

Stochastic Image Compression Using Fractals

Aditya Kapoor*

Department of
Computer Science,

Institute of
Engineering and

Technology, Kanpur
adi_ull@yahoo.com

Kush Arora**

Department of
Computer Science,

Institute of
Engineering and

Technology, Kanpur
kusharora@lycos.com

Ajai Jain
Department of

Computer Science and
engineering, IIT
Kanpur, India

ajain@cse.iitk.ac.in

G.P. Kapoor
Department of

Mathematics, IIT
Kanpur, India
gp@iitk.ac.in

Abstract

Fractal objects like Sierpinski triangle and Fern have very
high visual complexity and low storage-information
content. For generating computer graphic images and
compression of such objects, Iterated Function Systems
(IFS) {[3] , [1]} are recently being used. The main
problem in fractal encoding using IFS is large amount of
time taken for the compression of the fractal object. Our
endeavor in the present paper is to use an stochastic
algorithm to improve upon the compression time as well
as compression ratio obtained in [1], while maintaining the
image quality. Our results show that we are able to reduce
time taken for compression of Image by 55% - 80% and
the size by 60% - 80% as compared to the non-stochastic
algorithm.

1. Introduction

In the present paper, we discuss stochastic image

coding based on the fractal theory of iterated contractive
transformations. We mainly deal with solving the inverse
problem of finding such transformations corresponding to
a given image. In an effort to proceed in this direction, A.E
Jacquin [1] first proposed a novel approach to image
coding. His method is to construct contractive affine
transformations for which the given image is a fixed point.
The theories of Iterated Function System (IFS) and
Recurrent Iterated Function System [4] form the basis for
fractal image compression techniques [3]. The images
produced by IFS are due to iterated applications of a
deterministic image transformation to an initial image, an
algorithm commonly used for the construction of
deterministic fractal objects [6].
(* Currently student of University of Louisiana at
Lafayette)
(** Currently student of University of Akron, Ohio)

The main problem with fractal compression is the large

time taken for the compression. When we time stamped
Lena and Baboon; and experimented by taking all eight
isometries for the edge block as mentioned in Jacquin’s
paper (Using PIII, 700MHz processor) it took a large time
to compress the images (e.g. for a 2x2 block of baboon
time of compression was 54 minutes 07 sec).

This large amount of time is due to checking the eight
isometries for each edge block. Reducing the number of
isometries resulted in distortion of the image. To
overcome this difficulty, we tried to use probabilistic
measures and found that the use of probability is quite
efficient. For the first certain number of blocks, the
isometry with highest probability is chosen and the same
isometry is implemented on rest of the edge blocks. This
approach is found to be highly successful since, without
distorting the image, we are able to reduce the
compression time by up to 80% *(Table 6). Another
improvement that our approach brings over the approach
of Jacquin is that our algorithm makes further reduction in
image size than that obtained by Jacquin’s algorithm
resulting in small storage requirement.

2. Theoretical background

2.1 Structure of transformation

Constructing a single transformation τ for the whole
image with acceptable distortion is difficult. Therefore, the
image is partitioned into small blocks and for each block a
transformation is constructed. This set of transformations
serves as the transformation for the whole image. Thus, we
have the transformation τ in the following form:

0 0

, () () ()
i i

R i D

i N i N

Mµ τ µ τµ τ µ
≤ < ≤ <

∀ ∈ = =∑ ∑

Proceedings of the International Conference on Information Technology: Computers and Communications (ITCC�03)
0-7695-1916-4/03 $17.00 © 2003 IEEE

2 , ,

2

0 ,

(,) ()i j i jL

i j B

d µ ν µ ν
≤ <

= −∑

where 0{ }i i NR ≤ <℘ = denotes the nonoverlapping

partition of the image in N range cells, usually squares.

Here iτ denotes transformation from domain cell iD to

range cell iR and is the composition of two
transformation ℑ and ℘:

i
oτ = ℑ ℘ , where ℑ is the massic part and ℘ is

the geometric part described below.

2.2 Geometric part ℘

A domain cell of size 2B (2B x 2B) is mapped by
geometric transformation on to a range cell of size B (B x
B). Pixel value of the contracted image on the range block
are average of 4 pixel values of domain block:

, 2 , 2 2 1, 2 2 1, 2 1() () / 4i j i j i j i jµ µ µ µ+ + +℘ = + +

Where i,j ∈ {0,…….B-1}

2.3 Massic part ℑ

These transformations affect pixel values of the
transformed domain blocks. The transformations are:

• Absorption at constant gray level g:
,() ,i j g gθµ = ∈{0,…..255}

• Luminance shift by
, ,: () , {0,&..255}i j i jg g gτµ µ=∆ + ∆ ∆ ∈

• Contrast scaling by , ,[0,1] : ()i j i jα σµ αµ∈ =

• Color reversal : , ,() 255i j i jρµ µ= −

• Isometries
The isometries are (for block size = B) :

1. Identity
2. Orthogonal reflection about mid vertical axis, mid

horizontal axis, diagonal (i=j) and another diagonal
(i+j=B-1).

