the classes
Lip λn,m and Lip µn,m (0 < λn,m, µn,m ≤ 1)
respectively.

The following notations are used in the sequel.

Notations. I = [x0, xN ]; J = [y0, yN ]; In = [xn−1,
xn]); Jm = [ym−1, ym]; Imin = min{|In| :n = 1,
. . . , N}; Imax = max{|In| :n = 1, . . . , N}; Jmin =
min{|Jn| :n = 1, . . . , N}; Jmax = max{|Jn| :n =
1, . . . , N}; Sn,m = In × Jm; Smin = Imin × Jmin;
Smax = Imax×Jmax; λ = min{|λn,m| :n,m = 1, . . . ,
N}; µ = min{|µn,m| :n,m = 1, . . . , N}; Ωn,m :=

αn,m

|Sn,m|λ ; Γn,m := γn,m

|Sn,m|µ ; Θn,m := αn,m

|Sn,m|µ . Further,
we denote

Ω = max{|Ωn,m| :n,m = 1, 2, . . . , N}
Γ = max{|Γn,m| :n,m = 1, 2, . . . , N}
Θ = max{|Θn,m| :n,m = 1, 2, . . . , N}.


 (2.5)

Definition 2.2. The Bivariate CHFIS F1(x, y) is
called a Critical CHFIS if any one of the condi-
tions Ω = 1, Γ = 1 and Θ = 1 holds.

3. FRACTAL DIMENSION OF
CHFIS

In this section, the bounds on the fractal dimen-
sion of CHFIS F1(x, y) for different critical cases
are obtained in Theorems 3.1 and 3.2. Using these
bounds, certain conditions on the free parameters
are determined that lead the fractal dimension of
the constructed CHFIS to become close to 3. Also,
these bounds give us a range of the free parame-
ters that ensure the fractal dimension of the con-
structed CHFIS to be strictly greater than 2. Let
Ir1,...,rn ≡ φrn(0)+ |Irn | Ir1,...,rn−1 = φrn ◦· · ·◦φr1(I)
and Js1,...,sn ≡ ψsn(0)+ |Jsn | Js1,...,sn−1 = ψsn ◦ · · · ◦
ψs1(J), ri, sj ∈ {1, 2, . . . , N}, where |Iri | and |Jsj |
denote the length of the intervals Iri and Jsj respec-
tively. Hence, the area of square Sr1,...,rn,s1,...,sn =
Ir1,...,rn × Js1,...,sn is |Sr1,...,rn,s1,...,sn | = |Ir1,...,rn | ×
|Js1,...,sn| = |Ir1 | × |Js1 | × · · · × |Irn | × |Jsn | =
|Sr1,s1| × · · · × |Srn,sn| and the diameter diamM

(Sr1,...,rn,s1,...,sn) of the square Sr1,...,rn,s1,...,sn is
|Ir1,...,rn | + |Js1,...,sn |.
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The following theorem give the bounds on the
fractal dimension of CHFIS F1(x, y) when Θ �= 1
and Ω = 1 or Γ = 1.

Theorem 3.1. Let F1(x, y) be a CHFIS with
Θ �= 1. Then, for the critical condition Ω = 1,

ζ(αi,j) ≤ D(Graph(F1(x, y))) ≤ 3 − δ(Γ) (3.1)

where ζ(αi,j) = max{1+
log(

PN
i=1

PN
j=1 |αi,j |)

log N , 2} and
δ(Γ) ∈ (0, 1]. Further, for the critical condition
Γ = 1,

η(γi,j) ≤ D(Graph(F1(x, y))) ≤ 3 − δ(Ω), (3.2)

where η(γi,j) = max{1 +
log(

PN
i=1

PN
j=1 |γi,j |)

log N , 2} and
δ(Ω) ∈ (0, 1].

