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Abstract 
 
 
Fractal objects like Sierpinski triangle and Fern have very 
high visual complexity and low storage-information 
content. For generating computer graphic images and 
compression of such objects, Iterated Function Systems 
(IFS) {[3] , [1]} are recently being used. The main 
problem in fractal encoding using IFS is large amount of 
time taken for the compression of the fractal object. Our 
endeavor in the present paper is to use an stochastic 
algorithm to improve upon the compression time as well 
as compression ratio obtained in [1], while maintaining the 
image quality. Our results show that we are able to reduce 
time taken for compression of Image by 55% - 80% and 
the size by 60% - 80% as compared to the non-stochastic 
algorithm. 
 
1. Introduction 

 
In the present paper, we discuss stochastic image 

coding based on the fractal theory of iterated contractive 
transformations. We mainly deal with solving the inverse 
problem of finding such transformations corresponding to 
a given image. In an effort to proceed in this direction, A.E 
Jacquin [1] first proposed a novel approach to image 
coding. His method is to construct contractive affine 
transformations for which the given image is a fixed point. 
The theories of Iterated Function System (IFS) and 
Recurrent Iterated Function System [4] form the basis for 
fractal image compression techniques [3]. The images 
produced by IFS are due to iterated applications of a 
deterministic image transformation to an initial image, an 
algorithm commonly used for the construction of 
deterministic fractal objects [6]. 
(* Currently student of University of Louisiana at           
Lafayette) 
(** Currently student of University of Akron, Ohio) 

 
The main problem with fractal compression is the large 

time taken for the compression. When we time stamped 
Lena and Baboon; and experimented by taking all eight 
isometries for the edge block as mentioned in Jacquin’s 
paper (Using PIII, 700MHz processor) it took a large time 
to compress the images (e.g. for a 2x2 block of baboon 
time of compression was 54 minutes 07 sec). 

This large amount of time is due to checking the eight 
isometries for each edge block. Reducing the number of 
isometries resulted in distortion of the image. To 
overcome this difficulty, we tried to use probabilistic 
measures and found that the use of probability is quite 
efficient. For the first certain number of blocks, the 
isometry with highest probability is chosen and the same 
isometry is implemented on rest of the edge blocks. This 
approach is found to be highly successful since, without 
distorting the image, we are able to reduce the 
compression time by up to 80% *(Table 6).  Another 
improvement that our approach brings over the approach 
of Jacquin is that our algorithm makes further reduction in 
image size than that obtained by Jacquin’s algorithm 
resulting in small storage requirement. 
 

2. Theoretical background  

2.1 Structure of transformation 

Constructing a single transformation τ for the whole 
image with acceptable distortion is difficult. Therefore, the 
image is partitioned into small blocks and for each block a 
transformation is constructed. This set of transformations 
serves as the transformation for the whole image. Thus, we 
have the transformation τ in the following form: 

0 0
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where 0{ }i i NR ≤ <℘ =  denotes the nonoverlapping 

partition of the image in N range cells, usually squares. 

Here iτ  denotes transformation from domain cell iD to 

range cell iR  and is the composition of two 
transformation ℑ  and ℘: 

i
oτ = ℑ ℘ ,  where ℑ  is the massic part and ℘ is 

the geometric part described below. 

2.2 Geometric part ℘ 

A domain cell of size 2B (2B x 2B) is mapped by 
geometric transformation on to a range cell of size B (B x 
B). Pixel value of the contracted image on the range block 
are average of 4 pixel values of domain block: 

, 2 , 2 2 1, 2 2 1, 2 1( ) ( ) / 4i j i j i j i jµ µ µ µ+ + +℘ = + +
 
Where    i,j ∈  {0,…….B-1} 

2.3 Massic part ℑ  

These transformations affect pixel values of the 
transformed domain blocks. The transformations are: 

• Absorption at constant gray level g: 
,( ) ,i j g gθµ = ∈{0,…..255} 

• Luminance shift by  
, ,: ( ) , {0,&..255}i j i jg g gτµ µ=∆ + ∆ ∆ ∈  

• Contrast scaling by , ,[0,1] : ( )i j i jα σµ αµ∈ =  

• Color reversal : , ,( ) 255i j i jρµ µ= −  

• Isometries 
The isometries are (for block size = B) : 

1. Identity  
2. Orthogonal reflection about mid vertical axis, mid 

horizontal axis, diagonal (i=j) and another diagonal 
(i+j=B-1). 