3. Rotation around center of block by (+90, 180, -90)
degrees.

2.4 Distortion Measure

Suppose µ is the image block of size B and ν is its

approximation. The mean squared distortion is defined by:

3. Encoding of digital images

During the course of our investigations several coding
algorithms were developed. Although few of these

algorithms gave reasonable results for the “Lena’s” image,
they were not very satisfactory when we applied them on
the “Baboon’s” image. These algorithms were not able to
clearly distinguish Shade, Midrange and Edge blocks. This
led to the development of an algorithm that was able to
clearly classify these blocks distinctly.

3.1 Class of domain blocks

For range block of size B, the maximal pool of domain
blocks is a “huge” set of all possible blocks of size 2B. To
trim this pool to manageable limit, we consider only those
blocks as domain blocks, which fall under a sliding
window of size 2B, which is shifted over the image
horizontally and vertically by a fixed number of pixel
values. The pool so obtained is further divided in the
shade, midrange and edge blocks.

3.2 Transformation pool

For each range block µ , there is a transformation which

depends on whether µ is a shade, midrange or edge block.

If we have a domain blockν , then if µ is a

• Shade Block: We approximate it by uniformly gray

block whose gray level is average of pixel values of
µ . For these blocks we have to store a single value.

• Midrange Block: It is composition of contrast scaling

and luminance shift:

() () gν α νℑ ℘ = ℘ + ∆
where α is contrast scaling factor that takes value in the

set {0.5,0.6,0.7,0.8,0.9,1.0} and g∆ so that average gray
levels of range block and scaled domain blocks are the
same.

• Edge Block : It is composition of contrast scaling,

luminance shift and an isometry

() (())i gν α νℑ ℘ = ℘ + ∆

α is chosen such that µ and ()ν℘ have same dynamic
range.

α = max
()

min[,]
()

dr

dr

µ α
ν℘

where dynamic range (dr) = (highest pixel value – lowest
pixel value + 1) of the block under consideration. α so
computed is quantized to nearest value in the set
{0.5,0.6,0.7,0.8,0.9,1.0}. Then g∆ is computed so that
average gray levels of range block and scaled domain
blocks are the same. Finally isometry with minimum
distortion is selected.

Proceedings of the International Conference on Information Technology: Computers and Communications (ITCC�03)
0-7695-1916-4/03 $17.00 © 2003 IEEE

3.3 Classification and search for edge, midrange
and shade block

In the following, we propose an algorithm to classify
various blocks, which is essential for reduction of
encoding time and increase of compression ratio.

3.3.1 Edge block. For the classification of the edge block,
let f(x,y) be the grey level of image at (x,y). The gradient
of f at the point (x,y) is

2 2 1/ 2

(,) (,).

,

() []

x y

x y

f f
f G G

x y

Let

F mag f G G

∂ ∂∇ = =
∂ ∂

= ∇ = +

denote maximum rate of increase in f(x,y) per unit
distance in the direction of f∇ . We approximate F by

[| | | |x xG G+] as this is simple to implement. The

quantities xG and yG are computed as:

7 8 9 1 2 3

3 6 9 1 4 7

(2) (2)

(2) (2)

x

y

G Z Z Z Z Z Z

G Z Z Z Z Z Z

= + + − + +
= + + − + +

where Z1 …Z 9 are grey levels of 3*3 part of the image

1Z 2Z 3Z

4Z 5Z 6Z

7Z 8Z 9Z

and xG and yG are derivatives of 5Z .

Algorithm:
Whenever the ()mag f∇ crosses a threshold value (30:

found through experimentations)) a counter ‘k’ is
incremented. If k > the block size, the block was
designated as an edge block.

3.3.2 Midrange block. Many different approaches are
tried to get satisfactory result. These are the blocks with
fine texture. Such blocks are hard to detect in a pool of
thousands of blocks. Initially we tried to classify those
blocks as midrange blocks, which were neither edge
blocks nor shade blocks. This approach did not give
satisfactory results due to the presence of mixed block
(blocks which have characteristics of both edge blocks and
midrange blocks). Next, we tried the same approach that
we applied for edge blocks keeping the threshold value
less than that for edge blocks. This approach too did not
gave the desired results. Finally, we settled for an
approach based on variance of the block under
consideration. This approach gives quite satisfactory
results and is described by the following algorithm:

Algorithm:
var = variance of block
r = 1-1 / (1+ var)
If (r < 0.7), block is classified as midrange
Note: The bound 0.7 on r was found by experimentation.

