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Abstract

In the present paper, a class F of critically finite transcendental meromorphic functions having ra-
tional Schwarzian derivative is introduced and the dynamics of functions in one parameter family K ≡
{fλ(z) = λf (z): f ∈ F , z ∈ Ĉ and λ > 0} is investigated. It is found that there exist two parameter val-
ues λ∗ = φ(0) > 0 and λ∗∗ = φ(x̃) > 0, where φ(x) = x

f (x)
and x̃ is the real root of φ′(x) = 0, such

that the Fatou sets of fλ(z) for λ = λ∗ and λ = λ∗∗ contain parabolic domains. A computationally useful
characterization of the Julia set of the function fλ(z) as the complement of the basin of attraction of an
attracting real fixed point of fλ(z) is established and applied for the generation of the images of the Ju-
lia sets of fλ(z). Further, it is observed that the Julia set of fλ ∈ K explodes to whole complex plane for
λ > λ∗∗. Finally, our results found in the present paper are compared with the recent results on dynamics
of one parameter families λ tan z, λ ∈ Ĉ \ {0} [R.L. Devaney, L. Keen, Dynamics of meromorphic maps:
Maps with polynomial Schwarzian derivative, Ann. Sci. École Norm. Sup. 22 (4) (1989) 55–79; L. Keen,
J. Kotus, Dynamics of the family λ tan(z), Conform. Geom. Dynam. 1 (1997) 28–57; G.M. Stallard, The
Hausdorff dimension of Julia sets of meromorphic functions, London Math. Soc. 49 (1994) 281–295] and
λez−1

z , λ > 0 [G.P. Kapoor, M. Guru Prem Prasad, Dynamics of (ez − 1)/z: The Julia set and bifurcation,
Ergodic Theory Dynam. Systems 18 (1998) 1363–1383].
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1. Introduction

Extensive researches have centered around investigations of the dynamics of rational functions
and polynomials. However, not much work to study the dynamics of transcendental meromorphic
functions have been done so far; although, for instance, the iterative processes associated with
Newton’s method applied to an entire function often yields a meromorphic function as the root
finder. Devaney and Keen [9] and Stallard [18] studied the dynamics of one parameter family of
transcendental meromorphic functions Tλ(z) = λ tan z,λ ∈ Ĉ\ {0} by exploiting that the function
Tλ(z) has no critical values, only finite number of asymptotic values and its Schwarzian derivative

SD(Tλ) = (T ′′
λ (z)

T ′
λ(z)

)′ − 1
2

(T ′′
λ (z)

T ′
λ(z)

)2 is a polynomial so that the linearly independent solutions g1 and

g2 of the differential equation g′′(z) + 2SD(Tλ)g(z) = 0 satisfy g1
g2

= Tλ(z). While investigating
the dynamics of Tλ(z), it is found that the bifurcation occurs at a real parameter value λ = 1
and the whole real line is contained in its Julia set for λ > 1 [9]. Further, the Julia set of Tλ(z)

is found to explode to whole complex plane at the parameter value λ = iπ [18]. The purpose
of the present paper is to investigate the dynamics of a one parameter family of transcendental
meromorphic functions that have rational Schwarzian derivative, are critically finite, possess both
critical values as well as asymptotic values even then, for a certain range of parameter values,
their Julia sets are the whole complex plane. Despite the Schwarzian derivative of functions in
our family being rational, these functions are shown to have their dynamical behavior somewhat
similar to that of the function Tλ(z).

We first describe the basic concepts and results concerning transcendental meromorphic func-
tions that are needed in the sequel in the study of dynamics of our class of functions. Let C

and Ĉ denote the complex plane and the extended complex plane, respectively. A point w is
said to be a critical point of f if f ′(w) = 0. The value f (w) corresponding to a critical point
w is called a critical value of f . A point w ∈ Ĉ is said to be an asymptotic value for f (z), if
there is a continuous curve γ (t) satisfying limt→∞ γ (t) = ∞ and limt→∞ f (γ (t)) = w. A func-
tion is said to be critically finite if it has only finitely many asymptotic and critical values.
If a function f (z) is not critically finite, then it is said to be non-critically finite. A singular
value of f is defined to be either a critical value or an asymptotic value of f . The Nevan-
linna characteristic of a meromorphic function f (z) is defined by T (r, f ) = m(r,f ) + N(r,f ),
where m(r,f ) = 1

2π

∫ 2π

0 log+ |f (reiφ)|dφ, N(r,f ) = ∫ r

0
n(t,f )−n(0,f )

t
dt + n(0, f ) log r and

n(r, f ) = n(r,∞, f ) are the number of poles of f in the disk z � r , counted according to its
multiplicity. The Nevanlinna order [11] ρ of the function f is defined as ρ = limr→∞ logT (r,f )

log r
.

Bergweiler and Eremenko [6] proved the following result, guaranteeing finite number of as-
ymptotic values of a meromorphic function having finite Nevanlinna order.

Theorem 1.1. If f is meromorphic function of finite order having only finitely many critical
values, then f has at most 2ρ asymptotic values.