Proof. Case (i): (Θ �= 1, Ω = 1 and Γ �= 1) In this
case, there exist constants C1 and C2 such that11

C1(dM (X, X̄))δ(Γ) ≤ dM (F1(X), F1(X̄))

≤ C2(dM (X, X̄))δ(Γ)

×[1 + log(dM (X, X̄))], (3.3)

for some δ(Γ) ∈ (0, 1], X = (x, y), X̄ = (x̄, ȳ),
0 ≤ x < x̄ ≤ 1

2 and 0 ≤ y < ȳ ≤ 1
2 . In

fact, δ(Γ) = min(λ, µ) or min(λ, τ1) if Γ ≤ 1 and
δ(Γ) = min(λ, τ2) or δ = min(λ, τ3) if Γ > 1 where,
τ1, τ2 and τ3 are non-negative real numbers in the
interval (0, 1] such that τ1 ≤ log α

log |Smin| , τ2 ≤ log γ
log |Smin|

and τ3 ≤ log(αγ)
log |Smin| − µ.

Let Gr1,...,rm,s1,...,sm = {(X,F1(X), F2(X)) :X ∈
Sr1,...,rm,s1,...,sm}. Then, max{(dM (X, X̄)) :X, X̄ ∈
Sr1,...,rm,s1,...,sm} = diamM (Sr1,...,rm,s1,...,sm) and
|Gr1,r2,...,rm,s1,s2,...,sm| ≡ max{dM (F1(X), F1(X̄)) :
(X, X̄) ∈ Sr1,...,rm,s1,...,sm}. Then, by Eq. (3.3),

C1[diamM (Sr1,...,rm,s1,...,sm)]δ(Γ)

≤ |Gr1,...,rm,s1,...,sm|
≤ C2[diamM (Sr1,...,rm,s1,...,sm)]δ(Γ)

× [1 + log(diamM (Sr1,...,rm,s1,...,sm))]. (3.4)

Choose m large such that [diamM (Smax)]m < 1
2n

for n ∈ N . Now, Ωri,sj ≤ Ω = 1 implies |αri,sj |
≤ (|Sri,sj |)λ ≤ (|Sri,sj |)δ(Γ). Hence,

∏m
i=1 |αri,si |

≤ ∏m
i=1 |Sri,si |δ(Γ) = |Sr1,r2,...,rm,s1,s2,...,sm|δ(Γ) ≤

[diamM (Sr1,r2,...,rm,s1,s2,...,sm)]δ(Γ). Further, since
diamM (Sri,sj) = 1

N for all i and j, [diamM

(Sr1,r2,...,rm,s1,s2,...,sm)] ≤ [diamM (Sri,sj)]
m = ( 1

N )m

for any i and j. Therefore, it follows from (3.4)

C1

m∏
i=1

|αri,si | ≤ |Gr1,r2,...,rm,s1,s2,...,sm|

≤ C2

(
1
N

)mδ(Γ) [
1 + log

(
1
N

)m]
.

Taking summation over r1, r2, . . . , rm and s1,
s2, . . . , sm from 1 to N we have

C1N
m

∑
r1,...,rm

∑
s1,...sm

m∏
i=1

|αri,si |

≤ Nm
∑

r1,...,rm

∑
s1,...,sm

|Gr1,...,rm,s1,...,sm|

≤
{
C2

(
1
N

)m(δ(Γ)−1) [
1 + log

(
1
N

)m]}

×
∑

r1,...,rm

∑
s1,...,sm

1.

The above inequality implies

C1N
m


 N∑

i=1

N∑
j=1

(|αi,j |)



m

≤ Nn(Graph(F1(x, y)))

≤
{
C2

(
1
N

)m(δ(Γ)−1) [
1 + log

(
1
N

)m]}
·N2m.

The bound on fractal dimension of CHFIS F1(x, y)
given by Eq. (3.1) follow from the above inequalities

and ζ(αi,j) = max{1 +
log(

PN
i=1

PN
j=1 |αi,j |)

log N , 2}.

Case (ii): (Θ �= 1, Γ = 1 and Ω �= 1) The proof is
similar to case (i) up to Eq. (3.4). In the present
case, since Γ = 1, γri,sj ≤ (|Sri,sj |)µ ≤ (|Sri,sj |)δ(Ω),
where, δ(Ω) ∈ (0, 1] is given by δ(Ω) = min(λ, µ)
or min(λ, τ1) for Ω ≤ 1 and δ(Ω) = τ1 for Ω > 1.11

Hence,

m∏
i=1

|γri,si | ≤
m∏

i=1

|Sri,si |δ(Ω)

= |Sr1,r2,...,rm,s1,s2,...,sm|δ(Ω) ≤
(

1
N

)mδ(Ω)

.
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Therefore, it follows from (3.4),

C1

m∏
i=1

|γri,si | ≤ |Gr1,r2,...,rm,s1,s2,...,sm|

≤ C2

(
1
N

)mδ(Ω) [
1 + log

(
1
N

)m]
.