3.3.3 Shade block. For the classification of the shade
block the dynamic range ‘dr’ of the block was calculated
and for (dr < 15) block was classified as shade block. Here
we settled for (dr < 15) after experimenting with images,
which gave us large number of blocks as shade blocks.
Shade block take minimum time for classification and
require minimum storage space, as only the average grey
level of the block is to be stored.

4. Output file

The output file has one line of code for each range block in
the image. The number of integers in the output file
decides the type of block. For the shade block only the
average grey level of the block is stored. For mid range
block the luminance shift, contrast-scaling factor and the
co-ordinates of the upper left corner of the domain block
are stored. The compressed file obtained after the
encoding consists of several lines for edge block where
each line consists of (i) Luminance shift (ii) contrast-
scaling factor (iii) co-ordinates of the upper left corner of
the domain block and (iv) the isometry number. Using our
probabilistic approach, only isometry number for first
certain number (say 100) of blocks needs to be written. So,
if we have, say 4096 edge blocks, in a particular image, we
are able to reduce the size of image further by (4096-100)
integer values. Therefore, if we assume that integer takes 2
bytes in general, then we are able to further reduce the file
size by 7992 bytes. The file generated
has the following format:

 Line1{Image width, Image length, Block size}
Line 2 {code of block 1}
……...Line n+1 {code of block n}

• Code of edge block => x, y, i, ,α β

• Code of Midrange Block => x,y, ,α β

• Code of shade block => avg. of the block

The position of blocks in the original image is as follows:

1 2 3 4
5 6 7 8
. . . .
n-3 n-2 n-1 n

Proceedings of the International Conference on Information Technology: Computers and Communications (ITCC�03)
0-7695-1916-4/03 $17.00 © 2003 IEEE

5. Decoding of image from a fractal code

In the decoding algorithm, the output file is read line by
line. The process is repeated till all the lines of the output
file are processed. This whole process completes one
iteration of the decoding algorithm. We found after
experimentations that in our images under consideration,
after completing 8 – 22 such iterations, the sequence of
image generated at each iteration finally converges to the
required stable image.

5.1 Iteration-wise results of Lena and Baboon

Information about the coding system, the design
specification of code and system performance for the two
images are given below (table 3. and table 4.), following
are the SNR (Signal to Noise Ratio) values for the Lena
and the Baboon images:

No.of Itr. 1 2 3 4 5 6 7 8

SNR 36.1 35.7 35.7 37.0 41.4 41.9 42.4 42.1

Table 1. SNR values for lena

No.of Itr. 1 4 10 14 16 20 24 30

SNR 35.0 36.3 37.9 38.1 38.2 38.3 38.5 38.6

Table 2. SNR values for baboon

 5.1.1 Image: Lena

Image
type

Resolution size (in
bytes)

Gray
levels

Range
Blocks

compress
ion ratio

.Pgm 256 x 256 266312 256 4 x 4 1:8

Table 3. Image specification (Lena)

Figure 1. Original image

Figure 2. First eight iteration for the lena image

5.1.2 Image: Baboon

Image
type

Resolution size (in
bytes)

Gray
levels

Range
Blocks

compression
ratio

.Pgm 256 x 256 266312 256 4 x 4 1:6

Table4. Image specification (Baboon)

Figure 3. Original image

Figure 4. Few iteration for the baboon image (as
the baboon image has more edge blocks, it

requires larger number of iterations)

Note: The above decompressed images of Lena and
baboon show extremely good reproduction of edge blocks
and shade blocks, but some blockiness is visible.
However, by taking the size of range block as 2 x 2, we
find that the blockiness can be completely removed. In this
case, the compression is around 50% of the original image
and the time of compression increases as evident in table
6* below.

Proceedings of the International Conference on Information Technology: Computers and Communications (ITCC�03)
0-7695-1916-4/03 $17.00 © 2003 IEEE

Comparison between the stochastic and non-stochastic algorithms in terms of Image quality

Table 5. Comparison between SNR values

*D1,: Final decoded image without using probabilistic theory *D2: Final decoded image using probabilistic theory.
*S1: SNR value of image without using probabilistic theory. *S2: SNR value of image using probabilistic theory.
*ITR: No of Iterations used to decode the image.

Comparison between the stochastic and non-stochastic algorithms in terms of compression time and the
compression ratio.

Table 6. Comparison between compression time and the compression ratio.