It is well known that the Julia set of a polynomial never equals the whole complex plane, since
infinity is an attracting fixed point for polynomials. However, Julia sets of rational and entire
transcendental functions in certain cases are the whole complex plane [3,8,14,17]. This property
was seen to hold for the transcendental meromorphic function f (z) = iπ tan z by Stallard [18],
i.e. J (iπ tan z) = Ĉ. Let B be a class of meromorphic function f (z) having bounded singular
values. The following theorem, by Zheng [19], gives a criterion for Julia set of transcendental
meromorphic functions in B to be the extended complex plane:
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Theorem 1.2. Let f be a transcendental meromorphic function in Class B . If (P (f ))′ is finite
and (P (f ))′ ∩ J∞ \ {∞} = φ, and for b ∈ sing(f −1), b is (pre)periodic or f n(b) → ∞ as
n → ∞, then J (f ) = Ĉ.

Let S be the class of critically finite transcendental meromorphic function f (z). Baker et
al. [2] and Bergweiler [4] proved that a function f ∈ S has no wandering domains or Baker
domains [12].

The organization of the paper is as follows. In Section 2, a class of critically finite transcenden-
tal meromorphic functions having rational Schwarzian derivative is introduced and some basic
properties of functions in this class are developed. In Section 3, the nature of real fixed points
of a function fλ ∈ K, λ > 0, are found and the dynamics of fλ(x) for x ∈ R \ {α} is described.
Further, in this section, it is shown that there exist two critical parameter values λ∗ = φ(0) and
λ∗∗ = φ(x̃), where φ(x) = x

f (x)
and x̃ is the real root of φ′(x) = 0, such that bifurcations in the

dynamics of fλ(x) occur at λ = λ∗ and λ = λ∗∗ (Fig. 2). In Section 4, the characterization of
the Julia set J (fλ), 0 < λ < λ∗ and λ∗ < λ < λ∗∗, as the complement of the basin of attraction
of an attracting real fixed point of fλ(z) is established. Further, it is proved that the Fatou set
of the function fλ(z) for λ = λ∗ and λ = λ∗∗ contains a parabolic domain. It is observed in the
same section that chaotic burst occurs in the Julia set J (fλ) such that, for λ > λ∗∗, J (fλ) is
the whole of complex plane. In Section 5, the characterizations of the Julia set for the function
fλ(z), obtained in Section 4, are applied to computationally generate their images for sample
functions fλ(z) = λ z

z+4ez ∈ K. Finally, the results of our investigations in this paper are com-
pared with those of [9,15,18] obtained recently for the critically finite function λ tan z that has
polynomial Schwarzian derivative and for the non-critically finite entire transcendental functions
λez−1

z
, λ > 0 [13].

2. Class F and some basic properties

We consider the following class of functions having rational Schwarzian derivative:

Definition 2.1. Let T be the class of transcendental meromorphic functions f of finite order
satisfying:

(a) all poles of f are of odd multiplicity,
(b) all zeros of f ′ are of even multiplicity,
(c) Schwarzian derivative SD(f ) of f is a rational function.

It is easily seen that the functions f1(z) = tan z, f2(z) = ez

ez−e−z and f3(z) = z tan z+1
tan z−z

investi-

gated in [7,9] are in class T . In addition, it is observed the function f4(z) = z+µ
z+µ+4ez, µ ∈ R is

in class T .
Since for a function f ∈ T , (i) Schwarzian derivative SD(f ) is rational, (ii) the pole of f (z)

is of odd multiplicity, and (iii) the zero of f ′(z) is of even multiplicity, it follows that [16] the
differential equation g′′(z) + 2SD(f )g(z) = 0 has two linearly independent solutions g1 and g2,
each having a finite Nevanlinna order, such that g1 = f (z).
g2
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Let F be the family of functions f (z) defined by

F =




f ∈ T :

(i) g(z) = (z−α)f (z)
z

, α < 1, is a non-vanishing transcendental
entire function having at most one finite asymptotic value

(ii) z(z − α)g′(z) − αg(z) = 0 has only real roots
(iii) g(x) is positive and strictly increasing in R, g(x) → 0 as

x → −∞ and g(x) → ∞ as x → ∞
(iv) g′(x) is strictly increasing in R, g′(x) → ∞ as x → ∞

and (x − α)
g′(x)
g(x)

> 1 for all x > 0




. (1)

An example of a function belonging to the family F is f (z) = z
z+4ez. It turns out that though

the functions in class F have essentially different properties than those considered by Devaney
and Keen [9], Devaney and Tangerman [10] and Stallard [18] their dynamical properties are
somewhat similar to the functions considered in these works.

The following proposition shows that the functions in the class F are critically finite having
only real critical values and one finite asymptotic value:

Proposition 2.1. The functions in the class F are critically finite, have only real critical values
and 0 is their only finite asymptotic value.

Proof. We first show that a function f ∈ F has only finite number of critical values. Let q(z) =
(f ′(z))− 1

2 . Then, it is easily seen that

q ′′(z) + 1

2
SD(f )q(z) = 0. (2)

Since F ⊂ T , the function f (z) satisfies conditions (a), (b), and (c) of Definition 2.1, so that [16,
Theorem 6.5], f (z) = g1(z)

g2(z)
, where meromorphic functions q1 and q2 are linearly independent

solutions of (2). Therefore, the Wronskian W(q1, q2) = ∣∣ q1 q2

q ′
1 q ′

2

∣∣ and f ′(z) can be written as

f ′(z) = −W(q1, q2)

q2
2 (z)

. (3)

Observe that the order of poles on both sides of the equation q ′′(z) = − 1
2 SD(f )q(z) must agree.