Taking summation over r1, r2, . . . , rm and s1,
s2, . . . , sm from 1 to N , we have

C1N
m

∑
r1,...,rm

∑
s1,...sm

m∏
i=1

|γri,si|

≤ Nm
∑

r1,...,rm

∑
s1,...,sm

|Gr1,...,rm,s1,...,sm|

≤
{
C2

(
1
N

)m(δ(Ω)−1) [
1 + log

(
1
N

)m]}

×
∑

r1,...,rm

∑
s1,...,sm

1.

The above inequality implies

C1N
m


 N∑

i=1

N∑
j=1

(|γi,j |)



m

≤ Nn(Graph(F1(X)))

≤
{
C2

(
1
N

)m(δ(Ω)−1) [
1 + log

(
1
N

)m]}
·N2m.

The bound on fractal dimension of CHFIS F1(x, y)
given by Eq. (3.2) follow from the above inequalities

and η(γi,j) = max{1 +
log(

PN
i=1

PN
j=1 |γi,j |)

log N , 2}.

Theorem 3.2 give us the bounds on the fractal
dimension of CHFIS F1(x, y) when Θ = 1.

Theorem 3.2. Let F1(x, y) be a CHFIS with
Θ = 1. Then,

ζ(αi,j) ≤ DF (Graph(F1(x, y))) ≤ 3 − δ(Ω,Γ),
(3.5)

where ζ(αi,j) = max{1+
log(

PN
i=1

PN
j=1 |αi,j |)

log N , 1} and
δ(Ω,Γ) ∈ (0, 1].

Proof. Since Θ = 1, Θri,sj ≤ Θ = 1 implies
|αri,sj | ≤ (|Sri,sj |)µ ≤ (|Sri,sj |)δ(Ω,Γ), where,

(i) δ(Ω,Γ) = min(λ, µ) for Ω ≤ 1, Γ ≤ 1,
(ii) δ(Ω,Γ) = min(τ1, µ) for Ω > 1, Γ ≤ 1,
(iii) δ(Ω,Γ) = min(λ, τ2) for Ω ≤ 1, Γ > 1 and
(iv) δ(Ω,Γ) = min(τ1, τ2) for Ω > 1, Γ > 1.11

The rest of the proof is similar to the proof of
Theorem 3.1 and hence is omitted.

Remark 3.1. Using Theorems 3.1 and 3.2, it fol-
lows that the constructed CHFIS has fractal dimen-
sion close to 3 if (i) |αi,j | is sufficiently close to 1 and
Ω = 1 or Θ = 1 or, (ii) |γi,j| is sufficiently close to
1 and Γ = 1. For, if Ω = 1 or Θ = 1 or Γ = 1, then
λ or µ is sufficiently close to 0 so that δ(Γ), δ(Ω)
or δ(Ω,Γ) is also sufficiently close to 0 since these
values are bounded by λ or µ.

Remark 3.2. It follows from Theorems 3.1 and 3.2
that

2 < D(Graph(F1(x, y))) < 3 (3.6)

if (i) ( 1
N ) < |αi,j| ≤ ( 1

(2N))
2p where p = λ for Ω = 1

and p = µ for Θ = 1 or (ii) ( 1
N ) < |γi,j| ≤ ( 1

(2N))
2µ

and Γ = 1.

4. EXAMPLE

Consider the sample data given by Table 1 taken
from a tsunami wave surface (Fig. 1) and the gen-
eralized interpolation data given by Table 2.