Images Peppers Columbia Face Madhu Leaf Cat
ORIGINAL
IMAGE

D1

D2

S1= 42.70;
ITR = 10

S1= 43.35;
ITR=10

S1= 43.73;
ITR=10

S1= 43.95;
ITR = 10

S1= 41.00;
ITR=10

S1= 46.86;
 ITR = 12

SNR VALUE

S2= 43.20;
ITR =10

S2 = 43.58;
ITR=10

S2= 46.94; ITR
= 8

S2= 43.74;
ITR =10

S2= 43.07;
 ITR = 10

S2= 46.64;
ITR = 8

IMAGE
266132 bytes

Block
Size

Image1 Image2 T1 T2 PR

4 x 4 39795 bytes 35280 Bytes 3 Min 32 s 1 Min 23 s 62.95% Lena
 2 x 2 136984 bytes 123618 bytes 15 Min 43 s 4 Min 38 s 71.6%

4 x 4 56433 bytes 48988 Bytes 8 Min 29 s 2 Min 42 s 70.8% Baboon
2 x 2 209574 bytes 182703 bytes 54 Min 7 s 19 Min 23s 64.4%
4 x 4 35374 bytes 31934 Bytes 2 Min 30 s 1 Min 00 s 56.52% Peppers
2 x 2 121001 bytes 111065 Bytes 10 Min 07 s 3 Min 44 s 65.83%
4 x 4 39055 Bytes 34639 Bytes 3 Min 26 s 1 Min 21 s 62.88% Columbia
2 x 2 137436 bytes 124160 Bytes 17 Min 17 s 5 Min 04 s 70.65%
4 x 4 32742 bytes 29766 Bytes 1 Min 55 s 0 Min 40 s 74.19% Face
2 x 2 114592 bytes 104200 Bytes 8 Min 15 s 2 Min 31 s 71.65%
4 x 4 41504 bytes 37001 Bytes 4 Min 16 s 1 Min 18 s 71.63% Madhu
2 x 2 141655 bytes 128759 Bytes 19 Min 19 s 5 Min 39 s 71.91%
4 x 4 33327 bytes 30000 Bytes 2 Min 15 s 0 Min 41 s 80.93% Leaf
2 x 2 114911 bytes 105893 Bytes 7 Min 46 s 2 Min 20 s 70.50%
4 x 4 49767 bytes 43908 Bytes 5 Min 57 s 1 Min 56 s 72.00% Cat

 2 x 2 169147 bytes 152458 Bytes 30 Min 43 s 8 Min 54 s 71.90%

Proceedings of the International Conference on Information Technology: Computers and Communications (ITCC�03)
0-7695-1916-4/03 $17.00 © 2003 IEEE

*T1: Time taken for compression of image without using probabilistic theory.
*T2: Time taken for compression of image using probabilistic theory.
*Image1: compression of image (in bytes) without using probabilistic theory.
*Image2: compression of image (in bytes) using probabilistic theory.
*PR: Percentage reduction in time using the probabilistic theory as compared to the non- probabilistic theory

6. Conclusion

We have presented an algorithm for the Stochastic Image
Compression Using Fractals. This algorithm is suitable for
all the digital gray scale images. Our algorithm is based on
stochastic approach. We are able to reduce time taken for
compression of Image by 55% - 80% as compared to the
non-stochastic algorithm. Our algorithm also gives high
compression ratio. The compression ratio ranges between
60% - 80% which too is greater than the compression ratio
achieved using non-stochastic algorithm. The feature of
our algorithm is that we are able to achieve almost same or
better SNR values for most of the images as compared to
non-stochastic algorithm while reducing the compression
time and storage space significantly.

7. Acknowledgment
We thank Dr. (Mrs.) Renu Jain for her active interest and
valuable suggestion during the preparation of the paper.
We are also thankful to University of Akron, Ohio and
University of Louisiana at Lafayette for their support.

8. References

[1]. A. E. Jacquin “Image coding based on fractal theory of
iterated contractive image transformations”, IEEE Trans, On
Image Proc, vol. 1, No. 1, January 1992.

[2]. B. Ramamurthy and A. Gresho, “Classified vector

quantization of images”, IEEE Trans. Commun., vol. 34 Nov,
1986.

[3]. Michael F. Barnsley “Fractals Everywhere” second edition.

[4]. Michael F. Barnsley, J.H Elton and D.P Hardin, “Recurrent
iterated function system, “constructive approximation.
Berlin, Germany: Springer-Verlag, 1989, pp.3-31.

[5]. Harold M. Hastings and George Sugihara,” Fractals A User’s

Guide for the Natural Sciences”.

[6]. B. Mandelbrot, The Fractal Geometry of Nature, San
Francisco, CA: Freeman, 1982.

Proceedings of the International Conference on Information Technology: Computers and Communications (ITCC�03)
0-7695-1916-4/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

