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The	problems	marked	(T)	need	an	explicit	discussion	in	the	tutorial	class.	Other	problems	are		for	enhanced	
practice.		
	

	
1. (T)	Give	examples	for	the	following:	

	
(a)The	radius	of	convergence	of	Taylor	series	of	a	function	with	center	as	some	point	 a 	in	the	domain	
of	analyticity	D 	of	the	function	is	larger	than	the	largest	disk	 z a R  	contained	in	D 		

(b)	Two	Taylor	series	with	different	centers	represent	the	same	analytic	function	in	the	intersection	
of	their	disks		of	convergence.	
(c)	 The	 disk	 of	 convergence	 of	 Taylor	 series	 of	 a	 function	 is	 strictly	 contained	 in	 the	 domain	 of	
analyticity	of	a	function.	
	

2. Evaluate	the	following	integrals	on	the	indicated	curves,	all	of	them	being	assumed	to	be	oriented	in	
the	counterclockwise	direction:	
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3. Evaluate	 the	 following	 integrals	 on	 the	 square	 C,	 oriented	 in	 the	 counterclockwise	 direction	 and	

having	sides	along	the	lines	 2 2x and y    :	

(T)(i)	 2

cos

( 8)C

z
dz

z z  							(T)(ii)		 4

cosh

C

z
dz

z .	

	
4. Using	Liovuille	Theorem,	show	that	the	functions	exp(z),	sin	z,	cos	z	,	sinh	z,	cosh	z	are	not	bounded	in	

the	complex	plane	C.	
	
5. Show	that	every	polynomial	P(z)	of	degree	n	has	exactly	n	zeros	in	the	complex	plane.	
	
6. If	 f 	 is	 an	 entire	 function	 and	 0( ) nf z MR in	 z R ,	 prove	 that	 f 	 	 is	 a	 polynomial	 of	 degree	 												

at	most	 0n .	

7. Let	 ( )f z 	be	analytic	in	 z R .	Prove	that,	for	0	<	r	<	R,	
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   	(called	Poisson	Integral	Formula).	
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9. Find	the	order	of	the	zero	z	=	0	for	the	following	functions:	
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10. Find	the	order	of	all	the	zeros	of	the	following	functions:	
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11. (T)Does	there	exist	a	function	f(z)	(not identically zero )	that	is	analytic	in	 1z  and	has	zeros	at	the	

following	indicated	set	of	points	?	Why	or	why	not?	
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