Table 3 gives choices of parameters αn,m, γn,m

and βn,m corresponding to critical conditions Θ = 1,

Table 1 Surface Values zn,m at (xn, ym) in Inter-
polation Data.

ym/xn 0 0.0998 0.1996 0.2994 0.3992 0.499

0 0.23 0.2 0.2 0.2 0.31 0.18
0.0998 0.36 0.26 0.23 0.24 0.24 0.23
0.1996 0.26 0.26 0.37 0.26 0.26 0.25
0.2994 0.32 0.29 0.27 0.3 0.36 0.3
0.3992 0.21 0.24 0.26 0.29 0.29 0.3
0.499 0.26 0.26 0.29 0.28 0.28 0.29

Fig. 1 Tsunami wave surface in three-dimensional view.
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Table 2 Sample Values tn,m at (xn, ym) in Gener-
alized Interpolation Data.

ym/xn 0 0.0998 0.1996 0.2994 0.3992 0.499

0 0.2 0.6 0.62 0.37 0.57 0.45

0.0998 0.04 0.02 0.31 0.01 0.38 0.68

0.1996 0.09 0.03 0.61 0.6 0.01 0.01

0.2994 0.19 0.58 0.05 0.36 0.63 0.71

0.3992 0.69 0.08 0.45 0.44 0.35 0.15

0.499 0.67 0.69 0.72 0.47 0.55 0.12

Table 3 Choices of Free Parameters αn,m, γn,m, βn,m, Computed Values of Θ, Ω, Γ, δ and
Bounds on Fractal Dimension of CHFIS (c.f. Figs. 2(a)–2(c)).

Fig. αn,m γn,m βn,m Θ Ω Γ δ

Lower Bound
on Fractal
Dimension

Upper Bound
on Fractal
Dimension

2(a) 0.22 0.3 0.02 1 21.99 1.18 0.2614 2.0592 2.7386
2(b) 0.0101 0.2 0.02 0.05 1 1.16 0.3492 2 2.6508
2(c) 0.22 0.1348 0.02 1.64 21.99 1 0.3285 2 2.6715

(a) CHFIS simulation for Critical Case Θ = 1. (b) CHFIS simulation for Critical Case Ω = 1.

(c) CHFIS simulation for Critical Case Γ = 1.

Fig. 2 CHFIS simulation of tsunami wave surface.

Ω = 1 or Γ = 1 for the simulation of the
tsunami wave surface as a CHFIS. The values of
these parameters are determined by requiring that
the functions pn,m and qn,m defined by Eq. (2.4)
are in suitable classes Lip λn,m and Lip µn,m

respectively such that the value of Θ, Ω or Γ
(c.f. Eq. (2.5)) equals 1. The last three columns
in Table 3 give corresponding δ-value of simu-
lated CHFIS, lower bound and upper bound (c.f.
Inequalities (3.1), (3.2) and (3.5)) of its fractal
dimension. Figures 2(a)–2(c) give the simulations
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of the tsunami wave surface (c.f. Fig. 1) as CHFIS
under different critical conditions corresponding to
the choices of free parameters in Table 3.

It is observed in Table 3 that the critical con-
dition Θ = 1 gives the largest lower bound on
the fractal dimension of the corresponding CHFIS
(c.f. Fig. 2(a)) while the critical condition Ω = 1
gives the least upper bound on the fractal dimen-
sion of the corresponding CHFIS (c.f. Fig. 2(b)). In
case of the critical condition Γ = 1, the upper and
lower bounds on the fractal dimension of the cor-
responding CHFIS (c.f. Fig. 2(c)) are not the least
and largest bounds respectively. Thus, for the above
Tsunami wave surface (c.f. Fig. 1) and the gener-
alized interpolation data (c.f. Table 2), the critical
condition Θ = 1 or ω = 1 give closer bounds (lower
or upper respectively) on the fractal dimension of
its simulated CHFIS.

The box counting dimension of the Tsunami wave
surface (c.f. Fig. 1) in our present example has also
been computed and found to be 2.1377, substanti-
ating the inequalities (3.1), (3.2) and (3.5).

5. CONCLUSIONS

In this paper, the bounds on Fractal Dimension
of Coalescence Hidden-variable Fractal Interpola-
tion Surface (CHFIS) are determined. Using these
bounds on Fractal Dimension of CHFIS, certain
conditions on the free parameters are found that
lead the fractal dimension of the constructed CHFIS
to become close to 3. As a test case, a tsunami wave
surface is considered and the bounds, found in the
present work, on fractal dimension of its simulated
CHFIS are computed to substantiate our results.
Besides other applications in diverse fields of sci-
ence and engineering (viz. Refs. 12–14), the bounds
on fractal dimensions of CHFIS found here are likely
to be helpful in the development of models for com-
putation of tsunami intensity.
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