Suppose q2(z) has a pole at the point zp of order n. Then, q ′′
2 (z) has a pole at the point zp of

order (n + 2). Consequently, SD(f ) has a pole at the point zp of order 2 implying that the poles
of q2(z) are also the poles of SD(f ) and there is no pole of SD(f ) other than those of q2(z). The
function SD(f ), being a rational function, has a finite number of poles and hence q2(z) also has
a finite number of poles. Therefore, by (3), f ′(z) can vanish only at finite number of points so
that the function f (z) has only finite number of critical points and, consequently, has only finite
number of critical values. Further, condition (i) and Theorem 1.1 give that the function f (z) has
finite number of asymptotic values. Thus, the function f ∈ F is critically finite. Using (1(ii)),
f ′(z) = 0 has only real zeros. It therefore follows that f (z) has only real critical values. By
(1(iii)), g(x) → 0 as x → −∞ and hence f (x) → 0 as x → −∞. Therefore, 0 is an asymptotic
value for f (z) and by condition (1(i)), it follows that 0 is the only finite asymptotic value of
f (z). �
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3. Nature of fixed points in one parameter family K and bifurcation

The existence of the real fixed points of fλ(x) = λf (x) in R and their nature is described in
this section. For a function f ∈ F , let

K ≡ {
fλ(z) = λf (z): f ∈F , z ∈ Ĉ and λ > 0

}
be one parameter family of transcendental meromorphic functions.

Let

φ(x) =
{

x
f (x)

for x 	= 0,

limx→0
x

f (x)
for x = 0.

(4)

The limit in (4) exists since, by (1(i)), f (z) has a simple zero at z = 0.
Throughout in the sequel, we denote

λ∗ = φ(0) and λ∗∗ = φ(x̃), (5)

where x̃ is the solution of φ′(x) = 0. Note that by Lemma 3.1(iii), it follows that λ∗, λ∗∗ defined
by (5) satisfy λ∗ < λ∗∗.

The following lemmas are needed in the sequel:

Lemma 3.1. Let φ(x) be defined by (4). Then,

(i) φ(x) is continuously differentiable in R.
(ii) Solution of φ′(x) = 0 exists and is unique.

(iii) φ(x) is strictly increasing in (−∞, x̃), is strictly decreasing in (x̃,∞) and has one maxi-
mum at x = x̃, where x̃ is a negative real solution of φ′(x) = 0.

Proof. From (1(i)) and (4),

φ(x) = (x − α)

g(x)
. (6)

Since g(z) is an entire function and g(x) > 0, (i) follows obviously.
Since, by (1(iii)), the function g(x) is positive and strictly increasing in R, it follows that

φ′(x) > 0 for x < α. Further, by (1(iv)), φ′(x) < 0 for x > 0. Thus, there exists at least one zero of
φ′(x) in R. To establish the uniqueness of the zero of φ′(x) in R, let h(x) = g(x)− (x −α)g′(x).
It is easily seen by using (1(iv)) that h(x) is increasing for x < α and is decreasing for x > α.
Since h(x) is continuous in R, by (1(iii)), h(α) = g(α) > 0 and h(x) has the same sign as that
of φ′(x), it follows that h(x) > 0 for x � α and h(x) < 0 for x > 0. Consequently, h(x) has
zeros only in the interval (α,0). If x1 and x2 are two points in (α,0) such that h(x1) = 0 = h(x2)

with x1 < x2, then there exists a point c ∈ (x1, x2) such that h′(c) = 0. This is not possible, since
h′(x) is negative for any x > α. Thus, there exists a unique point x̃ in the interval (α,0) such
that h(x̃) = 0. Since, by (1(iii)), g(x̃) 	= 0, it follows that x̃ with α < x̃ < 0 is the unique zero of
φ′(x). This proves (ii).

It is easily seen that φ′(x) > 0 for x < x̃ and φ′(x) < 0 for x > x̃, where α < x̃ < 0 is unique
solution of φ′(x) = 0. Therefore, φ(x) is strictly increasing in (−∞, x̃) and is strictly decreasing
in (x̃,∞). Since φ′(x̃) = 0, it follows that φ(x̃) is the maximum value of φ(x) in R, completing
the proof of (iii). �

The graph of φ(x) is as shown in Fig. 1.
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Fig. 1. Graph of φ(x).

Lemma 3.2. Let f ∈ F . Then, f ′(x) is positive in (−∞, α) ∪ (α, x̃] ∪ [0,∞) and f ′(x) is non-
negative in (x̃,0), where x̃ is the solution of φ′(x) = 0.

Proof. Since

f ′(x) = φ(x) − xφ′(x)

φ2(x)
= x(x − α)g′(x) − αg(x)

(x − α)2

it follows that, by Lemma 3.1(iii), f ′(x) > 0 in (α, x̃] ∪ [0,∞). By (1(iii)) and(1(iv)), f ′(x) > 0
for x ∈ (−∞, α). Therefore, only non-negativity of f ′(x) in (x̃,0) remains to be established. If
f ′(x) < 0 for some point x ∈ (x̃,0), by continuity of f ′(x), f ′(x) < 0 for x ∈ (x0 − δ, x0 + δ),
for sufficiently small δ. Then, f (x) is decreasing in (x0 − δ, x0 + δ). Further, f (x) is continuous
in [x̃,0] and is increasing at the point x = x̃. Since f (0) > f (x̃), it follows that f (x) must have
maxima or minima in (x̃,0). This gives a contradiction since, by condition (b) of Definition 2.1,
all zeros of f ′(x) are of even multiplicity so that f (x) can have only inflexion points, if any, in
(x̃,0). Thus, f ′(x) � 0 in (x̃,0). �

Since fλ(0) = 0 for any λ > 0, the point x = 0 is a common fixed point of all the functions
fλ(z). The non-zero fixed points of the function fλ(x) are solutions of the equation φ(x) = λ,
where φ(x) is given by (4). Using Lemma 3.1, it is easily seen that (Fig. 1): (i) For 0 < λ < λ∗,
fλ(x) has exactly one fixed point in each of the intervals, say r1,λ ∈ (α, x′) and r2,λ ∈ (0,∞).
(ii) For λ = λ∗, only fixed point of fλ(x) is x′. (iii) For λ∗ < λ < λ∗∗, fλ(x) has exactly one fixed
point in each of the intervals, say rλ ∈ (x′, x̃) and aλ ∈ (x̃,0), where x̃ is the non-zero solution
of φ′(x) = 0. (iv) For λ = λ∗∗, only fixed point of fλ(x) is x̃. (v) For λ > λ∗∗, fλ(x) has no
non-zero fixed points. The nature of the fixed points of fλ(x) for different values of parameter λ

is described in the following theorem.

Theorem 3.1. For fλ ∈K,

(i) the fixed points 0 for 0 < λ < λ∗ and aλ ∈ (x̃,0) for λ∗ < λ < λ∗∗ are attracting, where x̃ is
a solution of φ′(x) = 0,

(ii) the fixed points 0 for λ = λ∗ and x̃ for λ = λ∗∗ are rationally indifferent,
(iii) the fixed points r1,λ ∈ (α, x′) and r2,λ ∈ (0,∞) for 0 < λ < λ∗, x′ for λ = λ∗, rλ ∈ (x′, x̃)

and 0 for λ∗ < λ < λ∗∗ and 0 for λ � λ∗∗ are repelling, where x′ is a non-zero solution of
λ∗ = φ(x).

Proof. (i) For 0 < λ < λ∗, f ′
λ(0) = λf ′(0) < λ∗f ′(0) = λ∗

φ(0)
= 1. Since α < 0 and g(0) > 0,

by condition (1(iii)) in definition of family F , f ′(0) = −λg(0)
> 0. Therefore, it follows that 0
λ α
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is an attracting fixed point of fλ(x) for 0 < λ < λ∗. To determine the nature of the fixed point
aλ ∈ (x̃,0), observe that in view of Lemma 3.1(iii), for λ∗ < λ < λ∗∗, f (aλ) − aλf

′(aλ) < 0.
Since (x̃,0) ⊂ (α,0) and aλ ∈ (x̃,0), by (1(iii)), f (aλ) < 0. Therefore, f ′

λ(aλ) = aλf ′(aλ)
f (aλ)

< 1.
Further, by Lemma 3.2, f ′

λ(aλ) � 0. Consequently, aλ is also an attracting fixed point of fλ(x)

for λ∗ < λ < λ∗∗.
(ii) For λ = λ∗, it is easily seen that f ′

λ(0) = λ∗f ′(0) = λ∗
φ(0)

= 1. Thus, 0 is a rationally in-
different fixed point of fλ(x) for λ = λ∗. To determine the nature of the fixed point x̃, observe
that, by Lemma 3.1(iii), f ′

λ(x̃) = x̃f ′(x̃)
f (x̃)

= 1 for λ = λ∗∗. It therefore follows that x̃ is a rationally
indifferent fixed point of fλ(x) for λ = λ∗∗.

(iii) Since, r1,λ ∈ (α, x′) ⊂ (α, x̃), by Lemma 3.1(iii), f (r1,λ) − r1,λf
′(r1,λ) > 0 for 0 <

λ < λ∗. Further, by (1(iii)), f (r1,λ) < 0. Therefore, using Lemma 3.2, f ′
λ(r1,λ) = r1,λf ′(r1,λ)

f (r1,λ)
> 1.

Thus, r1,λ is a repelling fixed point of fλ(x). Similarly, since f (r2,λ) − r2,λf
′(r2,λ) < 0 and

f (r2,λ) > 0, it follows that f ′
λ(r2,λ) = r2,λf ′(r2,λ)

f (r2,λ)
> 1. Thus, r2,λ is a repelling fixed point of

fλ(x).
For λ = λ∗, by Lemma 3.1(iii), f (x′)−x′f ′(x′) > 0 for x′ ∈ (α, x̃) and, by (1(iii)), f (x′) < 0.

Therefore, by Lemma 3.2, f ′
λ(x

′) = x′f ′(x′)
f (x′) > 1. Consequently, x′ is a repelling fixed point of

fλ(x).
For λ∗ < λ < λ∗∗, by Lemma 3.1(iii), f (rλ) − rλf

′(rλ) > 0 for x′ ∈ (α, rλ) ⊂ (α, x̃) and, by
(1(iii)), f (rλ) < 0. Therefore, by Lemma 3.2, f ′

λ(rλ) = rλf ′(rλ)
f (rλ)

> 1. It now follows that rλ is a
repelling fixed point of fλ(x).