3. Rotation around center of block by (+90, 180, -90)  
degrees. 

2.4 Distortion Measure 

Suppose µ  is the image block of size B and ν  is its 

approximation. The mean squared distortion is defined by: 

                                 
3. Encoding of digital images 
 
During the course of our investigations several coding 
algorithms were developed. Although few of these 

algorithms gave reasonable results for the “Lena’s” image, 
they were not very satisfactory when we applied them on 
the “Baboon’s” image. These algorithms were not able to 
clearly distinguish Shade, Midrange and Edge blocks. This 
led to the development of an algorithm that was able to 
clearly classify these blocks distinctly. 

3.1 Class of domain blocks 

For range block of size B, the maximal pool of domain 
blocks is a “huge” set of all possible blocks of size 2B. To 
trim this pool to manageable limit, we consider only those 
blocks as domain blocks, which fall under a sliding 
window of size 2B, which is shifted over the image 
horizontally and vertically by a fixed number of pixel 
values. The pool so obtained is further divided in the 
shade, midrange and edge blocks. 

3.2 Transformation pool 

For each range block µ , there is a transformation which 

depends on whether µ is a shade, midrange or edge block. 

If we have a domain blockν , then if µ is a  
 
• Shade Block: We approximate it by uniformly gray 

block whose gray level is average of pixel values of 
µ . For these blocks we have to store a single value. 

 
• Midrange Block: It is composition of contrast scaling 

and luminance shift: 

( ) ( ) gν α νℑ ℘ = ℘ + ∆  
where α is contrast scaling factor that takes value in the 

set {0.5,0.6,0.7,0.8,0.9,1.0} and g∆ so that average gray 
levels of range block and scaled domain blocks are the 
same. 
  
• Edge Block : It is composition of contrast scaling, 

luminance shift and an isometry 

( ) ( ( ))i gν α νℑ ℘ = ℘ + ∆  

α is chosen such that µ and ( )ν℘ have same dynamic 
range. 

α = max
( )

min[ , ]
( )

dr

dr

µ α
ν℘

 

where dynamic range (dr) = (highest pixel value – lowest 
pixel value + 1 ) of the block under consideration. α so 
computed is quantized to nearest value in the set 
{0.5,0.6,0.7,0.8,0.9,1.0}. Then g∆ is computed so that 
average gray levels of range block and scaled domain 
blocks are the same. Finally isometry with minimum 
distortion is selected.  
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3.3 Classification and search for edge, midrange 
and shade block 

In the following, we propose an algorithm to classify 
various blocks, which is essential for reduction of 
encoding time and increase of compression ratio. 

3.3.1 Edge block.  For the classification of the edge block, 
let f(x,y) be the grey level of image at (x,y). The gradient 
of f at the point (x,y) is 

2 2 1/ 2

( , ) ( , ).

,

( ) [ ]

x y

x y

f f
f G G

x y

Let

F mag f G G

∂ ∂∇ = =
∂ ∂

= ∇ = +

  

denote maximum rate of increase in  f(x,y) per unit 
distance in the direction of f∇ . We approximate F by 

[ | | | |x xG G+ ] as this is simple to implement. The 

quantities xG  and yG  are computed as: 

7 8 9 1 2 3

3 6 9 1 4 7

( 2 ) ( 2 )

( 2 ) ( 2 )

x

y

G Z Z Z Z Z Z

G Z Z Z Z Z Z

= + + − + +
= + + − + +  

where Z1 …Z 9  are grey levels of 3*3 part of the image 
  

1Z  2Z  3Z  

4Z  5Z  6Z  

7Z  8Z  9Z  

and xG  and yG  are derivatives of 5Z . 
 
Algorithm: 
Whenever the ( )mag f∇ crosses a threshold value (30: 

found through experimentations)) a counter ‘k’ is 
incremented. If k > the block size, the block was 
designated as an edge block. 

3.3.2 Midrange block. Many different approaches are 
tried to get satisfactory result. These are the blocks with 
fine texture.  Such blocks are hard to detect in a pool of 
thousands of blocks. Initially we tried to classify those 
blocks as midrange blocks, which were neither edge 
blocks nor shade blocks. This approach did not give 
satisfactory results due to the presence of mixed block 
(blocks which have characteristics of both edge blocks and 
midrange blocks). Next, we tried the same approach that 
we applied for edge blocks keeping the threshold value 
less than that for edge blocks. This approach too did not 
gave the desired results. Finally, we settled for an 
approach based on variance of the block under 
consideration. This approach gives quite satisfactory 
results and is described by the following algorithm: 
 

Algorithm: 
var = variance of block 
r    = 1-1 / (1+ var) 
If (r < 0.7), block is classified as midrange    
Note: The bound 0.7 on r was found by experimentation. 