For λ∗ < λ < λ∗∗, f ′
λ(0) = λf ′(0) > λ∗f ′(0) = λ∗

φ(0)
= 1 so that 0 is a repelling fixed point

of fλ(x). Similarly, for λ � λ∗∗, f ′
λ(0) = λf ′(0) � λ∗∗f ′(0) > λ∗f ′(0) = λ∗

φ(0)
= 1. This proves

that 0 is a repelling fixed point of fλ(x). �
Using Theorem 3.1, the dynamics of the function fλ ∈K on the real line is determined by the

following cases.

Case I. For 0 < λ < λ∗, (a) f n
λ (x) → 0 as n → ∞ for x ∈ (−∞, x∗) ∪ (r1,λ, r2,λ) ∪ G and

(b) f n
λ (x) → ∞ as n → ∞ for x ∈ (x∗, α) ∪ (r2,λ,∞) ∪ H , where x∗(<0) is a solution

of fλ(x) = r2,λ, G = (
⋃∞

n=1 f −n
λ (−∞, x∗)) ∩ (α, r1,λ) and H = (

⋃∞
n=1 f −n

λ (x∗, α)) ∩
(α, r1,λ).

By Theorem 3.1, fλ(x) has an attracting fixed point 0 and two repelling fixed points r1,λ

and r2,λ with r1,λ < 0 < r2,λ for 0 < λ < λ∗. Further, it is easily seen that fλ(x) − x > 0 for
x ∈ (r1,λ,0) ∪ (r2,λ,∞) and fλ(x) − x < 0 for x ∈ (α, r1,λ) ∪ (0, r2,λ). To establish the dynam-
ics of fλ(x) described by Case I(a), observe that fλ(x) < x for x ∈ (0, r2,λ). Further, in view
of (1(iii)), f (x) > 0 for x > 0 and, by Lemma 3.2, fλ(x) is increasing. Thus, it follows that
the sequence {f n

λ (x)} is decreasing and bounded below by 0. Hence, f n
λ (x) → 0 as n → ∞ for

x ∈ (0, r2,λ). Similarly, since fλ(x) > x for x ∈ (r1,λ,0) and, in view of (1(iii)), f (x) < 0 for
α < x < 0, by Lemma 3.2 it follows that fλ(x) is increasing, so that, for x ∈ (r1,λ,0) the se-
quence {f n

λ (x)} is increasing and bounded above by 0. Consequently, f n
λ (x) → 0 as n → ∞ for

x ∈ (r1,λ,0). Further, since f (x∗) = r2,λ and by Lemma 3.2 fλ(x) is increasing in (−∞, x∗),
fλ(x) maps (−∞, x∗) into (0, r2,λ). Now, using f n

λ (x) → 0 as n → ∞ for x ∈ (0, r2,λ), it fol-
lows that f n

λ (x) → 0 as n → ∞ for x ∈ (−∞, x∗). Finally, the forward orbit of each point
x ∈ G is contained in the interval (−∞, x∗). Therefore, repeating the above arguments, we have
f n(x) → 0 as n → ∞ for x ∈ G.
λ
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For establishing the dynamics of fλ(x) described by Case I(b), first observe that fλ(x) > x for
x ∈ (r2,λ,∞). Further, since, in view of (1(iii)), f (x) > 0 for x > 0 and by Lemma 3.2, fλ(x)

is increasing. Consequently, the sequence {f n
λ (x)} for x ∈ (r2,λ,∞) is increasing. Since there

is no fixed point larger than r2,λ, it now follows that f n
λ (x) → ∞ as n → ∞ for x ∈ (r2,λ,∞).

Next, since fλ(x) is increasing and f (x∗) = r2,λ, the function fλ(x) maps (x∗, α) into (r2,λ,∞).
Therefore, repeating the above arguments, f n

λ (x) → ∞ as n → ∞ for x ∈ (x∗, α). Further, the
forward orbit of each point x ∈ H is contained in the interval (x∗, α). Thus, f n

λ (x) → ∞ as
n → ∞ for x ∈ H .

Case II. For λ = λ∗, (a) f n
λ (x) → 0 as n → ∞ for x ∈ (x′,0) and (b) f n

λ (x) → ∞ as n → ∞
for x ∈ (−∞, α) ∪ (0,∞) ∪ I , where I = (

⋃∞
n=1 f −n

λ (−∞, α)) ∩ (α, x′).

By Theorem 3.1, fλ(x) has a rationally indifferent fixed point 0 and a repelling fixed point x′
for λ = λ∗. Further, it is easily seen that fλ(x)−x > 0 for x ∈ (x′,0)∪ (0,∞) and fλ(x)−x < 0
for x ∈ (α, x′). To describe the dynamics of fλ(x) for Case II(a), fλ(x) > x for x ∈ (x′,0).
Further, in view of (1(iii)), f (x) < 0 for α < x < 0 and by Lemma 3.2, fλ(x) is increasing.
Therefore, it follows that the sequence {f n

λ (x)} is increasing and bounded above by 0. Hence,
f n

λ (x) → 0 as n → ∞ for x ∈ (x′,0).
To establish the dynamics of fλ(x) described by Case II(b), observe that fλ(x) > x for x ∈

(0,∞). Further, in view of (1(iii)), f (x) > 0 for x > 0, by Lemma 3.2, fλ(x) is increasing.
Therefore, the sequence {f n

λ (x)} is increasing for x ∈ (0,∞). Since, there is no fixed point larger
than 0, it follows that f n

λ (x) → ∞ as n → ∞ for x ∈ (0,∞). Further, since, by Lemma 3.2,
fλ(x) is increasing in (−∞, α), fλ(x) maps the interval (−∞, α) into (0,∞), repeating the
above arguments, f n

λ (x) → ∞ as n → ∞ for x ∈ (−∞, α). Finally, the forward orbit of each
point x ∈ I is contained in the interval (−∞, α). Thus, f n

λ (x) → ∞ as n → ∞ for x ∈ I .

Case III. For λ∗ < λ < λ∗∗, (a) f n
λ (x) → aλ as n → ∞ for x ∈ (rλ,0) and (b) f n

λ (x) → ∞ as
n → ∞ for x ∈ (−∞, α) ∪ (0,∞) ∪ L, where L = (

⋃∞
n=1 f −n

λ (−∞, α)) ∩ (α, rλ).

For λ∗ < λ < λ∗∗, by Theorem 3.1, fλ(x) has an attracting fixed point aλ and two repelling
fixed points 0, rλ with rλ < aλ < 0. Further, fλ(x)− x > 0 for x ∈ (rλ, aλ)∪ (0,∞) and fλ(x)−
x < 0 for x ∈ (α, rλ) ∪ (aλ,0). The rest of proof now follows analogous to that of Case I.

Case IV. For λ = λ∗∗, (a) f n
λ (x) → x̃ as n → ∞ for x ∈ (x̃,0) and (b) f n

λ (x) → ∞ as n → ∞
for x ∈ (−∞, α) ∪ (0,∞) ∪ M , where M = (

⋃∞
n=1 f −n

λ (−∞, α)) ∩ (α, x̃).

For λ = λ∗∗, by Theorem 3.1, fλ(x) has a rationally indifferent fixed point x̃ and a repelling
fixed point 0. Further, fλ(x) − x > 0 for x ∈ (0,∞) and fλ(x) − x < 0 for x ∈ (α, x̃) ∪ (x̃,0).
Now, the assertion follows on the lines of the proof of Case II.

Case V. For λ > λ∗∗, f n
λ (x) → ∞ as n → ∞ for all x ∈ R \Tα , where Tα is the set of the points

that are backward orbits of the pole a of fλ(x).

For λ > λ∗∗, by Theorem 3.1, fλ(x) has only one repelling fixed point at x = 0. Further,
fλ(x) − x > 0 for x ∈ (0,∞) and fλ(x) − x < 0 for x ∈ (α,0). Using the similar arguments as
in Case II, the assertion in this case follows easily.
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Fig. 2. Phase portraits of the function fλ(x) for x ∈ R \ {α} and λ > 0.

Using the above cases, the phase portraits (Fig. 2) describing the dynamics of fλ(x) for vari-
ous values of λ are obtained.

Remark 3.1. In Case I, the points in the interval (−∞, α) map either in (0, r2,λ) or (r2,λ,∞).
Due to this reason, the arrow showing the behavior of points in G ∪ H for 0 < λ < λ∗ are not
marked in the phase portraits (Fig. 2(a)).

It follows by Cases I–V that bifurcations in the dynamics of the function fλ(x) for x ∈ R \
{α} occur at the critical parameter values λ = λ∗ and λ = λ∗∗. The bifurcation diagram for the
function fλ(x) = λf (x), λ > 0 is shown in Fig. 3.

4. Dynamics of fλ(z) for z ∈ Ĉ

In this section, the dynamics of the function fλ(z) for z ∈ Ĉ and λ > 0 is investigated. Let

A(0) = {
z ∈ C: f n

λ (z) → 0 as n → ∞}
and A(aλ) = {

z ∈ C: f n
λ (z) → x2 as n → ∞}

be the basins of attraction of the attracting fixed points 0 and aλ of fλ(z). The following theorem
gives the characterization of the Julia set J (fλ) as the complement of basin of attraction of
the function fλ(z) for 0 < λ < λ∗ and λ∗ < λ < λ∗∗. Our characterization is more suited for
computer generation of images of Julia sets than that given by Baker et al. [1].

Theorem 4.1. Let fλ ∈K.
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Fig. 3. Bifurcation diagram for the function fλ(x) = λf (x), λ > 0.

(i) For 0 < λ < λ∗, the Julia set J (fλ) = Ĉ \ A(0).
(ii) For λ∗ < λ < λ∗∗, the Julia set J (fλ) = Ĉ \ A(aλ).

Proof. Since fλ(z) is critically finite meromorphic function, it follows [2,4], that Fatou set F(fλ)

has no wandering domains or Baker domains. Further, if U a Siegel disk or a Herman ring, the
forward images of singularities of f −1

λ are dense in the boundary of U [5]. Since z = 0 is an
attracting fixed point of fλ(z), its only asymptotic value 0 lies in the basin of attraction A(0).
The number of critical values of fλ(z) is finite and all these critical values lie on the real line.
Therefore, by Case I in Section 3, the forward orbit of critical value either tends to attracting
fixed point 0 or to ∞ under iteration. Consequently, all singular values of fλ(x) and their orbits
either lie in the same component of A(0) or tend to ∞. It therefore follows that fλ(x) cannot
have a Siegel disk or Herman ring in Fatou set F(fλ). If a point z0 lies on an attracting cycle
or a parabolic cycle of a meromorphic transcendental function, the orbit of at least one of its
singular points is attracted to the orbit of z0 [5]. By Theorem 3.1, fλ(z) has only one attracting
fixed point and two repelling fixed point on real axis, consequently it follows that U is not a
parabolic domain. Thus, the only possible stable component U of F(fλ) is the basin of attraction
A(0) of the real attracting fixed point 0 so that the Fatou set F(fλ) = A(0) or the Julia set
J (fλ) = Ĉ \ A(0). This proves (i).