3.3.3 Shade block. For the classification of the shade 
block the dynamic range ‘dr’ of the block was calculated 
and for (dr < 15) block was classified as shade block. Here 
we settled for (dr < 15) after experimenting with images, 
which gave us large number of blocks as shade blocks. 
Shade block take minimum time for classification and 
require minimum storage space, as only the average grey 
level of the block is to be stored. 
 
4. Output file 
 
The output file has one line of code for each range block in 
the image. The number of integers in the output file 
decides the type of block. For the shade block only the 
average grey level of the block is stored. For mid range 
block the luminance shift, contrast-scaling factor and the 
co-ordinates of the upper left corner of the domain block 
are stored. The compressed file obtained after the 
encoding consists of several lines for edge block where 
each line consists of (i) Luminance shift (ii) contrast-
scaling factor (iii) co-ordinates of the upper left corner of 
the domain block and (iv) the isometry number. Using our 
probabilistic approach, only isometry number for first 
certain number (say 100) of blocks needs to be written. So, 
if we have, say 4096 edge blocks, in a particular image, we 
are able to reduce the size of image further by (4096-100) 
integer values. Therefore, if we assume that integer takes 2 
bytes in general, then we are able to further reduce the file 
size by 7992 bytes. The file generated  
has the following format: 
 

 Line1{Image width, Image length, Block size} 
Line 2 {code of block 1}  
……...Line n+1 {code of block n} 

  
• Code of edge block => x, y, i, ,α β  

• Code of Midrange Block =>  x,y, ,α β  

• Code of shade block => avg. of the block  
 
The position of blocks in the original image is as follows: 
 

1 2 3 4 
5 6 7 8 
. . . . 
n-3 n-2 n-1 n 
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5. Decoding of image from a fractal code 
 
In the decoding algorithm, the output file is read line by 
line. The process is repeated till all the lines of the output 
file are processed. This whole process completes one 
iteration of the decoding algorithm. We found after 
experimentations that in our images under consideration, 
after completing 8 – 22 such iterations, the sequence of 
image generated at each iteration finally converges to the 
required stable image.   

5.1 Iteration-wise results of Lena and Baboon  

Information about the coding system, the design 
specification of code and system performance for the two 
images are given below (table 3. and table 4.), following 
are the SNR (Signal to Noise Ratio) values for the Lena 
and the Baboon images: 
 

No.of Itr. 1 2 3 4 5 6 7 8 

SNR  36.1 35.7 35.7 37.0 41.4 41.9 42.4 42.1 

Table 1. SNR values for lena 
 

No.of Itr. 1 4 10 14 16 20 24 30 

SNR 35.0 36.3 37.9 38.1 38.2 38.3 38.5 38.6 

Table 2. SNR values for baboon 

 5.1.1 Image: Lena 
 
Image 
type 

Resolution size (in 
bytes) 

Gray 
levels 

Range 
Blocks 

compress 
ion ratio 

.Pgm 256 x 256 266312 256 4 x 4 1:8 

Table 3. Image specification (Lena) 
 

 

Figure 1. Original image 
 

  

 

Figure 2. First eight iteration for the lena image 

5.1.2 Image: Baboon 
 
Image 
type 

Resolution size (in 
bytes) 

Gray 
levels 

Range 
Blocks 

compression 
ratio 

.Pgm 256 x 256 266312 256 4 x 4 1:6 

Table4. Image specification (Baboon) 
 

 

Figure 3. Original image 
 

 

 

Figure 4. Few iteration for the baboon image (as 
the baboon image has more edge blocks, it 

requires larger number of iterations) 
 
Note: The above decompressed images of Lena and 
baboon show extremely good reproduction of edge blocks 
and shade blocks, but some blockiness is visible. 
However, by taking the size of range block as 2 x 2, we 
find that the blockiness can be completely removed. In this 
case, the compression is around 50% of the original image 
and the time of compression increases as evident in table 
6* below. 
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Comparison between the stochastic and non-stochastic algorithms in terms of Image quality 
 

 

Table 5. Comparison between SNR values 
 
*D1,: Final decoded image without using probabilistic theory *D2: Final decoded image using probabilistic theory. 
*S1: SNR value of image without using probabilistic theory. *S2: SNR value of  image using probabilistic theory. 
*ITR: No of Iterations used to decode the image. 
 