By considering the fixed point aλ instead of 0 and using Case III instead of Case I, the proof
of (ii) follows on the lines of proof similar to that of (i) above. �
Remark 4.1. (i) The basins of attraction A(0) and A(aλ) are completely invariant sets, since
F(fλ) is completely invariant [4] and by Theorem 4.1, F(fλ) = A(0) or F(fλ) = A(aλ).

(ii) By Case I, for 0 < λ < λ∗, f n
λ (x) → 0 as n → ∞ for x ∈ (−∞, x∗) ∪ (r1,λ, r2,λ). There-

fore, it follows that the set (−∞, x∗) ∪ (r1,λ, r2,λ) is contained in the basin of attraction A(0)

for 0 < λ < λ∗. Similarly, by Case III, for λ∗ < λ < λ∗∗, f n
λ (x) → aλ as n → ∞ for rλ < x < 0,

giving that the interval (rλ,0) is contained in the basin of attraction A(aλ) for λ∗ < λ < λ∗∗.

The dynamics of the function fλ(z) for λ = λ∗ and λ = λ∗∗ found in the following theorem
shows that the Fatou set of fλ(z) for these parameter values contains a parabolic domain.

Theorem 4.2. Let fλ ∈K and λ = λ∗ or λ = λ∗. Then, F(fλ) contains a parabolic domain.
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Proof. Let U = {z ∈ C: f n
λ (z) → 0 as n → ∞}. By Theorem 3.1(ii), fλ(z) has a rationally

indifferent fixed point at x = 0. Since, by Case II, f n
λ (x) → 0 as n → ∞ for x ∈ (x′,0) and the

points in (0,∞) tend to ∞ under iteration of fλ(z), the rationally indifferent fixed point 0 lies
on the boundary of U . Thus, U is a parabolic domain in the Fatou set of fλ(z) for λ = λ∗. For
λ = λ∗∗, the proof follows on the lines of the above arguments and is hence omitted. �
Remark 4.2. By Case II, for λ = λ∗, f n

λ (x) → ∞ as n → ∞ for x ∈ (−∞, α) ∪ (0,∞) ∪ I and
f n

λ (x) → 0 as n → ∞ for x ∈ (x′,0). Therefore, for λ = λ∗, the rationally indifferent fixed point
0 belongs to the Julia set of fλ(z) and the interval (x′,0) is contained in the parabolic domain U .
Similarly, by Case IV, for λ = λ∗∗, f n

λ (x) → ∞ for x ∈ (−∞, α) ∪ (0,∞) ∪ M and f n
λ (x) → x̃

for x ∈ (x̃,0). Thus, the rationally indifferent fixed point x̃ belongs to Julia set of fλ(z) and the
interval (x̃,0) is contained in the parabolic domain U .

The following theorem describes the dynamics of fλ(z) for z ∈ Ĉ and λ > λ∗∗ showing that,
in this case, the Julia set J (fλ) explodes to the whole complex plane.

Theorem 4.3. Let fλ ∈K and λ > λ∗∗. Then, Julia set J (fλ) = Ĉ.

Proof. By Case V, f n
λ (x) → ∞ for all x ∈ R \ {Tα ∪ {0}}, it follows that the orbits of all critical

values of fλ(z) tend to ∞. Moreover, the only asymptotic value 0 of the function fλ(z) is prepe-
riodic, since it is a fixed point of the function fλ(z). Since all other conditions of Theorem 1.2
are satisfied, it follows that the Julia set J (fλ) = Ĉ. �
5. Applications and comparisons

The characterizations of the Julia set J (fλ) in Theorems 4.1 and 4.3 can be used to develop
the following useful algorithm for computationally generating the images of the Julia set J (fλ):
(i) Select a window W in the plane and divide W into k ×k grids of width d . (ii) For the midpoint
of each grid (pixel), compute the orbit upto a maximum of N iterations, (iii) If, at i < N , the
modulus of the orbit is greater than some given bound M , the original pixel is colored black
and the iterations are stopped. (iv) If no pixel in the modulus of the orbit ever becomes greater
than M , the original pixel is left as white.

In the output generated by the above algorithm, the black points represent the Julia set of
fλ(z) and the white points represent the Fatou set of fλ(z). The Julia sets for sample functions
fλ(z) = λ zez

z+4 ∈ K, λ = 3.9, λ = 4.1, λ = 20 and λ = 20.1 are generated in the rectangular
domain R = {z ∈ C: −8.5 � �(z) � 3.5 and − 2.5 � �(z) � 21.5}. To generate these images,
for each grid point in the rectangle R the maximum allowed iterations are taken as N = 200 for
a possible escape of the bound M = 40.

The generated Julia set of the function fλ(z) for λ = 3.9 is given in Fig. 4(a). It is found that
Julia sets of fλ(z) for all λ satisfying 0 < λ < λ∗ = 4 have the same pattern as that of Julia set of
fλ(z) for λ = 3.9. This conforms to the result of Theorem 4.1(i). The Julia sets of the function
fλ(z) for λ = 4.1 and λ = 20 are given in Figs. 4(b) and 4(c). It is seen that the nature of images
of the Julia sets of fλ(z) for all λ satisfying 4 = λ∗ < λ < λ∗∗ = e3 also remain the same as those
of the Julia sets of fλ(z) for λ = 4.1 and λ = 20. This verifies to the result of Theorem 4.1(ii).
The nature of image of the Julia set of fλ(z) for λ = 20.1 > e3 ≈ 20.0865 (Fig. 4(d)) shows a
sudden dramatic change from the Julia set of fλ(z) for 4 < λ < e3. This is due to a chaotic burst
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(a) λ = 3.9 < λ∗ (b) λ = 4.1 > λ∗

(c) λ = 20.0 < λ∗∗ (d) λ = 20.1 > λ∗∗

Fig. 4. Julia sets of the function fλ(z) = λ zez

(z+4)
for different values of parameter λ.

in the Julia set of fλ(z) as λ crosses the parameter value e3 so that the resulting image contains
significant large number of black points. This is a visualization of Theorem 4.3.

We note that explosion in the Julia set of the function fλ(z) does not occur at the parameter
value λ∗ = 4, the reason probably being just that the nature of the two fixed points are inter-
changed after crossing this parameter value while the nature of third fixed point remains the
same.

Finally, a comparison between the dynamical properties of the functions investigated in the
present paper and (i) functions considered in [9,15,18] for the dynamics of the function Tλ(z) =
λ tan z, λ ∈ C \ {0} having polynomial Schwarzian derivative (ii) functions studied in [13] for
the dynamics of the non-critically finite transcendental meromorphic function Eλ(z) = λez−1

z
,

λ > 0, is shown in Table 1.
It is observed in Table 1 that certain dynamical properties of the function fλ ∈K are different

than those of the functions Tλ(z) = λ tan z and Eλ(z) = λez−1
z

. For instance, the function fλ ∈ K
is critically finite and has critical values as well as asymptotic values while the function Tλ(z)

has only asymptotic values and the function Eλ(z) is non-critically finite. Further, bifurcations
occur at two parameter values for fλ ∈ K on the real axis while bifurcation occurs at only one
parameter value for Tλ(z) and Eλ(z) on the real axis. In spite of these differences, it is seen in
Table 1 that Fatou and Julia sets of functions in our family K have similar characteristics as those
of the functions Tλ(z) and Eλ(z). For all these functions, Table 1 shows that their Fatou sets
equal the basins of attraction of their real attracting fixed points; Herman rings and wandering
domains do not exist and their Julia sets are the closure of escaping points.
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Table 1
Comparison of dynamical properties of fλ ∈K, Tλ(z) = λ tan z and Eλ(z) = λ(ez−1)

z

fλ ∈ K, λ > 0 Tλ(z) = λ tan z, λ ∈ Ĉ \ {0} Eλ(z) = λ(ez−1)
z , λ > 0

fλ(z) has rational Schwarzian
derivative

Tλ(z) has polynomial Schwarzian
derivative

Eλ(z) has transcendental
meromorphic Schwarzian derivative

fλ(z) is neither even nor odd function Tλ(z) is an odd function Eλ(z) is neither even nor odd function

fλ(z) has finitely many critical values Tλ(z) has no critical values Eλ(z) has infinitely many critical
values

fλ(z) has one finite asymptotic value 0 Tλ(z) has two finite asymptotic values
±λi

Eλ(z) has one finite asymptotic value 0

All singular values of fλ(z) are
bounded

All singular values of Tλ(z) are
bounded

All singular values of Eλ(z) are
bounded

The bifurcations occur in the dynamics
of fλ(z) at two real critical parameter
values λ∗ and λ∗∗, defined by (5)

The bifurcation occurs in the dynamics
of Tλ(z) at only one real critical
parameter value λT = 1

The bifurcation occurs in the dynamics
of Eλ(x) at only one real critical
parameter value λE ≈ 0.6482

For 0 < λ < λ∗ and λ∗ < λ < λ∗∗, the
Fatou set F(fλ) equals the basin of
attraction of the real attracting fixed
point of fλ(z)

For |λ| < 1, the Fatou set F(Tλ) equals
the basin of attraction of the real
attracting fixed point 0 of Tλ(z)

For 0 < λ < λE , the Fatou set F(Eλ)

equals the basin of attraction of the
real attracting fixed point of Eλ(z)

Julia set J (fλ) contains some intervals
of the real line for 0 < λ < λ∗ and
λ∗ < λ < λ∗∗

Julia set J (Tλ) contains the whole real
line for λ > 1

Julia set J (Eλ) contains the whole real
line for λ > λE

Julia set J (fλ) is the whole complex
plane for λ > λ∗∗

Julia set J (Tλ) is the whole complex
plane for λ = iπ

Julia set J (Eλ) is not the whole
complex plane for any λ > 0

Herman rings, Baker domains and
wandering domains do not exist

Herman rings, Baker domains and
wandering domains do not exist

Herman rings and wandering domains
do not exist for 0 < λ < λE

Julia set J (fλ) is the closure of
escaping points for all λ > 0

Julia set J (Tλ) is the closure of
escaping points for all λ > 0

Julia set J (Eλ) is the closure of
escaping points for all λ > 0
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