Comparison between the stochastic and non-stochastic algorithms in terms of compression time and the 
compression ratio. 

 

Table 6. Comparison between compression time and the compression ratio. 
 

Images Peppers Columbia Face Madhu Leaf Cat 
ORIGINAL 
IMAGE 

 

 

 

 

 

 

 

 

 

 

 

 
D1  

 

 

 

 

 

 

 

 

 

 

 
D2  

 

 

 

 

 

 

 

 

 

 

 
S1= 42.70; 
ITR = 10 

S1= 43.35; 
ITR=10 

S1= 43.73; 
ITR=10 

S1= 43.95;  
ITR = 10 

S1= 41.00; 
ITR=10 

S1= 46.86; 
 ITR = 12 

SNR VALUE 

S2= 43.20; 
ITR =10 

S2 = 43.58; 
ITR=10 

S2= 46.94; ITR 
= 8 

S2= 43.74;  
ITR =10 

S2= 43.07; 
 ITR = 10 

S2= 46.64; 
ITR = 8 

IMAGE 
266132 bytes 

Block 
Size 

Image1 Image2 T1 T2 PR 

4 x 4 39795 bytes 35280 Bytes 3 Min 32 s 1 Min 23 s 62.95% Lena 
 2 x 2 136984 bytes 123618 bytes 15 Min 43 s 4 Min 38 s 71.6% 

4 x 4 56433 bytes 48988 Bytes 8 Min 29 s 2 Min 42 s 70.8% Baboon 
2 x 2 209574 bytes 182703 bytes 54 Min 7 s 19 Min 23s  64.4% 
4 x 4 35374 bytes 31934 Bytes 2 Min 30 s 1 Min 00 s 56.52% Peppers 
2 x 2 121001 bytes 111065 Bytes 10 Min 07 s 3 Min 44 s 65.83% 
4 x 4 39055 Bytes 34639 Bytes 3 Min 26 s 1 Min 21 s 62.88% Columbia 
2 x 2 137436 bytes 124160 Bytes 17 Min 17 s 5 Min 04 s 70.65% 
4 x 4 32742 bytes 29766 Bytes 1 Min 55 s 0 Min 40 s 74.19% Face 
2 x 2 114592 bytes 104200 Bytes 8 Min 15 s 2 Min 31 s 71.65% 
4 x 4 41504 bytes 37001 Bytes 4 Min 16 s 1 Min 18 s 71.63% Madhu 
2 x 2 141655 bytes 128759 Bytes 19 Min 19 s 5 Min 39 s 71.91% 
4 x 4 33327 bytes 30000 Bytes 2 Min 15 s 0 Min 41 s 80.93% Leaf 
2 x 2 114911 bytes 105893 Bytes 7 Min 46 s 2 Min 20 s 70.50% 
4 x 4 49767 bytes 43908 Bytes 5 Min 57 s 1 Min 56 s 72.00% Cat 

 2 x 2 169147 bytes 152458 Bytes 30 Min 43 s 8 Min 54 s 71.90% 
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*T1: Time taken for compression of image without using      probabilistic theory. 
*T2: Time taken for compression of image using probabilistic theory. 
*Image1: compression of image (in bytes) without using probabilistic theory. 
*Image2: compression of image (in bytes) using probabilistic theory. 
*PR: Percentage reduction in time using the probabilistic theory as compared to the non- probabilistic theory 
 
 
6. Conclusion 
 
We have presented an algorithm for the Stochastic Image 
Compression Using Fractals. This algorithm is suitable for 
all the digital gray scale images. Our algorithm is based on 
stochastic approach. We are able to reduce time taken for 
compression of Image by 55% - 80% as compared to the 
non-stochastic algorithm. Our algorithm also gives high 
compression ratio. The compression ratio ranges between 
60% - 80% which too is greater than the compression ratio 
achieved using non-stochastic algorithm. The feature of 
our algorithm is that we are able to achieve almost same or 
better SNR values for most of the images as compared to 
non-stochastic algorithm while reducing the compression 
time and storage space significantly. 
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